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with company and infrastructure boundaries. In this paper, we describe an experience in the 
management of massive time-series, conducted in a plant of Avio Aero. Firstly, we propose a 
fog-based architecture to ease the collection and analysis of these massive datasets. Then, we 
present the results of an empirical comparison of four DBMSs (PostgreSQL, Cassandra, 
MongoDB, and InfluxDB) in the ingestion and retrieval of gigabytes of real IIoT data. In 
particular, we tested different DBMS features under different types of queries. Results show that 
InfluxDB provides very good performance, but PostgreSQL can still be an interesting alternative. 
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1 Introduction 

The application of most recent Information and 
Communication Technologies (ICT) to industrial production 
has led to the concept of Industry 4.0 (Lasi et al., 2014; 
Hermann et al., 2016). Its key objective is to obtain a Smart 
Factory (Wang et al. 2016; Chen et al. 2017), aimed at 
optimising the production chain by means of the digital 
integration of all the entities, tools and steps involved in the 
production process. This is often referred to as the Fourth 
Industrial Revolution, after the introduction of Machines (First 
Revolution), Electrification (Second) and Automation (Third). 

Although there is not a generally accepted definition of 
Industry 4.0 (Hermann et al., 2016), there are anyhow some 
common underlying technologies, namely Cyber-Physical 
Production Systems (CPPS), Internet of Things (IoT), Cloud 
Computing, Big Data and Advanced Analytics Techniques 
(Zhou et al., 2015). Among them, the Industrie 4.0 Working 
Group,1 identified the IoT as the key enabler for the new 
revolution (Kagermann et al., 2013). 

IoT is paradigm based on the digital interconnection of 
everyday objects, with the goal of letting a computer to sense 
information without human intervention (Atzori et al., 2010; 
Gubbi et al., 2013; Vermesan and Friess, 2013). When applied 
to an industrial setting, it is known as Industrial IoT, or IIoT, 
whose goal in to collect status data and control industrial 
machineries. The spreading of IoT/IIoT is leading to the 
constitution of a huge, connected and heterogeneous digital 
environment. Indeed, a total of 1 trillion interconnected sensors 
is foreseen by 2030 (Chen et al., 2014), generating data at an 
unprecedented rate. In an industrial context, over 4 trillion 
Gigabytes of data, could be generated in a year (GE, 2012) and 
this volume will increase (Baily and Manyika 2013). 
Moreover, these massive IIoT data sets are usually 
heterogeneous, with variable resolution, often asynchronous, 
stored in different formats (Yin and Kaynak, 2015), and 
generated as a stream of data. The combination of IoT/IIoT 
along with Big Data analytics showed great possibilities for  

innovation and for business growth (Bhattarai et al., 2019), but 
also a great number of ICT challenges, like data storage, 
retrieval, processing, visualisation and knowledge extraction 
(Marjani et al., 2017). 

To date, these challenges are slowing the diffusion of 
Industry 4.0 technologies, as reported by Capgemini Consulting 
(2015). The key issues limiting the implementation of Big Data 
Analytics solutions in industry are reported in Figure 1, where 
we can note that the high costs of storage and manipulation of 
massive data sets is a key impediment. 

Some previous works reported that handling these 
heterogeneous and unstructured data sets might be difficult 
with traditional storage solutions based on Relational DataBase 
Management Systems (RDBMS) (e.g., Mourtzis et al., 2016). 
On the other hand, NoSQL DBMS (Davoudian et al., 2018; 
Gessert et al., 2017) were reported to be more effective in 
handling these Big Data (Van der Veen et al., 2012; Bhogal 
and Choksi, 2015), thanks to the relaxation of some constraints 
of the relational data model. Moreover, since data streams 
collected from machinery are often represented as Time Series, 
another kind of DBMS was investigated in IIoT, namely the 
Time Series Management Systems (TSMS) (Jensen et al., 
2017), specifically devised to handle time series data. 
Nevertheless, even if in the literature there are many 
benchmarks and researches on DBMS performances for 
storage and retrieval (e.g., TCP, n.d.), but, as reported also by 
Liu and Yuan (2019), none of them is representative of the 
typical workloads induced by IIoT data streams. Moreover, 
with the introduction of Fog computing paradigm, part of 
computation and storage moves closer to data source (i.e., IoT 
devices), reducing network latencies, making data transfer to 
storage nodes more efficient (Bonomi et al. 2012; Dastjerdi and 
Buyya, 2016) and increasing responsiveness in time-critical 
manufacturing tasks. As a consequence, nowadays an IIoT 
solution architect, in charge of choosing an architecture and a 
DBMS to handle IIoT data streams, might have trouble 
identifying the most suitable storage solution for his/her needs, 
due to the lack of related works in the literature. 

