
 
 

 

 

 

 

 
 
 

 
 
 
 

 
 

 

 
 
 
 

 

 
 

STABLE DETERMINATION OF A RIGID SCATTERER IN
ELASTODYNAMICS\ast 

LUCA RONDI\dagger , EVA SINCICH\ddagger , AND MOURAD SINI\S 

Abstract. We deal with an inverse elastic scattering problem for the shape determination of
a rigid scatterer in the time-harmonic regime. We prove a local stability estimate of log log type
for the identification of a scatterer by a single far-field measurement. The needed a priori condition
on the closeness of the scatterers is estimated by the universal constant appearing in the Friedrichs
inequality.
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1. Introduction. We consider the scattering of time-harmonic elastic waves by a
rigid scatterer in \BbbR N with N \geq 2. The time-harmonic elastic waves in a homogeneous
and isotropic elastic medium satisfy the Navier equation

(1.1) \mu \Delta u+ (\lambda + \mu )\nabla (div(u)) + \rho \omega 2u = 0,

where \lambda and \mu are the Lam\'e constants such that \mu > 0 and \lambda + 2\mu > 0, \rho > 0 is the
density, and \omega > 0 is the frequency. By the Helmholtz decomposition, any solution
u to (1.1) is the superposition of a longitudinal wave up and a transversal wave us,

which are solutions to the Helmholtz equation with wave numbers \omega p =
\sqrt{} 

\rho 
\lambda +2\mu \omega 

and \omega s =
\sqrt{} 

\rho 
\mu \omega , respectively.

If an incident wave uinc, which is usually given by an entire solution to (1.1),
meets a rigid scatterer K, then it is perturbed by the formation of a scattered wave
uscat outsideK. The total field u is the superposition of the incident and the scattered
wave and, for a rigid scatterer, satisfies the following Dirichlet boundary condition on
the boundary of the scatterer:

(1.2) u = 0 on \partial K.

The scattered wave uscat is characterized by being a radiating solution to (1.1),
namely, its longitudinal wave uscat

p and transversal wave uscat
s are radiating solu-

tions to the corresponding Helmholtz equations. The radiation condition for elastic
waves is usually referred to as the Kupradze radiation condition.

As incident wave uinc, we take either a longitudinal plane wave

(1.3) uinc
p (x) = d ei\omega pd\cdot x, x \in \BbbR N ,
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STABLE DETERMINATION OF A RIGID SCATTERER 2661

where d \in \BbbS N - 1 is the direction of incidence, or a transversal plane wave

(1.4) uinc
s (x) = p ei\omega sd\cdot x, x \in \BbbR N ,

where p \in \BbbC N\setminus \{ 0\} is a unitary vector orthogonal to d. We can also consider a linear
combination of longitudinal and transversal plane waves, namely,

(1.5) uinc(x) = cpu
inc
p (x) + csu

inc
s (x), x \in \BbbR N ,

for some cp, cs \in \BbbC such that | cp| 2 + | cs| 2 = 1, in such a way as to have

(1.6) \| uinc(x)\| = 1, x \in \BbbR N .

The forward scattering problem for a rigid obstacle is classical and, under mild
regularity assumptions on the obstacle K, it is well-known to have a unique solution.

By the Kupradze radiation condition, the scattered wave uscat has the following
asymptotic behavior:

(1.7) uscat(x; d) =
ei\omega pr

r(N - 1)/2
Up(\^x; d) +

ei\omega sr

r(N - 1)/2
Us(\^x; d) +O

\biggl( 
1

r(N+1)/2

\biggr) 
,

as r = \| x\| goes to +\infty , uniformly in all directions \^x = x/\| x\| \in \BbbS N - 1. The vector
fields Up and Us are called longitudinal and transversal far-field patterns, respectively.
Since they characterize, respectively, the asymptotic behavior of the normal and of the
tangential component, with respect to \BbbS N - 1, of uscat, by measuring the asymptotic
behavior of u, or equivalently of uscat, as r goes to +\infty , both the longitudinal part
and the transversal part of the far-field pattern of uscat can be measured.

We are concerned with the following geometrical inverse problem in the context
of linear elasticity. Given an incident wave uinc, one can measure the vector fields
(Up(\cdot , d), Us(\cdot , d)), which are usually referred to as the corresponding scattering data.
By changing the incident wave, for instance, by changing the frequency \omega or the
incident direction d, one can obtain different scattering data. We wish to determine
the scatterer K by using as measured data the scattering data corresponding to one
or more incident waves.

The unique determination of K using the measured data corresponding to all the
incident directions d \in \BbbS N - 1, with a fixed frequency \omega , was first shown in [21]. In their
work, they use both the components Up(\cdot , d) and Us(\cdot , d) of the elastic farfields. Next,
it was proved that actually only one component of the farfield Up(\cdot , d) or Us(\cdot , d) is
enough, meaning that either the pressure or the shear waves are enough to uniquely
determine the scatterer K. This result was justified first for C4-smooth scatterers
in [20] and later it was extended to Lipschitz-smooth ones in [28]. In addition, re-
construction schemes were proposed in [24, 27] to actually reconstruct the scatterer
K.

Here, we are interested in the determination of the scatterer K by the knowledge
of the longitudinal and transversal far-field patterns corresponding to a single incident
wave provided some suitable a priori information on the location of the scatterer is
known.

A special instance of such a problem has been previously analyzed in [19] in a
two-dimensional setting. Indeed the authors proved a uniqueness result if it is a priori
known that possible scatterers do not deviate too much in area, or more precisely
under the following closeness condition:

| K\Delta K \prime | \leq 
k20,1\pi \mu 

\rho \omega 2
,(1.8)
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2662 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

where k0,1 \approx 2.4048 is the first zero of the Bessel function J0. Their argument is
strongly based on the fact that a lower estimate for the first Dirichlet eigenvalue
of the negative Lam\'e operator in K\Delta K \prime in terms of its Lebesgue measure can be
achieved by the use of the Faber--Krahn inequality (see also [29]).

Here we study the stability issue for the same problem in any dimension N \geq 2.
We prove a log log type stability estimate for the unknown scatterer under a slightly
stronger a priori closeness condition (see section 3 for a precise statement), namely,
we assume that K and K \prime are both contained in a given scattered K+ and that

| K+\setminus (K \cap K \prime )| < H1 =

\biggl( 
min\{ 2\mu , 2\mu + \lambda \} 
64C(N)2\rho \omega 2

\biggr) N/2

,(1.9)

where C(N) is an absolute constant depending on the dimension N only---actually it
is the one of the isoperimetric inequality (see (2.35)). Just for comparison, for N = 2
and assuming for simplicity \lambda > 0, our closeness bound becomes

H1 =
\pi \mu 

8\rho \omega 2
.

Such a slightly more restrictive a priori bound is justified by the fact that, in order
to deal with stability, we are led to replace the use of the Faber--Krahn inequality
with the one of the Friedrichs inequality. Besides the closeness condition, we require
some a priori regularity of the unknown scatterer; in particular we require it to be of
class C2,\alpha , 0 < \alpha < 1. We note, however, that we allow K to have more than one
connected component. Our stability estimate, which is the main result of the paper,
is stated in Theorem 3.1.

Let us note that even if the estimate is rather weak, being of log log type, this
is rather common for these kinds of inverse scattering or boundary value problems.
Moreover, it has been shown that a single log estimate is optimal for the stability of
these inverse problems even if many measurements are performed (see [35] and [13]).

We recall that analogous local uniqueness and local stability results have been
previously achieved in the acoustic framework in [18, 48] and [47], respectively, by
means of a spectral type approach as then extended to elasticity in [19]. Unfortunately,
as already observed, these arguments cannot be applied to extend the stability result
in the elastic case and hence new tools and an original strategy have to be introduced.

Stability results of log log type related to the elasticity system are derived in
[22, 39, 40] in the stationary case, that is, \omega = 0, with a single pair of displacement
and traction fields measured on a surface surrounding the unknown scatterer K.
Both rigid inclusions and cavities have been treated. More recently [42], an optimal
single log estimate has been obtained for the determination of cavities in the two-
dimensional case, by exploiting an optimal three-spheres inequality at the boundary,
[4], or a doubling inequality at the boundary, [41], that have been established for the
Kirchhoff--Love plate's equation. These kinds of inequality might allow us to improve
our estimate to a single log one as well, but to the best of our knowledge none of them
is already available in our setting.

Among other results of identification of targets by means of a single or finitely
many far-field data under a priori geometric constraints, we wish to recall the well-
known uniqueness result in [10] for small obstacles in an acoustic context and the
corresponding stability estimates in [25, 26], under the additional starshapedness hy-
pothesis of the scatterer.

Another case in which one measurement, or at least few measurements, uniquely
identifies a scatterer is when the scatterer satisfies a different strong geometric condi-
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STABLE DETERMINATION OF A RIGID SCATTERER 2663

tion, namely, it is assumed to be polyhedral. In the case of obstacles, this means that
the objects to be determined are (a collection of) polygons in dimension 2 or polyhe-
dra in dimension 3. In this direction, in [9] the first uniqueness result for sound-soft
scatterers in the acoustic framework was proved. In the same case, an optimal unique-
ness result with a single measurement was established in [3]. These results have been
extended to a variety of other boundary conditions and to the electromagnetic case
by several authors. The first stability result, still for sound-soft scatterers in the
acoustic case, was obtained in [44], and it was followed by analogous results for the
sound-hard boundary condition [32] and for the electromagnetic case [33]. This line of
research has been first extended to the elastic case in [15], where the third and fourth
boundary conditions are considered and uniqueness is established with two (suitable)
measurements or one (suitable) measurement, respectively. For polyhedral obstacles,
one (suitable) measurement is enough to determine the obstacle and the boundary
condition, provided the latter is still of the third or fourth type; see [34], where a cor-
responding stability estimate is also proved. In [14] it is shown that one measurement
is enough to uniquely determine a rigid polygon. More recently, still in dimension 2,
in [12] it is showed that four measurements allow one to uniquely recover a collection
of polygons as well as their mixed boundary condition, since the obstacles may, at
the same time, be purely rigid or be traction-free or satisfy an impedance boundary
condition on different parts of the boundary.

Finally, we mention that in [23] uniqueness results using few measurements are
derived even if the scatterers neither satisfy smallness conditions nor have polygonal or
polyhedral shapes. Instead, the authors assume that the boundary of the scatterers are
nowhere analytic and show that for the Dirichlet boundary condition one measurement
is enough while for the Neumann boundary condition N - 1 measurements are enough
(recalling that N is the space dimension). These results are proved for the Helmholtz
model for any N and then generalized to a larger family of elliptic second order
operators when N \leq 3.

In order to analyze the inverse problem we preliminarily discuss the direct one.
Indeed, in section 2, we observe that the direct scattering problem is well-posed (see
Theorem 2.3) recalling a classical result due to Kupradze et al [31]. In Theorem 2.4
we prove a regularity result up to the boundary \partial K for the solution u, independent
on the scatterer K. The proof, which may be found in the appendix, is based on well-
known regularity estimates for elliptic systems with Dirichlet boundary condition [1]
and a preliminary bound for the solution obtained by a continuity argument inspired
by Mosco convergence, as done in [38] for the acoustic case and in [33] for the electro-
magnetic one. In particular, we also obtain a uniform decay property, as r \rightarrow +\infty ,
of uscat, again independent on the scatterer K. We conclude this preliminary part by
reviewing, in subsection 2.2, the Friedrichs inequality. We observe that its constant
depends on the dimension only and can be explicitly evaluated. This allows us to
state the closeness condition with an explicit constant depending on the dimension N
and the coefficients of the Navier equation only.

In section 3 we state our main stability result, Theorem 3.1, whose proof is de-
veloped in section 4.

The strategy of the proof is the following. Assuming we have two scatterers K
and K \prime satisfying the closeness condition, we wish to estimate their Hausdorff distance
\~d from the difference of the corresponding far-field patterns. From the error on the
far-field patterns, we estimate the error on the total field in a region surrounding
the scatterers by a classical far-field to near-field estimate for the Helmholtz equation
applied to the longitudinal and transversal part of the scattered wave. This estimate
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2664 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

has been proved first in dimension 3 in [25] (see also [8]) and then generalized to
any dimension in [46]. For a suitably chosen small parameter s > 0, we call Vs the
region outside K \cup K \prime whose points can be reached from infinity by a suitable tube
of radius s. By a standard unique continuation argument, whose main ingredient is a
three-spheres inequality for the Helmholtz equation proved in [7], which is iteratively
applied inside the s-tube to the longitudinal and transversal part of the field, we are
able to estimate the error on the total field on the boundary of Vs (see Lemma 4.2).
Up to swapping K with K \prime , we may find As, a suitable connected component of
\BbbR N\setminus (K \cup Vs), which contains a ball B of radius proportional to \~d. By the regularity
of K and K \prime and the closeness condition, we infer As is a set of finite perimeter (with
a perimeter depending on the a regularity of the scatterers only) whose measure is
strictly less than the closeness constant H1. For details on the definition of Vs and
As see the discussion before Lemma 4.2.

