
Benchmarking management techniques for massive
IIoT time series in a fog architecture

Sergio Di Martino* and Adriano Peron
DIETI,
University of Naples “Federico II”,
Naples 80127, Italy
Email: sergio.dimartino@unina.it
Email: adriano.peron2@unina.it
*Corresponding author

Alberto Riccabone
Avio Aero a GE Aviation Business,
Pomigliano D’Arco (NA) 80038, Italy
Email: Alberto.Riccabone@avioaero.it

Vincenzo Norman Vitale
DIETI,
University of Naples “Federico II”,
Naples 80127, Italy
Email: vincenzonorman.vitale@unina.it

Abstract: Within the Industrial Internet of Things (IIoT) scenario, the online availability of a
growing number of assets in factories enables the collection of vast amounts of data. Each asset
produces time-series collections that must be handled with proper techniques while providing
effective ingestion and retrieval performance in complex architectures, maintaining compliance
with company and infrastructure boundaries. In this paper, we describe an experience in the
management of massive time-series, conducted in a plant of Avio Aero. Firstly, we propose a
fog-based architecture to ease the collection and analysis of these massive datasets. Then, we
present the results of an empirical comparison of four DBMSs (PostgreSQL, Cassandra,
MongoDB, and InfluxDB) in the ingestion and retrieval of gigabytes of real IIoT data. In
particular, we tested different DBMS features under different types of queries. Results show that
InfluxDB provides very good performance, but PostgreSQL can still be an interesting alternative.

Keywords: big data; time series; IIoT; fog architecture; TSMS; NoSQL database; relational
database; benchmarking.

Reference to this paper should be made as follows: Di Martino, S., Peron, A., Riccabone, A. and
Vitale, V.N. (2021) ‘Benchmarking management techniques for massive IIoT time series in a fog
architecture’, Int. J. Grid and Utility Computing, Vol. 12, No. 2, pp.113–125.

Biographical notes: Sergio Di Martino received his MSc (2001) and PhD degree (2005) in
Computer Science at the University of Salerno, Italy. He is currently Associate Professor in
Computer Science at the University of Naples Federico II, Italy, since 2015. His research
interests focus on knowledge discovery and visualization from complex spatio-temporal datasets.

Adriano Peron is Full Professor in Computer Science at the Department of Electrical Engineering and
Information Technologies of the University of Napoli “Federico II”. He got a PhD in Computer
Science in the Department of Computer Science from the University of Pisa. He is currently the
director of the BS/MS Computer Science Program. In the last years, the research activity has been
mainly focused on formal techniques for system specification and verification; model checking for
interval and point based temporal logics; time series storage and analysis; timeline-based planning.

Alberto Riccabone holds a PhD in Aerospace Engineering. He joined Avio Aero in 2007 and he
covered different roles in the Digital Technology team, supporting both the Engineering and the
Supply Chain functions. From the Product Lifecycle Management to Big Data and Industry 4.0,
he has worked on different technologies and processes typical of the aerospace industry. He’s
now leading the Engineering Digital team and he’s the focal point for the Digital R&D initiatives.

Vincenzo Norman Vitale is a PhD student in Information Technology and Electrical Engineering
at the University of Naples Federico II, Italy, from which he also graduated cum laude with a
MSc degree in Computer Science in 2017. His research interests include spatio-temporal data

1

storage and analysis; Human-Computer Interaction application in cultural heritage; applications
of computer science to Intelligent Transportation Systems, smart cities and smart factories.

This paper is a revised and expanded version of a paper entitled ‘Industrial Internet of Things:
persistence for time series with NoSQL databases’ presented at the ‘2019 IEEE 28th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)’,
Capri (Naples), Italy, 12–14 June 2019.

1 Introduction

The application of most recent Information and
Communication Technologies (ICT) to industrial production
has led to the concept of Industry 4.0 (Lasi et al., 2014;
Hermann et al., 2016). Its key objective is to obtain a Smart
Factory (Wang et al. 2016; Chen et al. 2017), aimed at
optimising the production chain by means of the digital
integration of all the entities, tools and steps involved in the
production process. This is often referred to as the Fourth
Industrial Revolution, after the introduction of Machines (First
Revolution), Electrification (Second) and Automation (Third).

Although there is not a generally accepted definition of
Industry 4.0 (Hermann et al., 2016), there are anyhow some
common underlying technologies, namely Cyber-Physical
Production Systems (CPPS), Internet of Things (IoT), Cloud
Computing, Big Data and Advanced Analytics Techniques
(Zhou et al., 2015). Among them, the Industrie 4.0 Working
Group,1 identified the IoT as the key enabler for the new
revolution (Kagermann et al., 2013).

IoT is paradigm based on the digital interconnection of
everyday objects, with the goal of letting a computer to sense
information without human intervention (Atzori et al., 2010;
Gubbi et al., 2013; Vermesan and Friess, 2013). When applied
to an industrial setting, it is known as Industrial IoT, or IIoT,
whose goal in to collect status data and control industrial
machineries. The spreading of IoT/IIoT is leading to the
constitution of a huge, connected and heterogeneous digital
environment. Indeed, a total of 1 trillion interconnected sensors
is foreseen by 2030 (Chen et al., 2014), generating data at an
unprecedented rate. In an industrial context, over 4 trillion
Gigabytes of data, could be generated in a year (GE, 2012) and
this volume will increase (Baily and Manyika 2013).
Moreover, these massive IIoT data sets are usually
heterogeneous, with variable resolution, often asynchronous,
stored in different formats (Yin and Kaynak, 2015), and
generated as a stream of data. The combination of IoT/IIoT
along with Big Data analytics showed great possibilities for

innovation and for business growth (Bhattarai et al., 2019), but
also a great number of ICT challenges, like data storage,
retrieval, processing, visualisation and knowledge extraction
(Marjani et al., 2017).

To date, these challenges are slowing the diffusion of
Industry 4.0 technologies, as reported by Capgemini Consulting
(2015). The key issues limiting the implementation of Big Data
Analytics solutions in industry are reported in Figure 1, where
we can note that the high costs of storage and manipulation of
massive data sets is a key impediment.

