
a

b

c

d

u
o
f
p
r
v
i
a
q
k

i

l
(

Ameta-learning configuration framework for graph-based similarity
search indexes
Rafael S. Oyamada a,∗, Larissa C. Shimomura b, Sylvio Barbon Jr. c, Daniel S. Kaster d

University of Milan, Milan, Italy
Eindhoven University of Technology, Eindhoven, Netherlands
University of Trieste, Trieste, Italy
University of Londrina, Londrina, Parana, Brazil

a b s t r a c t

Similarity searches retrieve elements in a dataset with similar characteristics to the input query
element. Recent works show that graph-based methods have outperformed others in the literature,
such as tree-based and hash-based methods. However, graphs are highly parameter-sensitive for
indexing and searching, which usually demands extra time for finding a suitable trade-off for specific
user requirements. Current approaches to select parameters rely on observing published experimental
results or Grid Search procedures. While the former has no guarantees that good settings for a dataset
will also perform well on a different one, the latter is computationally expensive and limited to
a small range of values. In this work, we propose a meta-learning-based recommender framework
capable of providing a suitable graph configuration according to the characteristics of the input dataset.
We present two instantiations of the framework: a global instantiation that uses the whole meta-
database to train meta-models and a dataset-similarity-based instantiation that relies on clustering
to generate meta-models tailored to datasets with similar characteristics. We also developed generic
and tuned versions of the instantiations. The generic versions can satisfy user requirements in orders
of magnitude faster than the traditional Grid Search. The tuned versions provide more accurate
predictions at a higher cost. Our results show that the tuned methods outperform the Grid Search
for most cases, providing recommendations close to the optimal one and being a suitable alternative,
particularly for more challenging datasets.
1. Introduction

Complex data (images, long texts, audios, etc.) are commonly
sed in pattern recognition, image retrieval, data mining, and
ther tasks. In general, complex data are represented through
eature vectors. Such vectors are composed of measures and
roperties extracted from the intrinsic content of the data and
etrieved using dissimilarity relations between pairs of feature
ectors [1]. Complex data retrieval relies on the so-called sim-
larity queries, which retrieve the dataset elements that satisfy
given similarity-based criterion. The most popular similarity
uery is the k-Nearest Neighbor query (k-NNq), which selects the
most similar elements to the query element [2].
In the literature, there are several access methods suitable for

ndexing complex data. These methods can be divided into four

∗ Corresponding author.
E-mail addresses: rafael.oyamada@unimi.it (R.S. Oyamada),

.capobianco.shimomura@tue.nl (L.C. Shimomura), sylvio.barbonjunior@units.it
S. Barbon Jr.), dskaster@uel.br (D.S. Kaster).
1

groups: tree-based [3–5], hashing-based [6–10], permutation-
based [11–15], and graph-based [2,16–22]. The methods in each
group can also be classified according to other features such as
dynamicity (static or dynamic), storage type (memory or disk),
and query answer exactness (exact or approximate). With the
advance of big data, new distributed access methods were also
proposed. Some of them are M-CAN [23] and M-Grid [24]. These
methods exploit a grid-like infrastructure to organize the objects
according to the similarity in different network nodes, making
it possible to run similarity queries on this infrastructure. In
this article, we focus on graph-based methods as recent works
have shown that this method type has often outperformed other
method types in approximate similarity search [13,19,25].

Widely used graph-based methods, such as the k-NNG [18] and
the NSW [19], are highly sensitive to user-defined parameters
for both construction and querying. The main construction pa-
rameter for these graphs is the number of neighbors an element
(vertex) should be connected to. A large value adds more edges
to the graph, generating shorter paths for the query algorithms to
traverse towards the most similar elements to the query element.

However, many neighbors also increase the memory footprint

https://doi.org/10.1016/j.is.2022.102123
https://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2022.102123&domain=pdf
mailto:rafael.oyamada@unimi.it
mailto:l.capobianco.shimomura@tue.nl
mailto:sylvio.barbonjunior@units.it
mailto:dskaster@uel.br
https://doi.org/10.1016/j.is.2022.102123

w
p
e
N
r
a
m
s
O
a
a
b
p
a

m
a
t
i
a
o
t
c
r

f
o
a
c
e
a
a
t
s
m
d
e
d

o
o
i
f
e
p
c
o
a
s
d
c
n

b
o
c
a
w
f

o
r

2

2

o
r
>
c
a
c

and the cost of vertex expansion during the search, as it is propor-
tional to the size of the vertex’s adjacency. Additionally, the query
algorithm may not find a path from the search starting vertex to
every vertex that is part of the answer depending on the graph
structure. A common approach to alleviate this problem is to ex-
ecute a given number of traversals, starting each execution from
a different vertex. The number of traversals, or restarts, is also a
sensible parameter as it allows to improve the result accuracy at
the cost of degrading the execution time. Setting suitable values
for these parameters is challenging as the parameters depend on
several factors, including the type of graph-based method, the
dataset properties, and the optimization goal (e.g., query time or
memory requirements).

Recent works showed that there are no default parameters for
idely used graph-based methods [22,26]. Aumüller et al. [26]
roposed a benchmark to understand better Approximate Near-
st Neighbor (ANN) algorithms, including graph-based methods.
evertheless, the different datasets’ experimental results do not
eveal a parameterization that performs well for every case. We
lso performed a deep behavior analysis of the main graph-based
ethods given their settings, regarding several metrics, such as
earch and construction time, recall, and memory usage [22].
ur results indicated that neither a graph type is the best for
ll cases nor a universally suitable parameterization exists for
ny graph type. The results also showed that there are trade-offs
etween construction and search algorithms according to their
arameters. However, no related work addressed the problem of
ssisted parameterization for these methods.
This article presents a novel intelligent approach for recom-

ending a suitable graph-based method and its parameters for
given dataset. The core contribution is based on the premise

hat it is possible to learn the relation between dataset character-
stics and indexing method parameters and search performance
chieved by nearest neighbor algorithms using a knowledge base
f similarity retrieval experimental results. Thus, it is possible
o predict how a search operation through a particular index
onfiguration would perform on a dataset and provide a proper
ecommendation for the case.

We design our solution based on meta-learning techniques,
ocusing on similarity searching on image databases and three
f the most widely used base graph-based methods to execute
pproximate queries. Our proposed meta-models relate dataset
haracteristics, graph-based methods, query and indexing param-
ters, and search performance (e.g., execution time and query
ccuracy). The recommendation is the graph-based method type
nd the construction and query parameters expected to achieve
he requested query accuracy in the shortest time or consume the
mallest memory for the given dataset. We also proposed tuning
ethods, which rely on sample experiments on the new dataset,
efined by a grid search over a small range of parameters, to
nhance the training set and generate meta-models tuned to the
ataset.
In a previous version of this work [27], we developed a rec-

mmender instantiation based on a global meta-model learned
n the whole repository of dataset instances collected. This work
ntroduces a novel instantiation by learning a set of meta-models
rom clusters of similar datasets. We noticed that separate mod-
ls for different classes of datasets provide superior prediction
erformance than a global model without losing generality. We
alled this strategy the dataset-similarity-basedmeta-learning rec-
mmendation, which consists of selecting the characteristics of
dataset that most impact the graphs’ performances to mea-

ure the similarity among datasets, identifying clusters of similar
atasets, and generating meta-models adjusted to each
luster. The meta-models provide highly precise predictions for

ew datasets with properties similar to the properties of the b

2

datasets in the cluster. The graph-based index recommendation
for a new dataset finds the cluster closest to the dataset and se-
lects the meta-models from the cluster for inferencing. The work
also extends our previous approach by expanding the dataset
characterization with additional measures related to the dataset
hardness for the nearest neighbor problem and applying a new
data augmentation technique based on interpolation.

We summarize our contributions as follows.

• Proposal of a general framework based on meta-learning for
parameterizing graph-based methods for similarity searches.

• Proposal of a variety of dataset descriptors for similarity
searching purposes.

• Proposal of the global and the dataset-similarity-guided
meta-learning instantiation strategies capable of finding
graph configurations that satisfy the user requirements more
precisely or faster than commonly employed strategies.

• Implementation of recommenders following the proposed
instantiation strategies, including variations that employ
fine-tuning of the meta-models using instances extracted
from the input dataset at recommendation time.

• Extensive experimental evaluation analyzing the behavior of
recommenders’ main building blocks, comparing them with
baselines and our global meta-model instantiation [27], and
providing details about the development of our proposals.

The dataset-similarity-based recommender instantiation out-
performed the global instantiation and other two baselines: (a)
the best general setup, i.e., the parameterization that achieves the
best performance for most datasets, and (b) the grid search proce-
dure, which is the most adopted method for parameter setting. In
general, the recommendations are comparable to those provided
by the grid search approach but demand orders of magnitude less
recommendation time as grid search requires building sample
graph-based indexes and executing queries on them. Neverthe-
less, the tuned instantiations, which are also costly, outperform
the grid search in most cases, often providing recommendations
close to the optimal one.

This article is organized as follows. Section 2 presents the
ackground to understanding our proposal, including an overview
f similarity searches, focusing on proximity graphs, the main
oncepts of meta-learning, metrics that measure how complex
specific similarity search problem is. Section 3 discusses this
ork’s research problem, exemplifying the impact of parameters

or graph-based methods, and presents related work. Section 4
describes our proposed framework to recommend graph con-
figurations for similarity searching, modeled as a meta-learning
problem. Subsequently, Section 5 describes the two instantia-
tion strategies of our framework: the global and the dataset-
similarity-based meta-learning approaches. Section 6 shows an
extensive experimental evaluation of the instantiation strategies,
and Section 7 presents an analysis of the supporting techniques of
ur proposal. Finally, we conclude this work and mention further
esearch in Section 8.

. Background

.1. Proximity graphs for similarity search

Similarity has been the basis of the management and retrieval
f complex data as these types of data do not follow a total order
elation to be compared through standard operators such as <,
, ≤, ≥. In the context of this work, complex data refer to data
ontaining rich content, such as images, videos, and audios, which
re usually represented by feature vectors extracted from the data
ontent. Feature vectors allow users to measure the similarity

etween pairs of complex data.

(
q
S
(
ξ
s
o
e
a
b
S

s
i
e
p
t
i
b
g
N
a

E
t
t
r
d
N
s
o
a
e
o
c
w
t
D
‘
g
t
a
v
b
i
w
f

n
s
s
c
s
h
w
h
l
e
i
s
a
l
a
t
e
p

t
a
w
w

2

b
i
t
u
t
m
t
t

s
G
V
G
s
a

∀

i
q
l
a
t
a
p

i
b
p
N
c
c
s
b
i

The two basic types of similarity queries are the Range query
Rq) and the k-Nearest Neighbor query (k-NNq) [1]. The Range
uery is defined as Rq(δ, sq, ξ) = {si ∈ S|δ(sq, si) ≤ ξ}, where
⊆ S is a dataset in complex data domain S, sq ∈ S is a reference

or query) element, δ is a distance function defined in S, and
∈ R+ is a distance threshold. This query retrieves all elements

i ∈ S whose distance to the reference element sq is less than
r equal to ξ . On the other hand, the k-NNq takes a given query
lement q ∈ S and returns the k closest elements to q from S ⊆ S
ccording to a distance function δ. The retrieved set Sk ⊂ S can
e expressed as kNNq(δ, sq, k) = Sk = {si ∈ S | |Sk| = k, ∀sj ∈