By the estimate on the error of the field on the boundary of Vs and the boundary
condition, we obtain an estimate on the solution u on the boundary of As. It is now
that the Friedrichs inequality comes into play. By using the Friedrichs inequality, the
bound on the boundary of As, the a priori bound on the solution u, and the idea of
the proof of the first Korn inequality, we are able to estimate the L2-norm of \nabla u in As

by a quantity depending on s and the norm of u on \partial As (see Lemma 4.3). Actually,
we can estimate the L\infty -norm of up and us on the ball B by a constant depending
on the far-field error only, provided we choose a suitable value of s (see Corollary 4.4
and Remark 4.5).

From B we move toward infinity again and, by a unique continuation argument
pretty similar to the one used before, we show that u has to be small even far away
from the scatterers, such a smallness depending on the smallness of up and us on the
ball B and on the radius of B itself. However, by our choice of the incident field and
the decay of the scattered one, the total field u can not be too small far from K.
Combining these two pieces of information, we are finally able to estimate the radius
of B and consequently the Hausdorff distance between K and K \prime (see Lemma 4.6 and
Remark 4.7). This second part of the proof is inspired by an analogous procedure
developed in [44].

By this technique we obtain a stability estimate which is, however, extremely
weak, being of log log log type. This is due to the fact that the estimate of the error
on the boundary of Vs is already of log log type since Vs can be extremely irregular.
Another log comes from the second part of the procedure when we move from B
toward infinity. On the other hand, we can apply a refining procedure which is by
now standard, see, for instance, [2]. Provided the error on the farfields is small
enough, the two scatterers are close enough and, by their a priori regularity, it can be
inferred that the unbounded connected component of \BbbR N\setminus (K\cup K \prime ), which we call V0,
satisfies a Lipschitz type regularity; see Lemma 4.1, which is an easy consequence of
[2, Lemma 8.1]. By such regularity, we can improve our unique continuation estimate
up to the boundary of V0 to a single log estimate. By using a suitable domain A0 and
by exactly the same procedure as before, we are then able to improve our estimate to
the final one of log log type.

To conclude, we wish to put into evidence a delicate point of the proof that also
explains the presence of the scatterer K+ in our closeness condition. Even if K and
K \prime are smooth, the domain V0 can be extremely irregular, unless we know that the
scatterers are close enough to apply Lemma 4.1. This implies that we are not able
to estimate the error on the field up to the boundary of V0 from the farfields error
and are thus forced to introduce the set Vs, s > 0. In turn, this introduces another
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STABLE DETERMINATION OF A RIGID SCATTERER 2665

difficulty. In fact the domain A0, which we can construct from V0, is contained in
K \prime \setminus K, and thus its measure is bounded by the measure of K\Delta K \prime . Instead, for s > 0,
the measure of the domain As, which we can construct from Vs, is not controlled
by the measure of K\Delta K \prime . This is the reason why we need to introduce K+ in the
closeness condition.

2. Preliminaries. Throughout the paper the integer N \geq 2 will denote the
space dimension. We note that we drop the dependence of any constant from the
space dimension N . For any two column vectors U = (U1, . . . , UN )T and V =
(V 1, . . . , V N )T in \BbbC N

U \cdot V = UTV =
N\sum 
i=1

U iV i.

Here, and in what follows, for any matrix A, AT denotes its transpose. By IN we
denote the identity N \times N matrix. For any two matrices A = \{ ai,j\} Ni,j=1 and B =

\{ bi,j\} Ni,j=1,

A : B =
N\sum 

i,j=1

aijbij .

For any x = (x1, . . . , xN ) \in \BbbR N , we denote x = (x\prime , xN ) \in \BbbR N - 1 \times \BbbR . For any
s > 0 and any x \in \BbbR N , Bs(x) denotes the open ball contained in \BbbR N with radius s
and center x, whereas Bs = Bs(0). For any E \subset \BbbR N , Bs(E) =

\bigcup 
x\in E Bs(x). Given a

point x \in \BbbR N , a vector v \in \BbbS N - 1, and constants r > 0 and \theta , 0 < \theta \leq \pi /2, we call
\scrC (x, v, r, \theta ) the open cone with vertex in x, bisecting vector given by v, radius r, and
amplitude given by \theta , that is,

\scrC (x, v, r, \theta ) =
\biggl\{ 
y \in \BbbR N : 0 < \| y  - x\| < r and cos(\theta ) <

y  - x

\| y  - x\| 
\cdot v \leq 1

\biggr\} 
.

We remark that by a cone we always mean a bounded not empty open cone of the
kind defined above.

For any measurable subset of \BbbR N we call | E| its N -dimensional Lebesgue measure.
By \scrH N - 1 we denote the (N  - 1)-dimensional Hausdorff measure.

Definition 2.1. Let \Omega \subset \BbbR N be a bounded open set. Let k be a nonnegative
integer and 0 \leq \alpha \leq 1.

We say that \Omega is of class Ck,\alpha (Lipschitz if k = 0 and \alpha = 1, Ck if \alpha = 0) if for
any x \in \partial \Omega there exist a Ck,\alpha function \phi x : \BbbR N - 1 \rightarrow \BbbR and a neighborhood Ux of x
such that for any y \in Ux we have, up to a rigid transformation depending on x,

y = (y\prime , yN ) \in \Omega if and only if yN < \phi x(y
\prime ).

We also say that \Omega is of class Ck,\alpha (Lipschitz if k = 0 and \alpha = 1, Ck if \alpha = 0)
with positive constants r and L if for any x \in \partial \Omega we can choose Ux = Br(x) and \phi x

such that \| \phi x\| Ck,\alpha (\BbbR N - 1) \leq L.

Remark 2.2. If k+\alpha > 1 and \Omega is an open set of class Ck,\alpha with constants r and
L, there exists positive constants r1 and L1, depending on k, \alpha , r, and L only, such
that \Omega is of class Ck,\alpha with constants r1 and L1 with the further condition that for
any x \in \partial \Omega we have \nabla \phi x(x

\prime ) = 0. Therefore, without loss of generality, whenever
k + \alpha > 1 we tacitly assume that this condition is satisfied all over \partial \Omega .
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2666 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

2.1. The direct scattering problem. We say that \Omega \subset \BbbR N is a domain if
it is open and connected. We say that \Omega is an exterior domain if it is a domain
containing the exterior of a ball. We say that K \subset \BbbR N is a scatterer if K is compact
and \Omega = \BbbR N\setminus K is connected, that is, \Omega is an exterior domain. We say that a scatterer
K is an obstacle if K = D, where D is an open set which we can pick as the interior
of K.

We consider the inverse scattering problem for the Navier equation modelling
time-harmonic elastic waves in a homogeneous and isotropic elastic medium under
the presence of a rigid scatterer. For the direct scattering problem, which we here
describe, we refer to the classical works of Kupradze and others [30, 31] and to the
more recent one [6], for instance. Let us consider, in an open set \Omega \subset \BbbR N , N \geq 2, a
weak solution u to the Navier equation

(2.1) \mu \Delta u+ (\lambda + \mu )\nabla T (div(u)) + \rho \omega 2u = 0 in \Omega .

Here \lambda and \mu are the Lam\'e constants such that \mu > 0 and \lambda + 2\mu > 0, \rho > 0 is the
density, and \omega > 0 is the frequency. We assume all these parameters to be constants.
The function u = (u1, . . . , uN )T , the so-called field of the time-harmonic wave, is
assumed to be a column vector. We note that if v is a scalar function, we often use
\nabla T v to denote the column vector (\nabla v)T .

A vector field u \in H1
loc(\Omega ,\BbbC N ) is a weak solution to (2.1) if for any v \in H1(\Omega ,\BbbC N )

with compact support in \Omega we have

(2.2) 2\mu 

\int 
\Omega 

Eu : Ev + \lambda 

\int 
\Omega 

div(u)div(v) - \rho \omega 2

\int 
\Omega 

u \cdot v = 0.

Here Eu = 1
2 (\nabla u + (\nabla u)T ) denotes the symmetric gradient of u. Hence, \nabla u =

\{ ui
j\} Ni,j=1 and Eu = 1

2\{ u
i
j + uj

i\} Ni,j=1.
In linearized elasticity Eu corresponds to the strain tensor and, by Hooke's law,

the stress \sigma is given by

\sigma (u) = 2\mu Eu+ \lambda tr(Eu)IN = 2\mu Eu+ \lambda div(u)IN ,

where tr denotes the trace. In particular, we have

(2.3) min\{ 2\mu , 2\mu + \lambda \} (Eu : Eu) \leq \sigma (u) : \sigma (u) \leq max\{ 2\mu , 2\mu + \lambda \} (Eu : Eu).

We note that (2.1) can be rewritten as

div(\sigma (u)) + \rho \omega 2u = 0 in \Omega ,

where the div applies row by row. In fact,

div(div(u)IN ) = div((\nabla u)T ) = \nabla T (div(u)).

We call

\scrK (\Omega ) = \{ u \in L2(\Omega ,\BbbC N ) : Eu \in L2(\Omega ,\BbbC N\times N )\} ,

which is a Hilbert space with the corresponding norm

\| u\| \scrK (\Omega ) =
\Bigl( 
\| u\| 2L2(\Omega ) + \| Eu\| 2L2(\Omega )

\Bigr) 1/2
=

\biggl( \int 
\Omega 

u \cdot u+

\int 
\Omega 

Eu : Eu

\biggr) 1/2

.
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STABLE DETERMINATION OF A RIGID SCATTERER 2667

We call \scrK 0(\Omega ) the closure of C\infty 
0 (\Omega ,\BbbC N ) with respect to the norm of \scrK (\Omega ). By the

first Korn inequality (see, for instance, [43]), we have that \scrK 0(\Omega ) = H1
0 (\Omega ,\BbbC N ), with

equivalent norms. In fact, first Korn inequality states that, for any open set \Omega ,

(2.4) \| \nabla u\| 2L2(\Omega ) \leq 2\| Eu\| 2L2(\Omega ) for any u \in H1
0 (\Omega ,\BbbC N ).

By the second Korn inequality (see again [43]), provided \Omega is smooth enough, for
instance, if \Omega is a Lipschitz bounded open set, we also have that \scrK (\Omega ) = H1(\Omega ,\BbbC N ),
with equivalent norms. Consequently, \scrK loc(\Omega ) = H1

loc(\Omega ,\BbbC N ).
It is well-known that, by Helmholtz decomposition, any weak solution u to (2.1)

can be written as the sum of a longitudinal wave up and a transversal wave us, where
up and us are solutions to (2.1). Namely, we set

up =  - \nabla Tdiv(u)

\omega 2
p

, \omega 2
p =

\rho \omega 2

\lambda + 2\mu 
.

We note that \chi =  - div(u) is a scalar weak solution to the Helmholtz equation \Delta \chi +
\omega 2
p\chi = 0 in \Omega , and hence up is a vector-valued weak solution to the same Helmholtz

equation

(2.5) \Delta up + \omega 2
pup = 0 in \Omega .

If we set

us =
\nabla Tdiv(u) - \Delta u

\omega 2
s

=
div((\nabla u)T  - \nabla u)

\omega 2
s

, \omega 2
s =

\rho \omega 2

\mu 
,

it is not difficult to show that u = up + us and us is a vector-valued weak solution to
another Helmholtz equation

(2.6) \Delta us + \omega 2
sus = 0 in \Omega .

We note that

us =
curl(curl(u))

\omega 2
s

if N = 3, us =
 - Q\nabla T (curl2(u))

\omega 2
s

if N = 2,

where Q =
\bigl[ 
0  - 1
1 0

\bigr] 
and curl2(u) = u2

1  - u1
2 is the two-dimensional curl of u.