Figure 1 Top challenges in implementing big data analytics for industry 4.0 (Capgemini Consulting, 2015) 
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To fill this gap, in this work we present the results of an 
empirical study we conducted to benchmark different storage 
technologies, within a real IIoT Fog-based architecture we 
deployed in a factory producing parts of aircraft engines. More 
in detail, by exploiting a data set of about 60 Gigabytes of real 
IIoT data, collected from vibrational sensors of a grinding 
machine, we compared the storage and retrieval performances 
of four DBMS: one based on the relational model, i.e., 
PostgreSQL, two based on NoSQL paradigm, namely 
MongoDB2, Apache Cassandra3 and one specifically designed 
for Time Series, namely InfluxData4. The experimental 
protocol for the assessment included the measurement of 
performances about ingestion of massive amount of data, 
together with typical queries significant for subsequent Data 
Analytics for the specific industrial context. 

The main contributions of this paper are:  

 A description of the Fog-based architecture we deployed
to collect massive sensor data from multiple industrial
machinery;

 An empirical performance comparison, among three
data storage paradigms, namely Relational, NoSQL and
TSMS, on a real, massive IIoT data set composed of
Time Series.

We believe that practitioners facing similar challenges in the 
field of Industry 4.0 can exploit our empirical results to 
make more informed decisions in the definition of the 
architecture and on the storage technique to employ. 

The rest of the paper is structured as follows: in Section 2, 
we present some preliminary definitions on IIoT Time Series, 
and an overview of well-known DBMS technologies used to 
handle them. In Section 3, we describe the industrial use 
case we faced. In Section 4, we describe the investigated 
technologies and the research question. Section 5 contains a 
description of the experimental protocol and Section 6 results 
obtained from the protocol application, in the mentioned use 
case. Some final remarks conclude the paper. 

2 Definitions and state of art on IIoT time series 
management 

In the majority of IIoT scenarios, connected machineries 
generate huge amount of data, mostly as streams, collected 

from (heterogeneous) monitoring sensors (Jensen et al., 
2017). These streams are usually represented as Time Series, 
a widely used solution to model changing-over-time data 
(Brockwell and Davis, 2016; Madsen, 2007). 

Formally, a Time Series is a collection of couples 

     1 1 2 2, , , ,..., ,n np t p t p t   , where ip  is the information 

collected at the time instant it  (Das, 1994). In the context of 

IIoT, Time Series are mostly used to bind a measure 
collected from a sensor to the time instant it was acquired 
(Jensen et al., 2017). Thus, each data stream coming from a 
specific sensor can be considered a time-ordered collection, 
or a Time Series, of measures from that sensor. These Time 
Series are then the basis to perform advanced analytic tasks 
in the context of Industry 4.0, like Anomaly Detection, 
looking for spurious patterns, or Predictive Maintenance, 
aiming at predicting machinery breakage (Esling and Agon, 
2012). 

In a Smart Factory, as long as an instrumented machinery 
is running, its sensors generate these Time Series, which must 
be stored somewhere, to enable the above cited analytical tasks 
(Ren et al., 2011). Since sensor sampling rates may be very 
high, depending on the physical phenomenon to monitor, the 
acquired streams may lead to very large data sets (Bao et al., 
2012), whose nature matches with the definition of Big Data, 
due to Volume, Velocity and Variety (Lee et al., 2015). Indeed, 
it is not uncommon that each instrumented machinery 
generates data in the range of hundreds of Megabytes, or even 
Gigabytes per hour. Since a Smart Factory may have hundreds 
of these machineries, this becomes a challenging scenario for 
data storage and retrieval (Lee et al., 2015; Van der Veen et al., 
2012; Bhogal and Choksi, 2015). Moreover, in the context of 
Industry 4.0, there are also further aspects to deal with (Yin and 
Kaynak, 2015; Mourtzis et al., 2016), like company constraints, 
data usage limitations due to sensitive nature of data, network 
security policies and more. 

Moving on, in order to enable analytic tasks, there are some 
key steps described by the general scheme in Figure 2.  

The Data Ingestion/Acquisition is about data collection 
from IIoT devices, since each device has different format 
and sensing rates. Then Data Storage phase deals with 
making persistent the acquired data, to enable its usage for 
subsequent Data Analytics phases. 

Figure 2 Key stages of big data analytics (Bhattarai et al., 2019) 
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Focusing on the Data Storage step, the database can be 
located locally in the production plant, with all the related 
management commitments, or remotely, in a company Data 
Lake, or in the Cloud. Cloud computing (Mell et al., 2011) 
has been for years the main computing paradigm associated 
with IoT (Biswas and Giaffreda, 2014). Nevertheless, it can 
introduce some network related problems, that can be 
critical in the context of IIoT. Indeed, data transmission to a 
remote Cloud from the production plant may be subject to 
delays, also due to the distance to the data centres, to the 
routing through multiple gateways, and so on (Yi et al., 
2015). Thus, even if the Cloud relieves a company from the 
burden of ICT management, still some problems might arise 
for latency-sensitive applications (Bonomi et al., 2012), like 
anomaly trends detection. In such cases, to solve these 
issues, a system architecture based on the Fog computing 
can be favourable. Indeed, Fog computing is an architectural 
paradigm based on the exploitation of additional ICT 
resources, lying between IoT/IIoT devices and remote data 
centres (Simmhan, 2018; Bonomi et al., 2012; Dastjerdi and 
Buyya, 2016). Usually, a Fog node processes and optionally 
stores data locally, sending mostly the results of data 
aggregations (usually by far smaller than the raw sensed 
data) to the Cloud (Kudo, 2019). Clearly, a Fog node has 
significantly less computational power and storage than the 
Cloud, but, being closer to the data sources, it has also lower 
network latency, enabling time-sensitive applications. With 
such architectural paradigm, if the Fog node is also devoted 
to store sensed data, due to the limited computing resources, 
the choice of the most suited DBMS is a crucial point, as 
reported in some previous investigations (e.g., Di Martino 
et al., 2019). In the following we provide a description of 
some common storage solutions for IIoT. 

