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STABLE DETERMINATION OF A RIGID SCATTERER IN
ELASTODYNAMICS*

LUCA RONDI', EVA SINCICH}, AND MOURAD SINI¢

Abstract. We deal with an inverse elastic scattering problem for the shape determination of
a rigid scatterer in the time-harmonic regime. We prove a local stability estimate of loglog type
for the identification of a scatterer by a single far-field measurement. The needed a priori condition
on the closeness of the scatterers is estimated by the universal constant appearing in the Friedrichs
inequality.
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1. Introduction. We consider the scattering of time-harmonic elastic waves by a
rigid scatterer in R with N > 2. The time-harmonic elastic waves in a homogeneous
and isotropic elastic medium satisfy the Navier equation

(1.1) pAu 4 (X + p)V(div(u)) + pw?u = 0,

where A and p are the Lamé constants such that g > 0 and A+ 2u > 0, p > 0 is the
density, and w > 0 is the frequency. By the Helmholtz decomposition, any solution
u to (1.1) is the superposition of a longitudinal wave u, and a transversal wave us,

which are solutions to the Helmholtz equation with wave numbers w, = ,/ﬁ w

and wg = \/g w, respectively.

If an incident wave u‘™¢, which is usually given by an entire solution to (1.1),

meets a rigid scatterer K, then it is perturbed by the formation of a scattered wave
u®® outside K. The total field u is the superposition of the incident and the scattered
wave and, for a rigid scatterer, satisfies the following Dirichlet boundary condition on

the boundary of the scatterer:

(1.2) u=0 on OK.

The scattered wave u®4! is characterized by being a radiating solution to (1.1),

namely, its longitudinal wave uS°®* and transversal wave u°“ are radiating solu-

tions to the corresponding Helmholtz equations. The radiation condition for elastic
waves is usually referred to as the Kupradze radiation condition.
As incident wave u'™¢, we take either a longitudinal plane wave

(1.3) u;m(x) =d elrde, reRY,
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where d € SN~ is the direction of incidence, or a transversal plane wave

(1.4) u'"e(z) = p W4T, z e RV,

S
where p € CV\{0} is a unitary vector orthogonal to d. We can also consider a linear
combination of longitudinal and transversal plane waves, namely,

(1.5) u(z) = cpu () + csul (), reRN,

for some ¢,, ¢, € C such that |¢,|> + |cs]? = 1, in such a way as to have
(1.6) @) =1, xRV

The forward scattering problem for a rigid obstacle is classical and, under mild
regularity assumptions on the obstacle K, it is well-known to have a unique solution.

By the Kupradze radiation condition, the scattered wave u*““ has the following
asymptotic behavior:

elUJp’I‘ elws’l'

1
scat(,.. _ o oo

as 7 = ||z|| goes to 400, uniformly in all directions & = x/||z|| € S¥~!. The vector
fields U, and Uy are called longitudinal and transversal far-field patterns, respectively.
Since they characterize, respectively, the asymptotic behavior of the normal and of the
tangential component, with respect to SV=1, of u*°®*, by measuring the asymptotic
behavior of u, or equivalently of u*¢*, as r goes to 400, both the longitudinal part
and the transversal part of the far-field pattern of u*¢** can be measured.

We are concerned with the following geometrical inverse problem in the context
of linear elasticity. Given an incident wave u’™¢, one can measure the vector fields
(Up(+,d),Us(+,d)), which are usually referred to as the corresponding scattering data.
By changing the incident wave, for instance, by changing the frequency w or the
incident direction d, one can obtain different scattering data. We wish to determine
the scatterer K by using as measured data the scattering data corresponding to one
or more incident waves.

The unique determination of K using the measured data corresponding to all the
incident directions d € SV 1, with a fixed frequency w, was first shown in [21]. In their
work, they use both the components U, (-, d) and Us(+, d) of the elastic farfields. Next,
it was proved that actually only one component of the farfield Uy (-, d) or Us(-,d) is
enough, meaning that either the pressure or the shear waves are enough to uniquely
determine the scatterer K. This result was justified first for C*-smooth scatterers
in [20] and later it was extended to Lipschitz-smooth ones in [28]. In addition, re-
construction schemes were proposed in [24, 27] to actually reconstruct the scatterer
K.

Here, we are interested in the determination of the scatterer K by the knowledge
of the longitudinal and transversal far-field patterns corresponding to a single incident
wave provided some suitable a priori information on the location of the scatterer is
known.

A special instance of such a problem has been previously analyzed in [19] in a
two-dimensional setting. Indeed the authors proved a uniqueness result if it is a priori
known that possible scatterers do not deviate too much in area, or more precisely
under the following closeness condition:

k2.7
(1.8) IKAK'| < 278
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where ko1 =~ 2.4048 is the first zero of the Bessel function Jy. Their argument is
strongly based on the fact that a lower estimate for the first Dirichlet eigenvalue
of the negative Lamé operator in KAK' in terms of its Lebesgue measure can be
achieved by the use of the Faber-Krahn inequality (see also [29]).

Here we study the stability issue for the same problem in any dimension N > 2.
We prove a log log type stability estimate for the unknown scatterer under a slightly
stronger a priori closeness condition (see section 3 for a precise statement), namely,
we assume that K and K’ are both contained in a given scattered KT and that

min{2u, 2 + A} ) N/z

(19) KA A KO] < H = ( 64C(N)? pw?

where C(N) is an absolute constant depending on the dimension N only—actually it
is the one of the isoperimetric inequality (see (2.35)). Just for comparison, for N = 2
and assuming for simplicity A > 0, our closeness bound becomes

Uy

H, = .
1T Rpw?

Such a slightly more restrictive a priori bound is justified by the fact that, in order
to deal with stability, we are led to replace the use of the Faber-Krahn inequality
with the one of the Friedrichs inequality. Besides the closeness condition, we require
some a priori regularity of the unknown scatterer; in particular we require it to be of
class C?%, 0 < o < 1. We note, however, that we allow K to have more than one
connected component. Our stability estimate, which is the main result of the paper,
is stated in Theorem 3.1.

Let us note that even if the estimate is rather weak, being of loglog type, this
is rather common for these kinds of inverse scattering or boundary value problems.
Moreover, it has been shown that a single log estimate is optimal for the stability of
these inverse problems even if many measurements are performed (see [35] and [13]).

We recall that analogous local uniqueness and local stability results have been
previously achieved in the acoustic framework in [18, 48] and [47], respectively, by
means of a spectral type approach as then extended to elasticity in [19]. Unfortunately,
as already observed, these arguments cannot be applied to extend the stability result
in the elastic case and hence new tools and an original strategy have to be introduced.

Stability results of loglog type related to the elasticity system are derived in
[22, 39, 40] in the stationary case, that is, w = 0, with a single pair of displacement
and traction fields measured on a surface surrounding the unknown scatterer K.
Both rigid inclusions and cavities have been treated. More recently [42], an optimal
single log estimate has been obtained for the determination of cavities in the two-
dimensional case, by exploiting an optimal three-spheres inequality at the boundary,
[4], or a doubling inequality at the boundary, [41], that have been established for the
Kirchhoff-Love plate’s equation. These kinds of inequality might allow us to improve
our estimate to a single log one as well, but to the best of our knowledge none of them
is already available in our setting.

Among other results of identification of targets by means of a single or finitely
many far-field data under a priori geometric constraints, we wish to recall the well-
known uniqueness result in [10] for small obstacles in an acoustic context and the
corresponding stability estimates in [25, 26], under the additional starshapedness hy-
pothesis of the scatterer.

Another case in which one measurement, or at least few measurements, uniquely
identifies a scatterer is when the scatterer satisfies a different strong geometric condi-



tion, namely, it is assumed to be polyhedral. In the case of obstacles, this means that
the objects to be determined are (a collection of) polygons in dimension 2 or polyhe-
dra in dimension 3. In this direction, in [9] the first uniqueness result for sound-soft
scatterers in the acoustic framework was proved. In the same case, an optimal unique-
ness result with a single measurement was established in [3]. These results have been
extended to a variety of other boundary conditions and to the electromagnetic case
by several authors. The first stability result, still for sound-soft scatterers in the
acoustic case, was obtained in [44], and it was followed by analogous results for the
sound-hard boundary condition [32] and for the electromagnetic case [33]. This line of
research has been first extended to the elastic case in [15], where the third and fourth
boundary conditions are considered and uniqueness is established with two (suitable)
measurements or one (suitable) measurement, respectively. For polyhedral obstacles,
one (suitable) measurement is enough to determine the obstacle and the boundary
condition, provided the latter is still of the third or fourth type; see [34], where a cor-
responding stability estimate is also proved. In [14] it is shown that one measurement
is enough to uniquely determine a rigid polygon. More recently, still in dimension 2,
in [12] it is showed that four measurements allow one to uniquely recover a collection
of polygons as well as their mixed boundary condition, since the obstacles may, at
the same time, be purely rigid or be traction-free or satisfy an impedance boundary
condition on different parts of the boundary.

