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Abstract

The prediction of financial markets is a challenging yet important task. In

modern electronically driven markets, traditional time-series econometric

methods often appear incapable of capturing the true complexity of the

multilevel interactions driving the price dynamics. While recent research has

established the effectiveness of traditional machine learning (ML) models in

financial applications, their intrinsic inability to deal with uncertainties, which

is a great concern in econometrics research and real business applications,

constitutes a major drawback. Bayesian methods naturally appear as a suitable

remedy conveying the predictive ability of ML methods with the probabilisti-

cally oriented practice of econometric research. By adopting a state-of-the-art

second-order optimization algorithm, we train a Bayesian bilinear neural

network with temporal attention, suitable for the challenging time-series task

of predicting mid-price movements in ultra-high-frequency limit-order book

markets. We thoroughly compare our Bayesian model with traditional ML

alternatives by addressing the use of predictive distributions to analyze errors

and uncertainties associated with the estimated parameters and model fore-

casts. Our results underline the feasibility of the Bayesian deep-learning

approach and its predictive and decisional advantages in complex econometric

tasks, prompting future research in this direction.
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1 | INTRODUCTION

Bayesian inference is known to be a difficult task outside
a relatively small class of well-studied models, generally
involving conjugate priors for the likelihood. The
analytical Bayesian treatment of general, even small-
dimensional, problems is widely unfeasible. The

increased computational capacity available these days, as
much as the availability of powerful algorithms such as
Markov chain Monte Carlo (MCMC) or Metropolis–
Hastings, opened the possibility for a simulation-based
approach to Bayesian inference. However, Bayesian
methods in typical large-scale complex machine learning
(ML) problems have long been impractical. Though ML
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generally operates under a frequentist perspective, the
first steps into a probabilistic approach to deep learning
(DL) are relatively recent; see, for example, Gal and
Ghahramani (2016) and Murphy (2012) and references
therein. Only recently, we are witnessing a growing inter-
est in Bayesian DL, boosted by its demand across multi-
ple disciplines. Indeed, even in a simulation-aided
setting, Bayesian inference on the potentially thousands
of parameters over highly nonlinear models like neural
networks (NNs) is certainly not a simple task.

Yet the interest in probabilistic modeling and
Bayesian methods in other disciplines has a much longer
history. Especially in econometrics and finance, the
probabilistic dimension is an innate and essential ele-
ment in modeling. Indeed econometric research is at the
cross-edge between applied statistics, probability theory,
stochastics, and the study of economic phenomena
(Ragnar, 1933). As such, the econometric practice is that
of developing well-reasoned and economically motivated,
essential, mostly parametric, probabilistic models that
are thoroughly tested, validated, and back-tested follow-
ing the principles of statistical inference. For example,
the concepts of significance testing, confidence intervals,
asymptotic analysis, and stationarity are typical in the
econometric literature. On the other hand, such an
approach in DL is currently inapplicable.

At the same time, researchers in economics and prac-
titioners in finance acknowledge the flexibility, scalabil-
ity, and gains in predictive tasks that ML can bring when
applied to economic problems; for example, Gal and
Ghahramani (2016) and Mullainathan and Spiess (2017).
Especially in modern, electronically driven financial mar-
kets, operating at ultra-high frequencies and generating
massive complex and multidimensional datasets underly-
ing the complex dynamics of market variables arising
from the interactions of multiple players and forces at dif-
ferent levels, ML methods have gained much attention;
see, for example, Varian (2014). Business and financial
applications are part of those high-risk domains where
quantifying the uncertainty underlying models' estimates
and predictions is of utmost importance (Salinas et al.,
2020). A probabilistic dimension reflecting uncertainties
related to model estimation and perhaps accounting for
the typical elements of business activity that are difficult
to predict (Makridakis et al., 2009) would be beneficial.

The recent advances in Bayesian DL have the poten-
tial of bringing this element into play, narrowing the gap
between the highly probabilistic yet parsimonious model-
ing of the econometric practice and the flexible nonlinear
and nonparametric ML rationale. Bayesian inference for
NNs has recently been shown to be challenging yet feasi-
ble (Blundell et al., 2015; Kingma & Welling, 2014;
Osawa et al., 2019). Bayesian neural networks (BNNs)

are engaged with the typical elements of Bayesian infer-
ence, in particular with a trainable distribution over its
parameters and a consequent predictive distribution that
enables classical statistical tools, econometric methods,
and relevant risk-related and uncertainly related ana-
lyses, for example, based on predictive distributions
(Geweke & Amisano, 2010). Nevertheless, much research
in this direction is still needed.

This paper aims to introduce the use of BNNs in eco-
nomic problems in light of the above discussion, boosting
further research and interest in this research direction.
We propose a Bayesian version of the temporal attention-
augmented bilinear network (TABL) as a lightweight DL
model for a financial times-series classification task. We
propose a first Bayesian DL econometric application in
the challenging task of predicting mid-price movements
in limit-order book (LOB) markets. Our results explore
the feasibility of such an approach, compare its forecast-
ing performance against non-Bayesian specifications
based on different optimization algorithms, and address
the advantages of adopting BNNs in financial
applications.

2 | LITERATURE REVIEW

NNs have been successfully applied in several ML prob-
lems, such as image classification (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2015), computer vision
(Girshick et al., 2014; Ren et al., 2015), natural language
processing (Collobert & Weston, 2008; Goldberg, 2017),
or speech recognition (Dahl et al., 2012; Mohamed et al.,
2012). Despite their undeniable use and performance in
delivering leading results on different predictive tasks,
the decisions are achieved in a rather uninterpretable
manner.

NNs correspond to statistical black-box models that
achieve feasible point estimate predictions by adapting
their high-dimensional parameters on a try-and-error
basis. Based on the nature of the problem, the user
defines a cost function and a network architecture that
allows to approximate complex nonlinear functions to
tackle a prediction or classification task. By allowing for
a sufficiently large number of trainable parameters,
under mild assumptions, NNs can approximate any
arbitrary function (Cybenko, 1989; Hanin, 2019; Lu et al.,
2017). It is with little surprise that NNs found significant
use in financial and econometrics applications, where
complex and interacting latent structures in the data
drive the behavior of different economic variables. A
review of different NN applications in finance is provided
in McNelis (2005), an early discussion on econometric
applications can be found in Kuan and White (1994) and
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within time-series analysis in Hewamalage et al. (2021),
Qi and Zhang (2008), and Teräsvirta et al. (2005). Cenesi-
zoglu et al. (2022) analyzed the relationship between
LOB variables and mid-price movements showing that it
is possible to obtain economical gain from these variables
and the mid-price return. Further, their causality analysis
supports the use of lagged LOB variables for forecasting
purposes. The design of a set of features, extending the
LOB feature set in the high-frequency forecasting appli-
cation of Kercheval and Zhang (2015), can be found in
Ntakaris et al. (2019), while Ntakaris et al. (2018, 2019)
tackle the mid-price movement prediction with the rich
LOB data under different ML perspectives, including
NNs. For a similar prediction task, Dixon (2018)
addressed the use of recurrent NN. The use of long–
short-term memory (LSTM) networks and convolutional
neural networks (CNNs) is discussed in Tsantekidis et al.
(2017), Tsantekidis et al. (2020), Passalis et al. (2019), and
Zhang et al. (2019) and the use of Neural Bag of Features
in Passalis et al. (2017, 2018). Taking advantage of the
spatial structure in the LOB, Sirignano (2019) provides
an extensive analysis of over 500 stocks for prediction
price movements, while Tran et al. (2017) encode the
LOB data as two-order tensors. An attention mechanism
capable of exploiting and retaining the temporal mode of
the order flow is introduced in Tran et al. (2019) and
extended to accommodate multiple attentions in Shabani
et al. (2022).

By fine-tuning the network and increasing the num-
ber of parameters, one possibly achieves functions with
higher complexity and improved forecasting ability. The
lack of interpretation and the impossibility of condensing
the decision process to a simple decision rule, along with
overfitting issues and their native nonprobabilistic setup,
create challenges in the use of NNs in high-risk domains
and for all those applications where uncertainties in pre-
dictions are of relevance (Goan & Fookes, 2020). More-
over, the lack of a well-defined building protocol
(e.g., the absence of an Akaike information criterion-like
statistic for features' relevance determination) makes
their adoption by experts and practitioners from such
domains difficult (Caruana et al., 2015; Holzinger et al.,
2017, 2019; Vu et al., 2018).