− Sk, δ(sq, si) ≤ δ(sq, sj)}.
A proximity graph is a data structure capable of performing

imilarity queries. It can be defined as a graph G = (V , E)
n which each pair of vertices (v, u) ∈ V is connected by an
dge e = (u, v), e ∈ E, if and only if u and v satisfy a given
roperty P , called neighborhood criterion. The neighborhood cri-
erion defines the type of the proximity graph. Such a property
s usually the dissimilarity between a pair of vertices, computed
y a distance function δ(u, v). Among the types of proximity
raphs for similarity searches, the k-Nearest Neighbor Graph (k-
NG) [25,28] and the Navigable Small-World graph (NSW) [19]
re two fundamental types of graphs.
The k-NNG [29] is defined as a graph G = (V , E), where
= {(u, v), v ∈ NNk(u)δ}, being NNk(u)δ the set containing

he k nearest neighbors of u in the set of vertices V according
o the similarity function δ. Its edges can be directed or undi-
ected. If the k-NNG is weighted, the weights usually express the
istance between the connected pairs of vertices (δ(u, v)). The k-
NG has well-known properties useful for performing similarity
earches, therefore, it has been used as the base for several
ther graph-based methods. Examples include methods that build
pproximate versions of the k-NNG at a lower cost than the
xact construction [30] and methods that relax the connectivity
f every element to its k-nearest neighbor [31]. The brute-force
onstruction of the k-NNG has a quadratic computational cost,
hich is unfeasible for large datasets [28]. A remarkable method
hat generates an approximated version of a k-NNG is the NN-
escent [30]. The main supporting idea of the NN-Descent is that
‘the neighbor of a neighbor is probably a neighbor’’. This idea
uides the graph’s construction, enabling a considerable reduc-
ion in the execution time for many cases. It starts by computing
random approximation of the nearest neighbors of each element
∈ V . Subsequently, it iteratively improves this approximation
y comparing each element to the neighbors of its neighbors,
ncluding both k-NN and reverse k-NN . The construction finishes
hen the process ceases to show improvement on the results

rom the previous iteration.
The Navigable Small World (NSW) graph is also based on con-

ecting elements to their nearest neighbors. However, it uses
hort- and long-range undirected edges that grant the graph
mall-world properties [19]. Small-world properties were also
onsidered in the experimental design of self-organizing search
ystems [32]. The main advantages of the NSW are (i) fast and
ighly precise approximate search execution, thanks to the small-
orld properties, and (ii) fast construction algorithm. The NSW
as two types of edges: the regular, or short-range, links, and the
ong–short links, responsible for the navigable small-world prop-
rties [33]. The construction procedure inserts incoming elements
teratively as vertices in the graph. A new vertex is connected to a
et that contains its closest neighbors in the graph according to an
pproximate k-NN search algorithm. New edges are short-range
inks because they connect the vertex to its k nearest neighbors
ccording to the current state of the graph. Along the inser-
ion process, the short-range edges tend to become long-range
dges because new vertices become the new closest neighbors to
reviously inserted vertices, increasing their adjacency.
3

There are several other types of proximity graphs in litera-
ure [7,16,20]. However, the k-NNG and the NSW have been used
s bases for the current state-of-the-art methods [34]. Therefore,
e employed these base methods for the development of this
ork.

.2. Searching in proximity graphs

The spatial approximation, introduced by Navarro [2], has
ecome a fundamental approach for similarity searching in prox-
mity graphs. Given a query object q and a proximity measure δ,
he spatial approximation starts the search from a source vertex

∈ V , and iteratively traverses the graph using greedy steps
o get spatially closer and closer to the elements that are the
ost similar to the query element q regarding δ. At each step,

he search is propagated from a vertex u to its neighbors N(u)
hat are closer to q then u.

The spatial approximation property allows exact answers to
imilarity queries on proximity graphs under certain conditions.
iven a metric space [1] ⟨S, δ⟩ and a graph G = (V , E), where
⊆ S and every e ∈ E has the form e = (u, v) such that v ∈ N(u),
must fulfill the property shown in Eq. (1) to correctly answer

imilarity queries using a search algorithm based on the spatial
pproximation approach, for any query object q ∈ S.

u ∈ V , if ∀u ∈ N(u), δ(q, u) ≤ δ(q, v),

then ∀v′
∈ V , δ(q, u) ≤ (q, v′) (1)

The spatial approximation has been employed in several works
n the literature to produce approximate answers to similarity
ueries, as exact answers are too expensive. Approximate simi-
arity searching reduces the search time, considering that a given
nswer may not be exact but close enough to the exact one
o be helpful. Thus, many works have concentrated on finding
lternatives to decrease the search time with the minimum error
ossible.
A common similarity search approach on proximity graphs

s selecting initial vertices and using a best-first search process
ased on the spatial approximation. This approach produces ap-
roximate results for most proximity graphs. The Graph Nearest
eighbor Search (GNNS) [25] is an effective algorithm for the so-
alled Approximate Nearest Neighbor (ANN) search. The GNNS
an be considered a seminal algorithm as other proposals employ
imilar ideas. The algorithm executes multiple greedy searches
ased on spatial approximation and aggregates the partial results
nto the final result. The multiple searches are called restarts (R),
whose number is a user-defined parameter. The R parameter
allows improving the quality of the result as each search starts
from a different source and traverses a different path in the
graph. Nevertheless, the number of restarts also impacts query
execution time. Setting R and other parameters for graph-based
methods is challenging, as we discuss later in Section 3.

2.3. Meta-learning

Meta-learning differs from the traditional view of learning
(a.k.a. base-learning) in the notion of what to learn [35]. Tradi-
tional learning induces a predictive function for a single prob-
lem domain, while meta-learning attempts to gather knowledge
about one or more learners applied to several domains. In short,
this approach learns how to learn across several domains. Meta-
learning has been used for different purposes, such as predic-
tion of algorithm performance [36], prediction of the training
runtime [37,38], decision if an algorithm should be tuned or
not [39], recommendation of hyperparameters [40,41], ranking
algorithms [42], and so on.

The accumulated knowledge from problems or tasks is usu-
ally called meta-data or meta-knowledge. The meta-knowledge

comprises several components, as follows.

r
a

r
w
S
r
d
e
a
q
e
s
q
q

t
s
a

• Meta-features (a.k.a. descriptors or characterization mea-
sures): features to characterize datasets. For instance, the
cardinality and dimensionality.

• Meta-targets: targets to be predicted, which may be the
performance obtained by algorithms in the different do-
mains where they were applied (this is the most relevant
definition for this work; however, there are other types of
meta-targets [43]).

• Meta-instances: the junction of meta-features with their cor-
responding meta-targets.

• Meta-dataset: a set composed of meta-instances.
• Meta-models: learning algorithms that map meta-features to

the meta-targets.

We can formally define meta-learning as follows. Consider a
epository of datasets D (or tasks), a dataset di ∈ D, and an
lgorithm configuration θj in the configuration space Θ . Consider

also a set of performance evaluations P , where Pij = P(di, θj)
is an evaluation metric, e.g. accuracy, measured by executing
the base-learner/base-method with the configuration θj on the
dataset di. Each dataset is described by a vector of meta-features
mi ∈ M , being |D| = |M|. Therefore, M ∪ P forms a meta-
dataset. Meta-learning is the act of applying a meta-learner to
induce a meta-model to find patterns and measure similarities on
the meta-dataset. Depending on the induction strategy, the final
meta-model can be used to predict the performance of the base-
learners/base-methods considered or to recommend a suitable
configuration θj for a new dataset dnew .

2.4. Measuring the hardness of similarity searching

A subject that has received attention in recent works is the
analysis of which properties of a dataset make it more challenging
than others for similarity retrieval, including the ANN queries,
which we address in this work. The hardness of the dataset is
a useful feature to define suitable parameters for indexes for
similarity retrieval. Researchers have explored properties such
as the intrinsic dimensionality [44–46], and the concentration
phenomenon [47–49].

Finding the actual nearest neighbor is considered difficult
when the space is high-dimensional, and this phenomenon is
well known as the ‘‘curse of dimensionality’’ [44]. However, al-
though a dataset is in a high-dimensional space, it can usually be
embedded into a space with fewer dimensions with little or no in-
formation loss. The intrinsic dimensionality (ID) can be seen as the
minimum number of latent variables to describe the data. It aims
at finding the dimensionality of a surface that best approximates
the original data minimizing the loss of information [50].

The literature provides several methods for estimating the ID
of a dataset. For instance, it can be estimated through the PCA
method, where the number of principal components that explain
a certain variance of the data represents the ID [51]. Levina and
Bickel [50] also proposed another method based on the maximum
likelihood estimation.

Likewise, the phenomenon of the concentration of distances
is another property that can be employed to measure the dataset
complexity. The concentration of distances arises when all pair-
wise distance between points falls within a small range, which
means that the nearest and farthest neighbors of elements are
similar. This phenomenon often occurs in high-dimensional
spaces. Regarding similarity retrieval, the concentration of dis-
tances deeply affects the pruning ability of indexing methods,
often leading them to present linear cost [52–54]. To estimate
how concentrated a dataset is, François et al. [49] proposed to
measure the Relative Variance (RV) of the norm. The RV is a non-
negative rate, and small values indicate a high concentration of
distances. Intuitively, it estimates the concentration by relating a
measure of spread (variance) to a location (expectation) measure.
4

3. The graph-based method parameterization problem and
related work

We show in this section that defining suitable values for
these parameters has a major impact on the effectiveness and
performance of the methods and is a challenging problem. Both
the k-NNG and the NSW are sensible to construction parameters,
particularly the number of neighbors of each vertex (NN), which
defines the number of edges in the graph. Choosing the correct
NN parameter is essential for an optimal trade-off, as it directly
impacts construction time, memory usage, query answer quality,
and query execution time. A low value for NN results in low
memory usage, as the fewer edges a graph has, the less memory
it needs to be stored, and low construction time because of the
search process in vertices’ insertion. However, low NN values also
lead to poor-quality queries in most cases.

Query algorithms often have parameters to be tuned as well.
Notice that we use NN to define the construction parameter
number of neighbors of the graph-based methods and k to define
the query parameter number of neighbors in a k-NN query. For
instance, the GNNS algorithm depends on the R parameter. A
low R parameter is desirable since it implies faster query time
execution. However, the quality of the result is degraded if the
value is too low.

Our discussion considers typical parameterization scenarios.
After that, we discuss related work aimed at addressing this
problem.

3.1. Typical parameterization scenarios

The first scenario is when the user makes a careless choice
and uses the same configuration across different datasets. This
scenario usually happens when a configuration provides a good
result for a given dataset. Then, for simplicity, the user replicates
the ‘‘good’’ configuration for other datasets. To illustrate this
scenario, we fixed the configuration, built a graph-based method
for different datasets, executed k-NN queries using these indexes,
and analyzed the results. We ran this test using several configu-
rations varying the graph type and the construction and query
parameters. Fig. 1(a) shows results of a representative example,
which corresponds to a NN-Descent graph set with NN = 25
unning k-NN queries with k = 30 using the GNNS algorithm
ith R = 10 for all datasets used in this work (see details in
ection 6.1). The figure shows the distribution of the average
ecall rates throughout all datasets, being the recall rate for each
ataset computed as the average recall for 100 queries with query
lements randomly chosen from the dataset. The query elements
re not included in the constructed graph. The recall rate of a
uery is the fraction of the true k-nearest neighbors to the query
lement retrieved by the query. It is noticeable that the same
et of parameters for distinct datasets leads to entirely different
uality rates for queries. Similar reasoning is also valid regarding
uery time.
The second scenario considers a single dataset. In this scenario,

he user has to set the ideal parameters for the dataset subject to
ome constraints. Fig. 1(b) presents the distribution of the aver-
ge execution time for 30-NN queries using the GNNS search in

the NN-Descent , considering different parameters, for the dataset
Color Histogram, whose features are the 32-bin color histogram of
a set of 68,040 images. Although the real problem also requires
selecting the best graph-based method for the case, the goal here
is only to define the parameters NN and R for the NN-Descent
for this dataset. The constraint is that the query should have
a recall of at least 0.95. Analyzing the query time distribution,
we notice that almost two-thirds of the tested combinations of
NN and R do not lie in the first bucket, which means that the

t

t

e
b
t
t
f
1
i

t
F
i
w
t
N
c
t
N
a
g
w
w
t
w
N
o
a
b
g
w
k
f

Fig. 1. (a) Distribution of the recall rates for k-NN queries using a NN-Descent graph with a fixed configuration for a set of distinct datasets. (b) Distribution of the
query time for varying configurations of the NN-Descent for k-NN queries with recall >0.95 using the Color Histogram dataset. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. The behavior of graph-based methods for the dataset Texture and increasing NN . (a) Smallest number of restarts for each graph and NN value. (b) Query
ime for the corresponding configurations of the plot on the left.
xecution time is at least twice larger than the time demanded
y the best configurations. The figure also shows the histogram of
he configurations that lie in the first bucket. We can observe that
he variance regarding the average execution time is also notable
or the best configurations. Additionally, regarding only the top-
5 configurations, the methods present a variation of up to 50%
n the execution time, which is significant.