2.1 Data management solutions for IIoT 

In the literature, many works report the use of NoSQL DBMS 
to handle Time Series, also for IoT/IIoT (e.g., Lavin and 
Klabjan, 2015; Kang et al., 2016; Ramesh et al., 2016; 
Chebotko et al., 2015). NoSQL solutions are a family of 
DBMS based on data models different from the relational one. 
In contrast to traditional RDBMS, NoSQL ones can operate 
also without structuring data into a fixed schema, such as tables 
and references Davoudian et al. (2018) and Gessert et al. 
(2017). This can ease handling heterogeneous data, that can 
also be effectively distributed over multiple nodes. On the 
downside, they mostly lack in supporting ACID properties, 
providing instead a concept called eventual consistency, i.e., a 
delay in the propagation of data updates across multiple nodes 
might exists (Leavitt, 2010; Stonebraker, 2010). Within this 
family of DBMS, there is also a new category, namely the 
Time Series Management Systems (TSMS) (Jensen et al., 
2017). Designed specifically to handle Time Series data, they 
have been recently proved to be effective in IoT scenario  
(Liu and Yuan, 2019). 

Some studies report a comparison of DBMS performances 
on large data set, in the context of IoT/IIoT, with a particular 
focus on NoSQL systems (Hendawi et al., 2019; Syafrudin 
et al., 2018; Pereira et al., 2018). 

Anyhow, to the best of our knowledge, no vendor-
independent benchmark, nor studies in literature are available 
to support a system architect of an IIoT context in the choice of 
the most suitable DBMS for managing data collected from 
instrumented machinery, in a Fog-based Industry 4.0 scenario. 

3 The deployed Fog-based architecture for 
massive IIoT time series management 

In this section, we describe the investigated Industry 4.0 
scenario and the system architecture we deployed. 

3.1 The investigated IIoT scenario 

The current study has been carried out within a pilot project of 
Avio Aero, part of General Electric Aviation. It is a company 
that designs, manufactures and performs maintenance of 
components and systems in the field of civil and military 
aviation engines. The company is undergoing many initiatives 
within the Industry 4.0 context in many of its production plants, 
including instrumentation of machineries with IIoT 
sensors/devices. 

The current investigation is part of a project for 
Predictive Maintenance, aimed at minimising the downtime 
of critical machineries by detecting trends that might 
anticipate a forthcoming breakage. In particular, we focused 
on grinder machines, used to smooth the surface of aircraft 
engine blades. These grinders have been retrofitted with 
some sensors, mainly to monitor vibrations of core parts, 
rounds per minute of the spindle, and oil temperature/ 
pressure. This use case turned to be challenging from a data 
management perspective, since it features the four 
characteristics of Industrial Big Data:   

 Velocity: Data is acquired at high frequency. The
vibration sensors have a sampling rate of about 13 KHz,
to allow the identification of rapid and anomalous
changes. Each instrumented machinery has at least four
of these high frequency sensors, thus generating more
than 52,000 records per second.

 Volume: In a typical working day, composed of three
shifts, each vibrational sensor can produce up to
300 million data points, corresponding to roughly
30 Gigabyte per day.

 Variety: Data are collected from heterogeneous sources,
like high-frequency vibrations, low-frequency temperature,
process-specific information from numeric control, etc.,
Data need to be integrated, to enable identification of
critical points in subsequent Data Analytics steps.

 Veracity: Reliability of data interpretation heavily
depends on the temporal alignment of all the data
sources. For example, since the duration of a subroutine
inside a working program might be a few milliseconds
to seconds, a temporal misalignment of data might lead
to potentially wrong phenomena understanding.
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Figure 3 The deployed Fog-based architecture for massive time series management 

Furthermore, there are key Company requirements for the 
data management: 

1 The Company has a distributed data management 
protocol, featuring both local analytics activities in each 
production plant, and remote general analytics tasks, in 
the Company Headquarters.  

2 Data collected from IIoT devices are crucial, and 
redundancy of their storage is required.  

3 Data collected from IIoT devices must be locally stored, to 
feed Data Analytics tools in the production plant.  

4 Data collected from IIoT devices should be available to 
remote Company Data Analysts, implying that it must 
be suitably replicated in a Company Data Lake. This is 
usually done off-line, with some notable delay (e.g., 
data copied during the night).  