A Bayesian perspective on NNs provides a natural
way to reason around uncertainties. At the same time, it
provides tools for model regularization and offers insights
into how decisions are made. Indeed, the Bayesian para-
digm offers a perspective on NNs that can address many
of the issues currently faced by NNs. Recent research
investigated how Bayesian principles can adapt to large
NNs. To this end, a learnable distribution is placed over
the parameters, resulting in BNNs. A survey on early
developments in BNNs can be found in Mackay (1995),

and recent introductions to BNNs are those of, for exam-
ple, Goan and Fookes (2020), Jospin et al. (2020), and
Lampinen and Vehtari (2001). For a specialized survey
on algorithms for training BNNs, see Magris and Iosifidis
(2022). In BNNs, parameters are treated as random vari-
ables, and the learning focuses on the distribution of
these parameters conditional on the observed training
data sample. In the learning phase, the latent distribution
of the parameters is inferred based on the current knowl-
edge and the observed data by use of the Bayes theorem
resulting in a distribution of the model parameters condi-
tional on the data, the posterior distribution. Further
details on BNNs and their training appear in Section 3.

Financial applications involving BNNs are somewhat
limited. An application for automatic relevance determi-
nation in option pricing is that of Mbuvha et al. (2019). A
recent example of stock-price prediction is found in
Chandra and He (2021), where exploitative MCMC-based
learning is used to forecast daily closing prices of four
stocks, showing that in terms of RMSE performance met-
ric, their BNN outperforms non-Bayesian counterparts. A
forecasting study based on electricity prices is provided in
Ghayekhloo et al. (2019) and Vahidinasab and Jadid
(2008), while Bitcoin data are used in Jang and Lee
(2018). Sign changes in returns have been analyzed under
a multilayer perceptron (MLP) BNN in Skabar (2009).
This study uses low-frequency daily closing prices and
lagged moving averages as features, showing a slight 52%
accuracy over a random classifier and no gains with
respect to a standard MLP. There are, however, no appli-
cations involving tick-by-tick data generated from typical
modern financial markets running over the LOB systems.
Nevertheless, the bridging potential that BNNs could pro-
vide between the fields of econometrics and ML has not
been recognized.

3 | METHODS

3.1 | BNNs

A BNN is any stochastic artificial neural network (ANN)
trained using Bayesian inference. ANNs aim at approxi-
mating arbitrary functions y ¼ NNθðxÞ, whose parame-
ters are denoted by θ. Over a training dataset D, the
standard estimation approach is to determine a minimal-
cost point estimate θ̂ using backpropagation. In BNNs,
parameters are treated as latent random variables, and
the goal is to learn the distribution of the parameters
conditional on D. The first step is that of defining the
joint distribution of the data and the parameters
pðθ,DÞ¼ pðDjθÞpðθÞ, which depends on our prior belief
over the latent variables pðθÞ and the chosen form of
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likelihood pðDjθÞ. Under independence between the
model parameters and the inputs, the Bayesian posterior
is written as pðθjDÞ¼ pðD,θÞpðθÞ=pðDÞ. Computing the
weight-independent term known as marginal likelihood
(or evidence) is perhaps one of the most difficult tasks in
Bayesian inference: The prior-to-posterior update is usu-
ally intractable. From the posterior distribution, the
model uncertainty is quantified as the marginal probabil-
ity distribution of the output yi for a certain input xi,
through the predictive distribution

pðyijxi,DÞ¼
Z

pðyijxi,θÞpðθjDÞdθ: ð1Þ

When performing classification, the average model
prediction approximates the relative probability of each
class,

p̂ic ≈ 1=Ns

XNs

n¼1
pðyi ¼ cjxi,θðnÞÞ, ð2Þ

where θðnÞ � pðθjDÞ. If the cost of giving a false positive is
equal across all classes, the final classification is taken
according to the most likely class, that is,

ŷi ¼ max
c

p̂ic: ð3Þ

3.2 | TABL

The TABL architecture (Tran et al., 2019) is a lightweight
DL model which has been shown to be particularly suited
for multidimensional time-series forecasting. It augments
the bilinear projection with an attention mechanism
exploiting the temporal dimension across the features.
This enables it to compare favorably with alternative
architectures such as bilinear networks, CNNs, LSTM
networks, and several other ML algorithms (Tran et al.,
2019).

Figure 1 illustrates the architecture of the TABL layer.
It maps a D�T-dimensional input matrix X onto a
D0 �T 0-dimensional output Y, where D and D0

correspond to the number of features and T and T 0 corre-
spond to the number of temporal instances. The network
initially operates a projection of the temporal dimension
of the input matrix to a D0 �T-dimensional feature space
modeling the dependence on the first mode while pre-
serving the temporal order of the features. It further
learns the relative importance of the temporal instances
with respect to each other, producing an attention mask
where only the most relevant instances are preserved. A
learnable scalar drives the mixture of the temporal and
nontemporal features passed to a final mapping that
returns the final representation adjusted for bias. This is
achieved by

X¼W1X, ð4Þ

E¼XW, ð5Þ

aij ¼ expðeijÞ
.XT

k¼1
expðeikÞ, ð6Þ

~X¼ λðX � AÞþð1� λÞX, ð7Þ

Y¼ϕð~XW2þBÞ, ð8Þ

where aij and eij denote the element ði, jÞ of A and E,
respectively; ϕð�Þ is a predefined activation function;
W1 �ℝD0�D, W�ℝT�T , W2 �ℝT�T0, and B�ℝD0�T0 are
the parameters of the layer; and 0≤ λ≤ 1 is a learnable
mixing coefficient which determines the importance of
using the temporal attention in the mapping.
Experiments in Shabani et al. (2022) further show that
the inclusion of additional temporal attention heads
opens toward richer structures in the temporal depen-
dence across lagged features, relevant for forecasting
purposes.

3.3 | Bayesian TABL

To formulate the Bayesian network formed by one
TABL layer (B-TABL), we define the parameter vector θ
formed by the parameters of TABL, that is,

FIGURE 1 Illustration of

the TABL architecture.
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θ¼fW,W1,W2,B,λg. Variational inference (VI) is a
well-established methodology for complex statistical
inference circumventing the typical intractable integra-
tion problem arising in Bayesian inference by approxi-
mating the true posterior pðθjDÞ with a distribution qðθÞ
whose normalization constant is easier to compute
(variational distribution). A review on VI from a statisti-
cian's perspective is that of Blei et al. (2017), from the ML
perspective, that of Tran et al. (2021), while very recent
applications in multidimensional econometric models
are, for example, those of Gefang et al. (2023) and Guna-
wan et al. (2021). Fixed form variational Bayes assumes a
fixed parametric form for the density in some class of dis-
tributions Q, indexed by a variational parameter vector.
A perspective on the problem with general nonconjugate
likelihoods for priors in the exponential family can be
found in Khan and Nielsen (2018). We chose both pðθÞ
and qðθÞ to be Gaussian distributions with diagonal
covariance matrices:

pðθÞ¼N ðθj0,I=αÞ, qðθÞ¼N ðθjμ,diagðσ2ÞÞ,

where α>0 is a known precision parameter and μ�ℝP,
σ2 �ℝP. P is the number of the parameters in the net-
work, that is, the number of parameters in θ.

qðθÞ implies a factorization of the join in the product
of the marginals, known as mean-field approximation. In
VI, the variational parameters ðμ,σ2Þ are obtained by
maximizing the following objective:

Lðμ,σ2Þ¼
XN
i¼1

Eq logpðDjθÞ½ �þEq log
pðθÞ
qðθÞ

� �
: ð9Þ

Equation (9) can be maximized with the gradient-
based optimization, that is, with the following update:

μtþ1 ¼ μtþρtr̂μLt and σtþ1 ¼ σtþδtr̂σLt, ð10Þ

where t is the iteration index, r̂xLt denotes an unbiased
estimate of the gradient of L at ðμt,σ2t Þ with respect to x,
and ρt,δt are adaptable learning rates. The natural-
gradient VI method of Khan and Lin (2017) tackles the
update (10) in terms of the natural parameter α of qðθÞ,
rather than its mean and covariance matrix, and scales
the gradient of the corresponding SGD update for αt with
the inverse of the Fisher information matrix (FIM) of
qðθÞ. Khan and Lin (2017) show that the direct computa-
tion of the FIM can be avoided by computing natural gra-
dients in the natural parameter space using the gradient
with respect to the expectation parameters of the
exponential-family posterior. For the Gaussian mean-

field VI under consideration, this leads to the natural-
gradient variational inference (NGVI) update:

μtþ1 ¼ μtþβtσ
2
tþ1 � r̂μLt, ð11Þ

σ�2
tþ1 ¼ σ�2

t �2βtr̂σ2Lt, ð12Þ

with βt >0 being a scalar learning rate. By expressing (9)
in terms of the standard MLE objective f ðθÞ¼
�1=N

PN
i¼1logpðDijθÞ and expressing the gradients of its

expectation with respect to μ and σ in terms of the gradi-
ent gðθÞ and Hessian HðθÞ of f ðθÞ, the update results in