The third scenario is the complete one, as it requires choosing
he best graph type and its configuration for a given dataset.
ig. 2 shows how the graph types NSW and k-NNG behave for
ncreasing values for the NN parameter for the dataset Texture,
hich has texture features of 68,040 images. The figure shows
he results for the k-NNG built using two construction algorithms:
N-Descent and brute-force (Brute-kNNG). Each point in the plots
orresponds to the smallest number of restarts and, consequently,
he shortest query time for the corresponding type of graph and
N value that returned results subject to the constraint of having
recall of at least 0.95. Analyzing the plots, if the optimization
oal is memory (i.e., the configuration that satisfies the constraint
ith the least memory consumption), the best option is the NSW
ith NN = 5. On the other hand, if the optimization goal is query
ime (i.e., the fastest configuration that satisfies the constraint),
e have two configurations that tie: NSW with NN = 100, and
N-Descent with NN = 130, being the latter the best cost-benefit
ption as it demands less memory than the former one. We can
lso see that choosing the graph type that is the fastest in general
ut with a poor configuration may be the worst option among the
raph types. In this case, NSW is the fastest in general but the
orse with NN = 70. The opposite is also true since the Brute-
NNG is the slowest method in general; however, it is the fastest
or NN = 150. Finally, the plots indicate that every method has
an optimal configuration, which varies for different datasets and
5

constraints. These reasons reinforce that the problem of recom-
mending optimal parameters to configure graph-based methods
is crucial and challenging.

3.2. Related work

Although algorithm and parameter tuning, in general, is an ac-
tive research topic, there are few works considering it for nearest
neighbor algorithms. Works in the literature of similarity search-
ing have defined parameters for indexes based either on user
intuition or exhaustive evaluations [21,55–58]. These approaches
lead to suboptimal configurations and/or are excessively time-
consuming since identifying adequate parameters is a challenging
problem.

Some works present extensive evaluations of access methods
for similarity searches. For instance, a comprehensive experimen-
tal study was performed by Li et al. [59] on state-of-the-art ANN
algorithms to provide a better understanding of their general
behavior. The authors discussed some concepts for understanding
why some datasets are harder than others by evaluating sixteen
algorithms. On the other hand, the ANN-Benchmark was proposed
to standardize the evaluation of ANN algorithms [26]. This bench-
mark enables comparing a wide range of ANN algorithms and
their configurations on several real datasets. Still, the authors
state the need for developing new tuning methods, which re-
quires getting a better understanding of the impact of intrinsic
properties of the datasets on the methods.

The results reported in these works show that graph-based
methods present better performance than other types of methods
for most datasets. Considering this claim, we made an experimen-
tal survey of graph-based methods in a previous work [22]. We

s
i
i
m
m
r
i
c

e
s
p
a
t
m
a

4
r

s
t
s
s
n
c
a
a
b

i
m
p
t
l

4
p

r
a

b
f
b
p

D
o
a

D
l
m

c
c
(
m
t
m
t
c
t
m
Y
c
F
i
p

4

w
m
W
t
t
d
p
m
l
a
p
m
m
c
i
p

l
s
a
i
r
p
t
e
a
d
d
m
s
q
b
q

b
t
p
m
m
u
g
s

implemented six base graph types and three query algorithms in
a common platform and performed an extensive evaluation on
real and synthetic datasets. Our work revealed the difficulty of
finding ideal trade-offs (e.g., execution time and query quality)
in the main base graph types according to user requirements.
Recently, Wang et al. [60] presented a similar analysis by em-
ploying thirteen graph-based methods but using their original
implementations. The authors propose new guidelines and rec-
ommendations according to different scenarios from their results.
Corroborating our previous work, the authors state the difficulty
of finding the best graph for each type of dataset and outstand
the necessity of new solutions for this problem.

To the best of our knowledge, the first method of auto-
electing a suitable algorithm configuration for similarity search-
ng was proposed by Muja and Lowe [61]. Their goal is to min-
mize a cost function based on query time, indexing time, and
emory usage. However, this work only approaches tree-based
ethods. Therefore, it is evident that selecting suitable algo-

ithms and parameter values for performing similarity searches
s not a trivial task, and this is still an open problem in the ANN
ommunity.
Recently, learning-based solutions have been proposed in sev-

ral areas of databases in general [62]. Specifically for similarity
earching, learned approaches have been employed for refining
roximity graphs [63], optimizing approximate queries [64,65],
nd replacing traditional index structures [66–68]. Following this
rend, in this work, we present an intelligent approach based on
eta-learning techniques to recommend graph-based methods
long with their parameters.

. A meta-learning framework for proximity graph parameter
ecommendation

The main objective of this work is to develop an intelligent
ystem to recommend proximity graphs for similarity query re-
rieval. We draw inspiration from the success of learning-based
olutions for similar problems in machine learning research. More
pecifically, we model our solution based on meta-learning tech-
iques. Our ultimate goal is, among a set of graph-based methods
hosen in advance, to recommend the best graph-based method,
long with its optimal construction and searching parameters, for
new complex dataset, satisfying specific requirements provided
y the user.
This section discusses the targeted problem, highlights the

mpact of parameters in graph-based methods, states how we
odel our solution as a meta-learning problem, and outlines the
roposed recommending framework. Then, the section details
he proposed strategies for gathering meta-knowledge, meta-
earning, and recommending.

.1. Modeling proximity graph recommendation as a meta-learning
roblem

We formally model the problem of providing graph-based
ecommendations and their parameters for similarity retrieval as
meta-learning problem. Let D be a repository of complex data

datasets, d ∈ D a dataset and df be a vector of meta-features
describing d. Let θ be a pair ⟨GT ,Gθ ⟩, where GT is a graph-
ased method type and Gθ a set of configuration parameters
or the method type, and pd,θ a performance measurement for
atches of queries executed on an index built on d using the
arameterization θ .

efinition 1 (Meta-dataset). A meta-dataset D is a set composed
f meta-instances with the form I = (X, y), where X = ⟨df , θ⟩
nd y = p is the corresponding meta-target.
d,θ

6

efinition 2 (Meta-model). A meta-model f̂M (X) = ŷ is a function
earned by a method M trained on D, where ŷ is the predicted
eta-target for the instance X .

We take as inputs a new dataset dnew , a set of user-defined
onstraints C , and the desired optimization goal ψ . The set C
an contain constraints like the most frequent query parameters
e.g., the typical value for k for k-NN queries) and the mini-
um acceptable recall. The optimization goal ψ defines what

o minimize: the query time or the memory consumption. The
emory consumption is proportional to the number of edges in

he graph. We extract the dataset features dfnew and employ the
onstraints C to filter the parameterizations ΘC ⊆ Θ that satisfy
he constraints in C , where Θ is a finite domain of graph-based
ethod parameterizations. Then, we collect a set of predictions
= {ŷ1, . . . , ŷm} such that each ŷi ∈ Y is the meta-target

orresponding to a meta-feature Xi = ⟨dfnew , θi⟩, where θi ∈ ΘC .
inally, we select the parameterization θi whose prediction ŷ sat-
sfies the optimization goal ψ and return θi as the recommended
arameterization for the case.

.2. The proposed framework

To develop the solution of the proposed problem modeling,
e faced three challenges. The first one is the construction of a
eta-dataset that allows generating suitable recommendations.
e have to select a set of complex datasets, identify meta-

argets relevant to the problem, define a procedure to generate
he meta-targets, and identify meta-features that describe the
ataset properties with valuable clues for graph-based method
arameterization. The second challenge is the definition of meta-
odels that provide good prediction performance. This chal-

enge comprises selecting and trying alternative learning methods
nd training strategies, including using different options to com-
ose the training set. Finally, the third challenge is to propose a
ethod to generate the final recommendations using the trained
eta-models. This challenge includes stating what user-defined
onstraints apply and how to satisfy each of them. Moreover,
t requires defining how to achieve the optimization goal and
roposing strategies to limit the solution space.
Fig. 3 summarizes the architecture of the proposed meta-

earning-based recommendation framework. It illustrates the
teps of gathering meta-knowledge, performing meta-learning,
nd generating the recommendations according to the user’s
nputs. The task of building the meta-dataset takes as input a
epository of datasets, a set of graph-based methods, and a set of
arameter values. The set of graph configurations is the combina-
ion of graph types and values for the considered parameters. For
ach dataset in the repository of datasets, the architecture gener-
tes meta-instances comprising meta-features extracted from the
ataset (characterization) and a graph configuration. The meta-
ataset is composed of meta-instances that are associated with
eta-targets. A meta-target is the historical performance mea-
urement (e.g., average query time or recall) obtained by running
ueries with different graph-based methods. These methods are
uilt based on a wide range of original problems combination and
uery configuration values.
Subsequently, the recommender applies a meta-learner to

uild a meta-model base with different regressors trained using
he meta-dataset. The user provides a new dataset and some
references to obtain a recommendation, including the require-
ents to be satisfied (e.g., query preferences, specific meta-
odel) and the optimization goal (e.g., query time or memory
sage). The input dataset is characterized, and the recommender
enerates candidates represented by a set of meta-instances that
imulate different parametrizations for the given dataset. The

Fig. 3. The proposed framework: the process of gathering meta-knowledge to build the meta-dataset, the instantiation and usage of meta-models, and the generation
of recommendations according to inputs provided by a user.
meta-models take this set of meta-instances and infer the corre-
sponding performance measures (meta-targets) for each of them.
Finally, it filters the meta-instances according to the performance
measure and optimization goal and returns the user the best
parameterization.

Fig. 3 also shows an alternative tuning path. This path gen-
erates a fine-tuned meta-model for the input dataset, achieving
higher prediction accuracy than the generic meta-model at the
cost of being substantially slower to output the recommenda-
tion. The input dataset is submitted for characterization and per-
formance measurement on the supported graph-based methods
with varying parameter settings. This process enriches the meta-
dataset with meta-instances from the input dataset, allowing
tuning the meta-model for the case.

Notice that even though the performance measurement may
be hardware-dependent (e.g., average query time), a meta-model
induced using meta-targets from this measurement should be
effective for other hardware as our recommender is based on
relative performance using ranking. The following sections de-
tail the techniques we propose for gathering meta-knowledge,
meta-modeling, and recommendation.

4.3. Strategy for gathering meta-knowledge

The strategy for gathering meta-knowledge is divided into
four steps: (a) defining a repository of datasets and extract-
ing meta-features from each of them, (b) establishing a set of
graph-based method types and parameter values, (c) extracting
meta-targets by measuring the performances of every graph-
based method configuration on every dataset, and (d) performing
data augmentation using interpolation.

There are a plethora of datasets of complex data available. The
first decision is to select a reduced repository of datasets that are
representative to several applications, or group of applications,
that is feasible to deal with in terms of the needed effort to
generate the meta-features and the meta-targets. In this work,
7

we focus on the recommendation of graph-based methods for
similarity retrieval on image databases. Therefore, as a starting
point, we have an assortment of datasets with features extracted
from images and enrich the meta-dataset with new datasets
over time. We also include synthetic datasets varying properties,
including dimensionality, cardinality, and data distribution (data
sparsity and number of clusters) to augment the space of data
properties. The synthetic datasets improve the generalization of
our approach.

After collecting datasets and defining the indexing methods to
support them, building the meta-database comprises the follow-
ing steps. First, we perform the characterization of each dataset
extracting its meta-features. Subsequently, we run batches of
experiments to compute the meta-targets regarding each graph
configuration. We use a weak labeling approach regarding the
meta-targets to perform data augmentation. Finally, we compose
the final meta-dataset by generating meta-instances in the form
I = (⟨df , θ⟩, y), as described in Section 4.1. In the following
subsections, we define the meta-features and meta-targets we
employ in our solution.