Finally, we mention that in [23] uniqueness results using few measurements are
derived even if the scatterers neither satisfy smallness conditions nor have polygonal or
polyhedral shapes. Instead, the authors assume that the boundary of the scatterers are
nowhere analytic and show that for the Dirichlet boundary condition one measurement
is enough while for the Neumann boundary condition N —1 measurements are enough
(recalling that N is the space dimension). These results are proved for the Helmholtz
model for any N and then generalized to a larger family of elliptic second order
operators when N < 3.

In order to analyze the inverse problem we preliminarily discuss the direct one.
Indeed, in section 2, we observe that the direct scattering problem is well-posed (see
Theorem 2.3) recalling a classical result due to Kupradze et al [31]. In Theorem 2.4
we prove a regularity result up to the boundary 0K for the solution u, independent
on the scatterer K. The proof, which may be found in the appendix, is based on well-
known regularity estimates for elliptic systems with Dirichlet boundary condition [1]
and a preliminary bound for the solution obtained by a continuity argument inspired
by Mosco convergence, as done in [38] for the acoustic case and in [33] for the electro-
magnetic one. In particular, we also obtain a uniform decay property, as r — 400,
of u®* again independent on the scatterer K. We conclude this preliminary part by
reviewing, in subsection 2.2, the Friedrichs inequality. We observe that its constant
depends on the dimension only and can be explicitly evaluated. This allows us to
state the closeness condition with an explicit constant depending on the dimension N
and the coefficients of the Navier equation only.

In section 3 we state our main stability result, Theorem 3.1, whose proof is de-
veloped in section 4.

The strategy of the proof is the following. Assuming we have two scatterers K
and K’ satisfying the closeness condition, we wish to estimate their Hausdorff distance
d from the difference of the corresponding far-field patterns. From the error on the
far-field patterns, we estimate the error on the total field in a region surrounding
the scatterers by a classical far-field to near-field estimate for the Helmholtz equation
applied to the longitudinal and transversal part of the scattered wave. This estimate



has been proved first in dimension 3 in [25] (see also [8]) and then generalized to
any dimension in [46]. For a suitably chosen small parameter s > 0, we call V; the
region outside K U K’ whose points can be reached from infinity by a suitable tube
of radius s. By a standard unique continuation argument, whose main ingredient is a
three-spheres inequality for the Helmholtz equation proved in [7], which is iteratively
applied inside the s-tube to the longitudinal and transversal part of the field, we are
able to estimate the error on the total field on the boundary of V, (see Lemma 4.2).
Up to swapping K with K’, we may find A,, a suitable connected component of
RN\ (K U V), which contains a ball B of radius proportional to d. By the regularity
of K and K’ and the closeness condition, we infer Ay is a set of finite perimeter (with
a perimeter depending on the a regularity of the scatterers only) whose measure is
strictly less than the closeness constant H;. For details on the definition of V; and
A, see the discussion before Lemma 4.2.

By the estimate on the error of the field on the boundary of Vi and the boundary
condition, we obtain an estimate on the solution w on the boundary of A,. It is now
that the Friedrichs inequality comes into play. By using the Friedrichs inequality, the
bound on the boundary of Ay, the a priori bound on the solution u, and the idea of
the proof of the first Korn inequality, we are able to estimate the L?-norm of Vu in A,
by a quantity depending on s and the norm of u on 0Ag (see Lemma 4.3). Actually,
we can estimate the L°°-norm of u, and us on the ball B by a constant depending
on the far-field error only, provided we choose a suitable value of s (see Corollary 4.4
and Remark 4.5).

From B we move toward infinity again and, by a unique continuation argument
pretty similar to the one used before, we show that u has to be small even far away
from the scatterers, such a smallness depending on the smallness of u, and u, on the
ball B and on the radius of B itself. However, by our choice of the incident field and
the decay of the scattered one, the total field w can not be too small far from K.
Combining these two pieces of information, we are finally able to estimate the radius
of B and consequently the Hausdorff distance between K and K’ (see Lemma 4.6 and
Remark 4.7). This second part of the proof is inspired by an analogous procedure
developed in [44].

By this technique we obtain a stability estimate which is, however, extremely
weak, being of logloglog type. This is due to the fact that the estimate of the error
on the boundary of V; is already of loglog type since Vs can be extremely irregular.
Another log comes from the second part of the procedure when we move from B
toward infinity. On the other hand, we can apply a refining procedure which is by
now standard, see, for instance, [2]. Provided the error on the farfields is small
enough, the two scatterers are close enough and, by their a priori regularity, it can be
inferred that the unbounded connected component of RV \ (K U K”), which we call Vj,
satisfies a Lipschitz type regularity; see Lemma 4.1, which is an easy consequence of
[2, Lemma 8.1]. By such regularity, we can improve our unique continuation estimate
up to the boundary of V; to a single log estimate. By using a suitable domain Ag and
by exactly the same procedure as before, we are then able to improve our estimate to
the final one of log log type.

To conclude, we wish to put into evidence a delicate point of the proof that also
explains the presence of the scatterer K+ in our closeness condition. Even if K and
K’ are smooth, the domain Vj can be extremely irregular, unless we know that the
scatterers are close enough to apply Lemma 4.1. This implies that we are not able
to estimate the error on the field up to the boundary of V) from the farfields error
and are thus forced to introduce the set V,, s > 0. In turn, this introduces another



difficulty. In fact the domain Ay, which we can construct from Vj, is contained in
K'\K, and thus its measure is bounded by the measure of KAK’. Instead, for s > 0,
the measure of the domain A, which we can construct from Vi, is not controlled
by the measure of KAK’. This is the reason why we need to introduce Kt in the
closeness condition.

2. Preliminaries. Throughout the paper the integer N > 2 will denote the
space dimension. We note that we drop the dependence of any constant from the
space dimension N. For any two column vectors U = (Ul,...,UM)T and V =
(Vi v in CV

N
U-v=U"v=> UV
i=1
Here, and in what follows, for any matrix A, AT denotes its transpose. By In we
denote the identity N x N matrix. For any two matrices A = {a;;};_; and B =

{bi 31

N
A:B= Z aijbij.

,j=1

For any = (x1,...,2n5) € RV, we denote » = (2/,2zy) € RV~ x R. For any
s> 0 and any € RY, B,(z) denotes the open ball contained in RY with radius s
and center x, whereas By = B(0). For any E C RN, By(E) = |J,cp Bs(x). Given a
point x € RV a vector v € S¥~1, and constants » > 0 and 6, 0 < 6 < 7/2, we call
C(x,v,,0) the open cone with vertex in z, bisecting vector given by v, radius r, and
amplitude given by 6, that is,

C(z,v,r,0) = {yERN: 0<|ly—=| <rand cos(d) < ﬁwg 1}.
y—

We remark that by a cone we always mean a bounded not empty open cone of the
kind defined above.

For any measurable subset of RY we call | E| its N-dimensional Lebesgue measure.
By HN~! we denote the (N — 1)-dimensional Hausdorff measure.

DEFINITION 2.1. Let Q C RN be a bounded open set. Let k be a nonnegative
integer and 0 < a < 1.

We say that  is of class C*< (Lipschitz if k =0 and a = 1, C* if a = 0) if for
any x € 0 there exist a C*® function ¢, : RVN~1 — R and a neighborhood U, of =
such that for any y € U, we have, up to a rigid transformation depending on x,

y= " yn) €Q if and only if yn < ¢o(y').

We also say that Q is of class O™ (Lipschitz if k =0 and o = 1, C* if a = 0)
with positive constants r and L if for any x € 0Q we can choose U, = B.(x) and ¢,
such that ||z || ck.0@y-1y < L.

Remark 2.2. If k+« > 1 and Q is an open set of class C*® with constants r and
L, there exists positive constants r; and L, depending on k, «, r, and L only, such
that Q is of class C*® with constants r; and L; with the further condition that for
any = € 99 we have V¢, (2') = 0. Therefore, without loss of generality, whenever
k + a > 1 we tacitly assume that this condition is satisfied all over 0f).