μtþ1 ¼ μt�βtðgðθtÞþ ~αμtÞ=ðstþ1þ ~αÞ,
stþ1 ¼ð1�βtÞstþβtdiagðHðθtÞÞ,

ð13Þ

where the division is element-wise, ~α¼ α=N and
θt �Nðθjμt,diagðσ2t ÞÞ, with σ2t ¼ ½Nðstþ ~αÞ��1. The scal-
ing vector st involves the gradient and the diagonal of the
Hessian, which can be replaced by their stochastic esti-
mates ĝðθÞ and r̂2

θθf ðθÞ. The former can be computed
using backpropagation. Due to the general nonconvexity
of f , the latter can be negative, which might lead to nega-
tive variances. Nonnegativity is granted by the following
approximation:

r̂2
θjθj

f ðθÞ≈ 1
M

X
i �M

r̂θj f iðθÞ
� �2

:¼ ĥjðθÞ, ð14Þ

with i denoting the ith data sample in the mini-batch M
of size M and θj the jth element of θ. By writing for ĥðθtÞ
the vector of all ĥj, under this approximation, the update
for st reads:

stþ1 ¼ð1�βtÞstþβtĥðtÞ: ð15Þ

The algorithm involving updates (13) and (15) is
referred to as the variational online Gauss–Newton
(VOGN) (Khan & Nielsen, 2018). Opposed to SGD and
related algorithms such as RMSprop, Adam, and
AdaGrad, which use the gradient magnitude
1
M

P
i �Mr̂θj f iðθÞ

� �2
for approximating the jth entry of

the diagonal Hessian, in (14), VOGN uses averages of the
squared gradients, avoiding explicit constraints on σ2.
As shown in Osawa et al. (2019), it leads to good empiri-
cal performance and practical feasibility of the
updates (13) and (15) on large datasets compared with
alternatives, for example, Bayes by Backprop (BBB)
(Blundell et al., 2015).

MAGRIS ET AL. 1411
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Existing automatic-differentiation libraries can be
used to retrieve the gradients; however, current code-
bases directly return sums of the gradients over mini-
batches, whereas individual gradients are required
in (14). Thus, via chain rule, we derive the individual gra-
dients for a TABL layer and adapt current second-order
optimization routines (Osawa, 2019) to accommodate
them. Our B-TABL implementation adopts a log-softmax
activation function at the last layer such that the output
vector of the network interprets as logs of class probabili-
ties, with a one-to-one mapping between classes and
indexes of vectors' elements. That is, for an input time-
series Xi, the corresponding output of the network is a
vector

logpi ¼ ½logpi1, logpi2,…, logpiC�,

where pic ¼ expðli½c�Þ=
P

c expðli½c�Þ, c being an index run-
ning along the number of network outputs (the number
of classes C). li denotes the output of the last layer, corre-
sponding to the input Xi, passed to the softmax activa-
tion, and li½c� its cth element. The loss used is the
negative log likelihood, that is, for a sample in class c the
loss is computed as �logpi½c�. We shall refer to

pi as class probabilities or scores. Losses are averaged
across samples for each mini-batch. For a trained model
and for each input vector, predictions are provided by the
class of the maximum log score (or maximum class prob-
ability), that is, max clogpi½c�. We shall refer to this crite-
rion as the classification rule. Therefore, due to posterior
sampling, log scores are stochastic (as for the class proba-
bilities and the index of their maximum element), leading
to stochastic class labels.

4 | EXPERIMENTS

4.1 | High-frequency LOB data

Trading in modern financial markets is organized
through an order-driven mechanism that collects and
matches inflowing limit and market orders through a
time-priority rule. Trades participate in the market by
submitting orders or cancellations over previously sub-
mitted orders. Each message (order or cancellation) sub-
mitted to the exchange comes with an associated
timestamp, price, and quantity (along with a unique
identifier). By submitting a limit order, a trader expresses
his/her willingness to buy or sell a certain amount of the
security at a specified price, that is, the trader specifies
the buy/sell price and the number (or fractions) of stocks
he/she wants to trade. Limit orders are collected and
stored in what is known as the LOB. At a time instance t,

the cross-section of the LOB provides a snapshot of the
number of outstanding limit orders, their prices, and
quantities.

In particular, buy (sell) limit orders define the bid
(ask) side of the book. The highest buy and lowest ask
prices represent the best prices to sell or buy a certain
amount of a security. These best prices are known respec-
tively as bid and ask prices ðpBt ,pAt Þ. Market orders are
immediately executed on the bid or ask side at the cur-
rent best price, leading to trades. Limit orders at the cur-
rent bid/ask prices are filled according to a time-priority
rule (first submitted, first traded). A market order
decreases the quantity available at the best price, and if
the market order quantity is equal to or greater than the
outstanding quantity of the limit orders at the current
best price, it reduces the total depth of the market
(i.e., the number of different price levels on which the
limit orders are arranged). As the limit orders on the top
of the book are filled, the actual best price moves to that
of the next LOB level until a new incoming limit order
(on the same side of the book) refills the gap between the
bid and ask prices, or a new market order erodes the top
of the book causing a further update in the best bid or
ask price. We refer to, for example, Ntakaris et al. (2018)
for further details on the LOB mechanism.

It is clear that the order inflow (along with order can-
cellations) is governed by a highly stochastic mechanism
that leads to a rich, multidimensional dataset consisting
of order types, prices, and quantities, whose instances
reflect the dynamics of the bid and ask prices as well as
of deeper LOB levels. Although broad stylized facts on
the LOB dynamics lead to some analytic tools for model-
ing the LOB, for example, Cont et al. (2010), tackling its
dynamics is very challenging, and ML methods can pro-
vide a useful alternative for a number of forecasting
goals. While the first level of the LOB has been com-
monly used in econometric research, Tran et al. (2021)
showed that the information in multiple levels increases
the performance of ML models. Both ML and economet-
rics research focused on the dynamics of the synthetic
price measure across the two sides of the book known as
mid-price: pt ¼ 1

2 pAt �pBt
� �

.
We focus on the task of forecasting mid-price changes

at the future (tick-by-tick) updates of the LOB. This
implies a complex classification problem over three clas-
ses: mid-price increases, mid-price decreases, or remains
stationary. We used the publicly available FI-2010 dataset
(Ntakaris et al., 2018), which collects the LOB states for
five stocks traded at the NASDAQ Nordic Helsinki
exchange from June 1 to June 14, 2010 (collecting
approximately 4.5 million events across 10 trading days).
At each epoch (i.e., LOB update), the data consists of
144-dimensional feature vectors. In total, there are
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453,975 features extracted over nonoverlapping blocks of
10 events and normalized using the z score. The dataset
provides labels corresponding to the direction of the price
movement on five different horizons, corresponding to
the price movements in the next 10, 20, 30, 50, and
100 events. In our experiments, we utilize the 10-event
horizon and adopt the experimental setup of (Tsantekidis
et al., 2017, 2020) where the last 3 days are taken as the
test set (corresponding to 150,418 samples). For the first
7 days, the initial 75% of instances constitute the training
set, and the last 15% the validation set.

4.2 | Experiment setting

As in Tran et al. (2019), we use the first 40 dimensions
consisting of raw prices and quantities. For the BNN
implementation, we employ the VOGN algorithm. Net-
works' weights are initialized under a multivariate Gauss-
ian prior with parameters μ¼ 0 and Σ¼ I. The learning
rate, momentum factor, and decay rate of the L2 norm
regularization are, respectively, set to 0.01, 0.999, and
0.85. Its performance on the validation set is evaluated
over 10 MC draws from the posterior at each epoch,
while the predictive distribution for each input in the test
set is approximated by the collection of Ns ¼ 50 forecasts
following Ns feed-forward passes for Ns independent
samples from the variational posterior. Prior's means and
variances, respectively set to one and zero, are initially
warmed up following the method described in Osawa
et al. (2019).

The Bayesian training of the network is evaluated
with respect to two non-Bayesian alternatives: the ADAM
(Kingma & Ba, 2015) optimizer and stochastic gradient
descent (SGD). For SGD, the momentum is set to 0.99;

for ADAM, the first and second moments are fixed to 0.9
and 0.999. For both algorithms, the initial learning rate is
set to 0.01 and dynamically updated until the validation
loss reaches a plateau. For all the optimizers, the training
is set to 1000 epochs with a mini-batch of size 256. When
training with ADAM, we also employ MC dropout
(Gal & Ghahramani, 2016) in the testing phase. MC drop-
out is not a Bayesian method but has a connection with
Bayesian theory and serves as an approach to predictive
distribution approximation (Gal & Ghahramani, 2016). A
random deletion of the NN connections allows for poste-
rior sampling. Sampling from the approximate posterior
enables MC integration of the likelihood, uncovering an
approximation to the predictive distribution. By repeated
forward passes for the same input sample, the random-
ized dropout yields samples from the predictive distribu-
tion. Gal and Ghahramani (2016) find that even a small
number of forward passes can suffice. Similar to the B-
TABL, we apply Ns ¼ 50 and set the dropout rate to 10%.
As in Osawa et al. (2019), we do not compare VOGN with
BBB (Blundell et al., 2015) because it is very slow to con-
verge for larger scale experiments like the one targeted in
this paper.