3.2 Architecture description 

We started with the design of a proper distributed system 
architecture, compliant with the above-described requirements. 
The resulting solution, depicted in Figure 3, falls in the 
category of Fog Architectures, as some preliminary processing 
is done close to the IIoT data sources.  

With reference to Figure 3, we have the Instrumented 
Machinery under monitoring, whose sensors produce multiple 
analogue signals. Those signals are fed to an Acquisition 
Board, physically wired to the sensors, whose role is to 
discretise received signals, producing high frequency Time 
Series. The Board is connected via an Ethernet cable to a Data 
Preparation Node, which is in our case a simple and economic 
mini Personal Computer with basic computational and storage 
resources. The Mini PC receives the Time Series and performs 
two tasks: (I) it pushes the collected data to the Data Storage 
Node, and (II) it keeps a local copy of the received Time Series, 
in the CSV format, avoiding the risk of a single point of failure, 

thus fulfilling Requirement 2 of Sub-section 3.1. Given the 
limited computing capabilities of a Mini PC, one Data 
Preparation Node is able to serve usually a single instrumented 
machine. 

The Data Preparation Node and Data Storage Node are 
located inside the factory LAN, in order to reduce latency for 
local analytics tasks. The Data Storage Node includes a DBMS 
to store, in a more structured fashion, the collected data. This 
node makes available the data in the local network of the plant, 
so any local Data Analytics Tool can access it at any moment. 

Data are then replicated to the Company Data Lake for 
further massive elaboration tasks. This step is done when 
the load of the network is low, like during the night. After 
this replication, the CSV files are deleted from the Data 
Preparation Nodes, since now they are replied on the Data 
Storage Node and on the Data Lake. One Data Storage 
Node can serve multiple Data Preparation Nodes. 

4 The research question and the  
investigated DBMS 

A potential bottleneck of the proposed architecture, is the 
DBMS of the Data Storage Node, which is flooded by 
massive amounts of sensed data. Indeed, such a DBMS 
should be able to store data in a way that is efficient for 
massive ingestions and also for fast retrieve to empower 
local Data Analytics. Considering the potential volume of 
the data streams, there are three critical aspects to deal with: 
ingestion performance, disk space usage, and retrieval 
performance (Jensen et al., 2017). 

In a preliminary attempt, a solution based on a free 
relational DBMS, namely MySQL, was implemented. This 
solution unfortunately failed, since the instance of MySQL, 
was not able to write data at the rate generated by the sensors. 
This motivated us to empirically assess which DBMS is able to 
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provide better performances in our IIoT environment, and thus 
to formulate the following Research Question: What is the most 
effective DBMS in terms of ingestion, retrieval and storage 
space, for massive IIoT Time Series? 

To identify the DBMS to benchmark, the Company posed 
us two constraints on the pool of candidates: (I) it must run on 
Windows platforms, for IT policy compliance and (II) at least 
in a first assessment, the costs are a important factor. Thus, 
ideally, they must be free solutions, able to be executed on a 
single node. 

In the end, we selected four DBMS: we considered a 
general-purpose relational solution, i.e., PostgreSQL, two 
general purpose NoSQL solutions, i.e., Apache Cassandra and 
MongoDB (reported to be efficient in handling Time Series 
(Lavin and Klabjan, 2015; Ramesh et al., 2016)), and a native 
Time Series Management System (TSMS), i.e., InfluxDB (the 
only TSMS able to fulfil all the non-functional requirements) 
(Jensen et al., 2017). 

To better describe the characteristics of these DBMS, we 
start by briefly recalling the well-known CAP theorem 
(Brewer, 2000). It states that there are three fundamental 
properties of a DBMS, namely Consistency (as defined in 
ACID properties), Availability (“data is considered highly 
available if a given consumer of the data can always reach 
some replica”) (Fox and Brewer, 1999) and Partitioning (“the 
system as whole can survive a partition between data replicas”) 
(Fox and Brewer, 1999). Given these three properties, only two 
can be guaranteed, meaning that it is possible to have CA, CP 
or AP systems, but not all three. Relational DBMS are 
classified as AC, meaning that a RDBMS offers high 
Availability and strong Consistency, while NoSQL systems are 
mostly classified as AP or CP. 

In the following, we provide a brief description of the 
assessed DBMS. 

4.1 PostgreSQL 

PostgreSQL (n.d.) is an Object Relational DBMS 
(ORDBMS), sparkling from a project of the University of 
Berkley. It is currently open source and multiplatform. To 
date, it is widely used in many different contexts and 
applications, for industrial, government and academic 
purposes (e.g., Kaur and Rani, 2015; Liu and Nielsen, 2016; 
Di Martino et al., 2019). According to CAP Theorem, 
PostgreSQL is classified as AC, since it provides high 
Availability and strong Consistency. Being based on the 
Relational data model, PostgreSQL supports a large part of 
the ISO/IEC SQL standard, as stated in the official on-line 
documentation, offering also a total compliance with ACID 
properties. 