Since div(us) = 0 and (\nabla up)
T  - \nabla up = 0, we have (up)p = up, (up)s = 0,

(us)s = us, and (us)p = 0.
If \Omega is an exterior domain, we say that u, a solution to (2.1), is radiating or

outgoing if it satisfies the Kupradze radiation conditions

(2.7)

lim
r\rightarrow +\infty 

r(N - 1)/2

\biggl( 
\partial up

\partial r
 - i\omega pup

\biggr) 
= 0,

lim
r\rightarrow +\infty 

r(N - 1)/2

\biggl( 
\partial us

\partial r
 - i\omega sus

\biggr) 
= 0,

r = \| x\| ,

where the limits have to be intended as uniform in any direction. In other words,
up and us satisfy the Sommerfeld radiation condition and, therefore, are radiating
solutions to their corresponding Helmholtz equations.

For any bounded open set \Omega and u solution to (2.1), the surface traction Tu is

Tu = \sigma (u)\nu = 2\mu Eu\nu +\lambda div(u)\nu = 2\mu \nabla u\nu +\lambda div(u)\nu +\mu ((\nabla u)T  - \nabla u)\nu on \partial \Omega ,
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2668 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

\nu being the exterior normal to \Omega , which we assume to be a column vector. In partic-
ular, if u and \partial \Omega are smooth enough, we have that

Tu = \sigma (u)\nu = 2\mu \nabla up\nu + 2\mu \nabla us\nu + \lambda div(up)\nu + \mu ((\nabla us)
T  - \nabla us)\nu on \partial \Omega .

For any k > 0, let \phi k be the fundamental solution to the Helmholtz equation
\Delta u+ k2u = 0, which is given by

\phi k(x, y) =
i

4

\biggl( 
k

2\pi \| x - y\| 

\biggr) (N - 2)/2

H
(1)
(N - 2)/2(k\| x - y\| ) for any x, y \in \BbbR N , x \not = y.

For any real s \geq 0, H
(1)
s denotes the Hankel function of first kind and order s. We

also remark that for N = 2, 3 this reduces to the well-known formulas

\phi k(x, y) =
eik\| x - y\| 

4\pi \| x - y\| 
for any x, y \in \BbbR 3, x \not = y,

and

\phi k(x, y) =
i

4
H

(1)
0 (k\| x - y\| ) for any x, y \in \BbbR 2, x \not = y.

Then the fundamental solution to the Navier equation is given by, for any x, y \in 
\BbbR N , x \not = y,

(2.8) \Phi (x, y) =
1

\mu 
\phi \omega s

(x, y)IN +
1

\rho \omega 2
\nabla y\nabla T

y

\bigl[ 
\phi \omega s

(x, y) - \phi \omega p
(x, y)

\bigr] 
.

Here derivatives are meant in the sense of distributions over the whole \BbbR N and the
Navier equation is applied to \Phi row by row. For x \not = y, we have

\Phi (x, y) =
1

\mu 
\phi \omega s(x, y)IN +

1

\rho \omega 2
\nabla x\nabla T

x

\bigl[ 
\phi \omega s(x, y) - \phi \omega p(x, y)

\bigr] 
as well. We also note that \Phi = \Phi T .

For any bounded domain \Omega and u solution to (2.1), provided \Omega and u are smooth
enough, we have for any x \in \Omega 

(2.9) u(x) =

\int 
\partial \Omega 

(\Phi (x, y) [Tu(y)] - [Ty\Phi (x, y)]u(y)) d\sigma (y),

where T is applied to \Phi row by row. Regarding regularity, it is enough that \Omega is of
class C2, u \in C2(\Omega ) \cap C(\Omega ) such that Tu exists as a uniform limit on \partial \Omega , namely,

Tu(x) = lim
h\rightarrow 0+

\sigma (u)(x - h\nu (x))\nu (x) for any x \in \partial \Omega ,

where the limit is uniform with respect to x \in \partial \Omega and \nu (x) is the exterior normal at
x.

If \Omega is an exterior domain and u is an outgoing solution to (2.1), then we still
have for any x \in \Omega 

(2.10) u(x) =

\int 
\partial \Omega 

(\Phi (x, y) [Tu(y)] - [Ty\Phi (x, y)]u(y)) d \sigma (y)

since the contribution at infinity is zero due to the Kupradze radiation condition
satisfied by u and the corresponding properties of \Phi .
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STABLE DETERMINATION OF A RIGID SCATTERER 2669

By the well-known asymptotic properties of radiating solutions to Helmholtz equa-
tions applied to up and to us, we infer that u(x) = up(x) + us(x) satisfies

(2.11) u(x) =
ei\omega p\| x\| 

\| x\| (N - 1)/2
Up(\^x) +

ei\omega s\| x\| 

\| x\| (N - 1)/2
Us(\^x) +O

\biggl( 
1

\| x\| (N+1)/2

\biggr) 
,

as \| x\| goes to +\infty , uniformly in all directions \^x = x/\| x\| \in \BbbS N - 1. The \BbbC N -valued
functions Up and Us are defined on \BbbS N - 1 and are referred to as the longitudinal
part and the transversal part of the far-field pattern U = (Up, Us) of the field u,
respectively.

By (2.10), the longitudinal part Up is orthogonal to \BbbS N - 1, that is, Up(\^x) = u\infty 
p (\^x)\^x

for any \^x \in \BbbS N - 1 for a suitable complex-valued function u\infty 
p defined on \BbbS N - 1. On

the other hand, the transversal part Us is tangential to \BbbS N - 1, that is, Us(\^x) \cdot \^x = 0
for any \^x \in \BbbS N - 1.

Therefore, if we consider the normal and tangential component, with respect to
\BbbS N - 1, of u, that is,

u(x) = uN (x) + uT (x),

where for any x \in \Omega we have that uN (x) is proportional to \^x = x/\| x\| while uT (x) is
orthogonal to \^x, we conclude that

uN (x) =
ei\omega p\| x\| 

\| x\| (N - 1)/2
Up(\^x) +O

\biggl( 
1

\| x\| (N+1)/2

\biggr) 
and

uT (x) =
ei\omega s\| x\| 

\| x\| (N - 1)/2
Us(\^x) +O

\biggl( 
1

\| x\| (N+1)/2

\biggr) 
,

as \| x\| goes to +\infty , uniformly in all directions. Thus, measuring the asymptotic
behavior of u, as \| x\| goes to +\infty , it corresponds to measuring both the longitudinal
part and the transversal part of the far-field pattern of u.

Let us send a so-called incident wave, that is, a time-harmonic wave whose field
uinc is an entire solution to (2.1). Typically, the incident wave is a plane wave obtained
by a linear combination of a longitudinal plane wave

(2.12) uinc
p (x) = dei\omega pd\cdot x =

\nabla T (ei\omega pd\cdot x)

i\omega p
, x \in \BbbR N ,

where d \in \BbbS N - 1 is the direction of propagation, and a transversal plane wave

(2.13) uinc
s (x) = pei\omega sd\cdot x, x \in \BbbR N ,

where p \in \BbbC N\setminus \{ 0\} is a unitary vector orthogonal to d. For example, one can choose,
if N = 3,

uinc
s (x) = cei\omega sd\cdot x(d2  - d3, d3  - d1, d1  - d2)

T = c
curl

\bigl( 
ei\omega sd\cdot x(1, 1, 1)T

\bigr) 
i\omega s

, x \in \BbbR 3,

whereas if N = 2,

uinc
s (x) =  - cQdei\omega sd\cdot x = c

 - Q\nabla T (ei\omega sd\cdot x)

i\omega s
, x \in \BbbR 2,

where c \in \BbbC \setminus \{ 0\} is a suitable constant.

D
ow

nl
oa

de
d 

04
/2

9/
21

 to
 1

59
.1

49
.1

03
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

10



 
 

 

 

 

 

 
 
 

 
 
 
 

 
 

 

 
 
 
 

 

 
 

2670 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

Namely, we consider

(2.14) uinc(x) = cpu
inc
p (x) + csu

inc
s (x), x \in \BbbR N ,

for some d \in \BbbS N - 1, p \in \BbbC N\setminus \{ 0\} such that \| p\| = 1 and p is orthogonal to d, and
cp, cs \in \BbbC such that | cp| 2 + | cs| 2 = 1, in such a way as to have

(2.15) \| uinc(x)\| = 1, x \in \BbbR N .

The presence of an impenetrable object, that is, of a scatterer K, inside the
medium perturbs the incident wave by creating the scattered or reflected wave, given
by the field uscat. The total wave is the superposition of the incident and the scattered
waves and its field is denoted by u. The total field u solves (2.1) in \Omega = \BbbR N\setminus K and
satisfies a boundary condition on \partial K that depends on the nature of the scatterer,
namely, ifK is a so-called rigid scatterer, a homogeneous Dirichlet boundary condition

(2.16) u = 0 on \partial K,

or, if K is a so-called cavity, a homogeneous Neumann boundary condition

(2.17) Tu = \sigma (u)\nu = 0 on \partial K,

\nu being the exterior normal to \Omega .
Finally, given that \Omega = \BbbR N\setminus K is unbounded, a condition at infinity has to be

imposed. We require the scattered wave to be outgoing. Summarizing, the total field
u solves the following exterior boundary value problem:

(2.18)

\left\{       
u = uinc + uscat in \Omega = \BbbR N\setminus K,
\mu \Delta u+ (\lambda + \mu )\nabla (div(u)) + \rho \omega 2u = 0 in \Omega ,
u = 0 on \partial \Omega = \partial K,
uscat satisfies (2.7)

if K is a rigid scatterer, and

(2.19)

\left\{       
u = uinc + uscat in \Omega ,
\mu \Delta u+ (\lambda + \mu )\nabla (div(u)) + \rho \omega 2u = 0 in \Omega ,
Tu = 0 on \partial \Omega ,
uscat satisfies (2.7)

if K is a cavity.
The weak formulation of (2.18) is the following. Assume that K \subset BR(0) for

some R > 0. Then we look for u belonging to H1(Br(0)\setminus K,\BbbC N ) for any r > R such
that u = uinc+uscat solves (2.1) in the weak sense and uscat satisfies the condition at
infinity given by (2.7). Finally, for what concerns the boundary condition (2.16) on
\partial K, we require that u = 0 on \partial K in a weak sense, that is, \chi u \in H1

0 (Br(0)\setminus K,\BbbC N )
for any r > R and any \chi \in C\infty 

0 (Br(0),\BbbR ) such that \chi = 1 on BR(0).
The weak formulation of (2.19) is the following. Assume that K \subset BR(0) for

some R > 0. Then we look for u belonging to \scrK (Br(0)\setminus K,\BbbC N ) for any r > R such
that u = uinc + uscat solves (2.1) in the weak sense and uscat satisfies the condition
at infinity given by (2.7). Finally, about the boundary condition (2.17) on \partial K, we
require that for any r > R and any v \in \scrK (Br(0)\setminus K,\BbbC N ) with compact support
contained in Br(0) we have

(2.20) 2\mu 

\int 
\Omega 

Eu : Ev + \lambda 

\int 
\Omega 

div(u)div(v) - \rho \omega 2

\int 
\Omega 

u \cdot v = 0.
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STABLE DETERMINATION OF A RIGID SCATTERER 2671

In both cases, if uinc = 0, then we have that for any r > R

(2.21) \Im 

\Biggl( \int 
\partial Br(0)

(Tu) \cdot u

\Biggr) 
= 0,

and hence, by the asymptotic behavior of outgoing solutions, we infer that u = uscat =
0 in \Omega . In other words, (2.18) and (2.19) admit at most one solution, so uniqueness
follows. Concerning existence, this can be established by layer potential techniques
provided K, or \Omega , is regular enough, say, of class C2. In fact, for any exterior domain
\Omega of class C2 and for any \varphi \in C(\partial \Omega ,\BbbC 3) we define the single- and double-layer
potentials with density \varphi at any x \in \Omega as follows:
(2.22)

\scrS (\varphi )(x) =
\int 
\partial \Omega 

\Phi (x, y)\varphi (y) d\sigma (y) and \scrD (\varphi )(x) =

\int 
\partial \Omega 

[Ty\Phi (x, y)]\varphi (y) d\sigma (y).

We observe that \scrS (\varphi ) and \scrD (\varphi ) are outgoing solutions to (2.1) in \Omega . By carefully
exploiting the properties of the potentials on \partial \Omega , the following existence (and unique-
ness) result can be proved.

Theorem 2.3. Assume that K is an obstacle such that D =
\circ 
K is an open set of

class C2. Then, for any uinc entire solution to (2.1), (2.18), and (2.19) admit one
solution.