Some previous works reported that handling these
heterogeneous and unstructured data sets might be difficult
with traditional storage solutions based on Relational DataBase
Management Systems (RDBMS) (e.g., Mourtzis et al., 2016).
On the other hand, NoSQL DBMS (Davoudian et al., 2018;
Gessert et al., 2017) were reported to be more effective in
handling these Big Data (Van der Veen et al., 2012; Bhogal
and Choksi, 2015), thanks to the relaxation of some constraints
of the relational data model. Moreover, since data streams
collected from machinery are often represented as Time Series,
another kind of DBMS was investigated in IIoT, namely the
Time Series Management Systems (TSMS) (Jensen et al.,
2017), specifically devised to handle time series data.
Nevertheless, even if in the literature there are many
benchmarks and researches on DBMS performances for
storage and retrieval (e.g., TCP, n.d.), but, as reported also by
Liu and Yuan (2019), none of them is representative of the
typical workloads induced by IIoT data streams. Moreover,
with the introduction of Fog computing paradigm, part of
computation and storage moves closer to data source (i.e., IoT
devices), reducing network latencies, making data transfer to
storage nodes more efficient (Bonomi et al. 2012; Dastjerdi and
Buyya, 2016) and increasing responsiveness in time-critical
manufacturing tasks. As a consequence, nowadays an IIoT
solution architect, in charge of choosing an architecture and a
DBMS to handle IIoT data streams, might have trouble
identifying the most suitable storage solution for his/her needs,
due to the lack of related works in the literature.

Figure 1 Top challenges in implementing big data analytics for industry 4.0 (Capgemini Consulting, 2015)

2

To fill this gap, in this work we present the results of an
empirical study we conducted to benchmark different storage
technologies, within a real IIoT Fog-based architecture we
deployed in a factory producing parts of aircraft engines. More
in detail, by exploiting a data set of about 60 Gigabytes of real
IIoT data, collected from vibrational sensors of a grinding
machine, we compared the storage and retrieval performances
of four DBMS: one based on the relational model, i.e.,
PostgreSQL, two based on NoSQL paradigm, namely
MongoDB2, Apache Cassandra3 and one specifically designed
for Time Series, namely InfluxData4. The experimental
protocol for the assessment included the measurement of
performances about ingestion of massive amount of data,
together with typical queries significant for subsequent Data
Analytics for the specific industrial context.

The main contributions of this paper are:

 A description of the Fog-based architecture we deployed
to collect massive sensor data from multiple industrial
machinery;

 An empirical performance comparison, among three
data storage paradigms, namely Relational, NoSQL and
TSMS, on a real, massive IIoT data set composed of
Time Series.

We believe that practitioners facing similar challenges in the
field of Industry 4.0 can exploit our empirical results to
make more informed decisions in the definition of the
architecture and on the storage technique to employ.

The rest of the paper is structured as follows: in Section 2,
we present some preliminary definitions on IIoT Time Series,
and an overview of well-known DBMS technologies used to
handle them. In Section 3, we describe the industrial use
case we faced. In Section 4, we describe the investigated
technologies and the research question. Section 5 contains a
description of the experimental protocol and Section 6 results
obtained from the protocol application, in the mentioned use
case. Some final remarks conclude the paper.

2 Definitions and state of art on IIoT time series
management

In the majority of IIoT scenarios, connected machineries
generate huge amount of data, mostly as streams, collected

from (heterogeneous) monitoring sensors (Jensen et al.,
2017). These streams are usually represented as Time Series,
a widely used solution to model changing-over-time data
(Brockwell and Davis, 2016; Madsen, 2007).

Formally, a Time Series is a collection of couples

 1 1 2 2, , , ,..., ,n np t p t p t , where ip is the information

collected at the time instant it (Das, 1994). In the context of

IIoT, Time Series are mostly used to bind a measure
collected from a sensor to the time instant it was acquired
(Jensen et al., 2017). Thus, each data stream coming from a
specific sensor can be considered a time-ordered collection,
or a Time Series, of measures from that sensor. These Time
Series are then the basis to perform advanced analytic tasks
in the context of Industry 4.0, like Anomaly Detection,
looking for spurious patterns, or Predictive Maintenance,
aiming at predicting machinery breakage (Esling and Agon,
2012).

In a Smart Factory, as long as an instrumented machinery
is running, its sensors generate these Time Series, which must
be stored somewhere, to enable the above cited analytical tasks
(Ren et al., 2011). Since sensor sampling rates may be very
high, depending on the physical phenomenon to monitor, the
acquired streams may lead to very large data sets (Bao et al.,
2012), whose nature matches with the definition of Big Data,
due to Volume, Velocity and Variety (Lee et al., 2015). Indeed,
it is not uncommon that each instrumented machinery
generates data in the range of hundreds of Megabytes, or even
Gigabytes per hour. Since a Smart Factory may have hundreds
of these machineries, this becomes a challenging scenario for
data storage and retrieval (Lee et al., 2015; Van der Veen et al.,
2012; Bhogal and Choksi, 2015). Moreover, in the context of
Industry 4.0, there are also further aspects to deal with (Yin and
Kaynak, 2015; Mourtzis et al., 2016), like company constraints,
data usage limitations due to sensitive nature of data, network
security policies and more.

Moving on, in order to enable analytic tasks, there are some
key steps described by the general scheme in Figure 2.

The Data Ingestion/Acquisition is about data collection
from IIoT devices, since each device has different format
and sensing rates. Then Data Storage phase deals with
making persistent the acquired data, to enable its usage for
subsequent Data Analytics phases.

Figure 2 Key stages of big data analytics (Bhattarai et al., 2019)

3

Focusing on the Data Storage step, the database can be
located locally in the production plant, with all the related
management commitments, or remotely, in a company Data
Lake, or in the Cloud. Cloud computing (Mell et al., 2011)
has been for years the main computing paradigm associated
with IoT (Biswas and Giaffreda, 2014). Nevertheless, it can
introduce some network related problems, that can be
critical in the context of IIoT. Indeed, data transmission to a
remote Cloud from the production plant may be subject to
delays, also due to the distance to the data centres, to the
routing through multiple gateways, and so on (Yi et al.,
2015). Thus, even if the Cloud relieves a company from the
burden of ICT management, still some problems might arise
for latency-sensitive applications (Bonomi et al., 2012), like
anomaly trends detection. In such cases, to solve these
issues, a system architecture based on the Fog computing
can be favourable. Indeed, Fog computing is an architectural
paradigm based on the exploitation of additional ICT
resources, lying between IoT/IIoT devices and remote data
centres (Simmhan, 2018; Bonomi et al., 2012; Dastjerdi and
Buyya, 2016). Usually, a Fog node processes and optionally
stores data locally, sending mostly the results of data
aggregations (usually by far smaller than the raw sensed
data) to the Cloud (Kudo, 2019). Clearly, a Fog node has
significantly less computational power and storage than the
Cloud, but, being closer to the data sources, it has also lower
network latency, enabling time-sensitive applications. With
such architectural paradigm, if the Fog node is also devoted
to store sensed data, due to the limited computing resources,
the choice of the most suited DBMS is a crucial point, as
reported in some previous investigations (e.g., Di Martino
et al., 2019). In the following we provide a description of
some common storage solutions for IIoT.