5 | RESULTS

5.1 | Model calibration and learning
curves

In Figure 2, we compare F1 scores and accuracy metrics
across training epochs for both training and validation
sets. For both VOGN and ADAM, it takes as little as
15 epochs to stabilize and smooth the learning rate of the
curves. The initial values of the parameters are randomly

FIGURE 2 Learning curves for

VOGN and ADAM for the training set

(upper panel) and validation set (lower

panel)
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initialized. To avoid local minima and to boost the
search, the learning rate in ADAM is regularly perturbed,
resulting in the step-wise behavior observed of the curves
observed across the panels.

For VOGN, curves referring to the training set show
a steeper rate at initial epochs and up to about epoch
500, reporting a remarkably higher F1 score and accu-
racy than for ADAM. This stands for a general superior-
ity in the performance of VOGN with respect to ADAM
at early epochs up to moderate ones, indicating that
despite the random initialization and the stochastic com-
ponents embedded in VOGN, perhaps due to its higher
number of parameters due to the existence of the param-
eters' variance, the algorithm converges rather quickly.
Only around epoch 500 ADAM metrics are comparable
with those of VOGN. At higher epochs, we do not
observe a relevant difference in F1 scores, while, in
terms of accuracy, ADAM slightly outperforms VOGN
on the training set. That is, the learning in ADAM is
shown to be slower but, on average, steady, with cer-
tainly lower rates compared with VOGN, but constantly
improving across the epochs. On the other hand, after
steep improvements in initial phases, VOGN's training is
quite achieved already at epoch 500, leaving only a slight
5% improvement of the metrics in the following
500 epochs.

Also on the validation set, we observe that at initial
epochs, metrics for VOGN greatly outperform those for
ADAM; perhaps the prior variance adds a randomization
effect that allows a wider sampling of the space around
the local parameters to access large gradients that readily
adjust the step direction towards the minimum. It is only
around epoch 800 that we observe a comparable perfor-
mance. This could be interpreted as a better generaliza-
tion ability of VOGN on unseen data, especially if
noticing that for VOGN the F1 score and accuracy curves
on the validation set are slightly higher than for training.
The homogeneity of the data and the same complexity
across the two sets, further motivate the conclusion that
VOGN embeds a more general classification rule, along
with the metrics provided in Appendix A1. Also the dif-
ferent levels in curves' smoothness underline that while
VOGN quickly approaches the minimization objective,
ADAM appears to repeatedly overshoot the objective,
leading to segmented curves up to epoch 500. At higher
training epochs, validation curves' rates of growth for
VOGN and ADAM appear quite flat, indicating that the
training is overflown and the performance metrics are
comparable. In this light, we might expect a comparable
performance of the two algorithms on the test set, per-
haps without a strong winner. This is indeed the case, see
Section 5.5 and Appendix B. As it also emerges from
Section 5.5, the performances for MCD and SGD are

quite poor compared with VOGN and ADAM, making
the former two optimizers quite unsuitable for our classi-
fication task, and therefore omitted from Figure 2.

5.2 | Posterior distribution

Following the updates (13) and (15), VOGN learns varia-
tional posterior's mean and updates the prior precision to
the posterior diagonal covariance matrix σ2I, with
σ2t ¼ 1=ðNðstþ ~αÞÞ. For illustration purposes, Figure 3
depicts the learning of B-TABL's λ, a characterizing
parameter for the network architecture.

In general, for all the parameters in TABL, we
observe a similar pattern where both parameters' means
and variances converge to certain (different) levels. The
posterior distribution is representative of the parameters'
uncertainty after observing the data, that in VOGN's vari-
ational setting is forced to be a Gaussian distribution. We
make use of the posterior's valuable information on the
parameters' relevance by conducting individual t-tests on
their significance. Very low p-values support the rele-
vance of all the TABL parameters and implicitly that the
network architecture is well scaled for the problem under
consideration. Following (1), the posterior distribution
builds the predictive one, a major focus in this paper.

5.3 | Predictive distribution

5.3.1 | Interpreting predictive probabilities

We approximate VOGN's predictive distribution with
Ns ¼ 50 draws from the posterior distribution. That is,
according to (2), we approximate the posterior distribu-
tion in (1) for a given input sample by 50 samples drawn
from it to capture the uncertainly associated with a fore-
cast ŷic given an unseen input xi and the data used in the
training phase. According to the decision criterion in (3),

FIGURE 3 Learning of the variational parameters for TABL's

mixing coefficient λ
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the forecast's class is given by the predicted class of maxi-
mum class probability. Note that, aligned with (1), the
predictive distribution is a distribution on class probabili-
ties pðyijxi,DÞ and not on the forecasts ŷic. Figure 4 pro-
vides insights into interpreting predictive probabilities
and explains pitfalls in uncertainty interpretation.

The bottom-right panel in Figure 4 depicts the box
plot of the class probabilities corresponding to Ns forward
passes for a certain input in the test set. For this example,
the distribution of the predicted classes is unarguably
leaning towards Class 3, while across the 50 samples, the
class probabilities for Classes 1 and 2 are similar. The
bottom-left panel depicts the corresponding kernel proba-
bility density functions of the class probabilities, along
with their per-class average. That is, predicted probabili-
ties for the sample input in Figure 4 are pðyijxi,DÞ¼
0:323,0:324,0:352½ � for Classes 1, 2, and 3, respectively. A
complete analysis of the joint distribution of pðyijxi,DÞ,
here out of scope as it would likely involve a dependence
modeling step through copulas that perhaps is not gen-
eral. Yet the extracted mean values are quite informative.
In particular, we see that the probability of Class 3 is cer-
tainly higher than those of other classes, even though not
overwhelming. That is, the predictive distribution under-
lines a scenario of rather high uncertainty. Indeed, an
investor who, for example, invests in an asset expecting
its price to increase would, on average, observe an actual
increase in the asset value with a 35% probability. This is
the correct interpretation upon the predictive probability
pðyijxi,DÞ. However, upon applying the classification cri-
terion (3), the conclusions might be quite misleading.
The top-right panel in Figure 4 depicts per-sample class
probabilities, where big-sized points represent classes of
maximum probability. For 43 samples out of 50, the class
of maximum probability is 3. For three samples
out of 50 is Class 1, and for three samples out of 50 is

Class 2. By applying (3), we would classify 86% of the
samples in Class 3, as depicted by the histogram in Panel
4 of Figure 4. The histogram misleadingly covers a situa-
tion of high uncertainty with a quite overwhelming fre-
quency observed for Class 3: If we were to draw the
forecasts according to the joint distribution in Panel
2, we would observe, on average, only about 35% of the
samples in Class 3.

The availability of the predictive distribution in
Bayesian DL frameworks is certainly the most remark-
able aspect with respect to non-Bayesian approaches such
as ADAM. Indeed, continuing with the above example,
ADAM would not capture any uncertainty in the pre-
dicted label. An investor following ADAM's forecasts
(whose performance is comparable with that of VOGN,
see Section 5.5) would not be able to capture the high
degree of uncertainty that VOGN unveils. Needless to say
that the impact of uncertainties on whatever trading
strategy an investor adopts is quite significant. For exam-
ple, an investor might choose to trade based only on pre-
dictions associated with relatively low uncertainty or take
well-informed actions to account for the actual possibility
that the direction of the price movement is opposite to
the predicted one. On the other hand, ADAM's forecasts
are incapable of addressing the low 35% probability
chances of a price increase, leaving the investor
completely blind about the actual probability of a price
increase and the perhaps adverse downward 32%-likely
movement.

By inspecting a large number of examples and the
overall statistics on class probabilities, we observe that
the case studied in Figure 4 is somewhat atypical, in the
sense that 35% of the predicted probabilities for the
maximum-probability class are in the lowest quantiles of
predicted probabilities for the prediction's class; see
Section 5.3.2. Typical values are about 50%: This still

FIGURE 4 Class

probabilities and forecasts for a

typical test example. Top-left,

Panel 1: box plots of class

probabilities. Bottom-left, Panel

2: kernel density estimates and

means of class probabilities.