2.1. The direct scattering problem. We say that Q Cc RY is a domain if
it is open and connected. We say that € is an exterior domain if it is a domain
containing the exterior of a ball. We say that K C RY is a scatterer if K is compact
and Q = R\ K is connected, that is, € is an exterior domain. We say that a scatterer
K is an obstacle if K = D, where D is an open set which we can pick as the interior
of K.

We consider the inverse scattering problem for the Navier equation modelling
time-harmonic elastic waves in a homogeneous and isotropic elastic medium under
the presence of a rigid scatterer. For the direct scattering problem, which we here
describe, we refer to the classical works of Kupradze and others [30, 31] and to the
more recent one [6], for instance. Let us consider, in an open set @ C RN, N > 2, a
weak solution w to the Navier equation

(2.1) pAu+ A+ )V (div(u)) + pw?u =0 in Q.

Here )\ and p are the Lamé constants such that ¢ > 0 and A 4+ 2u > 0, p > 0 is the
density, and w > 0 is the frequency. We assume all these parameters to be constants.

The function u = (u',...,u™)T, the so-called field of the time-harmonic wave, is

assumed to be a column vector. We note that if v is a scalar function, we often use
V7Tv to denote the column vector (Vv)T.

A vector field u € H} (€, CV) is a weak solution to (2.1) if for any v € H(Q,C")
with compact support in 2 we have

(2.2) 2,u/ Eu: Ev + )\/ div(u)div(v) — pwz/ u-v=0.
Q Q Q

Here Eu = 3(Vu + (Vu)”) denotes the symmetric gradient of u. Hence, Vu =

{ui}N,_) and Bu = ${u} +ul}N,_,.

In linearized elasticity Eu corresponds to the strain tensor and, by Hooke’s law,
the stress o is given by
o(u) =2pFu+ Mr(Eu)ly = 2pFu + Mdiv(u) Iy,
where tr denotes the trace. In particular, we have
(2.3) min{2u, 2 + A\ (Bu : Eu) < o(u) : o(u) < max{2u, 2u + A} (Bu : Eu).
We note that (2.1) can be rewritten as
div(o(u)) + pw?u =0 in Q,
where the div applies row by row. In fact,

div(div(u)Iy) = div((Vu)T) = VI (div(u)).

We call
K(Q) = {uec L*(Q,CV): EBuec L*(Q,CN*N)},

which is a Hilbert space with the corresponding norm

1/2 B o
lulleey = (lolfsn + 1ul@y) " = ([ wemt [ pui )

1/2



We call Ko(€2) the closure of C§°(Q2,CY) with respect to the norm of X(Q2). By the
first Korn inequality (see, for instance, [43]), we have that Ko(2) = H} (2, CY), with
equivalent norms. In fact, first Korn inequality states that, for any open set €2,

By the second Korn inequality (see again [43]), provided € is smooth enough, for
instance, if ) is a Lipschitz bounded open set, we also have that (Q) = H! (9, CV),
with equivalent norms. Consequently, Kio.(Q) = H} (€, CN).

It is well-known that, by Helmholtz decomposition, any weak solution u to (2.1)
can be written as the sum of a longitudinal wave u, and a transversal wave us, where
u, and ug are solutions to (2.1). Namely, we set

VTdiv(u) 9 pw?
Uy = ———————, wi = .
P w2 L

We note that x = —div(u) is a scalar weak solution to the Helmholtz equation Ay +
wf,x = 0in 2, and hence u, is a vector-valued weak solution to the same Helmholtz
equation

(2.5) Aup +wiu, =0 in Q.
If we set
_ VTdiv(u) — Au _ div((Vu)T — Vu) 2o Loﬂ
S wg wg ) S u )

it is not difficult to show that v = u, + us and u is a vector-valued weak solution to
another Helmholtz equation

(2.6) Aug + wuy =0 in Q.
We note that

1(curl
1%:95%§@D N =3 u

_ —QVT (curly(u))
wi

if N =2,

where Q@ = [{ '] and curly(u) = uf — uj is the two-dimensional curl of u.

Since div(us) = 0 and (Vu,)T — Vu, = 0, we have (up), = up, (up)s = 0,
(us)s = us, and (ug)p = 0.

If Q is an exterior domain, we say that w, a solution to (2.1), is radiating or
outgoing if it satisfies the Kupradze radiation conditions

lim r(N-D/2 (8“p-—iwpup) =0
r—-+oo or

(2.7) r=lzl,

hmrwlm(%f—waZQ

r——400

where the limits have to be intended as uniform in any direction. In other words,
u, and u, satisfy the Sommerfeld radiation condition and, therefore, are radiating
solutions to their corresponding Helmholtz equations.

For any bounded open set 2 and u solution to (2.1), the surface traction Tu is

Tu = o(u)v = 2uBuv + Mdiv(u)v = 2uVuv + Mdiv(u)v + p((Vu)T = Vu)y  on 99,



v being the exterior normal to 2, which we assume to be a column vector. In partic-
ular, if v and 02 are smooth enough, we have that

Tu = a(u)v = 2uVuyv + 2uVusv + Miv(uy v + p((Vus)? — Vug)v on 08

For any k£ > 0, let ¢, be the fundamental solution to the Helmholtz equation
Au + k?u = 0, which is given by

i k e (1) N
or(z,y) = 1 (27rx—y> H(Nfz)/z(kﬂx —yll) forany z, y eR™, z#y.

For any real s > 0, H §” denotes the Hankel function of first kind and order s. We
also remark that for N = 2,3 this reduces to the well-known formulas

cikllz—yll

or(x,y) = for any z, y € R®, x # v,

drllz -y

and .
1
Pr(w,y) = 1

Then the fundamental solution to the Navier equation is given by, for any z, y €
RN, z #y,

HV (ki — yl)) for any @, y € R, o £y,

1 1
(2'8) (I)(xay) = ;(éws (x7y)IN + vavg [¢ws (Ivy) - ¢wp (x,y)] .

Here derivatives are meant in the sense of distributions over the whole RY and the
Navier equation is applied to ® row by row. For x # y, we have

Bz, y) = %(b (2, y) Iy + ﬁwf (B, (2, 9) — o, (2,9)]

as well. We also note that ® = 7.
For any bounded domain 2 and u solution to (2.1), provided € and u are smooth
enough, we have for any = € Q)

(2.9) u(z) = /aQ (@(,y) [Tu(y)] = [T, 2(2,y)] uly)) do(y),

where 7' is applied to ® row by row. Regarding regularity, it is enough that € is of
class C?, u € C%(Q) N C(Q) such that Tu exists as a uniform limit on 99, namely,

Tu(z) = lim o(u)(z — hv(z))v(z) for any x € 092,
h—0+
where the limit is uniform with respect to « € 9Q and v(x) is the exterior normal at
x.
If © is an exterior domain and w is an outgoing solution to (2.1), then we still
have for any x € Q

(2.10) u(z) = /m (®(2,y) [Tuly)] = [Ty ®(z,y)] u(y)) do(y)

since the contribution at infinity is zero due to the Kupradze radiation condition
satisfied by v and the corresponding properties of ®.



By the well-known asymptotic properties of radiating solutions to Helmholtz equa-
tions applied to u, and to us, we infer that u(z) = u,(x) + us(z) satisfies

iwp ||| iws |zl 1
e . € A

as ||z|| goes to +oc, uniformly in all directions # = z/||x|| € S¥~1. The CV-valued
functions U, and U are defined on S¥~! and are referred to as the longitudinal
part and the transversal part of the far-field pattern U = (U,,Us) of the field u,
respectively.

By (2.10), the longitudinal part U, is orthogonal to S¥ !, that is, Uy (&) = ug®(2)2
for any # € SV~! for a suitable complex-valued function u,° defined on SN=1. On
the other hand, the transversal part U, is tangential to S¥~1 that is, Uy(2) -2 = 0
for any & € SV-1.

Therefore, if we consider the normal and tangential component, with respect to
SN=1, of u, that is,

u(@) = un (@) + ur(a),

where for any = € 0 we have that uy(x) is proportional to & = z/|z| while ur(z) is
orthogonal to &, we conclude that

einHxH R 1
un(®) = 7 V() 0 (x||<N+1>/2>

and

cies ] ) 1
UT(x) = 7”1’”(]\[71)/2 Us(l') + (0] <||,1}|(N+1)/2> )

as ||z|| goes to +oo, uniformly in all directions. Thus, measuring the asymptotic
behavior of u, as ||z|| goes to 400, it corresponds to measuring both the longitudinal
part and the transversal part of the far-field pattern of wu.