2.1 Data management solutions for IIoT

In the literature, many works report the use of NoSQL DBMS
to handle Time Series, also for IoT/IIoT (e.g., Lavin and
Klabjan, 2015; Kang et al., 2016; Ramesh et al., 2016;
Chebotko et al., 2015). NoSQL solutions are a family of
DBMS based on data models different from the relational one.
In contrast to traditional RDBMS, NoSQL ones can operate
also without structuring data into a fixed schema, such as tables
and references Davoudian et al. (2018) and Gessert et al.
(2017). This can ease handling heterogeneous data, that can
also be effectively distributed over multiple nodes. On the
downside, they mostly lack in supporting ACID properties,
providing instead a concept called eventual consistency, i.e., a
delay in the propagation of data updates across multiple nodes
might exists (Leavitt, 2010; Stonebraker, 2010). Within this
family of DBMS, there is also a new category, namely the
Time Series Management Systems (TSMS) (Jensen et al.,
2017). Designed specifically to handle Time Series data, they
have been recently proved to be effective in IoT scenario
(Liu and Yuan, 2019).

Some studies report a comparison of DBMS performances
on large data set, in the context of IoT/IIoT, with a particular
focus on NoSQL systems (Hendawi et al., 2019; Syafrudin
et al., 2018; Pereira et al., 2018).

Anyhow, to the best of our knowledge, no vendor-
independent benchmark, nor studies in literature are available
to support a system architect of an IIoT context in the choice of
the most suitable DBMS for managing data collected from
instrumented machinery, in a Fog-based Industry 4.0 scenario.

3 The deployed Fog-based architecture for
massive IIoT time series management

In this section, we describe the investigated Industry 4.0
scenario and the system architecture we deployed.

3.1 The investigated IIoT scenario

The current study has been carried out within a pilot project of
Avio Aero, part of General Electric Aviation. It is a company
that designs, manufactures and performs maintenance of
components and systems in the field of civil and military
aviation engines. The company is undergoing many initiatives
within the Industry 4.0 context in many of its production plants,
including instrumentation of machineries with IIoT
sensors/devices.

The current investigation is part of a project for
Predictive Maintenance, aimed at minimising the downtime
of critical machineries by detecting trends that might
anticipate a forthcoming breakage. In particular, we focused
on grinder machines, used to smooth the surface of aircraft
engine blades. These grinders have been retrofitted with
some sensors, mainly to monitor vibrations of core parts,
rounds per minute of the spindle, and oil temperature/
pressure. This use case turned to be challenging from a data
management perspective, since it features the four
characteristics of Industrial Big Data:

 Velocity: Data is acquired at high frequency. The
vibration sensors have a sampling rate of about 13 KHz,
to allow the identification of rapid and anomalous
changes. Each instrumented machinery has at least four
of these high frequency sensors, thus generating more
than 52,000 records per second.

 Volume: In a typical working day, composed of three
shifts, each vibrational sensor can produce up to
300 million data points, corresponding to roughly
30 Gigabyte per day.

 Variety: Data are collected from heterogeneous sources,
like high-frequency vibrations, low-frequency temperature,
process-specific information from numeric control, etc.,
Data need to be integrated, to enable identification of
critical points in subsequent Data Analytics steps.

 Veracity: Reliability of data interpretation heavily
depends on the temporal alignment of all the data
sources. For example, since the duration of a subroutine
inside a working program might be a few milliseconds
to seconds, a temporal misalignment of data might lead
to potentially wrong phenomena understanding.

4

Figure 3 The deployed Fog-based architecture for massive time series management

Furthermore, there are key Company requirements for the
data management:

1 The Company has a distributed data management
protocol, featuring both local analytics activities in each
production plant, and remote general analytics tasks, in
the Company Headquarters.

2 Data collected from IIoT devices are crucial, and
redundancy of their storage is required.

3 Data collected from IIoT devices must be locally stored, to
feed Data Analytics tools in the production plant.

4 Data collected from IIoT devices should be available to
remote Company Data Analysts, implying that it must
be suitably replicated in a Company Data Lake. This is
usually done off-line, with some notable delay (e.g.,
data copied during the night).

3.2 Architecture description

We started with the design of a proper distributed system
architecture, compliant with the above-described requirements.
The resulting solution, depicted in Figure 3, falls in the
category of Fog Architectures, as some preliminary processing
is done close to the IIoT data sources.

With reference to Figure 3, we have the Instrumented
Machinery under monitoring, whose sensors produce multiple
analogue signals. Those signals are fed to an Acquisition
Board, physically wired to the sensors, whose role is to
discretise received signals, producing high frequency Time
Series. The Board is connected via an Ethernet cable to a Data
Preparation Node, which is in our case a simple and economic
mini Personal Computer with basic computational and storage
resources. The Mini PC receives the Time Series and performs
two tasks: (I) it pushes the collected data to the Data Storage
Node, and (II) it keeps a local copy of the received Time Series,
in the CSV format, avoiding the risk of a single point of failure,

thus fulfilling Requirement 2 of Sub-section 3.1. Given the
limited computing capabilities of a Mini PC, one Data
Preparation Node is able to serve usually a single instrumented
machine.

The Data Preparation Node and Data Storage Node are
located inside the factory LAN, in order to reduce latency for
local analytics tasks. The Data Storage Node includes a DBMS
to store, in a more structured fashion, the collected data. This
node makes available the data in the local network of the plant,
so any local Data Analytics Tool can access it at any moment.

Data are then replicated to the Company Data Lake for
further massive elaboration tasks. This step is done when
the load of the network is low, like during the night. After
this replication, the CSV files are deleted from the Data
Preparation Nodes, since now they are replied on the Data
Storage Node and on the Data Lake. One Data Storage
Node can serve multiple Data Preparation Nodes.

4 The research question and the
investigated DBMS

A potential bottleneck of the proposed architecture, is the
DBMS of the Data Storage Node, which is flooded by
massive amounts of sensed data. Indeed, such a DBMS
should be able to store data in a way that is efficient for
massive ingestions and also for fast retrieve to empower
local Data Analytics. Considering the potential volume of
the data streams, there are three critical aspects to deal with:
ingestion performance, disk space usage, and retrieval
performance (Jensen et al., 2017).