4.2 Apache Cassandra 

Apache Cassandra is a NoSQL DBMS, belonging to a 
Column Store category, designed to operate in a distributed 
environment with a masterless configuration. It provides 
high availability, fault tolerance and is able to manage huge 
amount of data. According to the CAP Theorem, it is 
classified as AP, allowing horizontal Partitioning and 

preferring high Availability over Consistency. Cassandra 
has a SQL-like querying language, named Cassandra Query 
Language (CQL). 

In Ramesh et al. (2016), Cassandra has been reported to 
be suitable for storing Time Series, since it offers some 
optimisations for storing and retrieving temporal data, such 
as reordering according to the timestamp key. Indeed, by 
declaring a column-family, it is possible to declare a 
composite primary key that involves n attributes (with 

2n  ). The first 1n   attributes forming the partition key, 
will be used for data partitioning across nodes. The last 
attribute, representing the clustering key, will be used to sort 
data within a node. Using time as clustering key, data are 
sorted by time, thus favouring time-based queries. 

4.3 MongoDB 

MongoDB is a NoSQL DBMS, belonging to the Document-
Oriented category. Since data can have heterogeneous 
structure, it is stored in a JSON-like format. According to 
the CAP Theorem, Mongo is a CP database, where strong 
Consistency and Partition tolerance are effectively provided. 
The data model of MongoDB is composed of key-value 
pairs, saved in BSON documents, i.e., binary JSON, a binary 
serialisation schema for documents. This format is often 
used for Time Series storage (Ramesh et al., 2016), using 
different techniques (i.e., one document per record, or a 
document for values recorded in a given time frame). Also, 
MongoDB provides optimisations for Time Series data. The 
interesting feature is data sharding, namely data distribution 
across nodes by a defined key value, the time in our case. 
Sharding in MongoDB is conceptually close to Cassandra 
partitioning. MongoDB has no querying language, as each 
query must be expressed in JSON format, through an API. 

4.4 InfluxDB 

InfluxDB is a native Time Series Management System, 
specifically designed to handle Time Series (Naqvi et al., 
2017). In InfluxDB, data are physically ordered by time. 
Another key feature of InfluxDB is the ability to define 
retention policies, namely specific rules to manage ageing 
of data. As an example, it is possible to specify that all the 
data older than a given number of months must be deleted, 
or replaced by an aggregated representation. InfluxDB 
offers also the ability to define continuous queries, namely a 
query tool able to filter continuously a stream of input data. 
This DBMS is based on a hybrid data model, where values, 
referred as measurements, are stored like in a row-based 
DBMS, and indexes, named tags, are stored like in a 
column-based one. 

5 The experimental setup 

In order to answer the Research Question defined in Section 4, 
we conducted an empirical study to assess the performances of 
the four identified DBMS in terms of ingestion/retrieval 
performances and storage space, using a massive data set of 
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real IIoT data we collected within the system architecture 
described in Section 3. In the following, we describe the 
experimental setup, in terms of employed data set metrics and 
DBMS configurations. 

5.1 The considered data set 

For the experiments, we used real data collected from an 
instrumented grinder machinery. The Acquisition Board 
(see Sub-section 3.2) feeds the Data Preparation Node with 
a stream of data, that is then organised in records, each with 
the following attributes: 

1 Timestamp (data type: timestamp): the time 
instant of the acquisition, expressed as standard Unix 
epoch time in nanoseconds;  

2 Sensor (data type: string): the name of sensor 
collecting the measurement;  

3 Value (data type: floating point): the value 
of the measurement;  

4 Program (data type: integer): the Id of the 
Part Program, i.e., the processing procedure executed 
by the grinder;  

5 Subprogram (data type: integer): the Id of the 
specific subroutine associated to the Part Program; 

6 Tool (data type: integer): the Id of the tool 
type on which the sensor is mounted. 

The data set used in the present work consists of 
600 million records, according to the above-described 
schema, corresponding to about 2 full days of logging. The 
grinder was used to perform three types of Part Programs, 
whose time duration is respectively 2, 6 and 20 minutes. 

5.2 Database configurations 

The database schemas reflect the data set structure described 
above, with the appropriate adjustments for each system and 
data model. Moreover, significant tuning activities were done 
to obtain better performances from each DBMS, on the given 
data schema and query type. In particular, we operated mainly 
on indexing methods, to increase the speed of data retrieval. 
The choice of the right indexes is a key part of database tuning. 
A lack of suitable indexes will lead to the scan of the entire 
files from the disk during the execution of a query, with 
deleterious impacts on the performances. On the other hand, 
non-essential indexes will slow down data ingestion, due to the 
time required to build/update each index, and waste space on 
the disk, without significant benefits for the retrieval tasks. 
Moreover, when dealing with Time Series, there are non-trivial 
issues in indexing, due to the fact that often data is feed as a 
continuous stream over the time (John et al., 2016). In the 
investigation, for each involved DBMS, we considered two 
configurations of the schema, based on the type and amount of 
indexes: 

Non-Indexed: Each DBMS is configured to index only the 
timestamp attribute. 

Indexed: Each DBMS is configured to index the timestamp 
and additional attributes, to optimise queries. 