Top-right, Panel 3: class

probabilities per class,

highlighting those of maximum

probability. Bottom-right, Panel

4: histogram of forecasts' labels.
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results in a wildly uncertain general scenario. Such rele-
vant uncertainty for operational scenarios and real-life
decision processes is entirely left unaddressed by ADAM
and non-Bayesian methods. Whereas the decision crite-
rion (3) does provide a feasible and practical way to con-
struct forecasts, average class probabilities on repeated
forward passes (i.e., predictive distributions) are the truly
informative element about forecasts' uncertainty, inacces-
sible to non-Bayesian DL approaches.

5.3.2 | Predictive probability for the
maximum-probability class

For the sample input in Figure 4, the true label corre-
sponds to Class 1. In general, for wrong and correct clas-
sifications, the score variation in the class of maximum-
probability class can be large. Table 1 reports some statis-
tics on the class of maximum probability (Rank 1, denoted
by for an input xi with p̂ð1Þi ), class of second-highest maxi-
mum probability (Rank 2, p̂ð2Þi ) and on the remaining
class (Rank 3, p̂ð3Þi ), along with the difference between
the first two ranks, for correctly and missclassified labels.
For correct classifications, the average (median) predic-
tive probability on Rank 1 classes is 55% (51%), while for
the missclassified ones 51% (50%), the average distance
between the predictive probabilities on classes of Ranks
1 and 2 is, respectively, 30% (25%) for correct classifica-
tions and 22% (20%) for missclassifications. In both cases,
we do observe samples of probability Rank 1 with a cor-
responding predictive probability as high as 100% and as
low as 33%. Ideally, we would like to observe (i) high
Rank 1 predictive probabilities for correct classifications,
(ii) quite lower values for missclassified samples, and
(iii) a neat separation between p̂ð1Þi and p̂ð2Þi for correctly

classified samples. This is the case, but the magnitudes of
the differences are small. Table 1 underlines that the pre-
dictive uncertainty in the forecasts is consistent and
homogeneous whether the labels are eventually correct
or wrong, with p̂ð1Þi consistently being of about twice p̂ð2Þi

and p̂ð2Þi . The observed differences in Rank 1 and Rank
2 predictive probabilities are, on average, as little as 7.5%
between correctly and misscorrectly classified labels,
while p̂ð1Þi differs by only 3.4%.

Accordingly, the empirical survivor function (ESF)
for correctly classified labels in Figure 5 slightly domi-
nates the one for missclassified labels. Importantly,
Figure 5 unveils that the probability of observing
p̂ð1Þi >0:6 is only about 10% to 15%. This means that mild-
to-low uncertainties on the maximum-probability class
are quite rare, and high confidence is even rarer (7% to
9% for p̂ð1Þi >0:9). However, the ESFs do not cross each
other, and the difference is positive. For the same
(or greater) level of confidence, the number of correctly
classified samples is, on average, 5% (but up to 9%) higher
for the correctly classified samples than the missclassified
ones (difference curve in Figure 5).

5.3.3 | Distribution of the scores

To better understand the uncertainties arising from the
predictive distribution, Figure 6 depicts the (kernel) den-
sity estimates of the scores across correctly and missclas-
sified labels. The top row in Figure 6 refers to correctly
classified samples (TPs). For TPs, scores are well sepa-
rated in the sense that the distribution of class one is well

TABLE 1 Statistics on VOGN's predictive probabilities.

Class probability
Difference

p̂ð1Þ
i p̂ð2Þ

i p̂ð3Þ
i p̂ð1Þ

i � p̂ð2Þ
i

Correctly classified labels

Mean 0.550 0.254 0.196 0.296

Median 0.515 0.262 0.220 0.250

Min 0.335 0.000 0.000 0.000

Max 1.000 0.478 0.330 1.000

Missclassified labels

Mean 0.516 0.295 0.189 0.220

Median 0.500 0.296 0.204 0.196

Min 0.335 0.000 0.000 0.000

Max 1.000 0.479 0.330 1.000

FIGURE 5 Empirical survivor function of p̂ð1Þi for correct

classifications ðESF1Þ and misscorrect ðESF0Þ, along with their

difference.
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detached and distinguishable from the others. Interest-
ingly, when the model is correct, the uncertainty in Clas-
ses 2 and 3 is much lower than in the stationary-price
case. This stands for the existence of clear patterns in the
features that are truly indicative of the direction of the
price movement, driving predictive probabilities close to
1 (i.e., uncertainty close to zero). When the model is cor-
rect about Class 1 assignments, its confidence is some-
what lower and the densities of the scores for whatever
change in price direction generally overlap. Confidence
in stationary prices is about 0.5, while the remaining 0.5
is equally spread across Classes 2 and 3.

Indeed, by only focusing on the missclassified labels
(FPs) in the bottom row in Figure 6, we find further evi-
dence that when the model does not correctly classify a
stationary mid-price, its predictions are about equally
spread among a price increase and a price decrease,
showing that in this case, there is no intrinsic bias in the
model parameters leaning towards a certain class; the
model is simply wrong, and forecasts are flip coins on
Classes 2 and 3. On the other hand, the bias towards the
majority class is consistent for FPs in Class 2 or 3, and
the scores for the true label are always those of lowest
means. The same distribution on Class 1 TPs almost iden-
tically replicates on Class 2 and 3 FPs: The model inter-
prets certain patterns in the features as remarkably
nonindicative of the true Class 2 and 3 labels, causing an
overflow of low scores for both of them. The relevant
probability mass, excluded from Classes 2 and 3, is trans-
ferred to Class 1 following a distribution being very close
to that observed on Class 1 TPs. This suggests that the
model well distinguishes patterns indicative of Classes
2 and 3, and when these are absent, Class 1 classification
is enforced. In this regard, see Section 5.3.4.

Tails in FPs for Classes 2 and 3 constitute interesting
cases of very high Class 3 and Class 2 predictive probabil-
ities corresponding to wrong assignments in Classes
2 and 3. Patterns indicative of Classes 3 and 2 are causing
false positives in Classes 2 and 3: (Rarely) typical features
for Classes 3 and 2 are observed for mid-prices, eventu-
ally moving in the opposite direction. These real-surprise
elements in the order flow are perhaps aligned with its
stochastic nature.

5.3.4 | Model learning

There is a conclusive important insight on the model's
learning within Figure 6. In particular, the B-TABL (and
TABL, as the following applies to the scores from all the
optimizers) architecture is learning how to classify
increases and decreases in mid-prices but not stationary
prices. The distribution of Class 1 scores is the very same
for the TPs in Class 1 and the FPs in Classes 2 and 3. That
is, a distribution is placed over the scores in Class 1 and
is updated only if relevant features for Class 2 or Class
3 decisions are detected. Indeed, when the model is not
capable of correctly classifying Classes 2 and 3, the distri-
bution of the scores on Classes 2 and 3 is roughly the
same. In fact, the three plots in Figure 6 are almost iden-
tical at a visual inspection. That is, unless there is robust
evidence of an upward or downward price movement
very likely corresponding to correct classification, the dis-
tribution of Class 1 scores as FPs for Classes 2 and 3 is
the same. When the model truly does not detect any rele-
vant information to discern whether the price is moving,
movements are classified as stationary, and the very same
distribution observed in Class 1 TPs is adopted. This

FIGURE 6 Distribution of

VOGN's predictive probabilities.

Top row: distribution of the class

probabilities for correctly

classified labels. Bottom row:

distribution of the class

probabilities for missclassified

labels. Labels on the x axis are in

correspondence of class-

probability averages, also

overprinted in the top-left

corners.
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means that the density for TPs in Class 1 is not actually
learned from features that characterize this class. The
density that is observed for Class 1 labels is to be inter-
preted as the one that best improves the validation loss
when the model is not detecting clear signals of future
price movements. This is further supported by the ana-
lyses in Sections 5.4 and 5.6 and Appendix B1.