4.3.1. Meta-features
The characterization of datasets must consider the nature of

the problem. As there is no work in the literature addressing
meta-learning techniques for similarity retrieval, or parameter-
ization of indexes for complex data, this section outlines the
metrics we employ as meta-features in our proposal.

The employed meta-features comprise three categories: classi-
cal meta-features, general measures commonly used in similarity
retrieval evaluation, and measures of the hardness of similarity
searching. The classical meta-features include general, statistical,
and information-theoretical measures calculated on the dataset.
The general measures include variables usually explored by the
similarity search community to evaluate indexing structures and
searching algorithms, such as the dataset cardinality and em-
bedding dimensionality [59,69]. The measures of the hardness

a
i
i
s
e
t
C
m
t
a
l
a
L
m
(
i

(
t
m
m
f

4

p
m
t
m
e
w
e
a

s
t
o
o

s
u
r
t
a
p

of similarity searching are related to the complexity of datasets
(see Section 2.4), including local intrinsic dimensionality, relative
variance, and features derived from these complexity metrics
(e.g., histograms of local intrinsic dimensionality).

Although there are different estimators available in the liter-
ture for the hardness of datasets for similarity searching, little
s known about mathematical differences among them. However,
t is known that each estimator is based on different properties,
uch as fractal properties or distance concentration. Thus, we
mploy different methods in order to enrich the meta-dataset:
he Relative Variance (RV) of the dataset, the number of Principal
omponents that explain at least 90% of the variance, statistical
etrics from the Local Intrinsic Dimensionality (LID) data — en-

ropy, kurtosis, median, skewness, and standard deviation, and
histogram of instances lying in ranges of LID (ten bins). The

ocal intrinsic dimensionalities are estimated with k = 100 on
sample of up to 10.000 instances of the input dataset. The

ID statistical metrics are measured from these values, being the
ean (lid_mean) the intrinsic dimension. The relative variance

rv) was also estimated by sampling the same instances from the
nput dataset.

There are several tools that generate classic meta-features
i.e., general, statistical, and information-theoretical), whereas, for
he complexity metrics, there are isolated open-source imple-
entations. The implementation we developed to generate these
eta-features is available online.1 We summarize the meta-

eatures composing the meta-dataset built in this work in Table 1.

.3.2. Meta-targets
The meta-targets should cover a variety of measures that im-

act similarity retrieval. Regarding graph-based methods, a few
easurements are conflicting, such as the retrieval speed and

he retrieval quality of ANN queries. The main idea is that the
eta-model should provide reliable estimates so that the user can
valuate existing trade-offs among several graph configurations
ithout building an index and/or running sample queries using
ach configuration. Meaningful meta-targets for our purpose are
s follows.

• Recall: the average fraction of correct query answers re-
trieved;

• Query time: the average time for executing a query;
• Number of distance computations: the average number of

distance computations during a query.

Our proposal initially considers classic graph-based methods
uch as Brute-kNNG, NN-Descent , and NSW , due to their impor-
ance in literature as base algorithms for state-of-the-art meth-
ds. However, the proposal is extensible to other indexing meth-
ds. As mentioned in Section 3, these graphs have the number of

nearest neighbors (NN) as a parameter in common, which refers
to the number of elements that each element will be connected
to. The NN parameter is related to query execution time, query
quality, and memory consumption. We focus on k-NN queries
as they are the most typical queries on graph-based methods. A
usual tuning parameter for k-NN queries on graph-based methods
is the number of traversals starting from distinct vertices to
increase accuracy, as the GNNS’s number of restarts (R). Although
everal algorithms could be included in our proposal, this work
ses the GNNS because it is efficient and flexible to improve the
ecall besides applying to all types of graphs selected. Therefore,
he graph configuration attributes we include in the meta-dataset
re the graph type, the indexing parameter NN , and the query
arameters k and R.

1 https://github.com/raseidi/annmf.
 L

8

The meta-targets are obtained by averaging the results from
batches of queries performed on a set of graph-based methods
built on a dataset according to predefined parameters. Ideally, the
measurement of the meta-targets should be performed in a ho-
mogeneous environment to guarantee fair evaluations. However,
it is also acceptable to use separate implementations if the rec-
ommendation is employed to build graph-based methods using
an equivalent implementation. For this task, our proposal relies
on a library containing the considered graph-based methods de-
veloped in related works. The graph configuration attributes and
meta-targets complete the meta-dataset our proposal uses, as
shown in Table 1.

Our framework considers that the meta-dataset might grow
over time by including new datasets, either by running offline
batches or online sample experiments required by the alterna-
tive tuning path. Hardware-dependent meta-targets (e.g., average
query time) should be appropriately adjusted to scale the per-
formance obtained on different hardware settings. We are aware
that scaling may introduce noise in the meta-dataset. However,
the benefit of enriching the meta-dataset usually overcomes the
drawback of eventually adding noise.

4.3.3. Data augmentation based on interpolation
Our framework produces recommendations in the range of

valid values for the parameters because we employ regressors.
Therefore, the meta-models estimate the performance for any
valid parameter combination produced by the candidate gen-
eration step. However, the meta-models were fed with meta-
instances derived from the performance measurement, which
uses a limited combination of parameters. Therefore, we noticed
an improvement opportunity by augmenting the meta-dataset
with meta-instances with weak labels.

The proposed data augmentation relies on interpolating the
values for meta-targets using additional parameter values for
each dataset. Consider a set of meta-instances regarding a given
dataset d, a given graph type g , a given number of retrieved
elements k, and its respective meta-targets. From these meta-
instances, we interpolate the meta-target using additional values
for the parameters NN and R.

We claim that the noise added to the meta-dataset due to
our augmentation approach’s weak labeling is negligible com-
pared to the benefit of having a larger dataset for learning. We
employed the quickhull algorithm [70], implemented as the Lin-
earNDInterpolator2 method from the SciPy Python Library. This
method calculates the input data triangulation to generate its
interpolant, and for each triangle, a linear barycentric interpola-
tion is performed. The interpolation is smooth, and we identified
insignificant errors in validation tests using actual values. We
focused the interpolation on low parameter values since these
regions concentrate the most notable variability for measures.

4.4. Meta-learning

The overall idea is to regress each meta-target by finding
patterns and relationships between meta-features and graph con-
figurations and their performances. Notice that it is necessary to
train at least one meta-model per meta-target.

In this work, we propose different strategies to conceive and
use meta-models. For each of them, we have three approaches
considering fine-tuning options. The first approach, called the
Generic Meta-Model (GMM), has no tuning and considers only
the meta-instances gathered during the construction of the meta-
dataset. The second one, the Tuned Meta-Model using Grid Search

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
inearNDInterpolator.html.

https://github.com/raseidi/annmf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LinearNDInterpolator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LinearNDInterpolator.html

m
i
S
p
i
i
k

t
t
a
p
p
e
a
s
m

4

t
n
u
a
t
t
t

Table 1
Summary of the attributes composing the meta-dataset built in this work.
Type Name Category Description

Meta-features

cov Statistical Absolute value of the covariance of distinct dataset attribute pairs.
eigenvalues Statistical Eigenvalues of covariance matrix from dataset.
iq_range Statistical Interquartile range (iqr) of each attribute.
kurtosis Statistical Kurtosis of each attribute.
mad Statistical Median absolute deviation (mad) adjusted by a factor.
max Statistical Maximum value from each attribute.
mean Statistical Mean value of each attribute.
median Statistical Median value from each attribute.
min Statistical Minimum value from each attribute.
nr_cor_attr Statistical Number of distinct highly correlated pair of attributes.
nr_norm Statistical Number of attributes normally distributed based in a given method.
nr_outliers Statistical Number of attributes with at least one outlier value.
range Statistical Range (max–min) of each attribute.
sd Statistical Standard deviation of each attribute.
skewness Statistical Skewness for each attribute.
sparsity Statistical Sparsity metric for each attribute.
t_mean Statistical Trimmed mean of each attribute.
var Statistical Variance of each attribute.
attr_conc Info-theory Concentration coefficient
attr_ent Info-theory Shannon’s entropy for each predictive attribute.
attr_to_inst General Ratio between the number of attributes.
inst_to_attr General Ratio between the number of instances and attributes.
nr_attr General Total number of attributes.
nr_inst General Number of instances (rows) in the dataset.
lid_entropy Complexity Entropy of local intrinsic dimensionalities.
lid_hist[1-10] Complexity 10-bin histogram containing the number of instances in ranges of local intrinsic dimensionalities.
lid_kurtosis Complexity Kurtosis of local intrinsic dimensionality.
lid_mean Complexity Mean of local intrinsic dimensionalities, a.k.a. intrinsic dimensionality.
lid_median Complexity Median of local intrinsic dimensionalities.
lid_skew Complexity Skewness of local intrinsic dimensionalities.
lid_std Complexity Standard deviation of local intrinsic dimensionalities.
n_pcs Complexity Number of principal components that explain 90% of the variance.
rv Complexity Relative variance of the dataset.

Graph configuration

graph_type – Graph type.
IndexParams – Index parameter (NN).
k_searching – Number of retrieved elements by a query.
QueryTimeParams – Query time parameter (R).

Meta-targets
Recall – Average fraction of correct query answers retrieved.
QueryTime – Average time for executing a query.
DistComp – Average number of distance calculations during a query.
(TMM-GS), includes the same meta-instances than GMM plus
eta-instances generated by the grid search performed over the

nput dataset. The third approach, the Tuned Meta-Model using
ubsets (TMM-S), includes the same meta-instances than GMM
lus meta-instances generated regarding a few subsets of the
nput dataset. With these fine-tuning procedures, we intend to
mprove the recommendations by ensuring that our meta-models
now a dataset similar to the input one.
We present two meta-learning strategies for our framework in

he following section. For both cases, we have generic and fine-
uned meta-models. We consistently achieved results by having
n overall high accuracy. However, in the first strategy, our pro-
osal generated some poor recommendations even with suitable
redictive performances. On the other hand, the second strat-
gy generates more accurate recommendations by employing
dditional meta-features and datasets and adopting a dataset-
imilarity-based meta-model generation, which produces a set of
eta-models on a per dataset cluster basis.

.5. Recommendation

As described in Section 4.2, the user receives recommenda-
ions by entering a new dataset and some requirements. The
ew dataset always is submitted for characterization. One of the
ser requirements is the method to use, which is one of the
vailable generic or tuned strategies. If the method uses tuning,
he dataset is submitted to performance measurement, and a
uned meta-model is induced using the meta-dataset, including
he new meta-instances.
9

After that, the framework generates candidate recommenda-
tions, concatenating the user-provided k value, the new dataset’s
meta-features, and combinations of graph configurations. The
framework selects the meta-models corresponding to the method
and optimization goal (discussed later) indicated by the user and
infers the candidates’ meta-targets. The meta-targets associated
with the corresponding graph configurations are forwarded to a
filtering step.

The prediction filtering initially selects the candidates satisfy-
ing the user-requested minimum recall. For this task, we subtract
the estimated error of the recall meta-model from the predicted
recall. This operation is conservative regarding the prediction as
we underestimate the recall based on the model error. Then, the
candidates are ranked according to the user optimization goal,
whose options are in Table 2. For query time and the number
of distance computations, the candidates are sorted in increasing
order of the corresponding meta-target. Ties are sorted by in-
creasing value for NN to prioritize recommendations demanding
less memory. For the memory usage optimization goal, the rec-
ommendation is based on the smallest indexing parameter (NN)
value, as it represents the number of edges by vertex that a graph
has. In this case, the candidates are sorted by NN , then by R as the
number of restarts is directly proportional to both query time and
the number of distance computations regarding the same graph
type and NN .

Finally, the top recommendation is returned to the user. More
than one recommendation is returned either in case of tied top
recommendations or if the user asks for a larger number of

m
l
m
d
i
r
p
t
a
T
t
p

t

5

g
c
m
l
t
a

T
f
m

Table 2
Available optimization goals.
Optimization Description

Memory usage Lowest recommended NN
of distance computations Lowest predicted value
Query time Lowest predicted value or smallest R value for same NN values
predictions to make her choice analyzing their expected per-
formances. The user can consider more predictions helpful to
analyze complex trade-offs. If it is desired to extend the rec-
ommendation to other index types, the candidate generation
and prediction filtering should be adapted accordingly. The fol-
lowing section presents two recommender instantiations of the
framework we developed.