Proof. This is a classical result (see, for instance, [31]). Actually, the regularity
of D can be relaxed up to Lipschitz (see, for instance, [6, Corollary 2,3]).

We shall need the following regularity result, whose proof is postponed to the
appendix.

Theorem 2.4. Let us fix positive constants r, L, R, and \alpha , 0 < \alpha < 1. Let us
also fix the coefficients \mu > 0, \lambda such that 2\mu + \lambda > 0, \rho > 0, and \omega > 0. Assume

that K \subset BR(0) is an obstacle such that D =
\circ 
K is an open set of class C2,\alpha with

constants r and L. Let uinc be as in (2.14) such that (2.15) is satisfied.
Let u be the solution to (2.18). Then there exists a constant \~C0, depending on r,

L, R, \alpha , and the coefficients only, such that

(2.23) \| u\| C2(\Omega ) \leq \~C0.

Moreover, there exists a constant \~C1, depending on r, L, R, \alpha , and the coefficients
only, such that

(2.24)
\bigm\| \bigm\| uscat(x)

\bigm\| \bigm\| \leq 
\bigm\| \bigm\| uscat

s (x)
\bigm\| \bigm\| +\bigm\| \bigm\| uscat

p (x)
\bigm\| \bigm\| \leq 

\~C1

\| x\| (N - 1)/2
for any \| x\| \geq R+1.

We conclude this part with the following regularity result and a three-spheres
inequality for the Helmholtz equation.

Lemma 2.5. Let u be a solution to (2.1) in Bs with 0 < s \leq s0. Then there exists
a constant D0, depending on the coefficients of (2.1) and on s0 only, such that

(2.25) \| up\| L\infty (Bs/8), \| us\| L\infty (Bs/8) \leq 
D0

s(N+4)/2
\| u\| L2(Bs)

and

(2.26) \| up\| L\infty (Bs/4), \| us\| L\infty (Bs/4) \leq 
D0

s(N+2)/2
\| \nabla u\| L2(Bs).

D
ow

nl
oa

de
d 

04
/2

9/
21

 to
 1

59
.1

49
.1

03
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

12



 
 

 

 

 

 

 
 
 

 
 
 
 

 
 

 

 
 
 
 

 

 
 

2672 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

Proof. First, we use a Caccioppoli inequality to estimate the H1-norm of u in a
smaller ball.

Namely, let \chi \in C\infty 
0 (Bs) be such that 0 \leq \chi \leq 1 everywhere and \chi = 1 on B3s/4.

We can assume that \| \nabla \chi \| \leq C/s everywhere for some absolute constant C. Then we
apply the weak formulation of (2.1) to v = \chi 2u and obtain

2\mu 

\int 
Bs

Eu : Ev + \lambda 

\int 
Bs

div(u)div(v) = \rho \omega 2

\int 
Bs

\chi 2\| u\| 2.

But

2\mu 

\int 
Bs

Eu : Ev + \lambda 

\int 
Bs

div(u)div(v) = 2\mu 

\int 
Bs

\chi 2\| Eu\| 2 + \lambda 

\int 
Bs

\chi 2| div(u)| 2

+

\biggl( 
2\mu 

\int 
Bs

\chi Eu : (\chi ju
i + \chi iu

j) + 2\lambda 

\int 
Bs

\chi div(u)(\chi ju
j)

\biggr) 
,

and hence, by Cauchy inequality, we infer that

2\mu 

\int 
Bs

\chi 2\| Eu\| 2 + \lambda 

\int 
Bs

\chi 2| div(u)| 2

\leq \mu 

\int 
Bs

\chi 2\| Eu\| 2 + \lambda 

2

\int 
Bs

\chi 2| div(u)| 2 +
\biggl( 
C2

s2
C1 + \rho \omega 2

\biggr) \int 
Bs

\| u\| 2

for a constant C1 depending on \mu and \lambda only. We conclude that

min\{ 2\mu , 2\mu + \lambda \} 
2

\int 
B3s/4

\| Eu\| 2 \leq \mu 

\int 
B3s/4

\| Eu\| 2 + \lambda 

2

\int 
B3s/4

| div(u)| 2

\leq \mu 

\int 
Bs

\chi 2\| Eu\| 2 + \lambda 

2

\int 
Bs

\chi 2| div(u)| 2 \leq 
\biggl( 
C2

s2
C1 + \rho \omega 2

\biggr) \int 
Bs

\| u\| 2.

Let \~\chi \in C\infty 
0 (B3s/4) be such that 0 \leq \~\chi \leq 1 everywhere and \~\chi = 1 on Bs/2.

We can assume that \| \nabla \~\chi \| \leq C/s everywhere for some absolute constant C. Then
\~\chi u \in \scrK 0(B3s/4) = H1

0 (B3s/4), so by (2.4),\int 
Bs/2

\| \nabla u\| 2 \leq 
\int 
B3s/4

\| \nabla (\~\chi u)\| 2 \leq 2

\int 
B3s/4

\| E(\~\chi u)\| 2

= 2

\int 
B3s/4

\bigm\| \bigm\| \bigm\| \bigm\| \~\chi Eu+
1

2
(\~\chi ju

i + \~\chi iu
j)

\bigm\| \bigm\| \bigm\| \bigm\| 2 \leq 4

\Biggl( \int 
B3s/4

\| Eu\| 2 + C2

s2
C2

\int 
B3s/4

\| u\| 2
\Biggr) 
,

where C2 is another absolute constant. We conclude that

(2.27) \| \nabla u\| L2(Bs/2) \leq 
C3

s
\| u\| L2(Bs)

for a constant C3 depending on the coefficients and on s0 only.
Since for any j \in \{ 1, . . . , N\} , uj still solves (2.1), we can repeat the procedure

above and prove that

(2.28) \| D2u\| L2(Bs/4) \leq 
C4

s2
\| u\| L2(Bs),
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STABLE DETERMINATION OF A RIGID SCATTERER 2673

and consequently

(2.29) \| up\| L2(Bs/4), \| us\| L2(Bs/4) \leq 
C5

s2
\| u\| L2(Bs)

with C4 and C5 still depending on the coefficients and on s0 only.
The last step is to estimate the L\infty -norm by the L2-norm for a solution to

a Helmholtz equation. This is a standard estimate (see, for instance, [17, Theo-
rem 8.17]), since we have

(2.30) \| up\| L\infty (Bs/8), \| us\| L\infty (Bs/8) \leq 
C6

sN/2
\| up\| L2(Bs/4), \| us\| L2(Bs/4),

respectively, with C6 depending on the coefficients and on s0 only. The proof can now
be easily concluded.

Lemma 2.6. There exist positive constants \~s0, \~C, and \~c1, 0 < \~c1 < 1, depending
on k only, such that for every 0 < s1 < s < s2 \leq \~s0 and any function u such that

\Delta u+ k2u = 0 in Bs2 ,

we have, for any t, s < t < s2,

(2.31) \| u\| L\infty (Bs) \leq \~C(1 - (s/t)) - N/2\| u\| 1 - \beta 
L\infty (Bs2 )

\| u\| \beta L\infty (Bs1 )
,

for some \beta such that

(2.32) \~c1 (log(s2/t))
\big/ 
(log(s2/s1)) \leq \beta \leq 1 - \~c1 (log(t/s1))

\big/ 
(log(s2/s1)) .

Proof. It follows by the results of [7].

2.2. Friedrichs inequality. Let \Omega \subset \BbbR N be an open and bounded set. Under
suitable assumptions on \Omega and u, a function defined on \Omega , the inequality proved by
Friedrichs, [16], is

(2.33) \| u\| L2(\Omega ) \leq C
\bigl[ 
\| \nabla u\| L2(\Omega ) + \| u\| L2(\partial \Omega )

\bigr] 
with a constant C not depending on u. This estimate is actually a straightforward
consequence of a much more general estimate proved by Maz'ya [36] which is the
following:
(2.34)

\| u\| LN/(N - 1)(\Omega ) \leq C(N)
\bigl[ 
\| \nabla u\| L1(\Omega ) + \| u\| L1(\partial \Omega )

\bigr] 
for any u \in C(\Omega ) \cap W 1,1(\Omega ).

The importance of this estimate is that it holds independently of the regularity of \Omega 
and that the constant C(N) is optimal and depends on N only; it is actually the one
of the isoperimetric inequality, that is,

(2.35) C(N) =
| B1| (N - 1)/N

\scrH N - 1(\partial B1)
.

For a proof of (2.34) we refer to [37, Corollary, p. 319]. Actually, the Maz'ya inequality
can even be generalized to functions of bounded variation; see [45] for an extremely
general version in this direction.

Here we just point out that (2.34) implies the classical Friedrichs inequality, which
we state in the next theorem.
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2674 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

Theorem 2.7. Let \Omega \subset \BbbR N be open and bounded. Let

p =
2N

N + 1
and q =

2N

N  - 1
.

Then

(2.36) \| u\| Lq(\Omega ) \leq 4C(N)
\bigl[ 
\| \nabla u\| Lp(\Omega ) + \| u\| L2(\partial \Omega )

\bigr] 
for any u \in C(\Omega ) \cap W 1,p(\Omega ),

so that for any u \in C(\Omega ) \cap W 1,2(\Omega )

(2.37) \| u\| L2(\Omega ) \leq 4C(N)| \Omega | 1
2N

\Bigl[ 
| \Omega | 1

2N \| \nabla u\| L2(\Omega ) + \| u\| L2(\partial \Omega )

\Bigr] 
.

Proof. Inequality (2.36) follows by applying (2.34) to u2 (see the proof of [45,
Corollary 2.4] for details), whereas (2.37) is an immediate consequence of (2.36) and
the H\"older inequality.

When u is vector-valued, that is, u \in C(\Omega ,\BbbC N ) \cap W 1,2(\Omega ,\BbbC N ), we still have

(2.38) \| u\| L2(\Omega ) \leq 4C(N)| \Omega | 1
2N

\Bigl[ 
| \Omega | 1

2N \| \nabla u\| L2(\Omega ) + \| u\| L2(\partial \Omega )

\Bigr] 
.

3. The main result. We begin by setting the hypotheses. Let us fix constants
r > 0, L > 0, R > 0, \alpha with 0 < \alpha < 1, \mu > 0, \lambda with 2\mu + \lambda > 0, \rho > 0, \omega > 0.
Finally, we fix H0 such that

(3.1) 0 < H0 < H1 =

\biggl( 
min\{ 2\mu , 2\mu + \lambda \} 
64C(N)2\rho \omega 2

\biggr) N/2

=

\Biggl( 
min\{ \omega  - 1

p ,
\surd 
2\omega  - 1

s \} 
8C(N)

\Biggr) N

,

where C(N) is the absolute constant appearing in (2.35). We refer to these constants
as the a priori data.

First, we fix D+, an open set which is Lipschitz with constants r and L and such
that K+ = D+ is an obstacle contained in BR(0). We call \Omega + = \BbbR N\setminus K+.

Let D and D\prime be two open sets of class C2,\alpha with constants r and L such that
K = D and K \prime = D\prime are obstacles contained in D+. We call \Omega = \BbbR N\setminus K and
\Omega \prime = \BbbR N\setminus K \prime the corresponding exterior domains. We also use the notation \Omega ext to
denote the unbounded connected component of \BbbR N\setminus (K \cup K \prime ) and call \Gamma = \partial \Omega ext and
\Omega int = \BbbR N\setminus \Omega ext. We clearly have \Omega + \subset \Omega ext and \Omega int \subset D+.

Let uinc be as in (2.14) such that (2.15) is satisfied. Let u and uscat be the
solution to (2.18) and let u\prime and (u\prime )scat be the solution to (2.18) with K replaced by
K \prime .

Let U = (Up, Us) be the far-field pattern of uscat and U \prime = (U \prime 
p, U

\prime 
s) be the far-field

pattern of (u\prime )scat, respectively.
We measure the difference between two obstaclesK andK \prime by using the Hausdorff

distance dH , which is given by

dH(K,K \prime ) = max

\biggl\{ 
sup
x\in K

dist(x,K \prime ), sup
x\in K\prime 

dist(x,K)

\biggr\} 
.

Then we have the following stability result.