Let us send a so-called incident wave, that is, a time-harmonic wave whose field
4™ is an entire solution to (2.1). Typically, the incident wave is a plane wave obtained
by a linear combination of a longitudinal plane wave

vT (eiwpd-z)

inc _ iwpd-x __ N
(2.12) uy(z) = de = " , xz e RY,

where d € SN~ is the direction of propagation, and a transversal plane wave
(2.13) u'™e(z) = pel@= r e RN,

S

where p € CV\{0} is a unitary vector orthogonal to d. For example, one can choose,
it N =3,

s curl (e¥4(1,1,1)T)
=c

Uinc(l‘) = Ceiwsd.m(dg — d3,d3 — dl, dy — dg) = - s T e RB,
iwg
whereas if N = 2,
. . _ VT iwsd-T
’U,;nc(l') — —CQdelwsd.I —c Q : (e )7 = R2,

iwg

where ¢ € C\{0} is a suitable constant.
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Namely, we consider
(2.14) u'm(z) = cpuzi,"c(x) + cqul™e(x), zeRVN,

for some d € SN~1 p € CV\{0} such that ||p|| = 1 and p is orthogonal to d, and
¢p, cs € C such that |cp|? + |cs|? = 1, in such a way as to have

(2.15) lu'™(z)| = 1, r € RV,

The presence of an impenetrable object, that is, of a scatterer K, inside the
medium perturbs the incident wave by creating the scattered or reflected wave, given
by the field u*“**. The total wave is the superposition of the incident and the scattered
waves and its field is denoted by u. The total field u solves (2.1) in Q@ = RN¥\K and
satisfies a boundary condition on 0K that depends on the nature of the scatterer,
namely, if K is a so-called rigid scatterer, a homogeneous Dirichlet boundary condition

(2.16) u=0 on 0K,
or, if K is a so-called cavity, a homogeneous Neumann boundary condition
(2.17) Tu=oc(ur=0 on 0K,

v being the exterior normal to 2.

Finally, given that Q = RV\K is unbounded, a condition at infinity has to be
imposed. We require the scattered wave to be outgoing. Summarizing, the total field
u solves the following exterior boundary value problem:

u = u'ne 4yt in Q = RV\K,
(2.18) pAu + (A + p)V(div(u)) + pw?u =0 in Q,
' u=20 on 0f) = 0K,

uset satisfies (2.7)

if K is a rigid scatterer, and

u = uinc + uscat in Q’
(2.19) pAu+ (A + p)V(div(u)) + pw?u =0 in Q,
’ Tu=0 on 0,

u“ satisfies (2.7)

if K is a cavity.

The weak formulation of (2.18) is the following. Assume that K C Bpg(0) for
some R > 0. Then we look for u belonging to H*(B,.(0)\K,C") for any r > R such
that u = u™¢ +u*° solves (2.1) in the weak sense and u*“®! satisfies the condition at
infinity given by (2.7). Finally, for what concerns the boundary condition (2.16) on
0K, we require that u = 0 on 9K in a weak sense, that is, yu € Hg(B,(0)\K,C")
for any r > R and any x € C§°(B,(0),R) such that x =1 on Bg(0).

The weak formulation of (2.19) is the following. Assume that K C Bg(0) for
some R > 0. Then we look for u belonging to K(B,.(0)\K,C¥) for any r > R such
that u = u'™¢ + u®? solves (2.1) in the weak sense and u*“* satisfies the condition
at infinity given by (2.7). Finally, about the boundary condition (2.17) on 0K, we
require that for any r > R and any v € K(B,(0)\K,C") with compact support
contained in B,.(0) we have

(2.20) 2,u/ Eu: Ev+ )\/ div(u)div(v) — pw2/ u-v=0.
Q Q Q
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In both cases, if u""° = 0, then we have that for any r > R

(2.21) S ( /a o (Tw) u> =0,

and hence, by the asymptotic behavior of outgoing solutions, we infer that u = u%¢* =
0 in Q. In other words, (2.18) and (2.19) admit at most one solution, so uniqueness
follows. Concerning existence, this can be established by layer potential techniques
provided K, or (Q, is regular enough, say, of class C2. In fact, for any exterior domain
Q of class C? and for any ¢ € C(99Q,C3) we define the single- and double-layer
potentials with density ¢ at any = € Q) as follows:

(2.22)

SWX@::LQQ@JWﬂde@)Emd DWM@==AQHMN%yHﬂde@I

We observe that S(p) and D(¢) are outgoing solutions to (2.1) in Q. By carefully
exploiting the properties of the potentials on 92, the following existence (and unique-
ness) result can be proved.

THEOREM 2.3. Assume that K is an obstacle such that D = K is an open set of
class C?. Then, for any u'™® entire solution to (2.1), (2.18), and (2.19) admit one
solution.

Proof. This is a classical result (see, for instance, [31]). Actually, the regularity
of D can be relaxed up to Lipschitz (see, for instance, [6, Corollary 2,3]). 0

We shall need the following regularity result, whose proof is postponed to the
appendix.

THEOREM 2.4. Let us fix positive constants v, L, R, and a, 0 < o < 1. Let us
also fix the coefficients u > 0, X such that 2u+ X > 0, p > 0, and w > 0. Assume

that K C Bg(0) is an obstacle such that D = K is an open set of class C*% with
constants v and L. Let u™¢ be as in (2.14) such that (2.15) is satisfied.

Let u be the solution to (2.18). Then there exists a constant Co, depending on r,
L, R, o, and the coefficients only, such that

(2.23) ||uHCQ@) < ().
Moreover, there exists a constant Cy, depending onr, L, R, a, and the coefficients
only, such that

¢
(224) [Ju @) < s @]+ o™ @ < e for any ||z|| > R+1.

N—-1)/2
We conclude this part with the following regularity result and a three-spheres
inequality for the Helmholtz equation.

LEMMA 2.5. Let u be a solution to (2.1) in Bs with 0 < s < so. Then there exists
a constant Dy, depending on the coefficients of (2.1) and on so only, such that

Dy
(2.25) Hup||L°°(Bs/8)’ ”uS”LOO(Bs/B) < S(N+4)/2||u||L2(BS)
and
Dy
(226) HUP”L‘X’(BS/4)7 ||u5||L°°(BS/4) < S(N+2)/2 ||vu||L2(Bs)-

12



Proof. First, we use a Caccioppoli inequality to estimate the H'-norm of u in a
smaller ball.

Namely, let x € C§°(Bs) be such that 0 < x < 1 everywhere and x = 1 on Bs, 4.
We can assume that ||Vx|| < C/s everywhere for some absolute constant C. Then we
apply the weak formulation of (2.1) to v = y?u and obtain

Qu/ Eu:?v—!—A/ div(u)div(v) :pw2/ w2
Bs B

s

But
2,u/ Eu:ﬁ—i—A/ div(u)div(v) = 2,u/ || Bul? +)\/ 2 |div(u)|?
B. B, B, B.
+ (2 [ xBus o) 2 [ xaivoge) )
B, Bs

and hence, by Cauchy inequality, we infer that

2u/’wamP+A/ v (u)|?

s Bs

A . C?
<o [ g [ avr s (SGo ) [
B, B, s B

s

for a constant C'; depending on p and A only. We conclude that

ind{2u, 2 A A
min {2y 20+ A} 1Bl < [ imaz ey [l
2 B3s/a B3s/a 2 Bss/a

A . c?
< ermap g [ el < (Soep?) [l
B, B s B,

s

Let x € C§°(Bss/4) be such that 0 < ¥ < 1 everywhere and X = 1 on Bys.
We can assume that ||Vx| < C/s everywhere for some absolute constant C. Then
XU € ’CO(B3S/4) = H&(B3S/4), so by (24),

/‘ HVuwfs/’ |w«xmn2sz/“ | E(Gw)|?
Bs/2 333/4 BSS/4

2 02
:ﬂ/ s4/qan+7@/ lul?) |
B34 B3s/a s B34

where (5 is another absolute constant. We conclude that

B 1, . o
xEu + i(xjul + xiu’)

Cs
(2.27) IVullL2(B, ) < ?HUHL?(BS)

for a constant C3 depending on the coeflicients and on sy only.
Since for any j € {1,..., N}, u; still solves (2.1), we can repeat the procedure
above and prove that

Cy
(2.28) ID%ull 2B, ,,) < -2 lullzzs.),

13



and consequently

Cs
(2.29) luplizacs. ) lusliza s, 0 < 5 lullea,)

with Cy and Cj still depending on the coefficients and on sq only.