5.4 | Labels' forecasts

Non-Bayesian methods such as ADAM and SGD provide
single forecasts for a trained model. VOGN and MCD,
due to the random sampling from the posterior and the
dropout layer, lead to different foretasted labels at each
forward pass. As noted in Section 5.3.1, the distribution
of the scores provides a misleading interpretation of fore-
casts' uncertainties. However, scores embed rich informa-
tion for understanding the behavior of the labels' forecast
and the underlining label-assignment mechanism. Again,
the distribution of labels' forecasts analyzed in this
section is based on Ns ¼ 50 draws. For VOGN, 96% of
drawn labels are all assigned in the same class, 4% to two
classes, 0.3% to three. Among the inputs whose labels'
forecasts are across two classes, the predictive probability
for the maximum class is 42%, and the difference
between the predictive probability on the two classes is,
on average, 3% (max. 36%, min. 0%). Forty-five percent
of these inputs correspond to true labels in Class 1, and
for 98%, Class 1 represents one of the two classes where
the labels distribute, while the others are Classes 2 and
3 with 50% frequency. That is, the model appears incon-
sistent in labeling stationary prices over positive or nega-
tive movements but is very consistent in labeling the
latest two. Sixty-one percent of the samples with fore-
casts across two labels show, however, at least 80% of the
50 draws in the same class, while very ambiguous inputs
account for only 6%, with a difference in the number of
samples in the two classes not exceeding three. We could
provide analogous information for the 0.3% of the sam-
ples whose forecasts' labels are observed over three clas-
ses; rather, we point out that the predictive probability
on the three classes is on average 31%, 35%, and 35%,
corresponding indeed to the most uncertain classifica-
tions. The above numbers suggest that typically the con-
sistency in the foretasted labels is remarkable, that is,
that the modal value is overwhelming. This means that a
single draw from the network would be very likely to
equal the modal value. Indeed by randomly selecting
with replacement 500 output vectors of labels from the
50 draws available for each test example, on average,
99.36% of the labels correspond to theirs distribution
modal value.

Therefore, in the following analyses, we include per-
formance metrics based on modal forecasts as represen-
tative of the typical performance observed over a single
forward pass. For completeness, we also consider met-
rics based on means and medians of the Ns labels,
rounded to the closest class' integer index. We omit the
above details for MCD but underline that 72% of the
labels' forecasts are observed over three classes: a remark-
able difference. This is due to the fact that on a single
TABL layer, the regularization usually provided by drop-
out causes a random-like assignment of the output
classes.

5.5 | Performance measures

Table 2 reports the performance of different Bayesian
and non-Bayesian optimizers for the (B)-TABL architec-
ture. With respect to the test set, Table 2 includes microa-
verages, macroaverages, and weighted macroaverages as
synthetic measures for evaluating the overall perfor-
mance of the different classifiers across multiple classes.
Microaverages are constructed by summing the true-/
false-positive/-negative rates individually for each class,
before applying the definition of the specific performance
measure under consideration. On the other hand, macro-
averages refer to simple averages of the individual perfor-
mance measures computed for each class. By accounting
for the relative sample frequency of each class in taking
averages, we construct weighted macroaverages. Note
that accuracy and microaverages for precision, recall, and
F1 score are all equal and reported under a single col-
umn. Although macroaverages are the performance mea-
sures usually reported, as our sample is highly
imbalanced (67% of the test samples in the stationary
class and equally distributed across the remaining two
classes), alternative multiclass statistics are here relevant.
Macroaverages weight each class equally by computing
the average of the metrics computed independently for
each class. As a consequence, nondominant-class' metrics
might mislead the conclusions on the overall perfor-
mance of the classifier. By accounting for class weights,
weighted macroaverages naturally alleviate this issue. On
the other hand, microaverages, by summing the true-/
false-positive/-negative rates individually for each class,
aggregate the contributions of all classes to compute aver-
age metrics. By weighting each sample equally, microa-
verages apply well to imbalanced problems where, from a
qualitative standpoint, there are no differences in the
importance of each class. In our context of imbalanced
classes and multiclass task, the preferred metrics are the
F1 score, which embeds both precision and recall, and
microaverages.
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For the VOGN optimizer, results are divided into
three panels. The upper one reports summary statistics
for individual metrics computed for each of the Ns ¼ 50
simulated outputs, that is, in a sample-by-sample fashion.
Following the discussion in Section 5.4, the second panel
addresses the possibility of constructing labels' forecasts
based on group statistics extracted from the Ns labels.
These correspond to forecasts' labels sample mean,
median, and mode. The former statistics requires round-
ing to the nearest integer to be feasible, yet in our sample,
rounding applies to only 3.5% of the per-example labels'
means, to 0.26% of medians, and never to modes. The
third panel reports the metrics corresponding to
predictive distribution, i.e., by considering the class of
maximum predictive probability, computed under the
standard Bayesian averaging approach and, alternatively,
by considering median probabilities as a robust alterna-
tive to possible severe outliers.

For VOGN, predictive's distribution results are consis-
tently the highest ones. However, up to three decimals,
there are generally no differences between the three
panels. Performance measures for median and modal
forecasts largely overlap and equal predictive's distribu-
tion metrics. Slightly worse results are obtained by con-
sidering (rounded) forecasts' averages. The former aligns
with the sample-by-sample centrality measures and pre-
dictive distributions' ones. This also suggests that for fore-
casting purposes, a single draw from the posteriors
(whose corresponding label would approximate the fore-
casts' median label very closely) would lead to results per-
fectly aligned with the predictive's ones (implying a
considerable computational advantage).

Among the other optimizers, ADAM stands out as
the most valid alternative. Expect on precision, it does
not perform better than any VOGN's metrics. Interest-
ingly, metrics' minima in the top panel are always

TABLE 2 Performance measures for the multiclass classification task.

Any
Precision Recall F1 score

Micro Macro Weighted Macro Weighted Macro Weighted

VOGN sample-by-sample

Mean 0.774 0.736 0.763 0.592 0.774 0.636 0.751

Median 0.774 0.736 0.763 0.592 0.774 0.636 0.751

Min 0.772 0.730 0.761 0.589 0.772 0.633 0.749

Max 0.776 0.743 0.766 0.596 0.776 0.638 0.752

VOGN based on forecasts' function

MeanðŶ iÞ 0.772 0.731 0.761 0.591 0.772 0.633 0.749

MedianðŶ iÞ 0.774 0.736 0.763 0.592 0.774 0.636 0.751

ModeðŶ iÞ 0.774 0.737 0.763 0.592 0.774 0.636 0.751

VOGN predictive distribution

Ŷ pred 0.774 0.737 0.763 0.592 0.774 0.636 0.751

Ŷ pred (med.) 0.774 0.737 0.763 0.592 0.774 0.636 0.751

Other optimizers

ADAM 0.772 0.767 0.770 0.570 0.772 0.619 0.741

MCD (mea.) 0.581 0.450 0.598 0.460 0.581 0.454 0.588

MCD (pred.) 0.638 0.500 0.630 0.492 0.638 0.495 0.634

SGD 0.687 0.556 0.660 0.505 0.687 0.522 0.667

Differences

Min—ADAM 0.0% �3.8% �0.9% 1.8% 0.0% 1.3% 0.7%

Ŷ pred—ADAM 0.2% �3.1% �0.7% 2.2% 0.2% 1.6% 0.9%

Ŷ pred—MCD (pred.) 13.6% 23.7% 13.3% 10.0% 13.6% 14.0% 11.7%

Ŷ pred—SGD 8.7% 18.1% 10.4% 8.7% 8.7% 11.4% 8.3%

Note: Sample-by-sample refers to metrics computed for each of the Ns samples. Ŷ pred (med.) refers to forecasts obtained from the predictive distribution based
on the sample median (instead of sample average (2), as for Ŷ pred). MCD entries refer to sample-by-sample averages. MCD (pred.) refers to forecasts based on
the predictive distribution. Top metrics are reported in bold, excluding the row referring to the sample-by-sample maximum (Max row).
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higher than ADAM's metrics (except for precision,
where neither the maximum reaches ADAM's perfor-
mance). This provides significance to the results in
favor of VOGN as even the most unfortunate posterior
sampling shows superior performance than ADAM, up
to 1.8%. Concerning VOGN's predictive distribution, the
observed improvements in performance with respect to
ADAM are slight yet significant: the Bayesian optimizer
does not provide worse results than the widely adopted
ADAM (except for precision), and it enables the predic-
tive analysis of forecasts' uncertainty described in
Section 5.3. Lastly, MCD and SGD do not seem to be
competitive for the prediction task under analysis. In
Appendix A1, we provide analogous stock-specific
results.

Our following considerations concern the single-class
problem classification. Despite the above multiclass task
where each label is classified across three classes, by the
single-class task, we mean a binary classification problem
where the true class is specified in advance, and the other
classes constitute the negative class. Remind that the
model is calibrated for the multiclass task: single-class
metrics could be improved by recalibrating the model
specifically for forecasting a specific price-change
direction.

A first useful analysis is that of inspecting the distri-
bution of labels assigned to the true class; see Figure 7.
The plot suggests a positive bias towards Class 1 and a
negative bias in the labels frequencies in other classes. As
confirmed later, the first is due to the large number of
FPs for class one, the latter is due to low TP rates for
Classes 2 and 3. Note that the differences between the
frequencies based on VOGN's modal prediction and pre-
dictive distribution are irrelevant, while for MCD, these
are minor and favor predictions based on the predictive
density. In the following, we will focus only on results
resulting from predictive probabilities. From the analyses
in Appendix B1, we find that MCD alignment with the
sample frequencies is not indicative of a genuine satisfac-
tory performance: For Class 1 (Classes 2 or 3), this arises
from a lower (comparable) true-positive rate (TPR) and

comparable (lower) false-positive rate (FPR) with respect
to the other optimizers. See, for example, Figure B1
therein.