5. Framework instantiations of meta-learning recommenders

In this section, we present two strategies to instantiate the
eta-models in the proposed framework. We approach the prob-

em of predicting different performance measurements as a
ulti-output regression problem. We developed a global and a
ataset-similarity-based meta-learning instantiation. Section 5.1
ntroduces the global instantiation, which relies on meta-models
egarding the whole meta-dataset. It was firstly presented in the
revious version of this work [27]. Experimental results showed
hat the overall accuracy is good; however, the global instanti-
tion produces some poor recommendations for specific cases.
herefore, we developed the dataset-similarity-based instantia-
ion (Section 5.2), which significantly increases the meta-target
rediction quality, yielding superior recommendations.
For both instantiations, we employed the same strategies for

uning.

.1. A global meta-learning recommender instantiation

The global meta-learning strategy consists of fitting one re-
ressor for each meta-target mti, as illustrated in Fig. 4. We
onsider it a global instantiation because we induce the meta-
odels from the entire meta-dataset. The input for the meta-

earning phase is the meta-dataset, eventually enriched with
uning meta-instances. The meta-model generation task produces
model for each of the n meta-targets. In the inference phase,

themethod and optimization goal parameters provided by the user
as a requirement indicate the meta-model to be selected (GMM,
TMM-GS, or TMM-S) referring to the optimization goal. The meta-
model regarding the recall is always selected because it is always
used for filtering. The meta-model regarding the other perfor-
mance meta-target is selected according to the optimization goal
(e.g., query time or the number of distance computations). For
instance, if the user wants to minimize query time, satisfying
the minimum recall, the recommendation system will only use
meta-models that predict recall and query time. The instantiation
infers the meta-targets for the candidates previously generated
and forwards the instances composed of the graph parameters
and the corresponding meta-targets to the prediction filtering
phase.

The global instantiation follows a standard procedure of meta-
learning. The main innovations it brings are to apply meta-
learning for recommending parameters for graph-based methods
and the approaches for tuning. We refer to the generic and tuned
meta-models of the global instantiation as GMM, TMM-GS, and
MM-S. In Oyamada et al. [27], we present experimental results
or this instantiation, showing that it is simple but effective in
any cases.
10
5.2. A dataset-similarity-based meta-learning recommender instan-
tiation

The dataset-similarity-based strategy for instantiating the
meta-models was designed to increase the predictive power of
our recommendation framework. The idea consists of four major
steps:

1. select the meta-features most relevant for a given meta-
target;

2. create a dataset space according to these meta-features and
apply a clustering algorithm;

3. induce meta-models tailored to the datasets from each
cluster;

4. generate the recommendation for a new dataset using the
meta-models from the cluster closest to the new dataset in
the dataset space.

We illustrate the strategy in Fig. 5. Initially, we perform a
feature selection step for each meta-target using the whole meta-
dataset enhanced with data augmentation. The selected meta-
features define a dataset space for each meta-target. After that,
we apply a clustering algorithm and segment the meta-instances
according to the cluster each dataset fall into, generating the
clusters’ meta-datasets. The strategy induces a meta-model for
each meta-target and adds it to the meta-model base for each
cluster.

This approach generates meta-models adjusted to the cluster’s
datasets. Therefore, these meta-models can provide highly precise
predictions for new datasets with properties similar to the prop-
erties of the datasets in the cluster. Moreover, the tuning methods
we propose for our framework have a higher impact as the
fraction of tuned instances in the learning set is proportionally
higher than the fraction in the global instantiation.

The inference step’s inputs and outputs are the same as the
previous section: the candidates and the parameterizations as-
sociated with the predicted meta-targets. The strategy finds the
cluster closest to the new dataset and selects the meta-models
from the cluster according to the method and optimization goal
user parameters. Finally, the prediction generation outputs the
candidate parameterizations associated with the predicted meta-
target values to the framework’s prediction filtering task.

We maintained the essence of the generic and tuned methods,
keeping the fine-tuning approach the same. Thus, we named the
dataset-similarity-based methods by adding a ‘‘plus’’ at the end
of the name of the corresponding one, being GMM+, TMM-GS+,
TMM-S+. The following subsections detail the main instantiation
components.

5.2.1. Meta-feature selection
The meta-feature selection identifies the meta-features defin-

ing the similarity dataset space. After executing several anal-
yses, we concluded that employing a large number of meta-
features yields dataset spaces such that the dataset similarity
poorly matches what we expected. As usual, feature selection can
use alternative methods and cutting limits.

The proposed instantiation uses the feature importances pro-
vided by Random Forests to define the meta-features of the
dataset space. Our choice is based on the robustness of the RF and
experimental evaluations (see Section 7.3). We select the features
whose importance is above a threshold. We identified that 0.9 is

a suitable value for the threshold.

m
n
d

Fig. 4. The global instantiation of meta-models of the proposed framework.
Fig. 5. The components and task flow of the proposed dataset-similarity-based recommender instantiation.
Fig. 6. Predictive performance distribution regarding each method and meta-target for all datasets.
t
t
t
f

5.2.2. Dataset clustering
We use the subset of relevant meta-features selected in the

previous step and the Euclidean distance to represent the datasets
in a metric space. We cluster similar datasets in this space em-
ploying a density-based clustering algorithm. Our option in this
instantiation is the classical DBSCAN algorithm (Density-Based
Spatial Clustering of Applications with Noise) [71]. Although there
are clustering alternatives, we opted for DBSCAN because clus-
tering by density is better suited for our goal of training meta-
models for similar datasets. Nevertheless, DBSCAN has the draw-
back of choosing suitable values for the parameters eps (the
inimum distance to consider that two points should be con-
ected) and min_pts (the minimum number of points within
istance eps to define core points forming a cluster).
 O

11
One could set the eps performing a grid search process, but this
process demands a high computational cost. Instead, we propose
defining the eps based on the pairwise distances between an ele-
ment and its nearest neighbor. To do so, we build a k-NN graph,
with k = 1, using a quick (approximated) construction method.
The vertices are the datasets, and the edge weights the distance
between the corresponding pair of vertices. We sort the edges by
distance and pick the value defined by the 90th percentile to set
the eps. Moreover, we set the parameter min_pts= 2, decreasing
he chances of a dataset being an outlier. We estimate that using
hese parameter values, at least 90% of the datasets should belong
o a cluster, ensuring a minimum variability in the meta-instances
or most cases (i.e., meta-instances from two or more datasets).
n the other hand, an outlier dataset (noise) forms a unitary

c
i
r

l
t
S

Fig. 7. The elapsed time for providing the final predictions for all meta-targets according to each method and dataset.
Fig. 8. Recommendations provided by generic methods optimizing the query time for (a) k = 1 and (b) k = 30 as the number of retrieved elements.
luster as it may have better meta-models by not considering
nstances from datasets excessively dissimilar to it. This is the
eason to pick the value in the 90th percentile.

Subsequently, we employ the Random Forest as the base-
earner for each cluster to induce a meta-model for each meta-
arget. The instantiation uses the default hyperparameters from
cikit-learn3 and ensembles ten meta-models to average final

3 https://scikit-learn.org/.
12
predictions. We opted for RF due to its great prediction perfor-
mances, fast training and inference, and simple parameterization,
although alternative learning algorithms could be employed.

Employing cluster-based meta-models is also helpful to man-
age the evolution of the meta-dataset in the framework. Adding a
few new datasets to the meta-dataset should have a localized im-
pact on the framework. If the number of new datasets is reduced,
there is a high probability they have little impact on the meta-
feature importances. In this case, the dataset similarity space
keeps the same, and only a few clusters should change. Therefore,
it is only needed to rebuild the meta-models of the changed

https://scikit-learn.org/

Fig. 9. Recommendations provided by generic methods optimizing the number of distance computations for (a) k = 1 and (b) k = 30 as the number of retrieved
elements.
clusters. On the other hand, if the number of new datasets is
significant, the meta-model base should be completely refreshed,
executing the whole process of dataset space definition, cluster-
ing, and meta-model training. Indeed, the framework’s evolution
should consider complete refreshes over time.

5.2.3. Meta-model inference
Given an input dataset, the first step to getting recommen-

dations is finding the closest cluster to it. This is performed by
employing a k-NN classifier. We found k = 3 to be a suitable
value for our instantiation. Each of the k datasets retrieved votes
for the input dataset cluster, and the majority defines the cluster.
In the case of disagreeing votes (i.e., each dataset is from a distinct
cluster), the selected cluster is the cluster of the dataset most
similar to the input one.

In the case of tuning, the tuning meta-instances are added to
the cluster’s dataset to perform online training to generate the
tuned meta-models. Finally, the instantiation selects the cluster
meta-models, predicts all the performances (meta-targets) that
the candidate graph configurations should achieve, and forwards
them to the prediction filtering task.

6. Experimental evaluation

This section presents our experimental setup, the prediction
performance of the proposed meta-models, and results compar-
ing the recommendation effectiveness of the proposed methods

with baselines.

13
6.1. Datasets and experimental setup

We have employed real and synthetic datasets to analyze the
behavior of each graph-based method for different configura-
tions. The real datasets contain features extracted from images,
as follows: Moments, co-occurrence Texture and Histogram, which
contain the corresponding feature vectors extracted from pho-
tos obtained from Corel, with dimensionalities 9, 16 and 32,
respectively; MNIST , the pixels of a collection of images of hand-
written digits comprising 784 dimensions; MNIST121d, which
regards the original MNIST downscaled; FashionMNIST ,4 which is
a more challenging version than the original MNIST ; two feature
combinations with different dimensionalities of a sample of one
million elements from the CoPhIR dataset [72] (Cophir64d and
Cophir282d), and SIFT , which is a collection of SIFT features (128
dimensions).

To increase the diversity of dataset characteristics, we gener-
ated synthetic data following a Gaussian distribution to manip-
ulate different properties. Such properties are three values for
size, dimensionality, number of clusters, and each cluster’s dis-
tribution standard deviation, totaling 34

= 81 synthetic datasets.
The dataset generation was performed using the Python library
Scikit-learn. We selected one of them to represent the synthetic
datasets, called Synthetic , with 1,000,000 elements, 32 dimen-
sions, and intrinsic dimensionality ≈25. The reason for choosing

4 https://github.com/zalandoresearch/fashion-mnist.

https://github.com/zalandoresearch/fashion-mnist

t
c

t
W
d
f
d

Fig. 10. Recommendations provided by generic methods optimizing the memory usage for (a) k = 1 and (b) k = 30 as the number of retrieved elements.
1

his dataset is its high cardinality and intrinsic dimensionality
lose to the embedding dimensionality.
Table 3 summarizes all the values of the manipulated proper-

ies from synthetic datasets and an overview of the real datasets.
e also partitioned the datasets to vary the cardinality. For the
atasets up to 70,000 elements, we generated subsets starting
rom 500 elements and doubling the size up to the complete
ataset: {500, 1k, 2k, 4k, . . . }. For the million-sized datasets, the

subsets followed powers of ten, including half-sized datasets
in between: {1k, 5k, 10k, 50k, 100k, 500k, 1M}. Thus, considering
the complete datasets and their subsets, we totalize 375 datasets
employed in this work.

The graph-based methods selected in this work are the Brute-
kNNG, NN-Descent , and NSW , using the GNNS search algorithm.
We used implementations in the C++ library NMSLib (Non-Metric
Space Library) [73]. The queries employed the Euclidean distance
(L2), and from each dataset, we removed 100 random objects to
employ as k-NN query elements. The remaining ones were used
to build the graphs. We used a superset of the results of the ex-
periments carried on a previous work, which includes executions
for combinations of the parameters NN ∈ {5, 10, 25, 40, 55, 70,
100, 130, 150} and R ∈ {1, 5, 10, 20, 40, 80, 120, 160, 200, 240}.
The NN-Descent and the NSW have specific construction param-
eters whose impact is not as crucial as the NN for query perfor-
mances [22]. Thus, we fixed these parameters to values achieving
a good general performance: ρ = 0.5 for the NN-Descent , and
efConstruction = 100 for the NSW .
 R

14
Table 3
The real and synthetic datasets employed in the work and their properties.

Title Size Dimensions Intrinsic Dim.