In a preliminary attempt, a solution based on a free
relational DBMS, namely MySQL, was implemented. This
solution unfortunately failed, since the instance of MySQL,
was not able to write data at the rate generated by the sensors.
This motivated us to empirically assess which DBMS is able to

5

provide better performances in our IIoT environment, and thus
to formulate the following Research Question: What is the most
effective DBMS in terms of ingestion, retrieval and storage
space, for massive IIoT Time Series?

To identify the DBMS to benchmark, the Company posed
us two constraints on the pool of candidates: (I) it must run on
Windows platforms, for IT policy compliance and (II) at least
in a first assessment, the costs are a important factor. Thus,
ideally, they must be free solutions, able to be executed on a
single node.

In the end, we selected four DBMS: we considered a
general-purpose relational solution, i.e., PostgreSQL, two
general purpose NoSQL solutions, i.e., Apache Cassandra and
MongoDB (reported to be efficient in handling Time Series
(Lavin and Klabjan, 2015; Ramesh et al., 2016)), and a native
Time Series Management System (TSMS), i.e., InfluxDB (the
only TSMS able to fulfil all the non-functional requirements)
(Jensen et al., 2017).

To better describe the characteristics of these DBMS, we
start by briefly recalling the well-known CAP theorem
(Brewer, 2000). It states that there are three fundamental
properties of a DBMS, namely Consistency (as defined in
ACID properties), Availability (“data is considered highly
available if a given consumer of the data can always reach
some replica”) (Fox and Brewer, 1999) and Partitioning (“the
system as whole can survive a partition between data replicas”)
(Fox and Brewer, 1999). Given these three properties, only two
can be guaranteed, meaning that it is possible to have CA, CP
or AP systems, but not all three. Relational DBMS are
classified as AC, meaning that a RDBMS offers high
Availability and strong Consistency, while NoSQL systems are
mostly classified as AP or CP.

In the following, we provide a brief description of the
assessed DBMS.

4.1 PostgreSQL

PostgreSQL (n.d.) is an Object Relational DBMS
(ORDBMS), sparkling from a project of the University of
Berkley. It is currently open source and multiplatform. To
date, it is widely used in many different contexts and
applications, for industrial, government and academic
purposes (e.g., Kaur and Rani, 2015; Liu and Nielsen, 2016;
Di Martino et al., 2019). According to CAP Theorem,
PostgreSQL is classified as AC, since it provides high
Availability and strong Consistency. Being based on the
Relational data model, PostgreSQL supports a large part of
the ISO/IEC SQL standard, as stated in the official on-line
documentation, offering also a total compliance with ACID
properties.

4.2 Apache Cassandra

Apache Cassandra is a NoSQL DBMS, belonging to a
Column Store category, designed to operate in a distributed
environment with a masterless configuration. It provides
high availability, fault tolerance and is able to manage huge
amount of data. According to the CAP Theorem, it is
classified as AP, allowing horizontal Partitioning and

preferring high Availability over Consistency. Cassandra
has a SQL-like querying language, named Cassandra Query
Language (CQL).

In Ramesh et al. (2016), Cassandra has been reported to
be suitable for storing Time Series, since it offers some
optimisations for storing and retrieving temporal data, such
as reordering according to the timestamp key. Indeed, by
declaring a column-family, it is possible to declare a
composite primary key that involves n attributes (with

2n). The first 1n attributes forming the partition key,
will be used for data partitioning across nodes. The last
attribute, representing the clustering key, will be used to sort
data within a node. Using time as clustering key, data are
sorted by time, thus favouring time-based queries.

4.3 MongoDB

MongoDB is a NoSQL DBMS, belonging to the Document-
Oriented category. Since data can have heterogeneous
structure, it is stored in a JSON-like format. According to
the CAP Theorem, Mongo is a CP database, where strong
Consistency and Partition tolerance are effectively provided.
The data model of MongoDB is composed of key-value
pairs, saved in BSON documents, i.e., binary JSON, a binary
serialisation schema for documents. This format is often
used for Time Series storage (Ramesh et al., 2016), using
different techniques (i.e., one document per record, or a
document for values recorded in a given time frame). Also,
MongoDB provides optimisations for Time Series data. The
interesting feature is data sharding, namely data distribution
across nodes by a defined key value, the time in our case.
Sharding in MongoDB is conceptually close to Cassandra
partitioning. MongoDB has no querying language, as each
query must be expressed in JSON format, through an API.

4.4 InfluxDB

InfluxDB is a native Time Series Management System,
specifically designed to handle Time Series (Naqvi et al.,
2017). In InfluxDB, data are physically ordered by time.
Another key feature of InfluxDB is the ability to define
retention policies, namely specific rules to manage ageing
of data. As an example, it is possible to specify that all the
data older than a given number of months must be deleted,
or replaced by an aggregated representation. InfluxDB
offers also the ability to define continuous queries, namely a
query tool able to filter continuously a stream of input data.
This DBMS is based on a hybrid data model, where values,
referred as measurements, are stored like in a row-based
DBMS, and indexes, named tags, are stored like in a
column-based one.

5 The experimental setup

In order to answer the Research Question defined in Section 4,
we conducted an empirical study to assess the performances of
the four identified DBMS in terms of ingestion/retrieval
performances and storage space, using a massive data set of

6

real IIoT data we collected within the system architecture
described in Section 3. In the following, we describe the
experimental setup, in terms of employed data set metrics and
DBMS configurations.

5.1 The considered data set

For the experiments, we used real data collected from an
instrumented grinder machinery. The Acquisition Board
(see Sub-section 3.2) feeds the Data Preparation Node with
a stream of data, that is then organised in records, each with
the following attributes:

1 Timestamp (data type: timestamp): the time
instant of the acquisition, expressed as standard Unix
epoch time in nanoseconds;

2 Sensor (data type: string): the name of sensor
collecting the measurement;

3 Value (data type: floating point): the value
of the measurement;

4 Program (data type: integer): the Id of the
Part Program, i.e., the processing procedure executed
by the grinder;

5 Subprogram (data type: integer): the Id of the
specific subroutine associated to the Part Program;

6 Tool (data type: integer): the Id of the tool
type on which the sensor is mounted.

The data set used in the present work consists of
600 million records, according to the above-described
schema, corresponding to about 2 full days of logging. The
grinder was used to perform three types of Part Programs,
whose time duration is respectively 2, 6 and 20 minutes.