Theorem 3.1. Under the previous notation and assumptions, we further assume
that the following closeness condition holds:

(3.2)
\bigm| \bigm| D+\setminus (K \cap K \prime )

\bigm| \bigm| \leq H0.
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STABLE DETERMINATION OF A RIGID SCATTERER 2675

Then there exist positive constants \^\varepsilon 0, 0 < \^\varepsilon 0 \leq e - e/2, \^C, and \beta , depending on
the a priori data only, such that for any \varepsilon 0, 0 < \varepsilon 0 \leq \^\varepsilon 0, if

(3.3) \| U  - U \prime \| L2(\BbbS N - 1,\BbbC N\times \BbbC N ) \leq \varepsilon 0,

then

(3.4) dH(K,K \prime ) \leq \^C (log (log(1/\varepsilon 0)))
 - \beta 

.

Remark 3.2. As will be clear in the proof, about the incident wave, we just need
conditions that allow (4.19) and (4.20) to be satisfied. Therefore, other suitable
incident waves may be used. For instance, another common choice is to use a point
source wave. However, in such a case, one needs to consider a point source which is
far enough from the unknown obstacle and choose x3 in (4.19) and (4.20) relatively
close to the point source. The analysis would therefore require other technicalities
that we decided not to tackle in this paper.

4. Proof of Theorem 3.1. Let K and K \prime be any two scatterers satisfying the
hypotheses of Theorem 3.1. We state a few properties of K, as well as of K \prime . First
we note that the number of connected components of K is bounded by a constant
depending on r, L, and R only. We also have that\scrH N - 1(\partial K) is bounded by a constant
depending on r, L, and R only. Moreover, there exists a constant C1, depending on
r, L, and R only, such that for any h, 0 \leq h \leq 1, we have

(4.1) | Bh(\partial K)| \leq C1h.

By [32, Corollary 2.3 and Proposition 2.1], there exist two positive constants c1
and t1, depending on r, L, and R only, such that the following holds. For any t > 0,
if x1, x2 \in \BbbR N are such that Bt(x1) and Bt(x2) are contained in \BbbR N\setminus K, then we
can find a smooth (for instance, piecewise C1) curve \gamma connecting x1 to x2 so that
B\delta (t)(\gamma ) is contained in \BbbR N\setminus K as well, where

(4.2) \delta (t) = min\{ c1t, t1\} for any t > 0.

We measure the distance between K and K \prime by

(4.3) d = max

\Biggl\{ 
sup

x\in \partial K\setminus K\prime 
dist(x, \partial K \prime ), sup

x\in \partial K\prime \setminus K
dist(x, \partial K)

\Biggr\} 
or

(4.4) \^d = dH(\partial K, \partial K \prime ) or \~d = dH(K,K \prime ).

We obviously have d, \^d, \~d \leq 2R. The relationship between these quantities is inves-
tigated in detail in [32, section 2] under much more general conditions. Here we just
use that, in particular by [32, Corollary 2.3 and Proposition 2.1], we have

(4.5) C2d \leq C2
\^d \leq \~d \leq C3d \leq C3

\^d,

where C2 and C3 are positive constants depending on r, L, and R only.
Let us note that all the above properties are valid even if we assume that D

and D\prime are just Lipschitz with constants r and L. In particular (4.1) holds with K
replaced by K+ as well.
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2676 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

If D is Lipschitz with constants r and L, D and \Omega satisfy a uniform interior
cone property, that is, there exist constants r0 > 0 and \theta 0, 0 < \theta 0 < \pi /2, depending
on r and L only, such that for any x \in \partial K we can find a unit vector v such that
\scrC (x, v, r0, \theta 0) \subset D and \scrC (x, - v, r0, \theta 0) \subset \Omega . Let us also note that v can be chosen
constant for any y \in \partial K in a neighborhood of x \in \partial K depending on r and L only.

Another important property, for which D of class C1,1 with constants r and
L would be enough, is the following (see [11, Theorem 5.7]). There exist positive
constants h0, r1, and L1, depending on r and L only, such that for any h, 0 < h \leq h0,
the set

Dh = \{ x \in \BbbR N : dist(x,K) < h\} 

is an open set of class C1,1 with constants r1 and L1. Moreover,

\partial (Dh) = \{ x \in \BbbR N : dist(x,K) = h\} .

We can conclude that there exists a constant C4, depending on r, L, and R only, such
that for any h, 0 \leq h \leq h0,

(4.6) \scrH N - 1(\partial (Dh)) \leq C4,

where we identify D0 with D and \partial (D0) with \partial D.
The final property we need about the obstacles K and K \prime is the following.

Lemma 4.1. Assume that D and D\prime are C1,1 with constants r and L. Then there
exists a constant \~d0, depending on r, L, and R only, such that if

\~d = dH(K,K \prime ) \leq \~d0,

then \Omega ext satisfies a uniform interior cone property with constants \~r0 and \~\theta 0 depending
on r and L only.

Proof. It immediately follows from [2, Lemma 8.1]. We just note that D and D\prime 

belonging to C1,\alpha , 0 < \alpha < 1, with constants r and L would be enough, but in this
case the constants would depend on \alpha as well.

By Theorem 2.4, we have that

(4.7) \| up(x)\| + \| u\prime 
p(x)\| + \| us(x)\| + \| u\prime 

s(x)\| \leq E for any x \in \Omega ext,

where E depends on the a priori data only and it is assumed to be greater than or
equal to 1.

Finally, we fix positive R1 and \~s such that R + 1 + \~s \leq R1. Let us fix a point
x0 \in \BbbR N such that R+ 1 + \~s \leq \| x0\| \leq R1. For a fixed \varepsilon , 0 < \varepsilon \leq E, let

(4.8) \| u - u\prime \| L\infty (B\~s(x0),\BbbC N ) \leq \varepsilon .

We call \varepsilon the near-field error with limited aperture. Let \varepsilon 1, 0 < \varepsilon 1 \leq E, be such that

(4.9) \| u - u\prime \| L\infty (B\| x0\| +\~s\setminus B\| x0\|  - \~s,\BbbC N ) \leq \varepsilon 1.

We call \varepsilon 1 the near-field error. Finally, if

(4.10) \| U  - U \prime \| L2(\BbbS N - 1,\BbbC N\times \BbbC N ) \leq \varepsilon 0,

\varepsilon 0 will be referred to as the far-field error.
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STABLE DETERMINATION OF A RIGID SCATTERER 2677

By Theorem 2.4, through (4.7), Lemma 2.5, and an iterated application of the
three-spheres inequality of Lemma 2.6 to up  - u\prime 

p and us  - u\prime 
s, we can find positive

constants C5 and \~\beta , 0 < \~\beta < 1, depending on E, R, \~s, R1 and the coefficients of (2.1)
only, such that

(4.11) \varepsilon \leq \varepsilon 1 \leq C5\varepsilon 
\~\beta .

Moreover, there exist positive constants \~\varepsilon 0 \leq 1/(2e) and C6, depending on E, R,
\~s, R1, and the coefficients of (2.1) only, such that if 0 < \varepsilon 0 \leq \~\varepsilon 0, then

(4.12) \| u - u\prime \| L\infty (B\| x0\| +\~s\setminus B\| x0\|  - \~s,\BbbC N )

\leq \| up  - u\prime 
p\| L\infty (B\| x0\| +\~s\setminus B\| x0\|  - \~s,\BbbC N ) + \| us  - u\prime 

s\| L\infty (B\| x0\| +\~s\setminus B\| x0\|  - \~s,\BbbC N )

\leq \~\eta (\varepsilon 0) = exp
\Bigl( 
 - C6( - log \varepsilon 0)

1/2
\Bigr) 
,

that is, possibly slightly changing \~\varepsilon 0

(4.13) \varepsilon \leq \varepsilon 1 \leq \~\eta (\varepsilon 0) = exp
\Bigl( 
 - C6( - log \varepsilon 0)

1/2
\Bigr) 
\leq exp

\Bigl( 
 - (log(1/\varepsilon 0))

1/4
\Bigr) 
.

This is a classical far-field to near-field estimate, which has been first introduced in
[25] for N = 3, with a slight improvement in [8], and that can be generalized to any
N \geq 2; see, for instance, Theorem 4.1 in [46].

We estimate the Hausdorff distance of K and K \prime in terms of \varepsilon . In this case, we
need to add R1 and \~s to the a priori data. By (4.11), the estimate in terms of \varepsilon 1 is
clearly the same. The estimate in terms of the far-field error \varepsilon 0 can be easily obtained
by using (4.13), noting that in this case R1 and \~s can be chosen as depending on R
only.

For any s > 0 let us call Vs the set of points x \in \Omega ext such that there exists a
smooth, that is, piecewise C1, curve \gamma connecting x0 to x such that Bs(\gamma ) \subset \Omega ext.
(See also [5] for a related argument developed in order to circumvent the case in which
a domain of interest is not reachable by a chain of balls.) It follows that Vs is an open
subset of \Omega ext and we call \Gamma s its boundary and Ws = \BbbR N\setminus Vs. To keep the same
notation, we identify \Omega ext with V0, \Gamma with \Gamma 0, and \Omega int with W0. For any 0 \leq s1 \leq s2
we clearly have Vs2 \subset Vs1 and Ws1 \subset Ws2 .

An important property of \Gamma s is that

(4.14) \Gamma s \subset \partial (Ds) \cup \partial (D\prime 
s).

Moreover, by (4.2) applied to K+, for any x \in \Omega + whose distance from \partial D+ is greater
than or equal to t > 0, we have x \in V\delta (t).

We can find s0, 0 < s0 \leq \~s/8, depending on the a priori data only, such that the
following holds. It is smaller than or equal to \~s0 in Lemma 2.6 for k equal to \omega p and
to \omega s. It is smaller than or equal to h0. Finally, we require that

(4.15)
\bigm| \bigm| Ws\setminus K+

\bigm| \bigm| \leq H1  - H0

2
for any 0 \leq s \leq s0.

For this last property we use (4.2) and (4.1) applied to K+. By (4.15), via (3.2), we
infer that

(4.16) | Ws\setminus (K \cap K \prime )| \leq H0 +H1

2
= \~H0 < H1 for any 0 \leq s \leq s0.
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2678 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

Up to swapping K with K \prime , let x1 \in \partial K \prime \setminus K be such that dist(x1, \partial K) =
dist(x1,K) = d. If x1 does not belong to \Gamma , we can find a smooth curve \gamma con-
necting x1 with x0 such thatB\delta (d)(\gamma ) \subset \Omega . But \gamma needs to intersect \partial K \prime \cap \Gamma in a
point. Therefore, for a positive constant c2, 0 < c2 < 1, depending on r, L, and R
only, we can assume, without loss of generality, that there exists x1 \in (\partial K \prime \cap \Gamma )\setminus K
such that dist(x1, \partial K) = dist(x1,K) \geq c2d.

We call A0 the connected component of \Omega int\setminus K such that x1 \in \partial A0. For any
s, 0 < s \leq s0, we call As the connected component of Ws\setminus K containing A0. For
any s, 0 \leq s \leq s0, the domain As satisfies the following properties. By (4.14),
\partial As \subset \partial K \cup \partial (Ds) \cup \partial (D\prime 

s). Therefore, by (4.6) and by (4.16), we have

(4.17) \scrH N - 1(\partial As) \leq 3C4 and | As| \leq 
H0 +H1

2
= \~H0.

Moreover, by the regularity of D and D\prime , we infer that there exist a point x2 and a
positive constant c3, 0 < c3 < 1, depending on r, L, and R only, such that

(4.18) Bc3d(x2) \subset A0.

By (2.15) and (2.24), we can find a constant R2 \geq R + 2, depending on the a
priori data only, and a point x3 such that

(4.19) R+ 2 \leq \| x3\| \leq R2

and

(4.20) \| u(x)\| , \| u\prime (x)\| \geq 1

2
for any x \in B1(x3).

The proof of Theorem 3.1 requires several steps. The first one is to estimate
\| u  - u\prime \| on \Gamma s for 0 < s \leq s0. This is obtained by a classical quantitative unique
continuation.

Lemma 4.2. Assume that \varepsilon \leq 1/(2e). For any 0 < s \leq s0, we have

(4.21) \| (u - u\prime )(x)\| \leq \eta s(\varepsilon ) = E1\varepsilon 
am(s)

for any x \in \Gamma s

with

(4.22) m(s) \leq F0

sN
,

where E1 > 0, F0 > 0, and a, 0 < a < 1, are constants depending on the a priori data
only.