The last step is to estimate the L*°-norm by the L?-norm for a solution to
a Helmholtz equation. This is a standard estimate (see, for instance, [17, Theo-
rem 8.17]), since we have

Cs

(2.30) el (5, 5)s 1usll o= (5,0 < m7slunllc2cs, 0, lusllzzs, ),
respectively, with Cg depending on the coefficients and on sg only. The proof can now
be easily concluded. ]

LEMMA 2.6. There exist positive constants 3o, C, and ¢1, 0 < ¢ < 1, depending
on k only, such that for every 0 < s1 < s < s2 < 59 and any function u such that

Au+k*u=0 in B,,,
we have, for anyt, s <t < sa,
- 3 1

(2.31) lulle sy < G~ (s/0) 2l lull s, -

for some B such that

(2.32) ¢1 (log(s2/t)) / (log(s2/s1)) < B < 1 — ¢ (log(t/s51)) / (log(s2/s1)) -
Proof. It follows by the results of [7]. d

2.2. Friedrichs inequality. Let Q C RY be an open and bounded set. Under
suitable assumptions on €2 and u, a function defined on 2, the inequality proved by
Friedrichs, [16], is

(2.33) lull L2y < C [IVull L2y + llull L2 90)]

with a constant C' not depending on u. This estimate is actually a straightforward
consequence of a much more general estimate proved by Maz’ya [36] which is the
following:
(2.34)

[ull rvsev—n 0y < C(N) [ Vullpi (@) + lullLioey]  for any u € CQ) nWHH(Q).

The importance of this estimate is that it holds independently of the regularity of Q
and that the constant C(IV) is optimal and depends on N only; it is actually the one
of the isoperimetric inequality, that is,

B |B1\(N*1)/N

(2.35) C(N) = IRETETENE

For a proof of (2.34) we refer to [37, Corollary, p. 319]. Actually, the Maz’ya inequality
can even be generalized to functions of bounded variation; see [45] for an extremely
general version in this direction.

Here we just point out that (2.34) implies the classical Friedrichs inequality, which
we state in the next theorem.

14



THEOREM 2.7. Let Q C RYN be open and bounded. Let
2N 2N

N1 and q:N—l'

p =
Then
(2.36) ull o) <AC(N) [[IVullLe) + lullL200)]  for any uw e C(Q) N WHP(K),

so that for any u € C(Q) N W12(Q)

(237) lullzz(ey < ACN)IQUF (1217 |Vl 2oy + 0l 200 -

Proof. Inequality (2.36) follows by applying (2.34) to u? (see the proof of [45,
Corollary 2.4] for details), whereas (2.37) is an immediate consequence of (2.36) and
the Holder inequality. O

When u is vector-valued, that is, u € C(2,CN) N W12(Q, CY), we still have
(2:38) 2oy < ACN)IQUF (1217 Vull 2oy + 0l 200 -
3. The main result. We begin by setting the hypotheses. Let us fix constants

r>0,L>0R>0,awithO<a<l1 >0 Awith2u+X>0,p>0, w>0.
Finally, we fix Hy such that

(31) 0<Hy< H| = ( 64C(N)2PW2 8C(N)

min{2u, 21 + A})N/Q (min{wpl, V2w;t} ) "
where C'(V) is the absolute constant appearing in (2.35). We refer to these constants
as the a priori data.

First, we fix DT, an open set which is Lipschitz with constants r and L and such
that K+ = D¥ is an obstacle contained in Br(0). We call QF = RN\ K+,

Let D and D’ be two open sets of class C?® with constants r and L such that
K = D and K' = D’ are obstacles contained in D*. We call = RY\K and
Y = RNY\K’ the corresponding exterior domains. We also use the notation Q°** to
denote the unbounded connected component of RV\ (K U K’) and call T' = 9Q°¢** and
Qint = RVM\Qert, We clearly have QF C Q¢*t and Qi"t C D*.

Let u'™¢ be as in (2.14) such that (2.15) is satisfied. Let u and u®*** be the
solution to (2.18) and let v’ and (u’)*““* be the solution to (2.18) with K replaced by
K'.

Let U = (U, U) be the far-field pattern of u**** and U" = (U}, U!) be the far-field
pattern of (u/)%¢%!, respectively.

We measure the difference between two obstacles K and K’ by using the Hausdor[f
distance dgr, which is given by

dp(K,K') = max{sup dist(z, K'), sup dist(z, K)} .
zekK zeK’

Then we have the following stability result.

THEOREM 3.1. Under the previous notation and assumptions, we further assume
that the following closeness condition holds:

(3.2) |DY\(K N K")| < Ho.

15



Then there exist positive constants £y, 0 < &g < e7°/2, C’, and 3, depending on
the a priori data only, such that for any o, 0 < g9 < &y, if

(3-3) U = U'||lL2sn-1, v xevy < €0,
then
(3.4) dy (K, K') < C (log (log(1/2))) ™"

Remark 3.2. As will be clear in the proof, about the incident wave, we just need
conditions that allow (4.19) and (4.20) to be satisfied. Therefore, other suitable
incident waves may be used. For instance, another common choice is to use a point
source wave. However, in such a case, one needs to consider a point source which is
far enough from the unknown obstacle and choose x3 in (4.19) and (4.20) relatively
close to the point source. The analysis would therefore require other technicalities
that we decided not to tackle in this paper.

4. Proof of Theorem 3.1. Let K and K’ be any two scatterers satisfying the
hypotheses of Theorem 3.1. We state a few properties of K, as well as of K’'. First
we note that the number of connected components of K is bounded by a constant
depending on r, L, and R only. We also have that H~ ~!(9K) is bounded by a constant
depending on 7, L, and R only. Moreover, there exists a constant C7, depending on
r, L, and R only, such that for any h, 0 < h < 1, we have

(4.1) |Bn(9K)| < Chh.

By [32, Corollary 2.3 and Proposition 2.1], there exist two positive constants c¢;
and t1, depending on 7, L, and R only, such that the following holds. For any ¢ > 0,
if 21, 7o € RY are such that By(x;) and B;(z2) are contained in RV\ K, then we
can find a smooth (for instance, piecewise C!) curve v connecting x; to 2 so that

Bs)(v) is contained in RM\K as well, where
(4.2) 0(t) = min{eqt, 61} for any ¢t > 0.

We measure the distance between K and K’ by

(4.3) d= max{ sup dist(x,0K"), sup dist(x, 8K)}
r€OK\ K’ z€0K'\K

or

(4.4) d=dy(0K,0K') or d=dy(K,K').

We obviously have d, cﬂ d < 2R. The relationship between these quantities is inves-
tigated in detail in [32, section 2] under much more general conditions. Here we just
use that, in particular by [32, Corollary 2.3 and Proposition 2.1], we have

(4.5) Cad < Cyd < d < Csd < Csd,

where Cy and C3 are positive constants depending on r, L, and R only.

Let us note that all the above properties are valid even if we assume that D
and D’ are just Lipschitz with constants » and L. In particular (4.1) holds with K
replaced by K+ as well.
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If D is Lipschitz with constants r and L, D and () satisfy a wuniform interior
cone property, that is, there exist constants g > 0 and 6y, 0 < 6y < 7/2, depending
on r and L only, such that for any z € 0K we can find a unit vector v such that
C(x,v,r9,00) C D and C(z,—v,19,0p) C Q. Let us also note that v can be chosen
constant for any y € 9K in a neighborhood of x € 0K depending on r and L only.

Another important property, for which D of class C'! with constants r and
L would be enough, is the following (see [11, Theorem 5.7]). There exist positive
constants hg, r1, and Ly, depending on r and L only, such that for any h, 0 < h < hg,
the set

Dy, = {z € RN . dist(z, K) < h}

is an open set of class C"! with constants r; and L;. Moreover,
d(Dy) = {x ¢ RN . dist(z, K) = h}.

We can conclude that there exists a constant Cy, depending on r, L, and R only, such
that for any h, 0 < h < hg,

(4.6) HNHO(Dy)) < Cu,

where we identify Dy with D and 9(Dy) with 9D.
The final property we need about the obstacles K and K’ is the following.

LEMMA 4.1. Assume that D and D’ are CY1 with constants r and L. Then there
exists a constant dy, depending on r, L, and R only, such that if

d=dp(K,K') < d,

then Q% satisfies a uniform interior cone property with constants 7o and 6o depending
on r and L only.

Proof. Tt immediately follows from [2, Lemma 8.1]. We just note that D and D’
belonging to C1'*, 0 < a < 1, with constants r and L would be enough, but in this
case the constants would depend on a as well. 0

By Theorem 2.4, we have that
(4.7) [up (@) + llup (@) + lus(@)]| + lus (@) < B for any 2 € QF,

where F depends on the a priori data only and it is assumed to be greater than or
equal to 1.