From Table 3, it appears that VOGN and ADAM have
quite heterogeneous performances based on the measure
and class under consideration. In particular, a conclusion
on whether it is advisable to use VOGN or ADAM, in
general, cannot be made. Overall, we observe a tendency
for ADAM to perform better in terms of precision and
recall, thus on TPs therein involved. Yet when the two
are considered jointly (harmonic mean), the F1 score
favors VOGN. VOGN furthermore improves the detection
of TNs involved in computing accuracy and of course
enables the uncertainty analyses based on the predictive
distribution.

5.6 | ROC and calibration curves

For our multiclass classification problem, we consider
receiver operating characteristic (ROC) curves for the
predicted classes. In cases where there are no disparities
in the cost of false negatives as opposed to false positives,
the ROC is a synthetic measure of the quality of models'
prediction, irrespective of the chosen classification
threshold. To construct ROC curves, we discard ambigu-
ous examples by thresholding each validation input's soft-
max output and mark the remaining test examples as
correctly or incorrectly classified, from which TRP and
FPR rates are computed. We apply following thresholds
f0:05,0:1,0:15,…,1g.

Figure 8 depicts ROC curves computed from micro
and macro FPR and TRP rates for both VOGN and
ADAM. For VOGN the figure includes the 95% interval
extracted from the TRP variation across the forecast sam-
ples along with the main solid line based on the predic-
tive distribution. The multiclass microaverages and
macroaverages for VOGN's curves are dominating. This
indicates that larger predicted scores are increasingly
more tightly associated with TP than FP, for VOGN more
than for ADAM, and that across the whole FPR domain

FIGURE 7 Overall distribution of labels'

frequencies across the classes. The actual

sample-data distribution is meant to be used as a

benchmark. Bars display for each class and

optimizer the fraction of labels correctly

assigned to it (TPs)
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scores implied by VOGN are more conclusive (in terms of
TPs) for the true label.

A commonly reported measure is the FPR at 95%
TPR, which can be interpreted as the probability that a
negative example is misclassified as positive when the
TPR is as high as 95%: for macroaverages we compute
88% and 90%, and for microaverages 76% and 77%, for
VOGN's forecasts based on the predictive distribution
and ADAM, respectively. To assess how well calibrated a
model is, CC compares how well the true class frequency
determined by a classifier is calibrated to the true fre-
quency of the positive class, for binned predictions
(we take 20 bins). The CC curve of a perfectly calibrated
model would lie on the diagonal curve, while overconfi-
dent predictions would generally result in CC above the
diagonal.

CCs in the left panel of Figure 8 underline a compara-
ble performance on microaverages and macroaverages.
A remarkable S-shape occurs at lower predicted

probabilities. This means that the overall satisfactory sta-
tistics in Table 4 arise from a balance between the noni-
deal scenario where the models are either too much
overconfident (predicted probabilities around 20%) and
too much underconfident (around 50%). That is, the
underlying scores shift from associating too little proba-
bility to the true label to way too much. At high scores,
both VOGN's and ADAM's microaverage is quite aligned
to the diagonal, yet macroaverages are overconfident sug-
gesting high FPs for the dominant Class 1.

ROC and CC plots for the single-class task are found
in Figure 9. From the ROC panel, we observe that VOGN
outperforms ADAM in classifying labels of Classes 1 and
2, and it has a slightly lower performance on Class 3. As
for Table 3, ADAM's metrics are higher than VOGN's for
Class 3, determining improved TPRs. CCs for Classes
1 and 2 are quite satisfactory, and the same comment
applies as for the CCs in Figure 8. Remarkable is however
the U-shape of the curves for Class 1: high Class

TABLE 3 Performance measures

for the single-class classification task.
Precision Accuracy

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

VOGN 0.789 0.721 0.699 0.795 0.876 0.876

VOGN (pred.) 0.789 0.722 0.700 0.795 0.876 0.876

ADAM 0.774 0.740 0.789 0.789 0.868 0.888

MCD 0.741 0.314 0.295 0.633 0.763 0.765

MCD (pred.) 0.757 0.381 0.361 0.684 0.794 0.798

SGD 0.759 0.476 0.433 0.725 0.826 0.824

Recall F1 score

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

VOGN 0.950 0.436 0.391 0.862 0.544 0.501

VOGN (pred.) 0.950 0.436 0.391 0.862 0.544 0.502

ADAM 0.969 0.334 0.407 0.861 0.460 0.537

MCD 0.698 0.340 0.342 0.719 0.327 0.316

MCD (pred.) 0.780 0.347 0.349 0.768 0.363 0.355

SGD 0.864 0.314 0.337 0.808 0.378 0.379

Note: Bold values denote the highest value in each column (to simplify the visualization of the results).

FIGURE 8 ROC curves (left panel) and

calibration curves (right panel). Solid lines:

VOGN (predictive), dashed lines: ADAM, dotted

lines: 95% region for VOGN's Calibration curves

(sample-by-sample). Legends in the ROC panel

apply to CCs too.
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1 probabilities are overconfident and misleading as there
are no samples in Class 1 at all when models' probabili-
ties for Class 1 are about 1 (confirming the inference
from micro-CC and macro-CC in Figure 8). Aligned with
the discussion in Section 5.3.4, models are truly learning
the classification of Classes 2 and 3. For samples in Clas-
ses 2 and 3 which however do not display typical Class
2 or 3 features, scores associated with Classes 2 and 3 are
about zero, and all the probability mass is allocated on
Class 1. In fact, out of the (only) 20 Class 1 probabilities
higher than 0.75, the 75% of them correspond to FNs for
Classes 2 or 3. This might be indicative of inadequacy in
networks' architecture in uncovering deeper patterns in
the data that could address Class 2 and 3 classification or
nonstationarity elements of true and atypical surprise not
observed in the training set or perhaps not learnable at
all due to their randomness.

Table 4 reports the area under the ROC (AUROC),
the expected calibration error (ECE), and the L2-norm
distance (ECD) between the CCs and the diagonal line
and the CCs. High AUROC, small ECD, and small
(in absolute value) ECE are preferred. Results are aligned
with the earlier plots and confirm the above comments.
The low ECEs for MCD are not to be interpreted as evi-
dence of improved calibration, as they arise from rather
symmetric S-shaped CCs, that however largely deviate
from the diagonal (see ECDs).

6 | CONCLUSION

We proposed a first econometric time-series application
with BNNs. Our task focuses on predicting the direction
of mid-price changes in modern LOB markets. By

TABLE 4 Measures related to ROC

curves and CCs.
Single-class task Multiclass task

Class 1 Class 2 Class 3 Micro Macro

Area under the ROC curve

VOGN (pred.) 0.716 0.739 0.722 0.858 0.726

ADAM 0.697 0.665 0.742 0.851 0.702

MCD (pred.) 0.672 0.649 0.657 0.770 0.659

SGD 0.691 0.660 0.656 0.790 0.669

Expected calibration error

VOGN (pred.) �0.107 �0.014 �0.016 0.035 �0.046

ADAM �0.104 0.043 0.033 0.040 �0.009

MCD (pred.) �0.051 �0.016 �0.044 0.021 �0.039

SGD 0.153 �0.081 �0.072 �0.021 �0.032

Expected calibration distance

VOGN (pred.) 0.144 0.008 0.009 0.018 0.018

ADAM 0.146 0.021 0.018 0.018 0.030

MCD (pred.) 0.181 0.028 0.012 0.019 0.023

SGD 0.039 0.028 0.027 0.024 0.018

Note: Bold values denote the highest value in each column (to simplify the visualization of the results).

FIGURE 9 ROC curves (left panel) and

calibration curves (right panel). Solid lines:

VOGN, dashed lines: ADAM, dotted lines: 95%

region for VOGN's calibration curves. Legends

in the ROC panel apply to CCs too.
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utilizing a state-of-the-art optimizer for Bayesian learning
and adopting the suitable TABL capable of fully exploit-
ing the ultra-high-frequency and complex multidimen-
sional nature of the data, we obtain promising results
showing that Bayesian methods in DL are feasible, attrac-
tive, and valuable for economic applications.