Proof. For any x \in BR \cap Vs, 0 < s \leq s0, let \gamma be the curve connecting x to x0 as
in the definition of Vs. Without loss of generality, we can assume that \gamma is contained
in BR1

.
We can construct a regular chain of balls, in the sense of [44, Definition 5.1], with

respect to Bs(\gamma ) that from x0 reaches x. The first ball is centered at x0 and has
radius less than or equal to \~s/8. By Lemma 2.5, we have that

\| up  - u\prime 
p\| L\infty (B\~s/8(x0)), \| us  - u\prime 

s\| L\infty (B\~s/8(x0)) \leq C\varepsilon 

for a constant C depending on the a priori data.
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STABLE DETERMINATION OF A RIGID SCATTERER 2679

Then by a repeated use of the three-spheres inequality of Lemma 2.6 applied to
up  - u\prime 

p and us  - u\prime 
s along this regular chain of balls, we obtain that

\| (u - u\prime )(x)\| \leq \| (up  - u\prime 
p)(x)\| + \| (us  - u\prime 

s)(x)\| \leq E1\varepsilon 
am(s)

,

where E1 and a, 0 < a < 1, depend on the a priori data only, and m(s) denotes the
number of times we have used the three-spheres inequality. It can be shown that m(s)
satisfies (4.22) for a constant F0 depending on R1 only. Then we conclude the proof
by using the continuity of u and u\prime .

Lemma 4.3. Let 0 \leq s \leq s0. Assume that, for some \eta , 0 < \eta \leq E, we have

(4.23) \| (u - u\prime )(x)\| \leq \eta for any x \in \Gamma s.

Then there exists a positive constant \^C0, depending on the a priori data only,
such that

(4.24) \| \nabla u\| 2L2(As)
\leq \^C0\^\eta s,

where

(4.25) \^\eta s = (\eta + \~C0s),

\~C0 as in (2.23).

Proof. We have \partial As \subset \partial K \cup \partial (Ds) \cup \partial (D\prime 
s). We have that u = 0 on \partial K and, by

(2.23), \| u\| \leq \~C0s on \partial (Ds). By the same reasoning, \| u\prime \| \leq \~C0s on \partial (D\prime 
s). Hence

(4.26) \| u(x)\| \leq \^\eta s = (\eta + \~C0s) for any x \in \partial As.

Since u \in C2(\Omega ) and As is a set of finite perimeter, an integration by parts leads to

2\mu 

\int 
As

Eu : Eu+ \lambda 

\int 
As

div(u)div(u) - \rho \omega 2

\int 
As

u \cdot u =

\int 
\partial As

Tu \cdot u.

Then, by (2.23), (2.38), (4.17), and (4.26), we have, for a constant M1 depending on
the a priori data only,

(4.27) M1\^\eta s \geq 2\mu 

\int 
As

Eu : Eu+ \lambda 

\int 
As

div(u)div(u) - \rho \omega 2

\int 
As

u \cdot u

\geq min\{ 2\mu , 2\mu + \lambda \} \| Eu\| 2L2(As)
 - 32\rho \omega 2C(N)2 \~H

1
N
0

\Bigl[ 
\~H

1
N
0 \| \nabla u\| 2L2(As)

+ \| u\| 2L2(\partial As)

\Bigr] 
\geq min\{ 2\mu , 2\mu + \lambda \} \| Eu\| 2L2(As)

 - 32\rho \omega 2C(N)2
\Bigl[ 
\~H

2
N
0 \| \nabla u\| 2L2(As)

+ \~H
1
N
0 (3C4\^\eta 

2
s)
\Bigr] 
.

Then, by the idea of the proof of the first Korn inequality, we have

\| Eu\| 2 =
1

4

N\sum 
i,j=1

\bigm| \bigm| \bigm| ui
j + uj

i

\bigm| \bigm| \bigm| 2
=

1

2

N\sum 
i,j=1

\bigm| \bigm| ui
j

\bigm| \bigm| 2 + 1

4

N\sum 
i,j=1

\Bigl( 
ui
ju

j
i + ui

ju
j
i

\Bigr) 
=

1

2

N\sum 
i,j=1

\bigm| \bigm| ui
j

\bigm| \bigm| 2 + 1

2

N\sum 
i,j=1

\Bigl( 
ui
ju

j
i

\Bigr) 
.
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By the regularity of u and of As, by two integrations by parts we obtain\int 
As

ui
ju

j
i =  - 

\int 
As

uiuj
ij +

\int 
\partial As

uiuj
i\nu 

j =  - 
\int 
As

uiuj
ji +

\int 
\partial As

uiuj
i\nu 

j

=

\int 
As

ui
iu

j
j  - 

\int 
\partial As

uiuj
j\nu 

i +

\int 
\partial As

uiuj
i\nu 

j .

It follows that\int 
As

\| Eu\| 2

=
1

2

\int 
As

\| \nabla u\| 2 + 1

2

\int 
As

div(u)div(u) +
1

2

N\sum 
i,j=1

\biggl( 
 - 
\int 
\partial As

uiuj
j\nu 

i +

\int 
\partial As

uiuj
i\nu 

j

\biggr) 
,

and thus \int 
As

\| \nabla u\| 2 \leq 2

\int 
As

\| Eu\| 2 +
N\sum 

i,j=1

\biggl( \int 
\partial As

uiuj
j\nu 

i  - 
\int 
\partial As

uiuj
i\nu 

j

\biggr) 
.

We conclude by Theorem 2.4 and (4.26) that

(4.28)

\int 
As

\| \nabla u\| 2 \leq 2

\int 
As

\| Eu\| 2 + 6C4N
2 \~C0\^\eta s.

Coupling (4.27) and (4.28), we obtain

M1\^\eta s \geq 
\biggl( 
min\{ 2\mu , 2\mu + \lambda \} 

2
 - 32\rho \omega 2C(N)2 \~H

2
N
0

\biggr) 
\| \nabla u\| 2L2(As)

 - 32\rho \omega 2C(N)2 \~H
1
N
0 (3C4\^\eta 

2
s) - min\{ 2\mu , 2\mu + \lambda \} 3C4N

2 \~C0\^\eta s.

Since \^\eta s is bounded by a constant depending on the a priori data only and, by (3.2)
and (4.17), we have that \~H0 < H1, we can easily conclude the proof.

Corollary 4.4. Under the same assumptions of Lemma 4.3, there exists a pos-
itive constant \^C1, depending on the a priori data only, such that

(4.29) \| up\| L\infty (Bc3d/4(x2)), \| us\| L\infty (Bc3d/4(x2)) \leq 
\^C1

d(N+2)/2
\^\eta 1/2s ,

\^\eta s as in (4.25).

Proof. The proof is immediate by using (2.26) and (4.24).

Remark 4.5. Assume that \varepsilon \leq e - e/2. Let \^\eta s(\varepsilon ) = (\eta s(\varepsilon ) + \~C0s) as in (4.25)
and with \eta s(\varepsilon ) as in (4.21). Then, by taking the minimum as s varies in (0, s0], an
easy computation shows that there exist positive constants \~\varepsilon , \~\varepsilon \leq e - e/2, and \^C2,
depending on the a priori data only, such that if 0 < \varepsilon \leq \~\varepsilon , we have

(4.30) \| up\| L\infty (Bc3d/4(x2)), \| us\| L\infty (Bc3d/4(x2)) \leq 
\^C1

d(N+2)/2
\^\eta (\varepsilon )1/2,

where

(4.31) \^\eta (\varepsilon ) = \^C2 [log(log(1/\varepsilon ))]
 - 1/N

.

In fact, let

s(\varepsilon ) = \^C3 [log(log(1/\varepsilon ))]
 - 1/N
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STABLE DETERMINATION OF A RIGID SCATTERER 2681

with \^C3 such that
log(1/a)F0

\^CN
3

\leq 1/2.

Then
\varepsilon a

m(s(\varepsilon ))

\leq exp
\Bigl( 
 - (log(1/\varepsilon ))1/2

\Bigr) 
.

It is enough to choose \~\varepsilon such that for any 0 < \varepsilon \leq \~\varepsilon we have s(\varepsilon ) \leq s0 and

exp
\Bigl( 
 - (log(1/\varepsilon ))1/2

\Bigr) 
\leq [log(log(1/\varepsilon ))]

 - 1/N
.

Lemma 4.6. Let us assume that for some d1, 0 < d1 \leq c3R/2, there exists x such
that Bd1

(x) \subset \Omega and, for some \^\eta \leq e - e/2.

(4.32) \| up\| L\infty (Bd1
(x)), \| us\| L\infty (Bd1

(x)) \leq \^\eta .

Then there exist a constant \delta , 0 < \delta \leq e - e/2, and a positive constant \^C4, depend-
ing on the a priori data only, such that if 0 < \^\eta \leq \delta , we have

(4.33) d1 \leq \varphi (\^\eta ),

where

(4.34) \varphi (\^\eta ) \leq 2eR (log(1/\^\eta ))
 - \^C4 .

Proof. We shall apply this lemma to x = x2 and d1 = c3d/4 (see Remark 4.7).
By the uniform interior cone property of \Omega , we can find a direction v such that

\scrC = \scrC (x  - (d1)v, v, r1, \theta 1) \subset \Omega for some r1 > 0 and \theta 1, 0 < \theta 1 < \pi /2, depending on
r and L only. Moreover, we can find \~x = x + sv for some s \geq 0, and c4, 0 < c4 < 1,
depending on r and L only, such that Bc4d1(x) and Bc4r1(\~x) are both contained in \scrC .

We can find \gamma , a piecewise C1 curve, connecting \~x with x3 such that Bc5r1(\gamma ) \subset \Omega 
for some c5, 0 < c5 < 1, depending on r, L and R only. Without loss of generality,
we can assume that \gamma \subset BR2

as well.
We can construct a regular chain of balls, again in the sense of [44, Definition 5.1],

with respect to \scrC \cup Bc5r1(\gamma ) that from x reaches x3; see Step I of the proof of [44,
Theorem 4.1] for details on this geometric construction, which we just sketch, now.
The first ball is centered at x and has radius less than or equal to c4d1/8. Then we
proceed along the bisecting line of \scrC until we reach \~x. The construction from x to \~x
is illustrated in Figure 1. From \~x to x3 we proceed along the curve \gamma ; see Figure 2
for an illustration.

Again by a repeated use of the three-spheres inequality of Lemma 2.6 applied to
up and us along this regular chain of balls, we obtain that

\| u(x3)\| \leq \| up(x3)\| + \| us(x3)\| \leq E2\^\eta 
an

,

where E2 \geq 2e and a, 0 < a < 1, depend on the a priori data only, and n denotes
the number of times we have used the three-spheres inequality. We can estimate n as
follows:

(4.35) n \leq F1 log(2eR/d1)

for some constant F1 depending on the a priori data only.
It follows by (4.20) that

1

2
\leq E2\^\eta 

an

,
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2682 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

c2d

x1

x2

Bd1(x2)

K

\partial K\prime 

z

\~x

Fig. 1. The geometric construction from x = x2 to \~x.

c2d

x1

x2

K

\partial K\prime 

z

\~x

x3

\gamma 

Fig. 2. From \~x to x3.

and consequently

 - log(2E2) \leq  - log(1/\^\eta )an,

that is,

an \leq log(2E2)

log(1/\^\eta )
.
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STABLE DETERMINATION OF A RIGID SCATTERER 2683

So, by (4.35),

log(1/a)F1 log(2eR/d1) \geq n log(1/a) \geq log(log(1/\^\eta )) - log(log(2E2)).

The proof can now be concluded by an elementary computation.

Remark 4.7. Let us pick, in Lemma 4.6, x = x2, d1 = c3d/4, and

\^\eta =
\^C1

d(N+2)/2
\^h1/2

with \^h = \^\eta s as in Corollary 4.4 or \^h = \^\eta (\varepsilon ) as in Remark 4.5, and assume that
\^h \leq 1/(2e). We conclude that either \^\eta \geq \delta , that is,

(4.36) d(N+2)/2 \leq 
\^C1

\delta 
\^h1/2,

or \^\eta \leq \delta and, by (4.33) and (4.34),

d \leq 8eR

c3

\biggl( 
N + 2

2
log(d) - log( \^C1) +

1

2
log

\biggl( 
1

\^h

\biggr) \biggr)  - \^C4

.

In this case we have that\biggl( 
8eR

c3

\biggr) 1/ \^C4
\biggl( 
1

d

\biggr) 1/ \^C4

\geq N + 2

2
log(d) - log( \^C1) +

1

2
log

\biggl( 
1

\^h

\biggr) 
,

that is, \biggl( 
8eR

c3

\biggr) 1/ \^C4
\biggl( 
1

d

\biggr) 1/ \^C4

+
N + 2

2
log

\biggl( 
1

d

\biggr) 
+ log( \^C1) \geq 

1

2
log

\biggl( 
1

\^h

\biggr) 
.