In the Not-Indexed configuration, only the temporal attribute is 
indexed, for sake of uniformity across the DBMS. Indeed, 
since an index on the timestamp is native in InfluxDB, the 
same index was defined also for the other DBMSs. On the 
other hand, the Indexed configuration is meant to assess the 
impact of secondary indexes both on ingestion and retrieval 
performances. In particular, we defined some indexes on the 
Program, Subprogram and Tool attributes, to evaluate trade-
offs in presence of secondary indexes. In particular, such 
indexes are differently selective: Subprogram is highly 
selective, with a domain of about 2200 different values, while 
Program and Tools are lowly selective, with a domain of just 3 
and 2 values, respectively. 

Furthermore, PostgreSQL has been evaluated with two 
different settings of physical ordering of the files. Indeed, this 
DBMS has a special command, i.e., CLUSTER, instructing the 
DBMS to cluster a table according to a specified index. From 
the DBMS documentation, this means that: “When a table is 
clustered, it is physically reordered based on the index 
information. Clustering is a one-time operation: when the table 
is subsequently updated, the changes are not clustered.” 
(PostgreSQL, n.d.). In a first setting, we did not execute the 
cluster command, while in the other one, we triggered this 
command immediately after the ingestion of each day of data, 
to sort the data set on the basis of timestamp. 

In Table 1 are reported the main indexing setting for 
each configuration. 

Table 1 Indexing setting for each configuration 

Configuration Timestamp Secondary index type 

Index Type 
Physical
Ordering 

InfluxDB 
Time Series 
Index 

Yes Tags 

Cassandra 
Sorted-String-
Table 

Yes 
SSTable attached 
secondary indexes5 

MongoDB B-Tree No B-Tree 

PostgreSQL B-Tree No B-Tree 

Clustered
PostgreSQL 

B-Tree Yes B-Tree 

5.3 Metrics 

As performance indicators, we used the following three 
metrics, widely used in DBMS benchmarking (e.g., John 
et al., 2016; Cooper et al., 2010): 

 Batch-Ingestion time in seconds, to load a massive
amount of data in the database. This measure is useful
to evaluate the volume of data that a DBMS is capable
to handle during the ingestion phase.

 Retrieval time in seconds, to execute a query. This
measure is useful to evaluate the retrieval performances
of a DBMS.
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 Disk usage in Gigabytes, to measure the storage space
required by a DBMS to store massive amounts of data.

A combined view of ingestion and retrieval performances is 
fundamental, since it is very high the risk of optimising one 
aspect while penalising the other (e.g., defining indexes to 
optimise retrieval, slowing down the ingestion). Moreover, 
considering the disk usage, gives an important insight on 
storage costs to ensure data and indexes persistence. 

5.4 The hardware infrastructure 

Referring to the architecture in Figure 3, the Data 
Preparation Node was equipped with an Intel i5 7300U, 
16 GB RAM and 256 GB SSD, while the Data Storage 
Node was equipped with a hyper-threaded exa-core Intel 
Xeon E-217 6M, 64 GB RAM, 1 TB SSD. The two nodes 
were directly connected through a gigabyte LAN, and the 
tests were performed in isolation to estimate the performance 
of each chosen system, without outer interferences. To avoid 
temporal variability due to the sensors, for all the experiments 
we simulated the acquisition phase by replaying a stream of 
previously recorded real data. 

5.5 The defined ingestion tests 

In order to evaluate the ingestion performances of each DBMS, 
we investigate two scenarios. In the first one, the insertion is 
performed on an empty database, so data corresponding to a 
single day of registration (about 300 million points) for a single 
high frequency sensor, is inserted. In the second scenario, we 
consider a database already containing data generated in one 
day, and we fed it with another day of data. These two 
scenarios allowed us to evaluate the costs of index building and 
update. 

To minimise biases due to external factors, the 
experimental evaluation consisted of five executions, for each 
of the mentioned configuration. After each run a reboot was 
performed, to minimise biases due to caching. A script 
measured the required ingestion time, in seconds, for each run. 
In the results Section, we will report the average values of these 
five runs. 

5.6 The defined retrieval tests 

To evaluate the retrieval performances, we define two query 
formats, relevant for the considered industrial context. 

The first one, exemplified in Listing 1, is used to 
evaluate the performance of Time-based data retrieval. This 
is a common kind of analysis performed in the industrial 
plant, retrieving all the collected data, given the starting and 
ending time instants. We will refer to this type of query as 
Time Query. 

Listing 1: Time Query, in SQL language 

SELECT * 

FROM recordings 

WHERE Timestamp > StartTS 

AND Timestamp < EndTS; 

We defined two sets of values for the StartTS and EndTS 
parameters of the Time Query so that it can retrieve data 
collections representing the three mentioned Part Programs 
(see Sub-section 5.1). This because it is a very common 
query done by the Data Analysts in the plant, to monitor 
what happened during time-frames corresponding to a 
working program. Thus, we had queries retrieving 2 minutes 
of data, 6 minutes and 20 minutes, leading to result-sets 
with, respectively, 1.5, 5 and 16 millions points. 