Finally, we fix positive R; and § such that R+ 1+ 5 < R;. Let us fix a point
2o € RN such that R+ 1+ 5 < ||| < Ry. For a fixed &, 0 < ¢ < E, let

(4.8) [ — || Lo (B (20) cv) < €

We call e the near-field error with limited aperture. Let €1, 0 < ¢1 < E, be such that
!

(4.9) et =l e (5 \ By vy S €11

We call 1 the near-field error. Finally, if

(4.10) ||U — U/”LQ(SN—l’CNX(CN) S €0,

go will be referred to as the far-field error.
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By Theorem 2.4, through (4.7), Lemma 2.5, and an iterated application of the
three-spheres inequality of Lemma 2.6 to u, — u;, and us — u}, we can find positive

constants Cs and 3,0 < 3 < 1, depending on E, R, 5, Ry and the coefficients of (2.1)
only, such that

(4.11) e <e < Csel.

Moreover, there exist positive constants £y < 1/(2e) and Cg, depending on E, R,
3, Ry, and the coefficients of (2.1) only, such that if 0 < g9 < £p, then

(412)  |lu-— UlHLO‘J(&mmug\W@”)
< ||up - u;)||L°°(BHmOH+§\m7CN) + [lus — U.,sHLoo(BHmOHJrg\mch)
< ife0) = exp (~C(~log=0)'/2)
that is, possibly slightly changing &g

(413) e <er <ii(eo) = exp (—06(— 1oggo)1/2) < exp (—(log(l/eo))1/4) .

This is a classical far-field to near-field estimate, which has been first introduced in
[25] for N = 3, with a slight improvement in [8], and that can be generalized to any
N > 2; see, for instance, Theorem 4.1 in [46].

We estimate the Hausdorfl distance of K and K’ in terms of ¢. In this case, we
need to add R; and 3 to the a priori data. By (4.11), the estimate in terms of &7 is
clearly the same. The estimate in terms of the far-field error g can be easily obtained
by using (4.13), noting that in this case Ry and § can be chosen as depending on R
only.

For any s > 0 let us call V; the set of points z € Q¢! such that there exists a
smooth, that is, piecewise C'!, curve v connecting x¢ to = such that B(y) C Qe
(See also [5] for a related argument developed in order to circumvent the case in which
a domain of interest is not reachable by a chain of balls.) It follows that V; is an open
subset of Q¢! and we call I'y its boundary and W, = RV \75 To keep the same
notation, we identify Q°** with Vj, I’ with Iy, and Q™ with W. For any 0 < s; < s
we clearly have V,, C V5, and W, C W,,.

An important property of I'y is that

(4.14) T, C d(D,)Ua(D.).

Moreover, by (4.2) applied to KT, for any x € Q% whose distance from 9D is greater
than or equal to ¢t > 0, we have T € V().

We can find sg, 0 < sg < §/8, depending on the a priori data only, such that the
following holds. It is smaller than or equal to 5y in Lemma 2.6 for k equal to w, and
to ws. It is smaller than or equal to hg. Finally, we require that

(4.15) [AVEEE -

for any 0 < s < sq.
For this last property we use (4.2) and (4.1) applied to K. By (4.15), via (3.2), we
infer that

Hy+ H,y

5 = Hy < H, for any 0 < s < sq.

(4.16) [WAE N K| <
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Up to swapping K with K’, let ; € OK'\K be such that dist(z1,0K) =
dist(z1, K) = d. If 27 does not belong to T', we can find a smooth curve v con-
necting x; with x¢ such thatBgsg () C . But v needs to intersect K’ N T in a
point. Therefore, for a positive constant co, 0 < ¢y < 1, depending on r, L, and R
only, we can assume, without loss of generality, that there exists x; € (K’ NT)\K
such that dist(z1,0K) = dist(z1, K) > cad.

We call Ag the connected component of Q"*\K such that z1 € dA4y. For any
s, 0 < s < sp, we call A; the connected component of W\ K containing Ag. For
any s, 0 < s < sp, the domain A; satisfies the following properties. By (4.14),
0A; COK UJ(Ds)UO(DYL). Therefore, by (4.6) and by (4.16), we have

(4.17) HNTH0A,) <3C,  and  |A,] <

Hy+H -
0-; 1 _ .

Moreover, by the regularity of D and D’, we infer that there exist a point x5 and a
positive constant c3, 0 < ¢z < 1, depending on r, L, and R only, such that
(4.18) Be,a(z2) C Ap.

By (2.15) and (2.24), we can find a constant Ry > R + 2, depending on the a
priori data only, and a point x3 such that

(4.19) R+ 2 S ||.’L’3|| S R2
and
1
(4.20) lu(@)l, [l (2)] = 5 for any & € By (z3).

The proof of Theorem 3.1 requires several steps. The first one is to estimate
|lu — || on Ty for 0 < s < sp. This is obtained by a classical quantitative unique
continuation.

LEMMA 4.2. Assume that € < 1/(2e). For any 0 < s < sq, we have

(4.21) |(u—u")(z)| < ns(e) = Ela‘lm(S) for any x € T,
with

F
(129 mis) < 2,

where E1 >0, Fy > 0, and a, 0 < a < 1, are constants depending on the a priori data
only.

Proof. For any x € BpN Vs, 0 < s < sq, let v be the curve connecting x to z¢ as
in the definition of V. Without loss of generality, we can assume that - is contained
in BR1 .

We can construct a regular chain of balls, in the sense of [44, Definition 5.1], with
respect to Bg(y) that from zg reaches x. The first ball is centered at zp and has
radius less than or equal to §/8. By Lemma 2.5, we have that

[ty — || Lo (B, s (w0))s [1ts — WallLoo (B s(20)) < Ct

for a constant C' depending on the a priori data.

19



Then by a repeated use of the three-spheres inequality of Lemma 2.6 applied to
up — uy, and u, — uy along this regular chain of balls, we obtain that

m(s)

I = u) (@) < 1 (up = up) (@) + [[(us — w) (@) < Ere®

where E; and a, 0 < a < 1, depend on the a priori data only, and m(s) denotes the
number of times we have used the three-spheres inequality. It can be shown that m(s)
satisfies (4.22) for a constant Fy depending on R; only. Then we conclude the proof
by using the continuity of u and u’'. d

LEMMA 4.3. Let 0 < s < sg. Assume that, for some n, 0 < n < E, we have
(4.23) l(u—u)(2)|]|<n  for anyx € Ts.

Then there exists a positive constant Co, depending on the a priori data only,
such that

(4.24) IVul720a,) < Cons,
where
(425) ﬁs = (77 + CNVOS)>

Co as in (2.23).

Proof. We have 0A, C 0K U9d(Ds)UJ(Dy). We have that v = 0 on K and, by
(2.23), ||lu|]| < Cys on O(D;). By the same reasoning, ||u'|| < Cys on d(D%). Hence
(4.26) u(z)| < 7s = (n+ Cos) for any x € 0A,.

Since u € C?(Q) and A, is a set of finite perimeter, an integration by parts leads to

2;1/ Eu:er)\/ div(u)div(u)fpw2/ u~ﬂ:/ Tu - .
A, A A DA,

s s

Then, by (2.23), (2.38), (4.17), and (4.26), we have, for a constant M; depending on
the a priori data only,

(4.27) Myns > 2/;/ Eu: Eu+ /\/ div(u)div(u) — pr/ u-u
As As As

> min{2p, 2 + A}HEU”%Z(AS) — 32pw?C(N)*H; y { IVl
2
N

2(a,) T ||UHL2(3A )}

~ ~ 1
> min{2u, 200 + N Bullfa,) — 3200 C(N)? A3 [Vullfa ) + AF (3Cui2)] -

Then, by the idea of the proof of the first Korn inequality, we have

2 1 - i j2
| Eull =1 Z uj + u;
ij=1
s 1 & N s 1
=5 2l 3 X (wad v wed) = 5 3 [l 4+ 5 3 (wi)
i,7=1 i,7=1 i,j=1 1,5=1
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By the regularity of u and of A, by two integrations by parts we obtain

/ u;ﬂj = 7/ uluzj +/ m ujy] / uluﬁlJr/ o ’U,JI/J
A, A, A, A, A,
:/ ul ? / uiﬂéulJr/ ulujlﬂ
A, A, A,

It follows that

/ | Bul?
A

s

1 1 N
_ 2, W i
= 2/ [Vl + / div(u)div(u) +3 E: ( / u'wy —l—/aA uujyﬂ);

s

(/ Wyt —/ uiugyj) )
A,

We conclude by Theorem 2.4 and (4.26) that

and thus

[ v <z [ sy
As

1,7=1

(4.28) / IVul]? < 2/ | Bull® + 6C4N?Cos.
A As
Coupling (4.27) and (4.28), we obtain

min{2u, 2 + A}

~ 2
Myis > ( 5 — 32pw>C(N)? HN) V]| 72 a

32w C(N)2HY (3C472) — min{2u, 20 + A}3C1N2Coyiis.