Since d \leq 2R, and therefore (1/d) \geq 1/(2R), we can find a positive constant \^C5,
depending on the a priori data only, such that for any 0 < d \leq 2R we have\biggl( 

8eR

c3

\biggr) 1/ \^C4
\biggl( 
1

d

\biggr) 1/ \^C4

+
N + 2

2
log

\biggl( 
1

d

\biggr) 
+ log( \^C1) \leq 

1

2

\Biggl( 
\^C5

d

\Biggr) 1/ \^C4

,

and therefore

(4.37) d \leq \^C5

\biggl( 
log

\biggl( 
1

\^h

\biggr) \biggr)  - \^C4

.

We can also find a positive constant \^C6, depending on the a priori data only, such
that for any \^h, 0 < \^h \leq 1/(2e), we have

\^C1

\delta 
\^h1/2 \leq \^C6

\biggl( 
log

\biggl( 
1

\^h

\biggr) \biggr)  - \^C4

.

Coupling (4.36) and (4.37), we conclude that

(4.38) d \leq \^C7

\biggl( 
log

\biggl( 
1

\^h

\biggr) \biggr)  - \^C4

,

where \^C7 = max\{ \^C5, \^C6\} .
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2684 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

Proof of Theorem 3.1. We can find \^\varepsilon , depending on the a priori data only, such
that 0 < \^\varepsilon \leq \~\varepsilon and for any \varepsilon , 0 < \varepsilon \leq \^\varepsilon , we have \^\eta (\varepsilon ) \leq 1/(2e), where \^\eta (\varepsilon ) is defined

in (4.31). By the reasoning used in Remark 4.7 with \^h = \^\eta (\varepsilon ), we deduce that

(4.39) \~d \leq C3d \leq C3
\^C7

\biggl( 
log

\biggl( 
1

\^\eta (\varepsilon )

\biggr) \biggr)  - \^C4

,

where we used (4.5). We have already obtained a quantitative estimate, which we can
improve as follows.

Up to taking a smaller \^\varepsilon > 0, still depending on the a priori data only, for any \varepsilon ,
0 < \varepsilon \leq \^\varepsilon , we have that \~d \leq \~d0, where \~d0 is the constant of Lemma 4.1. Then we can
improve our estimate with a by now classical technique, which we sketch now.

Let us assume that \varepsilon , 0 < \varepsilon \leq \^\varepsilon , so that \~d \leq \~d0. By Lemma 4.1, we have that
\Omega ext satisfies a uniform interior cone property, with constants \~r0 and \~\theta 0 depending on
r and L only. Let z \in \Gamma and let \scrC = \scrC (z, v, \~r0, \~\theta 0) \subset \Omega ext for a suitable direction v.
For any s, 0 < s \leq \~s0, with \~s0 \leq 2 small enough, let x(s) = z + sv. By a completely
analogous construction to the one used in Lemma 4.6, just by reversing the chain of
balls, we connect x0 to x(s) with a suitable regular chain of balls contained in \Omega ext.
The construction is again illustrated in Figures 2 and 1, by replacing x3 with x0 and
\~x with x, and assuming that z \in \Gamma and that the cone and \gamma are contained in \Omega ext.

The repeated use of the three-spheres inequality applied to up  - u\prime 
p and us  - u\prime 

s

along this chain, from x0 to x(s), allows us to estimate

\| (u - u\prime )(x(s))\| \leq E3\varepsilon 
al(s)

,

where E3 \geq 2e, 0 < a < 1, and

l(s) \leq F2 log(2e/s).

As usual, \~s0, E3, a, and F2 can be chosen as depending on the a priori data only. We
conclude that, for any z \in \Gamma ,

\| (u - u\prime )(z)\| \leq E3\varepsilon 
al(s)

+ \~C0s for any 0 < s \leq \~s0.

By reasoning as in Remark 4.5, we estimate the minimum as s varies in (0, \~s0]. Let
us further assume, without loss of generality, that for any \varepsilon , 0 < \varepsilon \leq \^\varepsilon , we have

s(\varepsilon ) =
2e

log(1/\varepsilon )1/ \^C8

\leq \~s0

with \^C8 such that
log(1/a)F2

\^C8

\leq 1/2.

Then

\varepsilon a
l(s(\varepsilon ))

\leq exp
\Bigl( 
 - (log(1/\varepsilon ))1/2

\Bigr) 
.

It is enough to choose \^\varepsilon such that for any 0 < \varepsilon \leq \^\varepsilon we have s(\varepsilon ) \leq \~s0 and, calling
\^\beta = 1/ \^C8,

exp
\Bigl( 
 - (log(1/\varepsilon ))1/2

\Bigr) 
\leq log(1/\varepsilon ) - 

\^\beta .
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STABLE DETERMINATION OF A RIGID SCATTERER 2685

Therefore we can find \^\varepsilon , 0 < \^\varepsilon \leq e - e/2, and a positive constant \^\beta 0, both depend-
ing on the a priori data only, such that for any \varepsilon , 0 < \varepsilon \leq \^\varepsilon , and for any z \in \Gamma we
have

\| (u - u\prime )(z)\| \leq log(1/\varepsilon ) - 
\^\beta 0 = \eta (\varepsilon ) \leq 1/(2e).

By the same argument used to prove (4.39), if we replace \^\eta (\varepsilon ) with \eta (\varepsilon ), we conclude
that the following stability result holds.

There exist positive constants \^\varepsilon , 0 < \^\varepsilon \leq e - e/2, C, and \beta , depending on the a
priori data only, such that for any \varepsilon , 0 < \varepsilon \leq \^\varepsilon , if

\| u - u\prime \| L\infty (B\~s(x0),\BbbC N ) \leq \varepsilon ,

then

(4.40) \~d \leq C (log (log(1/\varepsilon )))
 - \beta 

,

where
C = C3

\^C7
\^\beta  - \^C4
0 and \beta = \^C4.

If we consider the far-field error \varepsilon 0 instead of the error \varepsilon , we can find \^\varepsilon 0, 0 <
\^\varepsilon 0 \leq e - e/2, such that for any \varepsilon 0, 0 < \varepsilon 0 \leq \^\varepsilon 0, we have that \~\eta (\varepsilon 0) \leq \^\varepsilon , and hence by
replacing \varepsilon with \~\eta (\varepsilon 0) in (4.40), we conclude that

\~d \leq \^C (log (log(1/\varepsilon 0)))
 - \beta 

,

where \^C = 4\beta C. Therefore the proof of the main theorem is concluded.

Appendix A. Proof of Theorem 2.4. In this appendix we sketch the proof
of the regularity of solutions to (2.18).

Let us first observe that it is enough to prove that there exist positive constants
r1 and \~C, depending on r, L, R, \alpha , and the coefficients only, such that

(A.1) \| u\| L2(\Omega \cap BR+1) \leq \~C

and

(A.2) \| u\| 
C2(\Omega \cap Br1

(z)) \leq \~C for any z \in \partial \Omega .

Assuming we have proved (A.1) and (A.2), we conclude the proof of Theorem 2.4.
By the techniques developed in the proof of Lemma 2.5, we first show that by (A.1)
we have

(A.3) \| u\| C2(BR+3/4\setminus BR+1/4) \leq 
\~C2

and then, using also (A.2), that

(A.4) \| u\| C2(\Omega \cap BR+3/4) \leq 
\~C2

for a constant \~C2 depending on r, L, R, \alpha , and the coefficients only.
The estimate (A.4) implies that up and us, and thus uscat

p and uscat
s , are uni-

formly bounded in \Omega \cap BR+3/4 by a constant depending on \~C2 and the coefficients
of (2.1) only. By standard regularity estimates for solutions to the Helmholtz equa-
tion, not very different from what we used in the proof of Lemma 2.5, we infer that
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2686 LUCA RONDI, EVA SINCICH, AND MOURAD SINI

\| uscat
p \| + \| \nabla uscat

p \nu \| is bounded on \partial BR+1/2 by a constant depending on \~C2, R, and
the coefficients of (2.1) only, \nu being the exterior normal to BR+1/2. We point out that
for this estimate (A.3), and thus (A.1), is enough. Then, for any x with \| x\| > R+1/2
we have

uscat
p (x) =

\int 
\partial BR+1/2

\biggl( 
\partial \phi \omega p(x, y)

\partial \nu (y)
uscat
p (y) - \phi \omega p

(x, y)\nabla uscat
p (y)\nu (y)

\biggr) 
d\sigma (y).

Then, by the regularity and decay properties of \phi \omega p
, it is not difficult to prove (2.24)

for what concerns uscat
p and to bound \| up\| C2(\Omega \setminus BR+3/4). A completely analogous

argument applied to us completes the proof.
The proof of (A.1) and (A.2) will be done in two steps. In the first step we prove

(A.1), and in the second we prove (A.2).
Step I. The estimate (A.1) is proved by a continuity argument which is inspired by

Mosco convergence. We sketch the proof; for details we refer to [38], where the argu-
ment is fully developed in the acoustic case for the much harder Neumann boundary
condition and for much more general classes of scatterers.

Let \scrA be the class of obstacles contained in BR whose interior is a Lipschitz open
set with constants r and L. In [32, section 2] it is proved that \scrA is compact with
respect to the Hausdorff distance. We claim that there exists a constant \~C, depending
on r, L, R, and the coefficients only, such that (A.1) holds for any u solution to (2.18)
with K \in \scrA .

We argue by contradiction. Let us assume that there exists a sequence \{ Kn\} n\in \BbbN \subset 
\scrA such that, calling un the solution to (2.18) with K replaced by Kn, we have for any
n \in \BbbN 

\| un\| L2(\Omega n\cap BR+1) = an \geq n.

We always extend un to 0 in Dn, the interior of Kn, so that un \in H1(BR+1). Let
vn = un/an. We have that, with the usual extension to 0 outside \Omega n,

\| vn\| L2(BR+1) = 1 for any n \in \BbbN .

By the same argument we used before, one can easily show that \| vn\| C2(BR+3/4\setminus BR+1/4)

is bounded by a constant not depending on n. Let \chi \in C\infty 
0 (BR+1) be a cutoff function

such that 0 \leq \chi \leq 1 in BR+1 and \chi = 1 in BR+1/2. We have that wn = vn\chi \in 
H1

0 (BR+1\setminus Kn) \subset H1
0 (BR+1) and wn solves\biggl\{ 

\mu \Delta wn + (\lambda + \mu )\nabla T (div(wn)) + \rho \omega 2wn = fn in BR+1\setminus Kn,
wn = 0 on \partial (BR+1\setminus Kn)

with \| fn\| L\infty (BR+1\setminus Kn) bounded by a constant not depending on n. By the weak for-
mulation and first Korn inequality, we deduce that \{ wn\} n\in \BbbN is bounded in H1(BR+1),
and hence \{ vn\} n\in \BbbN is bounded in H1(BR+1) as well.

Passing to subsequences, without loss of generality, we can assume that, as n \rightarrow 
\infty , Kn converges to K \in \scrA in the Hausdorff distance, and vn converges to \~v weakly
in H1(BR+1) and strongly in L2(BR+1). In particular,

(A.5) \| \~v\| L2(BR+1) = 1.

One can easily show that \~v = 0 in a weak sense on \partial K and that \~v solves (2.1) in
BR+1\setminus K. Since vincn = uinc/an, for any n \in \BbbN , we actually have that vscatn converges
to \~v weakly in H1(BR+1) and strongly in L2(BR+1). We infer that, possibly passing
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STABLE DETERMINATION OF A RIGID SCATTERER 2687

to a further subsequence by using a diagonal argument, vscatn converges to a function \~v
in L2(Br) for any r > R. Such a function \~v is a radiating solution to Navier equation
in \Omega = \BbbR N\setminus K and \~v = 0 on \partial K in a weak sense. By uniqueness of the scattering
problem we deduce that \~v = 0 and this contradicts (A.5).

Step II. Let z \in \partial \Omega and let Rz be the unitary matrix transforming \nu (z) to
(0, . . . , 1) where \nu (z) is the exterior normal to \partial \Omega at z. We set V (x) = Rzu(R

 - 1
z (x))

and we note that V satisfies (2.1) in Rz(\Omega ). In other words, we can assume, without
loss of generality, that there exists a function \phi z : \BbbR N - 1 \rightarrow \BbbR , with \| \phi z\| C2,\alpha (\BbbR N - 1) \leq 
L, such that for any y \in Br(z) we have, without any further rigid transformation,

x = (x\prime , xN ) \in \Omega if and only if xN < \phi z(x
\prime ).