Moments 68,040 9 6.39
Texture 68,040 16 6.27

Real Histogram 68,040 32 7.23
MNIST121d 70,000 121 10.64
MNIST 70,000 784 14.40
FashionMNIST 70,000 784 16.05
Cophir64d 1,000,000 64 13.59
Cophir282d 1,000,000 282 20.33
SIFT 1,000,000 128 21.46
Synthetic 1,000,000 32 25.95

Synthetic

Properties Values

Size {104, 105, 106}
Dimensionality {8, 32, 128}
Gaussian distribution {1, 5, 10}
Number of clusters {1, 10, 100}

We used the Random Forest (RF) method from Scikit-learn
to induce the meta-models, and a 5-fold Cross-Validation strat-
egy to validate them. We employed the default hyperparame-
ters5 regarding the RF, where the main ones are n_estimators =

00, which refers to the number of decision trees in the model;

5 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
andomForestRegressor.html.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

m
f
t
d
p
f
e
i

R
L
w
i

6
t

m
a
p
m
c
i
G

Fig. 11. Recommendations provided by tuned methods optimizing the query time for (a) k = 1 and (b) k = 30 as the number of retrieved elements.
t
G
d
e
i
i
a
T
p
m
d
d

p
t
w
n
i
t
t
i
a
b
q

ax_depth = None, which does not employ a maximum depth
or the decision trees; and criterion = squared_error , which refers
o the function to measure the quality for each split for in the
ecision trees. We also evaluated other methods, and the RF
roved to be the best option for our case. We selected the RF
or its excellent prediction performance, fast training and infer-
nce, simple parameterization, and capacity to evaluate feature
mportance.

The experiments were carried out on an Intel Core i7 (32 GB
AM) with a single thread for all methods on an Ubuntu GNU/
inux 18.04.1 64 bits. The query time and distance computations
ere transformed into the log scale to smooth the values and

mprove the learning phase.

.2. Analysis of the instantiations’ prediction accuracy and execution
ime

This section presents the results regarding generic and tuned
ethods for our recommendation framework following the global
nd the dataset-similarity-based instantiations. We provide ex-
erimental results about the prediction accuracy of the generated
eta-models and compare the predictive performance and exe-
ution time regarding the methods following the two proposed
nstantiations. Regarding the execution time, we included the
rid Search as a baseline.
15
Recall that GMM, TMM-GS and TMM-S refer to the generic and
uned models (see Section 4.4) of the global instantiation and
MM+, TMM-GS+ and TMM-S+ are corresponding models of the
ataset-similarity-based instantiation. The grid search procedure
mployed as baseline was the same as the one used to generate
nstances for tuning both TMM-GS and TMM-GS+, where a lim-
ted parameter space was defined with NN = {10, 25, 70, 150}
nd R = {1, 10, 40, 120}. The parameter space for TMM-S and
MM-S+ is the same as for GMM and GMM+, comprising more
arameter combinations. However, for TMM-S and TMM-S+, the
eta-targets were obtained by experiments on sub-datasets of
ecreasing sizes following an arithmetic or geometric progression
epending on the original dataset size.
Fig. 6 shows the R2 scores achieved by each method pro-

osed in this work on our real datasets. We performed the en-
ire learning process for each dataset to simulate a scenario
here each of them would be an unknown dataset. We can
otice that the dataset-similarity-based methods achieved signif-
cantly higher performance than the global methods, except for
he GMM+ for query time prediction. For the recall prediction,
he dataset-similarity-based methods had the most significant
mprovement compared to the global methods. We see the recall
s the principal meta-target to provide suitable recommendations
ecause it defines the cutting point to attend to the user’s re-
uirements. Furthermore, the fine-tuning methods considerably

o

t
F
c
G
r
e

Fig. 12. Recommendations provided by tuned methods optimizing the number of distance computations for (a) k = 1 and (b) k = 30 as the number of retrieved
elements.
t
d
i
t

r
m
w
f
r
e

6

t

improved the prediction accuracy for the three meta-targets. The
methods tuned with grid search boosted the generic models’
accuracy, and the methods tuned using subsets did it a lot more.
The dataset-similarity-based TMM-GS+ performed significantly
better than the global TMM-GS. On the other hand, TMM-S+ was
nly a bit superior to TMM-S, both achieving excellent accuracy.
We measured the time needed to generate a recommendation

o quantify the investment effort to get better recommendations.
ig. 7 shows the elapsed time for getting recommendations ac-
ording to all methods evaluated in this work, including the
rid Search as a baseline. The Grid Search regards the time for
unning batches of experiments according to a limited param-
ter space. The TMM-GS and TMM-GS+ methods are the sum

of the Grid Search procedure and the elapsed time for train-
ing the meta-model and inferring recommendations. The same
reasoning applies to TMM-S and TMM-S+, but employing more
meta-instances from subsets of the input dataset.

As expected, GMM and GMM+ are the fastest by far as they
only count the inference time since the training phase is per-
formed offline. We can notice GMM+ is faster than GMM as it
uses smaller meta-models. On the other hand, the tuned methods
are two to six orders of magnitude more time-consuming than
GMM and GMM+. Regarding the Grid Search and the tuned
models using this strategy, the training time of TMM-GS+ on top
 i

16
of the grid search time is negligible, while the overhead added
by TMM-GS is significant. The overhead of TMM-GS comes from
the size of the training meta-dataset, which is larger for TMM-GS
han for TMM-GS+. As the training phase is performed over a few
atasets belonging to a particular cluster in TMM-GS+, this time
s significantly lower. Although the same reasoning also applies
o TMM-S+, in the figure, TMM-S and TMM-S+ appear to have
the same execution time because the time of the performance
measurement dominates the total time, making the difference
regarding the training time irrelevant.

The tuning procedures are highly time-consuming. Therefore,
the ideal scenario would be GMM+ always providing the best
ecommendations as the time for recommendation is only the
eta-model inference, which is fast. Nevertheless, it may be
orth the tuning effort depending on the input dataset as the

ine-tuning approaches improve predictions’ quality. We present
esults regarding the final recommendations of each method for
ach real dataset in the next section.

.3. Analysis of the recommendation effectiveness

This section discusses the effectiveness of the recommenda-
ion provided by our proposed methods. We divide this section
nto two parts: the first one for generic methods and the latter

y
l

m
p
t

Fig. 13. Recommendations provided by tuned methods optimizing the memory usage for (a) k = 1 and (b) k = 30 as the number of retrieved elements.
Fig. 14. Performance comparison using train-test procedures by alternating between the original and the augmented meta-datasets.
for tuned methods. Both parts include baselines and the optimal
recommendation, which is the graph configuration that achieved
the best performance, satisfying the minimum recall constraint.
We do not show results for Moments and Histogram in this anal-
sis because they performed similarly to Texture and due to their
ow dimensionality.

We considered the three optimization options (query time,
emory usage, and the number of distance computations) and
resent the results regarding each of these metrics by considering
he number of retrieved objects k = {1, 30}, different required
17
recall values: 90%, 95%, and 99%, and different cardinalities for
each dataset. However, in this section, we are showing only
recommendations regarding the required recall of 95%, whereas
the remaining ones are attached as complementary material in
Appendices A and B. Notice that, in the following figures, when a
method fails to satisfy the recall constraint, we show the actual
recall for the recommendation on the corresponding bar to indi-
cate how far it is from the required value. These cases represent
wrong parameter recommendations because the predicted recall
is above the requirement, but its true value is not.

Fig. 15. Enhancement promoted by adding new meta-features and/or meta-instances from new datasets.
Fig. 16. Feature selection methods considering the eps selected according to our proposal.
Fig. 17. The meta-features defining each meta-target’s dataset space according to the RF method and their importances.
l

6.3.1. Generic methods
This section presents the generic methods’ effectiveness, com-

paring the GMM and GMM+ methods with the optimal results
and two baselines. The baselines Tight and Loose are defined by
averaging the parameter values regarding the top-10% configura-
tions for all datasets, according to the given optimization metric.
First, we filter the results satisfying the desired recall, sort them
by the optimization metric, and select the top-10% configurations.
Subsequently, we identify the most frequent graph type into that
subset to define it as the recommended one. The subset of the
top-10% recommendations corresponding to the selected graph
type is used to define the two baselines, as follows.

• Tight: in this recommendation, we set the recommended NN
by averaging the NN in the subset; the recommended R is
the average value for the entries with the established NN .
18
We call this recommendation tight because it aims at choos-
ing values that are the best on average but underestimated
in some cases.

• Loose: this recommendation takes the largest value for the
NN; the recommended R is also the average value for the
entries with the established NN . This recommendation is
considered loose as it takes a conservative approach, getting
the ‘‘safest case’’ in the subset of top recommendations.

Fig. 8 shows recommendations optimizing the query time,
where (a) regards recommendations for k = 1 and (b) k = 30 as
the numbers of retrieved elements. Overall, both methods GMM
and GMM+ perform greatly and always provide correct recom-
mendations, except GMM for Synthetic 500k and 1M with k = 1.
However, GMM+ is usually closer to the Optimal, which high-
ights the improvements achieved by the new proposed method.

c
m
a
F
t
c
b
w
t
a
p
t

o
G
H
r
f
S
f

o
t
1
w
m
i
t
N
s

6

u
p
a

a
p
d
w
c
d
m
c
b
c
w
T

p
b
F
a
l
r
k
i
7
m

m
o
t
c

For Texture, FashionMNIST , and SIFT with k = 1 and different
ardinalities, the GMM+ is slightly outperformed by the GMM,
ainly for the first two ones. The baselines are competitive in
few cases, specifically for datasets MNIST , MNIST 121, and

ashionMNIST regarding recommendations with k = 30. Never-
heless, the GMM+ performs better mainly for datasets whose
ardinality is 1M . Assuming that the hardness of a dataset can
e estimated by its dimensionality and intrinsic dimensionality,
e notice GMM providing recommendations farther from the Op-

imal for complete datasets like FashionMNIST , SIFT , Cophir282d,
nd Synthetic. This fact highlights the enhancement of the new
roposal GMM+, which is able to recommend settings closer to
he Optimal.

Following the same pattern, Fig. 9 shows recommendations
ptimizing the number of distance computations. Again, the
MM+ outstands for not providing any wrong recommendation.
owever, for Texture regarding all cardinalities and k values, its
ecommendations are distant from the Optimal. The same occurs
or SIFT 100k with k = 30 and SIFT = {100k, 500k} for k = 1.
imilarly, the baselines provide several wrong recommendations
or datasets with cardinality greater than 100k.

Lastly, Fig. 10 shows recommendations optimizing the mem-
ry usage. This time, GMM+ provided a few wrong recommenda-
ions, more specifically for FashionMNIST 70k with k = 1 and SIFT
M for both k values. However, the optimal recommendations
ere frequently achieved for this optimization metric. Further-
ore, in general, the GMM+ outperforms all the other methods

n most cases. There are only a few recommendations where
he GMM+ is outperformed by the GMM or the Loose baseline.
evertheless, the difference among the recommended settings in
uch situations is low.