5.2 Database configurations

The database schemas reflect the data set structure described
above, with the appropriate adjustments for each system and
data model. Moreover, significant tuning activities were done
to obtain better performances from each DBMS, on the given
data schema and query type. In particular, we operated mainly
on indexing methods, to increase the speed of data retrieval.
The choice of the right indexes is a key part of database tuning.
A lack of suitable indexes will lead to the scan of the entire
files from the disk during the execution of a query, with
deleterious impacts on the performances. On the other hand,
non-essential indexes will slow down data ingestion, due to the
time required to build/update each index, and waste space on
the disk, without significant benefits for the retrieval tasks.
Moreover, when dealing with Time Series, there are non-trivial
issues in indexing, due to the fact that often data is feed as a
continuous stream over the time (John et al., 2016). In the
investigation, for each involved DBMS, we considered two
configurations of the schema, based on the type and amount of
indexes:

Non-Indexed: Each DBMS is configured to index only the
timestamp attribute.

Indexed: Each DBMS is configured to index the timestamp
and additional attributes, to optimise queries.

In the Not-Indexed configuration, only the temporal attribute is
indexed, for sake of uniformity across the DBMS. Indeed,
since an index on the timestamp is native in InfluxDB, the
same index was defined also for the other DBMSs. On the
other hand, the Indexed configuration is meant to assess the
impact of secondary indexes both on ingestion and retrieval
performances. In particular, we defined some indexes on the
Program, Subprogram and Tool attributes, to evaluate trade-
offs in presence of secondary indexes. In particular, such
indexes are differently selective: Subprogram is highly
selective, with a domain of about 2200 different values, while
Program and Tools are lowly selective, with a domain of just 3
and 2 values, respectively.

Furthermore, PostgreSQL has been evaluated with two
different settings of physical ordering of the files. Indeed, this
DBMS has a special command, i.e., CLUSTER, instructing the
DBMS to cluster a table according to a specified index. From
the DBMS documentation, this means that: “When a table is
clustered, it is physically reordered based on the index
information. Clustering is a one-time operation: when the table
is subsequently updated, the changes are not clustered.”
(PostgreSQL, n.d.). In a first setting, we did not execute the
cluster command, while in the other one, we triggered this
command immediately after the ingestion of each day of data,
to sort the data set on the basis of timestamp.

In Table 1 are reported the main indexing setting for
each configuration.

Table 1 Indexing setting for each configuration

Configuration Timestamp Secondary index type

Index Type
Physical
Ordering

InfluxDB
Time Series
Index

Yes Tags

Cassandra
Sorted-String-
Table

Yes
SSTable attached
secondary indexes5

MongoDB B-Tree No B-Tree

PostgreSQL B-Tree No B-Tree

Clustered
PostgreSQL

B-Tree Yes B-Tree

5.3 Metrics

As performance indicators, we used the following three
metrics, widely used in DBMS benchmarking (e.g., John
et al., 2016; Cooper et al., 2010):

 Batch-Ingestion time in seconds, to load a massive
amount of data in the database. This measure is useful
to evaluate the volume of data that a DBMS is capable
to handle during the ingestion phase.

 Retrieval time in seconds, to execute a query. This
measure is useful to evaluate the retrieval performances
of a DBMS.

7

 Disk usage in Gigabytes, to measure the storage space
required by a DBMS to store massive amounts of data.

A combined view of ingestion and retrieval performances is
fundamental, since it is very high the risk of optimising one
aspect while penalising the other (e.g., defining indexes to
optimise retrieval, slowing down the ingestion). Moreover,
considering the disk usage, gives an important insight on
storage costs to ensure data and indexes persistence.

5.4 The hardware infrastructure

Referring to the architecture in Figure 3, the Data
Preparation Node was equipped with an Intel i5 7300U,
16 GB RAM and 256 GB SSD, while the Data Storage
Node was equipped with a hyper-threaded exa-core Intel
Xeon E-217 6M, 64 GB RAM, 1 TB SSD. The two nodes
were directly connected through a gigabyte LAN, and the
tests were performed in isolation to estimate the performance
of each chosen system, without outer interferences. To avoid
temporal variability due to the sensors, for all the experiments
we simulated the acquisition phase by replaying a stream of
previously recorded real data.

5.5 The defined ingestion tests

In order to evaluate the ingestion performances of each DBMS,
we investigate two scenarios. In the first one, the insertion is
performed on an empty database, so data corresponding to a
single day of registration (about 300 million points) for a single
high frequency sensor, is inserted. In the second scenario, we
consider a database already containing data generated in one
day, and we fed it with another day of data. These two
scenarios allowed us to evaluate the costs of index building and
update.

To minimise biases due to external factors, the
experimental evaluation consisted of five executions, for each
of the mentioned configuration. After each run a reboot was
performed, to minimise biases due to caching. A script
measured the required ingestion time, in seconds, for each run.
In the results Section, we will report the average values of these
five runs.

5.6 The defined retrieval tests

To evaluate the retrieval performances, we define two query
formats, relevant for the considered industrial context.

The first one, exemplified in Listing 1, is used to
evaluate the performance of Time-based data retrieval. This
is a common kind of analysis performed in the industrial
plant, retrieving all the collected data, given the starting and
ending time instants. We will refer to this type of query as
Time Query.

Listing 1: Time Query, in SQL language

SELECT *

FROM recordings

WHERE Timestamp > StartTS

AND Timestamp < EndTS;

We defined two sets of values for the StartTS and EndTS
parameters of the Time Query so that it can retrieve data
collections representing the three mentioned Part Programs
(see Sub-section 5.1). This because it is a very common
query done by the Data Analysts in the plant, to monitor
what happened during time-frames corresponding to a
working program. Thus, we had queries retrieving 2 minutes
of data, 6 minutes and 20 minutes, leading to result-sets
with, respectively, 1.5, 5 and 16 millions points.

The second one, exemplified in Listing 2 is used to
evaluate the performances of queries filtering by some
Process Parameters. This is also a very common industrial
scenario, where the Data Analyst may be interested in
getting information about a specific working process. We
will refer to this type of query as Process Query.

Listing 2: Time Query, in SQL language

SELECT *

FROM recordings

WHERE subprogram = SPVal

AND part_program = PPVal
AND tool = ToolVal

We defined three sets of values for the SPVal, PPVal and
ToolVal parameters of the Process Query, so that it can
retrieve data collections representing various combinations
of working programs of the dressing machinery (see Sub-
section 5.1). In particular, we had a query instance with all
the three parameters set, one with only the SPVal set, thus
being highly-selective, and one with only the PPVal set,
being lowly-selective.