We define \~u(\xi ) = u(x), where \xi = F (x) is defined as

(A.6)

\biggl\{ 
\xi \prime = x\prime ,
\xi N = xN  - \phi z(x

\prime ).

Here, and in what follows, for any s > 0 we denote \Sigma s(z) = Bs(z) \cap \{ \xi N > zN\} 
and \Gamma s(z) = Bs(z) \cap \{ \xi N = zN\} . By the regularity properties of \phi z, we can infer
that, for a positive constant r2, depending on r and L only, we have that \~u satisfies,
for any i = 1, . . . , N ,

\mu 
\bigl[ 
\Delta \xi \~u

i(\xi ) - 2\nabla \xi \~u
i
N (\xi ) \cdot \nabla x\phi (x) + \~ui

NN (\xi )\| \nabla x\phi (x)\| 2
\bigr] 

+ (\lambda +\mu ) [(div\xi \~u)i(\xi ) - (div\xi \~u)N (\xi )\phi i(x) + \~uNi(\xi ) \cdot \nabla x\phi (x) - (\~uNN (\xi ) \cdot \nabla x\phi (x))\phi i(x)]

 - \mu \~ui
N (\xi )\Delta x\phi (x) + (\lambda + \mu )\~uN (\xi ) \cdot \nabla x(\phi i)(x) + \rho \omega 2\~ui(\xi ) = 0 in \Sigma r2(z)

and
\~u = 0 on \Gamma r2(z).

Here \phi : \BbbR N \rightarrow \BbbR is defined as \phi (x) = \phi z(x
\prime ) for any x \in \BbbR N and, in the formula,

x = F - 1(\xi ) everywhere. By Remark 2.2, we have that \nabla x\phi (z) = 0. Hence, in a
suitable neighborhood of z, the principal part of the second order system solved by
\~u is a small perturbation of the Lam\'e system \mu \Delta \~u + (\lambda + \mu )\nabla T (div(\~u)). We can
conclude that it is elliptic and satisfies all the conditions of [1, Chapter 1] and that
the boundary condition \~u = 0 on \Gamma r2(z) satisfies all the conditions of [1, Chapter 2].
Moreover, the coefficients of the elliptic system are bounded in C0,\alpha .

As an intermediate step, we show that there exist r3 > 0 and \~C3, depending on
r, L, R, \alpha , and the coefficients only, such that

(A.7) \| \~u\| L\infty (\Sigma r3
(z)) \leq \~C3.

By using [1, Theorem 10.4] with a suitable cutoff function, for any s, 0 < s \leq r2,
and any real p, p \geq 2, we can find s1, 0 < s1 < s, and C1, depending on s, p, and r,
L, R, \alpha , and the coefficients only, such that

(A.8) \| \~u\| W 2,p(\Sigma s1
(z)) \leq C1\| \~u\| Lp(\Sigma s(z)).

By (A.1), we can control \| \~u\| W 2,2(\Sigma \~s(z)) for a suitable positive constant \~s. By Sobolev
inequality, we infer that \~u belongs to Lp1(\Sigma \~s(z)) for some p1 > 2, and thus, repeating
the argument, \~u belongs to W 2,p1(\Sigma \~s1(z)) for a smaller positive constant \~s1. With a
bootstrap argument, after a finite number m of steps, which depends on N only, we
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obtain that \~u belongs to W 2,pm(\Sigma \~sm(z)) for a positive constant \~sm and pm > N . By
a final application of Sobolev inequality, we conclude that (A.7) holds.

Once (A.7) is established, by the standard estimates of [1, Theorem 9.2], we can
control the C2,\alpha -norm of \~u in \Sigma r3/16(z). Going back to the usual coordinates, (A.2)
can be finally proved.

Acknowledgments. Part of this work was done during visits to the University
of Trieste, Italy, and to the Radon Institute, Austria. The authors wish to thank both
the institutions for their kind hospitality.

REFERENCES

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl.
Math., 17 (1964), pp. 35--92.

[2] G. Alessandrini, E. Beretta, E. Rosset, and S. Vessella, Optimal stability for inverse
elliptic boundary value problem with unknown boundaries, Ann. Sc. Norm. Super. Pisa Cl.
Sci. (4), 29 (2000), pp. 755--806.

[3] G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single
far-field measurement, Proc. Amer. Math. Soc., 35 (2005), pp. 1685--1691.

[4] G. Alessandrini, E. Rosset, and S. Vessella, Optimal three spheres inequality at the bound-
ary for the Kirchhoff-Love plate's equation with Dirichlet conditions, Arch. Ration. Mech.
Anal., 231 (2019), pp. 1455--1486.

[5] G. Alessandrini and E. Sincich, Cracks with impedance, stable determination from boundary
data, Indiana Univ. Math. J., 62 (2013), pp. 947--989.

[6] G. Bao, G. Hu, J. Sun, and T. Yin, Direct and inverse elastic scattering from anisotropic
media, J. Math. Pures Appl. (9), 117 (2018), pp. 263--301.

[7] R. Brummelhuis, Three-spheres theorem for second order elliptic equations, J. Anal. Math.,
65 (1995), pp. 179--206.

[8] I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude, Inverse
Problems, 12 (1996), pp. 859--867.

[9] J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-
trapping polygonal obstacles with at most two incoming waves, Inverse Problems, 19 (2003),
pp. 1361--1384.

[10] D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic
scattering, IMA J. Appl. Math., 31 (1983), pp. 253--259.

[11] M. C. Delfour and J.-P. Zol\'esio, Shape analysis via oriented distance functions, J. Funct.
Anal., 123 (1994), pp. 129--201.

[12] H. Diao, H. Liu, and L. Wang, On generalized Holmgren's principle to the Lam\'e operator
with applications to inverse elastic problems, Calc. Var. Partial Differential Equations, 59
(2020), 179.

[13] M. Di Cristo and L. Rondi, Examples of exponential instability for inverse inclusion and
scattering problems, Inverse Problems, 19 (2003), pp. 685--701.

[14] J. Elschner and G. Hu, Uniqueness and factorization method for inverse elastic scattering
with a single incoming wave, Inverse Problems, 35 (2019), 094002.

[15] J. Elschner and M. Yamamoto, Uniqueness in inverse elastic scattering with finitely many
incident waves, Inverse Problems, 26 (2010), 045005.

[16] K. Friedrichs, Die Randwert-und Eigenwertprobleme aus der Theorie der elastischen Platten,
(Anwendung der direkten Methoden der Variationsrechnung.), Math. Ann., 98 (1928),
pp. 205--247 (in German).

[17] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, 1998.

[18] D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-
Krahn inequality, Inverse Problems, 21 (2005), pp. 1195--1205.

[19] D. Gintides and L. Midrinos, Inverse scattering problem for a rigid scatterer or a cavity in
elastodynamics, ZAMM Z. Angew. Math. Mech., 91 (2011), pp. 276--287.

[20] D. Gintides and M. Sini, Identification of obstacles using only the scattered P-waves or the
scattered S-waves, Inverse Probl. Imaging, 6 (2012), pp. 39--55.

[21] P. H\"ahner and G. C. Hsiao, Uniqueness theorems in inverse obstacle scattering of elastic
waves, Inverse Problems, 9 (1993), pp. 525--534.

D
ow

nl
oa

de
d 

04
/2

9/
21

 to
 1

59
.1

49
.1

03
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

29



 
 

 

 

 

 

 
 
 

 
 
 
 

 
 

 

 
 
 
 

 

 
 

STABLE DETERMINATION OF A RIGID SCATTERER 2689

[22] N. Higashimori, A Conditional Stability Estimate for Identifying a Cavity by an Elastostatic
Measurement, Ph.D. Thesis, Graduate School of Informatics, Kyoto University, 2003.

[23] N. Honda, G. Nakamura, and M. Sini, Analytic extension and reconstruction of obsta-
cles from few measurements for elliptic second order operators, Math. Ann., 355 (2013),
pp. 401--427.

[24] G. Hu, A. Kirsch, and M. Sini, Some inverse problems arising from elastic scattering by rigid
obstacles, Inverse Problems, 29 (2013), 015009.

[25] V. Isakov, Stability estimates for obstacles in inverse scattering, J. Comput. Appl. Math., 42
(1992), pp. 79--88.

[26] V. Isakov, New stability results for soft obstacles in inverse scattering, Inverse Problems, 9
(1993), pp. 535--543.

[27] M. Kar and M. Sini, Reconstruction of interfaces from the elastic farfield measurements using
CGO solutions, SIAM J. Math. Anal., 46 (2014), pp. 2650--2691.

[28] M. Kar and M. Sini, On the inverse elastic scattering by interfaces using one type of scattered
waves, J. Elasticity, 118 (2015), pp. 15--38.

[29] B. Kawohl and G. Sweers, Remarks on eigenvalues and eigenfunctions of a special elliptic
system, Z. Angew. Math. Phys., 38 (1987), pp. 730--740.

[30] V. D. Kupradze, Potential Methods in the Theory of Elasticity, Daniel Davey \& Co., New
York, 1965.

[31] V. D. Kupradze, T. G. Gegelia, M. O. Bashele\u {\i}shvili, and T. V. Burchuladze, Three-
Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,
North-Holland, Amsterdam, 1975.

[32] H. Liu, M. Petrini, L. Rondi, and J. Xiao, Stable determination of sound-hard polyhedral
scatterers by a minimal number of scattering measurements, J. Differential Equations, 262
(2017), pp. 1631--1670.

[33] H. Liu, L. Rondi, and J. Xiao, Mosco convergence for H(curl) spaces, higher integrability for
Maxwell's equations, and stability in direct and inverse EM scattering problems, J. Eur.
Math. Soc. (JEMS), 21 (2019), pp. 2945--2993.

[34] H. Liu and J. Xiao, Decoupling elastic waves and its applications, J. Differential Equations,
263 (2017), pp. 4442--4480.

[35] N. Mandache, Exponential instability in an inverse problem for the Schr\"odinger equation,
Inverse Problems, 17 (2001), pp. 1435--1444.

[36] V. G. Maz'ya, Classes of domains and imbedding theorems for function spaces, Soviet Math.
Dokl., 1 (1960), pp. 882--885 (in English).

[37] V. Maz'ya, Sobolev Spaces, 2nd ed., Springer-Verlag, Berlin, 2011.
[38] G. Menegatti and L. Rondi, Stability for the acoustic scattering problem for sound-hard

scatterers, Inverse Probl. Imaging, 7 (2013), pp. 1307--1329.
[39] A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems,

20 (2004), pp. 453--480.
[40] A. Morassi and E. Rosset, Uniqueness and stability in determining a rigid inclusion in an

elastic body, Mem. Amer. Math. Soc., 200 (2009), n. 938.
[41] A. Morassi, E. Rosset, and S. Vessella, Doubling inequality at the boundary for the

Kirchhoff-Love plate's equation with Dirichlet conditions, Le Matematiche, 75 (2020),
pp. 27--55.

[42] A. Morassi, E. Rosset, and S. Vessella, Optimal identification of cavities in the Generalized
Plane Stress problem in linear elasticity, J. Eur. Math. Soc. (JEMS), to appear.

[43] O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Elasticity
and Homogenization, North-Holland, Amsterdam, 1992.

[44] L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement,
Indiana Univ. Math. J., 57 (2008), pp. 1377--1408.

[45] L. Rondi, A Friedrichs-Maz'ya inequality for functions of bounded variation, Math. Nachr.,
290 (2017), pp. 1830--1839.

[46] L. Rondi and M. Sini, Stable determination of a scattered wave from its far-field pattern: The
high frequency asymptotics, Arch. Ration. Mech. Anal., 218 (2015), pp. 1--54.

[47] E. Sincich and M. Sini, Local stability for soft obstacles by a single measurement, Inverse
Probl. Imaging, 2 (2008), pp. 301--315.

[48] P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse
problem in obstacle scattering, Proc. Amer. Math. Soc., 132 (2004), pp. 1351--1354.

D
ow

nl
oa

de
d 

04
/2

9/
21

 to
 1

59
.1

49
.1

03
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

30


	Introduction
	Preliminaries
	The direct scattering problem
	Friedrichs inequality

	The main result
	Proof of Theorem 3.1
	Appendix A. Proof of Theorem 2.4
	Acknowledgments
	References