.3.2. Tuned methods
This section presents the results achieved by the methods

sing tuning: TMM-GS, TMM-GS+, TMM-S, and TMM-S+. We com-
are them to the optimal case and employ the classic Grid Search
s a baseline.
Fig. 11 shows recommendations optimizing query time. Over-

ll, the tuned methods were able to overcome the Grid Search or
erform equally. In most cases, the TMM-S+ provides recommen-
ations quite close to the Optimal, although it also provides some
rong recommendations. However, it is remarkable that in such
ases the true recall achieved by the recommended setting has a
ifference less than 0.01 from the required recall. Regarding the
ethods tuned with instances generated from a grid search pro-
edure, TMM-GS and TMM-GS+, the latter one performs slightly
etter in most cases and much better for both k values and all
ardinalities of Cophir64d. On the other hand, the methods tuned
ith subsets of each the input dataset perform similarly but the
MM-S+ is slightly better in most cases.
For recommendations optimizing the number of distance com-

utations, as illustrated in Fig. 12, all methods perform poorly for
oth k values and all cardinalities regarding the Texture dataset.
or k = 30, the TMM-S+ in most cases performs excellently,
lways providing recommendations close to the Optimal or at
east overcoming the Grid Search, and presents a negligible error
ate regarding wrong recommendations. On the other hand, for
= 1, it present higher error rates and it is eventually overcomed

n some cases, for instance for Cophir282d 1M and FashionMNIST
0k. Nevertheless, this method can be considered the best one
ainly for datasets with cardinality of 1M .
Regarding the recommendations optimizing memory usage, all

ethods recommended optimal settings for most datasets. The
nly exceptions, which could not receive optimal recommenda-
ions, are the Synthetic and SIFT regardless of the k value and
ardinality. The outstanding method again is the TMM-S+, which
19
Table 4
Summary of approaches regarding the proposed data augmentation strategies.
Approach Training dataset Testing dataset

a1 Original Original
a2 Original Augmented
a3 Augmented Original
a4 Augmented Augmented

often achieved the Optimal and outperformed the Grid Search.
There were several wrong recommendations for SIFT 1M with
both k values. Considering the most expensive datasets, i.e. higher
cardinalities and dimensionalities, for finding optimal settings,
the proposed methods outperform the Grid Search (e.g. TMM-S+
for Cophir282d) or perform likely (e.g. Synthetic with k = 30) (see
Fig. 13).

6.4. Summary of the results

This section presented experiments comparing the global and
tuned methods to the optimal case and baselines. The results
showed we improved the predictive performance, allowing our
system to provide more robust recommendations. A remarkable
achievement here was the high-quality recommendations of the
GMM+, being the fastest method proposed in this work. It out-
performed fixed general recommendations in most cases. We
also highlight that our tuned methods TMM-GS+ and TMM-S+
provided the best recommendations, in two levels of increasing
accuracy and cost. These methods achieved the optimal many
times and frequently outperformed the Grid Search regarding all
optimization metrics. Even in cases where our methods produced
wrong recommendations, the difference between the required
recall and the actual value achieved by the recommendation was
quite low, in general. The results corroborate that this work pro-
posed a framework and instantiation strategies that advance the
state-of-the-art regarding selecting proximity graphs and their
parameters.

7. Analysis of the supporting techniques

In this section, we discuss how the techniques supporting the
recommender instantiations behave and impact the performance
of the approach. We show how we used the data augmentation
technique to enhance the effectiveness of our proposal. We also
present results supporting the options we chose to build the
dataset space, including alternatives for selecting relevant meta-
features according to a specific meta-target as well as cluster
information and the predictive power for each alternative.

7.1. Impact of the data augmentation technique

This section shows the effectiveness of proposed data aug-
mentation to the meta-dataset enhancement. We employed the
GMM method (the generic meta-model of the global instantia-
tion) to assess the overall predictive performances by varying the
training and testing sets using data augmentation. We considered
four different approaches, summarized in Table 4. The goal of
this study is to understand the impact of augmenting or not
each set (training or/and testing). In the table, original refers
to only using the original meta-instances, whose meta-targets
were extracted from graph-based methods by running batches
of experiments. Conversely, augmented refers to meta-instances
weak-labeled using interpolated meta-target values.

Fig. 14 shows the R2 scores regarding the real datasets em-
ployed in this work. Comparing a1 and a2, we can notice that
the regressors trained using only the original meta-instances

a
t
a
t
t
t
m
i
p
p
v
n
m

7

g
T
p

m
c

t

b
M
m
u

g
p
o
p
t
e
c
a
m
u

failed to predict many interpolated values. This issue limits the
proposal of recommending parameter values unseen by the meta-
models during learning. We acknowledge that the results pre-
sented herein have the bias of using interpolated values in the
testing phase, which means the ground truth is estimated. How-
ever, we still consider the results valid because we achieved
negligible errors while evaluating the interpolated results using
truth values, as mentioned in Section 4.3.3. Comparing a1 with a3
nd a2 with a4, it is clear that the data augmentation improved
he meta-models’ performance as the testing set of each pair of
pproaches is the same. Moreover, analyzing a4, we can check
hat the performance drop from a3 to a4 is significantly smaller
han the performance drop from a1 to a2. These results show
hat the proposed augmentation technique makes meta-models
ore robust to predict the meta-targets for instances employ-

ng parameterizations not considered during the framework’s
erformance measurement step, including the alternative tuning
ath. Therefore, we consider that our augmented meta-dataset is
alid for performing recommendations in a vast parameter space
ot limited to samples actually measured on the graph-based
ethods.

.2. Impact of the additional meta-features and datasets

It is expected that the prediction accuracy of the meta-models
radually increase with additional meta-features and datasets.
his section shows a test quantifying how much these two as-
ects improve the accuracy.
We simulate the evolution of the meta-features by adding

ore features of the complexity category (see Table 1). Specifi-
ally, we consider two sets of meta-features:

• MF_V1: all features from the categories statistical, general
and information theory plus the intrinsic dimensionality
(lid_mean);

• MF_V2: all features in MF_V1 plus the remaining ones from
the complexity category.

Likewise, we simulate the increase of the dataset base using
wo sets of datasets from Table 3:

• MI_V1: all datasets except FashionMNIST and MNIST121d;
• MI_V2: all datasets.

We analyzed how the meta-dataset enhanced for every com-
ination: MF_V1 + MI_V1,6 MF_V1 + MI_V2, MF_V2 + MI_V1, and
F_V2 + MI_V2. In this analysis, we also employed the GMM,
easuring the R2 score achieved after training the meta-models
sing the following meta-dataset versions.
Fig. 15 shows the enhancement achieved by the GMM re-

arding its R2 performances. We can notice a meaningful im-
rovement in each version. Either for only adding meta-features
r for only adding meta-instances from new datasets, the im-
rovement in the R2 score is evident. Nonetheless, we achieved
he highest average performance with the lowest variation by
mploying additional meta-features and datasets. These results
onfirm that the meta-knowledge evolution contributes to higher
verage predictive performances, leading to improved recom-
endations. Therefore, we consider the enhanced meta-dataset
sing the complete meta-feature set and all datasets.

6 This was the set of meta-features employed in our previous work [27].
20
7.3. Analysis of feature selection techniques to generate the dataset-
similarity-based meta-models

This section discusses the effect of different feature selec-
tion (FS) methods on defining the similarity space for clustering
the datasets. We evaluated three different techniques on the
complete meta-dataset to perform feature selection: the feature
importances provided by Random Forests, the Pearson correla-
tion, and the Principal Component Analysis (PCA). We perform
cross-validation on the meta-dataset for the RF technique and
average the returned importances by each meta-target’s model.
For the Pearson correlation, we average the correlations between
the meta-feature and each meta-target for every meta-feature.
We consider the absolute value calculated for each meta-feature
for these two approaches and select all the meta-features that lie
above the 90th percentile. Lastly, for PCA, we sort the explained
variances of the principal components and select the first ones
needed to represent 90% of data variability.

After that, we performed the clustering process as follows.
As we mentioned in Section 5.2.2, we defined the DBSCAN’s eps
value by evaluating the distance distribution among all datasets
using a k-NN graph with k = 1 and picked the value corre-
sponding to the 90th percentile. Although our proposal performs
a single clustering per meta-target, the clustering procedure was
performed for each real dataset and each meta-target in this
analysis. That is, given n datasets, the clustering was made con-
sidering n−1 datasets, and the remaining one was treated as the
input dataset. This approach was adopted because the clusters
may vary according to each entry, and we wanted to grasp the
magnitude of the changes.

As we performed this clustering procedure in a leave-one-
out fashion, we aggregate the obtained information about it in
Table 5. The first two columns show the average number of
clusters and the average percentage of outliers. The remaining
ones refer to the number of datasets per cluster, averaging the
mean, standard deviation, maximum, and minimum statistical
metrics. Notice that there is a single line for PCA in the table
because it is an unsupervised method and all meta-targets use
the same meta-features. For instance, from the 375 datasets em-
ployed in this work and using PCA, we have an average of 70
clusters, 17% of the datasets classified as outliers, and a mean of
3.7 datasets per cluster. The cluster information reveals that the
dataset space is diverse in terms of cluster size and the number of
clusters for different meta-targets. This result supports our idea
that employing clustering adapts better to the dataset variability
than always selecting a fixed number of similar datasets.

Finally, we evaluated the performance of the cluster-based
meta-models, taking the real datasets used in this work as the
input datasets. For every real dataset as input, we identified the
cluster closest to it, induced a meta-model per meta-target using
the remainder datasets in the cluster, and evaluated the meta-
models’ predictive power using the instances of the input dataset.
We used all real datasets to perform this analysis, and the R2

scores per feature selection technique (averaged for RF and Pear-
son) are shown in Fig. 16. For recall, the meta-models using Pear-
son and RF achieved almost the same performance because most
of the selected meta-features were the same while the results
were wretched using PCA. The meta-models generated for the
remaining targets using the RF feature selection presented supe-
rior performance than the other methods. Therefore, we adopted
the RF-based feature selection in the dataset-similarity-based
recommender instantiation.

It is worth highlighting that, in general, the cluster-based
meta-models are significantly more accurate than the corre-
sponding global meta-models. We can check this fact comparing
the R2 score box-plot regarding RF for recall in Fig. 16 and the

o
m
w
t
c
w
w
s

8

g
m
b
e
p
s
b

e
i
e
r
d
a
s
s
d

m

Table 5
Cluster information on dataset spaces defined by the feature selection methods.
FS method Meta-target n clusters Outliers (%) avg. mean avg. std avg. max avg. min

PCA All 70.5714 17.25 3.6962 1.3792 9.0000 2.0

Pearson
DistComp 47.0000 17.21 5.5537 4.7034 18.0000 2.0
QueryTime 44.2857 17.76 5.8551 7.2423 36.2857 2.0
Recall 61.0000 17.25 4.2765 2.7496 12.0000 2.0

RF
DistComp 65.1429 0.2454 3.6272 2.5817 12.0000 2.0
QueryTime 81.0000 31.45 2.6297 1.1984 8.0000 2.0
Recall 61.0000 17.25 4.2765 2.7496 12.0000 2.0
box-plot of the approach a4 in Fig. 14. These two boxplots refer to
the average performance of the model(s) regarding recall for the
same datasets. The boxplots show the superiority of the cluster-
based meta-models compared to the global meta-model for this
meta-target.

Fig. 17 shows the selected meta-features for each meta-target
according to the RF method. Coincidentally, the number of meta-
features was five for all meta-targets. In summary, the meta-
features nr_inst, lid_mean, rv were considered the most important
nes for all meta-targets. For recall, the two most significant
eta-features refer to complexity metrics employed in this work,
hich is meaningful as the recall rate is usually inversely propor-
ional to the dataset complexity. On the other hand, for distance
omputations and query time, the most important meta-feature
as the number of instances. This is also meaningful since it is
ell known that these metrics are directly related to the dataset
ize.

. Conclusion

This article presented a novel intelligent tuning approach for
raph-based methods for similarity searching. We propose a
eta-learning-based framework to recommend the best graph-
ased method and its optimal construction and searching param-
ters for a new complex dataset, satisfying specific requirements
rovided by the user. The contribution includes two instantiation
trategies of our framework: a global and a dataset-similarity-
ased.
In this work, we extended our previous contribution [27] by

nhancing the meta-knowledge gathering process and by propos-
ng the dataset-similarity-based strategy. The meta-knowledge
nhancement (i) employs new meta-features that present more
elevance for the approximate search problem, (ii) includes more
atasets to increase the data variety, and (iii) introduces a data
ugmentation technique to the meta-dataset. The dataset-
imilarity-based strategy performs a clustering procedure to in-
tantiate meta-models for each cluster, adjusting the recommen-
ation relying on common properties among datasets.
We separate our instantiation strategies into generic and tuned

ethods. The generic methods do not require extra time for the
21
recommendation. In general, the proposed generic methods GMM
and GMM+ performed better than two baselines simulating an
expert user, frequently reaching values close to the optimal for
all optimization metrics. The tuned methods need an investment
of a certain amount of time to acquire more precise recommen-
dations. We introduced two tuning variations with increasing ac-
curacy and cost: the Tuned Meta-Model using Grid Search meth-
ods (TMM-GS and TMM-GS+), and the Tuned Meta-Model using
Subsets methods (TMM-S and TMM-S+). In general, our tuned
methods provided precise recommendations, outperforming the
Grid Search approach in most cases. When the meta-models
provided underestimated predictions, the difference between the
recommended and the required recalls was slight, showing the
overall suitability of our approaches. Among the proposed meth-
ods, the dataset-similarity-based instantiations were superior to
the global ones.