No projection is applied in these queries, so they will
retrieve all the six attributes (see Sub-section 5.1).

Each retrieval test was performed on the databases
populated with two days of data, corresponding to about 600M
points of real data. The experimental evaluation consisted of 20
retrieval experiments, for each mentioned query and for each
DBMS. After each run, again a reboot was performed to
minimise biases due to caching. A script measured, in seconds,
the required retrieval time for each run. In the results Section,
we will report the average values of these twenty runs.

5.7 Disk usage tests

At the end of the ingestion tests, with the database containing
two days of registration, we measured also the Disk Usage in
Gigabytes, for both the Indexed and Not-Indexed configurations.

6 Results and discussion

In this section we discuss the results obtained with the
experiments described in the previous section.

6.1 Data ingestion

In Figure 4, we report the histograms of the average
ingestion times for the considered DBMS, while the bars
represent the standard deviations.

8

Figure 4 Time, in seconds, to import 300 M and 600 M records for each DBMS, with and without indexes

In the Not-indexed configuration, PostgreSQL performs
slightly better than InfluxDB. Probably this is due to the fact
that, in such configuration, to avoid InfluxDB to index also
the other fields, we defined all the non-temporal attributes
as measurement. This leads to frequent compacting steps,
resulting in higher ingestion time. MongoDB was pretty
slower than the two previous DBMS, but still it required
less than half of the time took by Cassandra. As expected,
without indexes, there are no notable differences in
performances between empty and pre-loaded configurations,
for all the DBMS.

In the Indexed configuration, InfluxDB outperforms by
far all the other DBMS. In particular, in this configuration
InfluxDB behaves as a column store on indexed attributes
(i.e., tags), and now it can save different values only once,
storing only references to all records containing a value for
a specific tag. Consequently, it obtains better performances
than the Not-Indexed configuration. On the other hand,
PostgreSQL dramatically slowed down its performances by
a factor of about six. MongoDB slowed down by a factor
of two, while Cassandra is practically unaffected, being
anyhow still the slowest solution. Finally, let us note that,
since PostgreSQL clustering is a recurring operation, to sort
one day of data (300 Million points), it required on average
2100 additional seconds for the Not-Indexed configuration
and 3800 seconds for the Indexed one. For sake of clarity,
these numbers have not been reported in the histograms for
PostgreSQL of Figure 4.

6.2 Retrieval performances

In this section, we report retrieval performances for Time
and Process queries.

6.2.1 Results for time query

The results of the three Time queries are reported in Figure 5.
Since these queries do not include any filtering on non-
temporal attributes, the performances we obtained for the Not-
Indexed and Indexed configurations are practically the same.
For sake of brevity, we report only the first set of results. As for

the most selective query (label 2 min in the Figure), we can see
that InfluxDB and Clustered PostgreSQL are roughly one order
of magnitude faster than the other solutions. Nevertheless,
InfluxDB has a peculiar behaviour, showing a required time to
execute these queries that growth more or less linearly with the
amount of data to retrieve (retrieving about 16 million points
required about 10x more time than 1.5 million points). No
other DBMS showed this behaviour, being on the contrary
pretty stable among the three investigated queries. MongoDB
and Cassandra show, again, lower performances in all the
cases. PostgreSQL, with the basic setting, showed better
performances than the two NoSQL solutions in all the tests, but
by far worse than InfluxDB. On the other hand, it is interesting
to note that the effect of the CLUSTER command of
PostgreSQL is to reduce by about one order of magnitude the
time required for the retrieval, thus being extremely advisable if
these queries are frequently performed.

6.2.2 Results for process query

Results of the Process queries are reported in Figures 6 and 7,
for both the Not-Indexed and Indexed configurations.

In these tests, Cassandra again performed worse than any
other system. In all the tests of the Not-Indexed configuration,
plus the one with the lowest selectivity rate in the Indexed
configuration, Cassandra service crashed, being unable to
return any result. In the remaining two cases, it was able to
return correct results, but showing very poor performances,
going by far out of scale of the Figure 7. As for InfluxDB, the
configuration without secondary indexes led to very poor
results, being by far the worst (working) solution. With the
indexes, temporal requirements for the execution of the query
were significantly lower, but still higher than MongoDB or the
two configurations of PostgreSQL. MongoDB turned out to be
better than InfluxDB and Cassandra in both configurations,
showing a performance decrease only on attribute with lower
selectivity in the not-indexed configuration. Finally, both the
configurations of PostgreSQL outperformed all the other
solutions, in all the Not-Indexed tests, and in most of the
indexed one, were anyhow was pretty close to MongoDB, that
showed the best results.

9

Figure 5 Average execution three time-based queries, in seconds, for the not-indexed configurations

Figure 6 average execution three non-time-based queries, in seconds, for the not-indexed configurations

Figure 7 Average execution three non-time-based queries, in seconds, for the indexed configurations

6.3 Disk usage

Figure 8 reported the Disk Occupancy measurements from
both configurations, index and no-index, for each system.

As we can see, InfluxDB has the best performances in
terms of required storage space. The great compression rate is
due to the presence, within the InfluxDB storage engine,
of several compression techniques and algorithms, for

each different data type. In this way, the space needed for
600 millions of points is 4.5 GB, or 2.7 GB if tags are
stored as fields. Cassandra and MongoDB need by far more
space on disk for data storage, that increases when indexes are
defined. This is especially true for Cassandra, whose indexes
require more space than the data itself. Finally, PostgreSQL
required the higher amount of space in both versions and
configurations.

10

Figure 8 Disk space need to store 600 M points, in Gigabytes

6.4 Discussion

Although Cassandra is a successful general-purpose NoSQL
DBMS, capable to handle great volumes of data, and
successfully used for Time Series storage, in our proposed
architecture, using a single node configuration, it was always
by far outperformed by any other DBMS we investigated,
being even not able to deliver results at all, in some tests.
MongoDB showed good overall performances. Indeed, in
retrieval tests over non-time-based parameters, it performed
better than InfluxDB, but during the ingestion phase
was outperformed by InfluxDB and PostgreSQL. Then,
PostgreSQL was the best DBMS in a many tests in terms of
execution time, failing mainly on disk usage, with the higher
required disk occupancy among all the considered systems.
The use of the CLUSTER command seems to be highly
advisable, as it provides remarkable improvements in the
retrieval phase, with an acceptable trade-off in terms on
ingestion time. Finally, InfluxDB seems to be able to provide
more balanced performances, with very impressive results in
terms of required storage space. Summarising, given a scenario
like the one we investigated, if storage requirements are a key
parameter, then InfluxDB is the best choice. Otherwise,
PostgreSQL, in combination with the CLUSTER command, is
the configuration able to provide the best performances.