The second one, exemplified in Listing 2 is used to 
evaluate the performances of queries filtering by some 
Process Parameters. This is also a very common industrial 
scenario, where the Data Analyst may be interested in 
getting information about a specific working process. We 
will refer to this type of query as Process Query. 

Listing 2: Time Query, in SQL language 

SELECT * 

FROM recordings 

WHERE subprogram = SPVal 

AND part_program = PPVal 
AND tool = ToolVal 

We defined three sets of values for the SPVal, PPVal and 
ToolVal parameters of the Process Query, so that it can 
retrieve data collections representing various combinations 
of working programs of the dressing machinery (see Sub-
section 5.1). In particular, we had a query instance with all 
the three parameters set, one with only the SPVal set, thus 
being highly-selective, and one with only the PPVal set, 
being lowly-selective. 

No projection is applied in these queries, so they will 
retrieve all the six attributes (see Sub-section 5.1). 

Each retrieval test was performed on the databases 
populated with two days of data, corresponding to about 600M 
points of real data. The experimental evaluation consisted of 20 
retrieval experiments, for each mentioned query and for each 
DBMS. After each run, again a reboot was performed to 
minimise biases due to caching. A script measured, in seconds, 
the required retrieval time for each run. In the results Section, 
we will report the average values of these twenty runs. 

5.7 Disk usage tests 

At the end of the ingestion tests, with the database containing 
two days of registration, we measured also the Disk Usage in 
Gigabytes, for both the Indexed and Not-Indexed configurations. 

6 Results and discussion 

In this section we discuss the results obtained with the 
experiments described in the previous section. 

6.1 Data ingestion 

In Figure 4, we report the histograms of the average 
ingestion times for the considered DBMS, while the bars 
represent the standard deviations. 
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Figure 4 Time, in seconds, to import 300 M and 600 M records for each DBMS, with and without indexes 

In the Not-indexed configuration, PostgreSQL performs 
slightly better than InfluxDB. Probably this is due to the fact 
that, in such configuration, to avoid InfluxDB to index also 
the other fields, we defined all the non-temporal attributes 
as measurement. This leads to frequent compacting steps, 
resulting in higher ingestion time. MongoDB was pretty 
slower than the two previous DBMS, but still it required 
less than half of the time took by Cassandra. As expected, 
without indexes, there are no notable differences in 
performances between empty and pre-loaded configurations, 
for all the DBMS. 

In the Indexed configuration, InfluxDB outperforms by 
far all the other DBMS. In particular, in this configuration 
InfluxDB behaves as a column store on indexed attributes 
(i.e., tags), and now it can save different values only once, 
storing only references to all records containing a value for 
a specific tag. Consequently, it obtains better performances 
than the Not-Indexed configuration. On the other hand, 
PostgreSQL dramatically slowed down its performances by 
a factor of about six. MongoDB slowed down by a factor 
of two, while Cassandra is practically unaffected, being 
anyhow still the slowest solution. Finally, let us note that, 
since PostgreSQL clustering is a recurring operation, to sort 
one day of data (300 Million points), it required on average 
2100 additional seconds for the Not-Indexed configuration 
and 3800 seconds for the Indexed one. For sake of clarity, 
these numbers have not been reported in the histograms for 
PostgreSQL of Figure 4. 

6.2 Retrieval performances 

In this section, we report retrieval performances for Time 
and Process queries. 

6.2.1 Results for time query 

The results of the three Time queries are reported in Figure 5. 
Since these queries do not include any filtering on non-
temporal attributes, the performances we obtained for the Not-
Indexed and Indexed configurations are practically the same. 
For sake of brevity, we report only the first set of results. As for  

the most selective query (label 2 min in the Figure), we can see 
that InfluxDB and Clustered PostgreSQL are roughly one order 
of magnitude faster than the other solutions. Nevertheless, 
InfluxDB has a peculiar behaviour, showing a required time to 
execute these queries that growth more or less linearly with the 
amount of data to retrieve (retrieving about 16 million points 
required about 10x more time than 1.5 million points). No 
other DBMS showed this behaviour, being on the contrary 
pretty stable among the three investigated queries. MongoDB 
and Cassandra show, again, lower performances in all the 
cases. PostgreSQL, with the basic setting, showed better 
performances than the two NoSQL solutions in all the tests, but 
by far worse than InfluxDB. On the other hand, it is interesting 
to note that the effect of the CLUSTER command of 
PostgreSQL is to reduce by about one order of magnitude the 
time required for the retrieval, thus being extremely advisable if 
these queries are frequently performed. 

6.2.2 Results for process query 

Results of the Process queries are reported in Figures 6 and 7, 
for both the Not-Indexed and Indexed configurations. 