Since 7, is bounded by a constant depending on the a priori data only and, by (3.2)
and (4.17), we have that Hy < Hy, we can easily conclude the proof. a

COROLLARY 4.4. Under the same assumptions of Lemma 4.3, there exists a pos-
itive constant C, depending on the a priori data only, such that

Cl ~1/2

(4.29) el (Begasatea))s Nusllioe (Beyujata)) < Jrmmyya ™

s as in (4.25).
Proof. The proof is immediate by using (2.26) and (4.24). ad
Remark 4.5. Assume that ¢ < e7°/2. Let 75(c) = (ns(¢) + Cos) as in (4.25)
and with 7,(e) as in (4.21). Then, by taking the minimum as s varies in (0, so}, an
easy computation shows that there exist positive constants &, £ < e~¢/2, and Cy,
depending on the a priori data only, such that if 0 < € < &, we have

(@30)  Tupllumpgapteas Tsllie oy yaten < eyt
where

(4.31) ii(2) = Cp [log(log(1/¢))] /™ .

In fact, let

s(e) = 5 [log(log(1/e))] /N
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with 6'3 such that
log(1/a) Fy
oy

<1/2.

Then o
e < exp (—(log(1/2))'/?) .

It is enough to choose € such that for any 0 < & < £ we have s(g) < sp and
exp (—(10g(1/))"/?) < [log(log(1/))] /™.

LEMMA 4.6. Let us assume that for some di, 0 < dy < csR/2, there exists x such
that By, () C Q and, for some /) < e °/2.

(4.32) [upll Lo (Bay @))s [Ns oo (Ba, () < -

Then there exist a constant §, 0 < 6 < e7°/2, and a positive constant C'4, depend-
ing on the a priori data only, such that if 0 <7 <9, we have

(4.33) di < (1),
where
(4.34) (i) < 2¢R (log(1/7)) "

Proof. We shall apply this lemma to = 25 and dy = c3d/4 (see Remark 4.7).

By the uniform interior cone property of 2, we can find a direction v such that
C =C(x — (d1)v,v,7r1,01) C Q for some 1 > 0 and 61, 0 < 6; < 7/2, depending on
r and L only. Moreover, we can find & = x + sv for some s > 0, and ¢4, 0 < ¢4 < 1,
depending on r and L only, such that Bg,q, () and Be,, () are both contained in C.

We can find v, a piecewise C'* curve, connecting  with 3 such that B, ,, (y) C Q
for some c5, 0 < ¢5 < 1, depending on r, L and R only. Without loss of generality,
we can assume that v C Bg, as well.

We can construct a regular chain of balls, again in the sense of [44, Definition 5.1],
with respect to C U Be,,, (7) that from x reaches x3; see Step I of the proof of [44,
Theorem 4.1] for details on this geometric construction, which we just sketch, now.
The first ball is centered at x and has radius less than or equal to c4d; /8. Then we
proceed along the bisecting line of C until we reach z. The construction from x to &
is illustrated in Figure 1. From = to x3 we proceed along the curve ; see Figure 2
for an illustration.

Again by a repeated use of the three-spheres inequality of Lemma 2.6 applied to
u, and us along this regular chain of balls, we obtain that

lulas)l| < fup(@s)| + us(zs)ll < B2

where Fo > 2e and a, 0 < a < 1, depend on the a priori data only, and n denotes
the number of times we have used the three-spheres inequality. We can estimate n as
follows:

(4.35) n < Fylog(2eR/d;)

for some constant F; depending on the a priori data only.
It follows by (4.20) that

n

< Exn®

M| —
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FiG. 2. From & to x3.

and consequently
—log(2E) < —log(1/7)a",
that is,
< log(QE?).
log(1/7)
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So, by (4.35),
log(1/a)Fylog(2eR/dy) > nlog(1/a) = log(log(1/7)) — log(log(2E3)).

The proof can now be concluded by an elementary computation. ]
Remark 4.7. Let us pick, in Lemma 4.6, x = x5, d; = ¢3d/4, and
N CA(l 7 1/2
n= d(N+2)/2 h

with & = 7, as in Corollary 4.4 or h = #(e) as in Remark 4.5, and assume that
h < 1/(2e). We conclude that either 7 > §, that is,

Ch s
4. (N+2)/2 ~ 171/2
(4.36) d < h'2

or 77 < § and, by (4.33) and (4.34),

d<
€3

N +2 A 1 1 ~Ca
Belt ( + log(d) — log(Cy) + 3 log <}AL)> .

In this case we have that

1/Cy 1/Cy
1 N +2 N 1 1
(”) (d) > N+ log<d>—log<01>+2log(ﬁ>,

C3 2

8eR\ /O /1\VC N 49 1 .1 1
cent - R Y > “log (= ).
() (5) 5 e (g) +ostn = gos ()

Since d < 2R, and therefore (1/d) > 1/(2R), we can find a positive constant Cs,
depending on the a priori data only, such that for any 0 < d < 2R we have

- A A\ 1/C
@ 1/Cy 1 1/C4+N+210 1 +1o (C’)<1 % /Ca
cs d 2 %\4 s =514 ’
and therefore

s 16 (1os (1))

We can also find a positive constant 6'6, depending on the a priori data only, such
that for any h, 0 < h < 1/(2e), we have

CAfl 721/2 A 1 i
— < It = .
5 h/% < Cg | log 7

Coupling (4.36) and (4.37), we conclude that

(4.38) d<Cy (log (;))C :

where 7 = max{Cs, Cs}.

that is,
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Proof of Theorem 3.1. We can find &, depending on the a priori data only, such
that 0 < € < £ and for any ¢, 0 < ¢ < &, we have 7j(¢) < 1/(2e), where 7j(¢) is defined
n (4.31). By the reasoning used in Remark 4.7 with h = 7(¢), we deduce that

(4.39) d < O3d < C3Cy <log (,7(15)»_04 :

where we used (4.5). We have already obtained a quantitative estimate, which we can
improve as follows.

Up to taking a smaller £ > 0, still depending on the a priori data only, for any ¢,
0 < e < ¢, we have that d< do, where dy is the constant of Lemma 4.1. Then we can
improve our estimate with a by now classical technique, which we sketch now.

Let us assume that €, 0 < ¢ < €, so that d < dp. By Lemma 4.1, we have that
Q°*t satisfies a uniform interior cone property, with constants 7y and HNO depending on
rand L only. Let z € I" and let C = C(szo,éo) C Q°®t for a suitable direction v.
For any s, 0 < s < §g, with 39 < 2 small enough, let z(s) = z + sv. By a completely
analogous construction to the one used in Lemma 4.6, just by reversing the chain of
balls, we connect x¢ to x(s) with a suitable regular chain of balls contained in Q°**.
The construction is again illustrated in Figures 2 and 1, by replacing z3 with zg and
Z with z, and assuming that z € I" and that the cone and v are contained in Q°*t,

The repeated use of the three-spheres inequality applied to u, — u; and us — u/,
along this chain, from z( to x(s), allows us to estimate

(u — ) ((s))]| < Bz,

where F3 > 2e, 0 < a < 1, and
I(s) < Fylog(2e/s).

As usual, 8y, E3, a, and I3 can be chosen as depending on the a priori data only. We
conclude that, for any z € T,

(w— ) (2)|| < B3e™"” + Cos for any 0 < s < 3.

By reasoning as in Remark 4.5, we estimate the minimum as s varies in (0, $g]. Let
us further assume, without loss of generality, that for any €, 0 < ¢ < €, we have

2e ~
= S 50
log(1/2)1/%%

with C'g such that
Cs
Then
ICIO)
€

< exp (—(log(1/2))'/?) .

It is enough to choose £ such that for any 0 < € < £ we have s(g) < §; and, calling
ﬂ = 1/083
exp (—(log(1/2))"/2) < log(1/2)~"
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Therefore we can find €, 0 < £ < e7¢/2, and a positive constant 307 both depend-
ing on the a priori data only, such that for any €, 0 < ¢ < &, and for any z € T" we
have

(u—w)(2)]| < log(1/e) ™ = n(e) < 1/(2e).