7 Conclusions

In the IIoT context, the amount of data generated by
instrumented machinery can be huge, clearly falling in the Big
Data class. The most of this data is often composed of
heterogeneous Time Series. Handling such amount of massive
data can pose non-trivial challenges to a System Architect,
willing to use the most suited DBMS to store and retrieve
them.

In this paper we presented an empirical analysis we
conducted on three NoSQL DBMS and a Relational DBMS, to
investigate the achievable performances in terms of ingestion,
retrieval and required storage space, for IIoT data, in a
Fog-based architecture. In particular, we measured the
performances of two widely employed DBMS, namely Apache
Cassandra and MongoDB, of a Time Series Management
System, i.e., InfluxDB, and of a Relational DBMS, namely
PostgreSQL, in handling a data set of about 600 million records
(about 60 GB), collected from an instrumented grinding
machine. With our data set, MongoDB and PostgreSQL gave
the best performances for queries on non-temporal indexed
attributes, while Cassandra is outperformed by any other
competitor in almost all the tests and turned out to be unstable
on a single node configuration. PostgreSQL performed better
than NoSQL competitors during the ingestion and retrieval
phases, showing performances comparable with InfluxDB in
retrieval phase of temporal queries, or even better, when used
in combination with the CLUSTER command, showing the
worst performances only in terms of disk usage. InfluxDB
turned out to be on average the more balanced solution,
outperforming competitors under storage aspects, and
providing impressive performances on ingestion and time-
based queries. In conclusion, given our IIoT use case and
architecture, InfluxDB turned out to be the most advisable
solution, especially in case of low disk space availability, or
queries mostly on temporal data. On the other hand, if high
retrieval performances are required on any type of query, and
disk space is not a problem, PostgreSQL seems to be a more
suitable solution.

After this experimental study, many possible evolutions
can be envisioned. We clearly need to run experiments also on
a multi-node architecture, rather than on a single database
server, to measure the impact of data distribution and
parallelisation, which could potentially boost the performances
of the NoSQL DBMSs, in particular those of Cassandra. It is

11

worth to add another TSMS to the comparison, in order to
better evaluate this kind of storage system. Finally, it would be
interesting to consider different queries and data schemas, in
order to obtain a complete overview of system capabilities in
time-series management.

References

Atzori, L., Iera, A. and Morabito, G. (2010) ‘The internet of things: a
survey’, Computer Networks, Vol. 54, No. 15, pp.2787–2805.

Baily, M.N. and Manyika, J. (2013) ‘Is manufacturing “cool”
again’, Project Syndicate, Vol. 21.

Bao, Y. et al. (2012) ‘Massive sensor data management framework in
cloud manufacturing based on Hadoop’, Proceedings of the IEEE
10th International Conference on Industrial Informatics, IEEE,
pp.397–401.

Bhattarai, B.P. et al. (2019) ‘Big data analytics in smart grids:
state-of-the-art, challenges, opportunities, and future
directions’, IET Smart Grid, Vol. 2, No. 2, pp.141–154.

Bhogal, J. and Choksi, I. (2015) ‘Handling big data using NoSQL’,
Proceedings of the IEEE 29th International Conference on
Advanced Information Networking and Applications Workshops,
IEEE, pp.393–398.

Biswas, A.R. and Giaffreda, R. (2014) ‘IoT and cloud convergence:
opportunities and challenges’, Proceedings of the IEEE World
Forum on Internet of Things (WF-IoT), IEEE, pp.375–376.

Bonomi, F. et al. (2012) ‘Fog computing and its role in the internet of
things’, Proceedings of the 1st Edition of the MCC Workshop on
Mobile Cloud Computing, ACM, pp.13–16.

Brewer, E.A. (2000) ‘Towards robust distributed systems’,
Proceedings of the 19th Annual ACM Symposium on Principles
of Distributed Computing, Portland, OR.

Brockwell, P.J. and Davis, R.A. (2016) Introduction to Time Series
and Forecasting, 3rd ed., Springer.

Capgemini Consulting (2015) Big Data Blackout: are Utilities
Powering up their Data Analytics?

Chebotko, A., Kashlev, A. and Lu, S. (2015) ‘A big data modeling
methodology for Apache Cassandra’, Proceedings of the IEEE
International Congress on Big Data (BigData Congress), IEEE,
pp.238–245.

Chen, B. et al. (2017) ‘Smart factory of industry 4.0: Key
technologies, application case, and challenges’, IEEE Access,
Vol. 6, pp.6505–6519.

Chen, M. et al. (2014) Big Data: Related Technologies, Challenges
and Future Prospects, Springer.

Cooper, B.F. et al. (2010) ‘Benchmarking cloud serving systems
with YCSB’, Proceedings of the 1st ACM Symposium on
Cloud Computing, ACM, pp.143–154.

Das, S. (1994) Time Series Analysis, Princeton University Press,
Princeton, NJ.

Dastjerdi, A.V. and Buyya, R. (2016) ‘Fog computing: helping the
internet of things realize its potential’, Computer, Vol. 49, No. 8,
pp.112–116.

Davoudian, A., Chen, L. and Liu, M. (2018) ‘A survey on NoSQL
stores’, ACM Computing Surveys (CSUR), Vol. 51, No. 2,
pp.1–43.

Di Martino, S. et al. (2019) ‘Industrial internet of things: persistence
for time series with NoSQL databases’, Proceedings of the IEEE
28th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE’19),
IEEE, pp.340–345.

Esling, P. and Agon, C. (2012) ‘Time-series data mining’,
ACM Computing Surveys, Vol. 45, pp.1–34.

Fox, A. and Brewer, E.A. (1999) ‘Harvest, yield, and scalable tolerant
systems’, Proceedings of the 17th Workshop on Hot Topics in
Operating Systems, IEEE, pp.174–178.

GE (2012) The Rise of Industrial Big Data.

Gessert, F. et al. (2017) ‘NoSQL database systems: a survey
and decision guidance’, Computer Science-Research and
Development, Vol. 32, Nos. 3/4, pp.353–365.

Gubbi, J. et al. (2013) ‘Internet of hings (IoT): a vision, architectural
elements, and future directions’, Future Generation Computer
Systems, Vol. 29, No. 7, pp.1645–1660.