In these tests, Cassandra again performed worse than any 
other system. In all the tests of the Not-Indexed configuration, 
plus the one with the lowest selectivity rate in the Indexed 
configuration, Cassandra service crashed, being unable to 
return any result. In the remaining two cases, it was able to 
return correct results, but showing very poor performances, 
going by far out of scale of the Figure 7. As for InfluxDB, the 
configuration without secondary indexes led to very poor 
results, being by far the worst (working) solution. With the 
indexes, temporal requirements for the execution of the query 
were significantly lower, but still higher than MongoDB or the 
two configurations of PostgreSQL. MongoDB turned out to be 
better than InfluxDB and Cassandra in both configurations, 
showing a performance decrease only on attribute with lower 
selectivity in the not-indexed configuration. Finally, both the 
configurations of PostgreSQL outperformed all the other 
solutions, in all the Not-Indexed tests, and in most of the 
indexed one, were anyhow was pretty close to MongoDB, that 
showed the best results. 
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Figure 5 Average execution three time-based queries, in seconds, for the not-indexed configurations 

Figure 6 average execution three non-time-based queries, in seconds, for the not-indexed configurations 

Figure 7 Average execution three non-time-based queries, in seconds, for the indexed configurations 

6.3 Disk usage 

Figure 8 reported the Disk Occupancy measurements from 
both configurations, index and no-index, for each system. 

As we can see, InfluxDB has the best performances in 
terms of required storage space. The great compression rate is 
due to the presence, within the InfluxDB storage engine,  
of several compression techniques and algorithms, for 

each different data type. In this way, the space needed for 
600 millions of points is  4.5 GB, or 2.7 GB if tags are 
stored as fields. Cassandra and MongoDB need by far more 
space on disk for data storage, that increases when indexes are 
defined. This is especially true for Cassandra, whose indexes 
require more space than the data itself. Finally, PostgreSQL 
required the higher amount of space in both versions and 
configurations. 
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Figure 8 Disk space need to store 600 M points, in Gigabytes 

6.4 Discussion 

Although Cassandra is a successful general-purpose NoSQL 
DBMS, capable to handle great volumes of data, and 
successfully used for Time Series storage, in our proposed 
architecture, using a single node configuration, it was always 
by far outperformed by any other DBMS we investigated, 
being even not able to deliver results at all, in some tests. 
MongoDB showed good overall performances. Indeed, in 
retrieval tests over non-time-based parameters, it performed 
better than InfluxDB, but during the ingestion phase 
was outperformed by InfluxDB and PostgreSQL. Then, 
PostgreSQL was the best DBMS in a many tests in terms of 
execution time, failing mainly on disk usage, with the higher 
required disk occupancy among all the considered systems. 
The use of the CLUSTER command seems to be highly 
advisable, as it provides remarkable improvements in the 
retrieval phase, with an acceptable trade-off in terms on 
ingestion time. Finally, InfluxDB seems to be able to provide 
more balanced performances, with very impressive results in 
terms of required storage space. Summarising, given a scenario 
like the one we investigated, if storage requirements are a key 
parameter, then InfluxDB is the best choice. Otherwise, 
PostgreSQL, in combination with the CLUSTER command, is 
the configuration able to provide the best performances. 

7 Conclusions 

In the IIoT context, the amount of data generated by 
instrumented machinery can be huge, clearly falling in the Big 
Data class. The most of this data is often composed of 
heterogeneous Time Series. Handling such amount of massive 
data can pose non-trivial challenges to a System Architect, 
willing to use the most suited DBMS to store and retrieve 
them. 

In this paper we presented an empirical analysis we 
conducted on three NoSQL DBMS and a Relational DBMS, to 
investigate the achievable performances in terms of ingestion, 
retrieval and required storage space, for IIoT data, in a  
Fog-based architecture. In particular, we measured the 
performances of two widely employed DBMS, namely Apache 
Cassandra and MongoDB, of a Time Series Management 
System, i.e., InfluxDB, and of a Relational DBMS, namely 
PostgreSQL, in handling a data set of about 600 million records 
(about 60 GB), collected from an instrumented grinding 
machine. With our data set, MongoDB and PostgreSQL gave 
the best performances for queries on non-temporal indexed 
attributes, while Cassandra is outperformed by any other 
competitor in almost all the tests and turned out to be unstable 
on a single node configuration. PostgreSQL performed better 
than NoSQL competitors during the ingestion and retrieval 
phases, showing performances comparable with InfluxDB in 
retrieval phase of temporal queries, or even better, when used 
in combination with the CLUSTER command, showing the 
worst performances only in terms of disk usage. InfluxDB 
turned out to be on average the more balanced solution, 
outperforming competitors under storage aspects, and 
providing impressive performances on ingestion and time-
based queries. In conclusion, given our IIoT use case and 
architecture, InfluxDB turned out to be the most advisable 
solution, especially in case of low disk space availability, or 
queries mostly on temporal data. On the other hand, if high 
retrieval performances are required on any type of query, and 
disk space is not a problem, PostgreSQL seems to be a more 
suitable solution. 

After this experimental study, many possible evolutions 
can be envisioned. We clearly need to run experiments also on 
a multi-node architecture, rather than on a single database 
server, to measure the impact of data distribution and 
parallelisation, which could potentially boost the performances 
of the NoSQL DBMSs, in particular those of Cassandra. It is  
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worth to add another TSMS to the comparison, in order to 
better evaluate this kind of storage system. Finally, it would be 
interesting to consider different queries and data schemas, in 
order to obtain a complete overview of system capabilities in 
time-series management. 
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