By the same argument used to prove (4.39), if we replace 7j(e) with n(e), we conclude
that the following stability result holds.

There exist positive constants &€, 0 < & < e~¢/2, C, and 3, depending on the a
priori data only, such that for any €, 0 < & < &, if

| — || Loo (B (20),cv) < &,
then
(4.40) d < C (log (log(1/))) ™",
where A
C=C3C73,  and  B=0Cy

If we consider the far-field error €y instead of the error £, we can find £y, 0 <
€9 < e7°/2, such that for any €9, 0 < g9 < &y, we have that 7(eg) < &, and hence by
replacing € with 7(go) in (4.40), we conclude that

d < C (log (log(1/20))) ™7,
where C' = 4°C. Therefore the proof of the main theorem is concluded. 0

Appendix A. Proof of Theorem 2.4. In this appendix we sketch the proof
of the regularity of solutions to (2.18).

Let us first observe that it is enough to prove that there exist positive constants
r1 and C, depending on r, L, R, «, and the coefficients only, such that

(Al) ||uHL2(QﬂBR+1) < é
and
(A.2) lull 2 (@) < C  for any z € 9.

Assuming we have proved (A.1) and (A.2), we conclude the proof of Theorem 2.4.
By the techniques developed in the proof of Lemma 2.5, we first show that by (A.1)
we have

(A?)) Hu||CQ(BR+3/4\BR+1/4) < CQ
and then, using also (A.2), that
(A.4) \|U||c2(ﬁnm) <Gy

for a constant Cs depending on r, L, R, «, and the coeflicients only.

The estimate (A.4) implies that u, and us, and thus u;wt and u$®*, are uni-
formly bounded in QN Brys /4 by a constant depending on C, and the coefficients
of (2.1) only. By standard regularity estimates for solutions to the Helmholtz equa-

tion, not very different from what we used in the proof of Lemma 2.5, we infer that
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luse[| + [[Vus*v|| is bounded on dBgy1/5 by a constant depending on Cs, R, and
the coefficients of (2.1) only, v being the exterior normal to Br. /2. We point out that
for this estimate (A.3), and thus (A.1), is enough. Then, for any z with ||z| > R+1/2
we have

scat _ 8¢‘*’p (.T, y) uscat _ T uscat v o
e = [ (T ) eV ) do)

Then, by the regularity and decay properties of ¢, it is not difficult to prove (2.24)

for what concerns u3°* and to bound ||upl| (\Bryays): A completely analogous

argument applied to us completes the proof.

The proof of (A.1) and (A.2) will be done in two steps. In the first step we prove
(A.1), and in the second we prove (A.2).

Step 1. The estimate (A.1) is proved by a continuity argument which is inspired by
Mosco convergence. We sketch the proof; for details we refer to [38], where the argu-
ment is fully developed in the acoustic case for the much harder Neumann boundary
condition and for much more general classes of scatterers.

Let A be the class of obstacles contained in B whose interior is a Lipschitz open
set with constants » and L. In [32, section 2] it is proved that A is compact with
respect to the Hausdorff distance. We claim that there exists a constant C, depending
on r, L, R, and the coefficients only, such that (A.1) holds for any u solution to (2.18)
with K € A.

We argue by contradiction. Let us assume that there exists a sequence { K, }en C
A such that, calling w,, the solution to (2.18) with K replaced by K,,, we have for any
neN

HUnHL2(QntR+1) =a, > n.

We always extend u,, to 0 in D, the interior of K,, so that u, € H'(Bgry1). Let
Up = Up/a,. We have that, with the usual extension to 0 outside €,

lvnll2(Breyy =1 for any n € N.

By the same argument we used before, one can easily show that ||vy,]| € (Brira i\Brsra)
is bounded by a constant not depending on n. Let x € C§°(Br+1) be a cutoff function
such that 0 < x < 1 in Bryy and x = 1 in Brii/2. We have that w, = v,x €

H(Br41\K») C H}(Br+1) and w,, solves

pAw, + (A + M)VT(diV(wn)) + pwtwy = f  in Br1\Kn,
wy, =0 on O(Br+1\Kn)

with || f| Lo (Bgs1\K,) Pounded by a constant not depending on n. By the weak for-
mulation and first Korn inequality, we deduce that {w,, }nen is bounded in H'(Bg1),
and hence {v, }nen is bounded in H!(Bgry1) as well.

Passing to subsequences, without loss of generality, we can assume that, as n —
0o, K, converges to K € A in the Hausdorff distance, and v,, converges to ¢ weakly
in H'(Bgry1) and strongly in L?(Bry1). In particular,

(AS) ||’5HL2(BR+1) =1

One can easily show that ¢ = 0 in a weak sense on 0K and that ¢ solves (2.1) in
Bri1\K. Since v = 4 /a,,, for any n € N, we actually have that v:“** converges

to © weakly in H'(Bg1) and strongly in L?(Bgy1). We infer that, possibly passing
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to a further subsequence by using a diagonal argument, v3°** converges to a function @

in L?(B,) for any r > R. Such a function @ is a radiating solution to Navier equation
in Q = RM\K and & = 0 on 0K in a weak sense. By uniqueness of the scattering
problem we deduce that o = 0 and this contradicts (A.5).

Step 1I. Let z € 99 and let R, be the unitary matrix transforming v(z) to
(0,...,1) where v(2) is the exterior normal to 9 at z. We set V(z) = R,u(R;*(z))
and we note that V satisfies (2.1) in R,(Q2). In other words, we can assume, without
loss of generality, that there exists a function ¢, : RV =1 — R, with 6= llc2.0@n-1y <
L, such that for any y € B,.(z) we have, without any further rigid transformation,

z=(2',on) €Q ifandonlyif zx < ¢,(z').

We define @(§) = u(x), where £ = F(z) is defined as

{=a,
(A.6) { v =N — ¢ ().

Here, and in what follows, for any s > 0 we denote ¥4(z) = Bgs(2) N {&n > 2N}
and T's(z) = Bs(z) N {&ny = zn}. By the regularity properties of ¢, we can infer
that, for a positive constant ro, depending on r and L only, we have that @ satisfies,
foranyi=1,..., N,

1 [Aet’(€) — 2V ety () - Voo (x) + iy n (£)| Voo (2)]|?]
+ (Mp) [(diven); (€) — (dived) v ()i (@) + @ni(€) - Vad(x) — (ann (€) - Vad(2))d5(2)]
— piily (§)App(x) + (A4 p)an (€) - Va(¢i) (@) + pw?a@’ (§) =0 in Ty, (2)

and
=0 onl,,(2).

Here ¢ : RN — R is defined as ¢(x) = ¢,(2') for any € RY and, in the formula,
r = F71(¢) everywhere. By Remark 2.2, we have that V,¢(z) = 0. Hence, in a
suitable neighborhood of z, the principal part of the second order system solved by
@ is a small perturbation of the Lamé system pAd + (X + p)V7T (div(@)). We can
conclude that it is elliptic and satisfies all the conditions of [1, Chapter 1] and that
the boundary condition @ = 0 on I',,(z) satisfies all the conditions of [1, Chapter 2].
Moreover, the coefficients of the elliptic system are bounded in C%.

As an intermediate step, we show that there exist r5 > 0 and Cs, depending on
r, L, R, o, and the coefficients only, such that

(A.7) Ha||L°°(ZT3(z)) < ég.

By using [1, Theorem 10.4] with a suitable cutoff function, for any s, 0 < s < ro,
and any real p, p > 2, we can find s1, 0 < s; < s, and C1, depending on s, p, and 7,
L, R, «, and the coefficients only, such that

(A.8) lallwze (s, (z) < CillillLes, ()

By (A.1), we can control ||@||y2.2(s,(z)) for a suitable positive constant 5. By Sobolev
inequality, we infer that @ belongs to LP*(X3(z)) for some p; > 2, and thus, repeating
the argument, @ belongs to W?2P1(X;z, (2)) for a smaller positive constant §;. With a
bootstrap argument, after a finite number m of steps, which depends on N only, we
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obtain that @ belongs to W?2Pm (35 (z)) for a positive constant 3, and p,, > N. By
a final application of Sobolev inequality, we conclude that (A.7) holds.

Once (A.7) is established, by the standard estimates of [1, Theorem 9.2], we can

control the C%®-norm of @ in ¥,,/16(z). Going back to the usual coordinates, (A.2)
can be finally proved.
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