Hendawi, A. et al. (2019) ‘Benchmarking large-scale data
management for internet of things’, The Journal of
Supercomputing, Vol. 75, No. 12, pp.8207–8230.

Hermann, M., Pentek, T. and Otto, B. (2016) ‘Design principles for
Industries 4.0 scenarios’, Proceedings of the 49th Hawaii
International Conference on System Sciences (HICSS’16), IEEE,
pp.3928–3937.

Jensen, S.K., Pedersen, T.B. and Thomsen, C. (2017) ‘Time series
management systems: s survey’, IEEE Transactions on
Knowledge and Data Engineering, Vol. 29, No. 11,
pp.2581–2600.

John, A., Sugumaran, M and Rajesh, R.S. (2016) ‘Indexing and query
processing techniques in spatio-temporal data’, ICTACT Journal
on Soft Computing, Vol. 6, No. 3, pp.1198–1217.

Kagermann, H. et al. (2013) Recommendations for implementing the
strategic initiative INDUSTRIE 4.0: Securing the future of
German manufacturing industry; final report of the Industrie 4.0
Working Group, Forschungsunion.

Kang, Y-S. et al. (2016) ‘MongoDBbasedrepository design for
IoT-generated RFID/sensor big data’, IEEE Sensors Journal,
Vol. 16, No. 2, pp.485–497.

Kaur, K. and Rani, R. (2015) ‘Managing data in healthcare
information systems: many models, one solution’, Computer,
Vol. 48, No. 3, pp.52–59.

Kudo, T. (2019) ‘Fog computing with original data reference
function’, International Journal of Grid and Utility Computing,
Vol. 10, No. 5, pp.574–582.

Lasi, H. et al. (2014) ‘Industry 4.0’, Business and Information Systems
Engineering, Vol. 6, No. 4, pp.239–242.

Lavin, A. and Klabjan, D. (2015) ‘Clustering time-series energy
data from smart meters’, Energy Efficiency, Vol. 8, No. 4,
pp.681–689.

Leavitt, N. (2010) ‘Will NoSQL databases live up to their promise?’,
Computer, Vol. 43, No. 2, pp.12–14.

Lee, J., Bagheri, B. and Kao, H-A. (2015) ‘A cyber-physical systems
architecture for industry 4.0-based manufacturing systems’,
Manufacturing Letters, Vol. 3, pp.18–23.

Liu, R. and Yuan, J. (2019) ‘Benchmark time series database
with IoTDB-Benchmark for IoT scenarios’, arXiv preprint
arXiv:1901.08304.

Liu, X. and Nielsen, P.S. (2016) ‘A hybrid ICT-solution for smart
meter data analytics’, Energy, Vol. 115, pp.1710–1722.

Madsen, H. (2007) Time Series Analysis, Chapman & Hall/CRC.

Marjani, M. et al. (2017) ‘Big IoT data analytics: architecture,
opportunities, and open research challenges’, IEEE Access,
Vol. 5, pp.5247–5261.

Mell, P. and Grance, T. et al. (2011) The NIST Definition of Cloud
Computing, US Department of Commerce.

12

Mourtzis, D., Vlachou, E. and Milas, N. (2016) ‘Industrial big data as a
result of IoT adoption in manufacturing’, Procedia Cirp, Vol. 55,
pp.290–295.

Naqvi, S.N.Z., Yfantidou, S. and Zim´anyi, E. (2017) Time Series
Databases and InfluxDB, Studienarbeit, Universit´e Libre de
Bruxelles.

Pereira, D.A., de Morais, W.O. and de Freitas, E.P. (2018) ‘NoSQL
real-time database performance comparison’, International
Journal of Parallel, Emergent and Distributed Systems, Vol. 33,
No. 2, pp.144–156.

PostgreSQL (n.d.) PostgreSQL the Most Advanced Open-Source
Object Relational Database.

Ramesh, D., Sinha, A. and Singh, S. (2016) ‘Data modelling for
discrete time series data using Cassandra and MongoDB’,
Proceedings of the 3rd International Conference on
Recent Advances in Information Technology (RAIT’16), IEEE,
pp.598–601.

Ren, L. et al. (2011) ‘Resource virtualization in cloud manufacturing’,
Computer Integrated Manufacturing Systems, Vol. 17, No. 3,
pp.511–518.

Simmhan, Y. (2018) ‘Big data and fog computing’, Encyclopedia of
Big Data Technologies, pp.1–10.

Stonebraker, M. (2010) ‘SQL databases v. NoSQL
databases’, Communications of the ACM, Vol. 53, No. 4,
pp.10–11.

Syafrudin, M. et al. (2018) ‘Performance analysis of IoT-based sensor,
big data processing, and machine learning model for real-time
monitoring system in automotive manufacturing’, Sensors,
Vol. 18, No. 9, pp.1–24.

TPC (n.d.) TPC, Available online at: http://www.tpc.org/

Van der Veen, J.S., Van der Waaij, B. and Meijer, R.J. (2012) ‘Sensor
data storage performance: SQL or NoSQL, physical or virtual’,
Proceedings of the IEEE 5th International Conference on Cloud
Computing, IEEE, pp.431–438.

Vermesan, O. and Friess, P. (2013) Internet of Things: Converging
Technologies for Smart Environments and Integrated
Ecosystems, River Publishers.

Wang, S. et al. (2016) ‘Implementing smart factory of industrie 4.0: an
outlook’, International Journal of Distributed Sensor Networks,
Vol. 12, pp.1–10.

Yi, S. et al. (2015) ‘Fog computing: platform and applications’,
Proceedings of the 3rd IEEE Workshop on Hot Topics in Web
Systems and Technologies (HotWeb’15), IEEE, pp.73–78.

Yin, S. and Kaynak, O. (2015) ‘Big data for modern industry:
challenges and trends [point of view]’, Proceedings of the IEEE,
Vol. 103, No. 2, pp.143–146.

Zhou, K., Liu, T. and Zhou, L. (2015) ‘Industry 4.0: towards future
industrial opportunities and challenges’, Proceedings of the 12th
International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD’15), IEEE, pp.2147–2152.

Notes

1 The German group who defined the concept of Industry 4.0, in
2011, as key point of the German government high-tech strategy

2 https://www.mongodb.com/
3 http://cassandra.apache.org/
4 https://www.influxdata.com/
5 https://docs.datastax.com/en/dse/5.1/cql/cql/cql

using/useSASIIndexConcept.html

13