With a number of detailed analyses, we compare sev-
eral optimizers on the same forecasting exercise and
unveil that the Bayesian VOGN optimizer provides, on a
general level, the best performance metrics on both mul-
ticlass and single-class classification tasks. Yet VOGN's
performance is comparable with the well-known and reli-
able optimization scheme provided by ADAM. At the
same time, Monte Carlo dropout and SGD methods do
not seem to be suitable for the task under analysis. Fur-
thermore, we extensively interpret and discuss the
results, grasping important insights into the model's
learning and decision process. The unique feature of
Bayesian methods is that of providing posterior and pre-
dictive distributions, leading to estimates of the uncer-
tainties associated with the forecasts. The paper discusses
how to use and interpret predictive probabilities, provid-
ing insights into their implication in the decision process.
Following our analysis, and besides promoting further
research and applications involving Bayesian DL
methods, future research might explore to which extent
posterior probabilities lead to better uncertainty-informed
trades, for example, by applying and comparing Bayesian
and non-Bayesian models for constructing actionable
trading strategies, verified with robust back-testing
procedures.
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APPENDIX A: PERFORMANCE ON INDIVIDUAL
STOCKS

All the models are trained in an end-to-end manner
over stacked features and labels corresponding to five
stocks. As a sanity check, we report in Table A1 the
performance for the multiclass task for each of them.

We observe metrics aligned in magnitudes with the
overall ones in Table 2, confirming a qualitative con-
sistency in the data across different stocks, the reliabil-
ity of the results, and the robustness of the methods.
Standard deviations in the metrics are lowest for
VOGN, proving a firmer consistency in the results and
perhaps a better generalization ability to unseen
market data.

TABLE A1 Performance measures for the multiclass classification task on different stocks.

Any
Precision Recall f1-score

Micro Macro Weighted Macro Weighted Macro Weighted

Stock: Kesko Oyj, ISIN: FI0009000202

VOGN (pred.) 0.776 0.732 0.764 0.594 0.776 0.636 0.753

ADAM 0.776 0.771 0.774 0.574 0.776 0.624 0.746

MCD (pred.) 0.638 0.497 0.632 0.491 0.638 0.494 0.635

SGD 0.690 0.558 0.663 0.507 0.690 0.524 0.671

Stock: Outokumpu Oyj, ISIN: FI0009002422

VOGN (pred.) 0.743 0.663 0.730 0.591 0.743 0.616 0.730

ADAM 0.667 0.656 0.738 0.602 0.667 0.595 0.685

MCD (pred) 0.607 0.469 0.600 0.447 0.607 0.451 0.600

SGD 0.659 0.527 0.652 0.518 0.659 0.522 0.655

Stock: Rautaruukki Oyj, ISIN: FI0009003552

VOGN 0.748 0.669 0.735 0.599 0.748 0.624 0.735

VOGN (pred.) 0.747 0.669 0.735 0.599 0.747 0.624 0.735

ADAM 0.675 0.662 0.744 0.613 0.675 0.605 0.692

MCD (pred) 0.607 0.470 0.601 0.450 0.607 0.453 0.600

SGD 0.663 0.534 0.658 0.527 0.663 0.530 0.660

Stock: Sampo Oyj, ISIN: FI0009003305

VOGN (pred.) 0.743 0.663 0.730 0.592 0.743 0.617 0.730

ADAM 0.669 0.658 0.739 0.605 0.669 0.598 0.686

MCD (pred) 0.608 0.467 0.599 0.446 0.608 0.451 0.600

SGD 0.659 0.526 0.653 0.519 0.659 0.522 0.655

Stock: Wärtsilä Oyj, ISIN: FI0009000727

VOGN (pred.) 0.747 0.666 0.735 0.600 0.747 0.625 0.736

ADAM 0.675 0.661 0.743 0.613 0.675 0.604 0.692

MCD (pred) 0.615 0.476 0.608 0.457 0.615 0.461 0.609

SGD 0.663 0.532 0.659 0.527 0.663 0.529 0.661

Standard deviation

VOGN (pred.) 0.014 0.030 0.014 0.004 0.014 0.008 0.010

ADAM 0.047 0.050 0.015 0.016 0.047 0.011 0.026

Note: Bold values denote the highest value in each column (to simplify the visualization of the results).
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APPENDIX B: FURTHER DETAILS ON THE
SINGLE-CLASS CLASSIFICATION TASK

A number of further considerations can be drawn by ana-
lyzing the details of correct and misscorrect assignments
for the single-class classification task. The top-left panel
in Figure B1 displays a slightly higher TPR rate for
ADAM than for VOGN. For all the optimizers, FNs are
equally distributed across Classes 2 and 3, suggesting that
missclassifications of stationary-price movements are due
to patterns in the features that are truly atypical, neither
representative of Class 2 nor 3. Whereas TPRs for Class
1 are generally overwhelming with respect to FNRs, the
opposite holds for Classes 2 and 3. For all the true labels
in Class 2 or 3, only 35% of them are detected in such
classes (TPs), while more than 50% are classified as Class
1 (FPs). The small fraction of FPs for Classes 3 and
2 under the true labels being 2 and 3 underlines that the
model confuses price increases (decreases) with station-
ary prices but not with price decreases (increases). On
the other hand, in the bottom row of Figure B1, we find
that TNRs for Classes 2 and 3 are very high for all the
models, indicating that the models unveil patterns in the
features that are truly indicative of Classes 2 and 3, that
when not detected lead to high TNRs. For Class

1, however, TNRs are skimpy, and FPs are equally dis-
tributed across Classes 2 and 3, underlying the difficulty
the model has in detecting features and patterns in the
data truly indicative of the stationary-price case. Along
with the observations in Section 5.3.4, this provides fur-
ther evidence that the models truly learn a classification
rule for upward and downward price movements only.

A relevant metric for actionable trading decisions is
the false discovery rate (FDR). FDR indicates the fraction
of false discoveries (FP) over the positives (FP and TP),
approximating the probability that a foretasted price
direction is a FP. FDR quantifies the risk of undertaking
a trading decision (e.g., placing a sell order based on a
price-decrease forecast) based on a signal that turns out
to be false (price increases). We observe that for all the
optimizers the FDR is about 30% in all three classes and
that for VOGN and ADAM the difference is always well-
beyond 1%. This corresponds to a great achievement
upon a random classifier (50% FDR), yet for business
operations, it still represents a substantial risk. FDR is an
aggregate measure: For a given example, labels' uncer-
tainties are captured by predictive probabilities.

Lastly, we investigate whether VOGN's predictive dis-
tribution is capable of quantifying different uncertainty
levels for correctly and missclassified labels. Indeed, a
considerable difference in predictive probabilities

FIGURE B1 Top row: True-positive rates (TPRs) and distribution of the false negatives. TRPs correspond to the heights of the lowest

bars, while false-negative rates (FNRs) are extracted as their complement to one. Bottom row: True-negative rates (TNR) and distribution of

the false positives. FNRs correspond to the heights of the lowest bars, while false-positive rates (FPRs) are extracted as their complement to

one. Forecasts for VOGN and MCD are based on the predictive distribution. Classes 1, 2, and 3 are, respectively, denoted by blue, red, and

yellow colors.
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between TP and FP as much as TN and FN would be
desirable. Low uncertainties associated with, for example,
TPs or TNs, would certainly indicate that the predictive
distribution is, in fact, well calibrated, being confident on
the assignments that eventually turn out to be correct.

The first three columns in Table B1 refer to the pre-
dictive distribution of the class of maximum probability
p̂ð1Þi , that is, Class 1 would take as a forecast in an actual
forecasting exercise. As desirable, TPs for Classes 2 and
3 correspond to the predictive probabilities, thus to the
lowest uncertainties. However, predictive probabilities
are comparable for FNs and TNs and slightly higher for
FP. That is, low levels of uncertainties can be safely asso-
ciated with TPs, yet no insight can be grasped on FN, FP,
and TN. Enforcing the observations in Section 5.3.4, high
scores in Class 1 are associated with TN, indicating that
the uncertainty in Class 1 is low when actual forecasts
are in Classes 2 or 3. The last three columns in Table B1
refer to the predictive distribution over the true class.
This information is clearly unavailable in real settings
but useful for model back-testing. Across all the classes,
high probabilities are always associated with TPs
(desirable), lowest probabilities with TN (would be
desirable to observe high values), and about 50% of the
predictive probabilities to FP (indicating noteworthy
confidence in forecasts that are indeed missclassified).
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TABLE B1 VOGN's predictive

probabilities across correctly and

missclassified samples for the class of

maximum probability and the true

class, that is, p̂ð1Þi and p̂ic with c being

the true label class, respectively.

p̂ð1Þ
i p̂ic

True class: Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

TP 0.495 0.808 0.809 0.495 0.808 0.809

FN 0.497 0.513 0.524 0.324 0.253 0.245

FP 0.497 0.579 0.566 0.497 0.579 0.566

TN 0.793 0.520 0.523 0.159 0.236 0.226

Note: Bold values denote the highest value in each column (to simplify the visualization of the results).
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