In future work, we intend to address the following ideas. We
plan to adapt our proposed framework to other index structures
(e.g. tree-based or hash-based methods) and evaluate its perfor-
mance in other metric spaces beyond the euclidean. To improve
the dataset representation, we also want to explore more metrics
of the ‘‘hardness’’ of datasets regarding the nearest neighbor
problem. Finally, we intend to explore existing techniques in the
machine learning community regarding model generalization, for
example, zero-shot learning.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been supported by the Brazilian funding agen-
cies CAPES (Coordination for the Improvement of Higher Educa-
tion Personnel), CNPq (National Council for Scientific and Tech-
nological Development), and also has received funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 825041.

r
t

o

A

p
c

m
d
f

A

p
r
k

i

s
d

Appendix A. Recommendation effectiveness of generic methods

This section presents recommendations provided by generic methods regarding other required recall values. We do not include
ecommendations optimizing distance computations because the overall behavior was similar to recommendations optimizing query
ime.

Fig. A.18. Recommendations provided by generic methods with a required recall of 0.90 optimizing the query time regarding (a) k = 1 and (b) k = 30 as the number
f retrieved elements.

.1. Required recall 0.90

Optimizing query time in Fig. A.18, we can see higher error rates, for instance with k = 1 for FashionMNIST and SIFT , and the GMM
roviding wrong recommendations more frequently. However, in general, GMM+ still performs well by providing recommendations
loser to the optimal for easier datasets, like Texture, and not making wrong recommendations for harder datasets, like Synthetic.
For memory usage in Fig. A.19, our methods present an outstanding performance in overall, frequently providing optimal recom-

endations. However, there are wrong recommendations with high error rates for SIFT and Synthetic , highlighting the hardness of such
atasets according to their intrinsic dimensionalities. The baselines can provide correct recommendations for most dataset but always
arther away from the optimal.

.2. Required recall 0.99

The required recall of 0.99 is the most difficult one provide recommendations because the model must be able to perform
redictions with an error of 0.01 at most. Optimizing query time in Fig. B.24 we can notice the models frequently providing wrong
ecommendations. However, we can see the GMM+ presenting a remarkable performance for harder datasets with k = 1. Considering
= 30 the models provided several wrong recommendations but close to the required recall value.
Optimizing memory usage in Fig. A.21, we can see GMM+ frequently providing wrong recommendations, but with low error rates

n general. However, for k = 1 its performance is remarkable mainly for harder datasets, since most of its recommendations are correct
in this specific case. The baselines are not competitive in general for both optimization metrics.

It is remarkable that our quick methods, mainly the GMM+, can provide good recommendations even considering those that do not
atisfy the required recall due to the low error rate. In a real use case, the needed time to acquire such recommended settings for a
ataset is order of magnitudes less than the classic grid search procedure, as we illustrated in Fig. 7 (see Fig. A.20).
22

o

Fig. A.19. Recommendations provided by generic methods with a required recall of 0.90 optimizing the memory usage regarding (a) k = 1 and (b) k = 30 as the
number of retrieved elements.

Fig. A.20. Recommendations provided by generic methods with a required recall of 0.99 optimizing the query time regarding (a) k = 1 and (b) k = 30 as the number
f retrieved elements.
23

o

Fig. A.21. Recommendations provided by generic methods with a required recall of 0.99 optimizing the memory usage regarding (a) k = 1 and (b) k = 30 as the
number of retrieved elements.

Fig. B.22. Recommendations provided by tuned methods with a required recall of 0.90 optimizing the query time regarding (a) k = 1 and (b) k = 30 as the number
f retrieved elements.
24

o

Fig. B.23. Recommendations provided by tuned methods with a required recall of 0.90 optimizing the memory usage regarding (a) k = 1 and (b) k = 30 as the
number of retrieved elements.

Fig. B.24. Recommendations provided by tuned methods with a required recall of 0.99 optimizing the query time regarding (a) k = 1 and (b) k = 30 as the number
f retrieved elements.
25

d
e
c

k

S
t

Fig. B.25. Recommendations provided by tuned methods with a required recall of 0.99 optimizing the memory usage regarding (a) k = 1 and (b) k = 30 as the
number of retrieved elements.

Appendix B. Recommendation effectiveness of tuned methods

B.1. Required recall 0.90

This section shows recommendations provided by the tuned methods optimizing query time and memory usage. Like the previous
section, we present two different required recall values.

Fig. B.22 shows recommendations optimizing query time. The methods performed poorly for subsets in general and the Synthetic
ataset for this required recall value. Overall, the methods provided wrong recommendations for the same datasets and subsets,
.g. Synthetic and MNIST . On the other hand, looking to the correct recommendations only, the TMM-S+ provided recommendations
lose to the optimal or performed better than the Grid Search, mainly for k = 1. For k = 30, the complete datasets received wrong
recommendations from this method, but it generally had the lowest error rate. The TMM-GS+ had an overall performance more robust,
since it provided only a few wrong recommendations.

Regarding memory usage optimization, Fig. B.23 shows an outstanding performance achieved by all methods in general. Here, the
datasets SIFT and Synthetic presented the worst recommendations in general for both k values. The methods tuned with instance
generated by a grid search procedure presented a better global performance. They provided fewer wrong recommendations and low
error rates when the required recall was not satisfied.

B.2. Required recall 0.99

In opposite to the quick methods, which struggled to provide correct recommendations for this required recall, the tuned methods
presented improvements as illustrated in Fig. B.24. This superiority highlights the robustness of these approaches for a requirement
more difficult to satisfy. Again, when the TMM-S+ provide wrong recommendations it presents a low error rate, in general. For correct
recommendations all methods perform similarly, but the TMM-S+ and TMM-GS+ still perform slightly better, e.g. Cophir282d with both
values and Synthetic with k = 30. The Grid Search is outperformed in most cases for k = 30 and performs similarly to the other

methods with k = 1.
For memory usage optimization in Fig. B.25, the general behavior is the same s for the required recall of 0.90, where SIFT and

ynthetic frequently receive wrong recommendations. Nonetheless, the methods perform notably for the other datasets and overcome
he grid search or perform similarly in most cases.
26

References

[1] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search - The Metric
Space Approach, in: Advances in Database Systems, vol. 32, Kluwer, 2006.

[2] G. Navarro, Searching in metric spaces by spatial approximation, VLDB J.
11 (1) (2002) 28–46.

[3] C.T. Jr., A.J.M. Traina, B. Seeger, C. Faloutsos, Slim-trees: High performance
metric trees minimizing overlap between nodes, in: EDBT, in: Lecture
Notes in Computer Science, vol. 1777, Springer, 2000, pp. 51–65.

[4] M.R. Vieira, C. Traina, F.J. Chino, A.J. Traina, DBM-tree: A dynamic metric
access method sensitive to local density data, in: In SBBD, Citeseer, 2004.

[5] L. Chen, Y. Gao, X. Li, C.S. Jensen, G. Chen, Efficient metric indexing for
similarity search and similarity joins, IEEE Trans. Knowl. Data Eng. 29 (3)
(2017) 556–571.

[6] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards removing
the curse of dimensionality, in: J.S. Vitter (Ed.), STOC, ACM, 1998, pp.
604–613.

[7] Y. Zhang, K. Huang, G. Geng, C. Liu, Fast kNN graph construction with
locality sensitive hashing, in: H. Blockeel, K. Kersting, S. Nijssen, F. Zelezný
(Eds.), ECML PKDD, in: Lecture Notes in Computer Science, vol. 8189,
Springer, 2013, pp. 660–674.

[8] J. Wang, H.T. Shen, J. Song, J. Ji, Hashing for similarity search: A survey,
2014, CoRR abs/1408.2927. arXiv:1408.2927.

[9] W. Liu, H. Wang, Y. Zhang, W. Wang, L. Qin, I-LSH: I/O efficient c-
approximate nearest neighbor search in high-dimensional space, in: IEEE
ICDE, IEEE, 2019, pp. 1670–1673.

[10] O. Jafari, P. Maurya, P. Nagarkar, K.M. Islam, C. Crushev, A survey on
locality sensitive hashing algorithms and their applications, 2021, CoRR
abs/2102.08942. arXiv:2102.08942.

[11] A. Esuli, Use of permutation prefixes for efficient and scalable approximate
similarity search, Inf. Process. Manag. 48 (5) (2012) 889–902.

[12] G. Amato, C. Gennaro, P. Savino, MI-File: using inverted files for scalable
approximate similarity search, Multimedia Tools Appl. 71 (3) (2014)
1333–1362.

[13] B. Naidan, L. Boytsov, E. Nyberg, Permutation search methods are efficient,
yet faster search is possible, PVLDB 8 (12) (2015) 1618–1629.

[14] D. Novak, P. Zezula, PPP-codes for large-scale similarity searching, Trans.
Large Scale Data Knowl. Centered Syst. 24 (2016) 61–87.

[15] K. Figueroa, R. Paredes, N. Reyes, New permutation dissimilarity measures
for proximity searching, in: S. Marchand-Maillet, Y.N. Silva, E. Chávez
(Eds.), SISAP, in: Lecture Notes in Computer Science, vol. 11223, Springer,
2018, pp. 122–133.

[16] J.W. Jaromczyk, G.T. Toussaint, Relative neighborhood graphs and their
relatives, Proc. IEEE 80 (9) (1992) 1502–1517.

[17] G. Navarro, N. Reyes, Dynamic spatial approximation trees for massive
data, in: T. Skopal, P. Zezula (Eds.), SISAP, IEEE Computer Society, 2009,
pp. 81–88.

[18] R. Paredes, E. Chávez, Using the k-nearest neighbor graph for proximity
searching in metric spaces, in: M.P. Consens, G. Navarro (Eds.), SPIRE, in:
Lecture Notes in Computer Science, vol. 3772, Springer, 2005, pp. 127–138.

[19] Y. Malkov, A. Ponomarenko, A. Logvinov, V. Krylov, Approximate nearest
neighbor algorithm based on navigable small world graphs, Inf. Syst. 45
(2014) 61–68.

[20] M. Iwasaki, D. Miyazaki, Optimization of indexing based on k-nearest
neighbor graph for proximity search in high-dimensional data, 2018, CoRR
abs/1810.07355. arXiv:1810.07355.

[21] C. Fu, C. Xiang, C. Wang, D. Cai, Fast approximate nearest neighbor search
with the navigating spreading-out graph, Proc. VLDB Endow. 12 (5) (2019)
461–474.

[22] L.C. Shimomura, R.S. Oyamada, M.R. Vieira, D.S. Kaster, A survey on graph-
based methods for similarity searches in metric spaces, Inf. Syst. 95 (2021)
101507.

[23] F. Falchi, C. Gennaro, P. Zezula, A content–addressable network for simi-
larity search in metric spaces, in: G. Moro, S. Bergamaschi, S. Joseph, J.-H.
Morin, A.M. Ouksel (Eds.), Databases, Information Systems, and Peer-to-
Peer Computing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp.
98–110.

[24] M. Batko, V. Dohnal, P. Zezula, M-grid: Similarity searching in grid, in:
Proceedings of the International Workshop on Information Retrieval in
Peer-to-Peer Networks, in: P2PIR ’06, Association for Computing Ma-
chinery, New York, NY, USA, 2006, pp. 17–24, http://dx.doi.org/10.1145/
1183579.1183583.

[25] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, H. Zhang, Fast approximate
nearest-neighbor search with k-nearest neighbor graph, in: T. Walsh (Ed.),
IJCAI, IJCAI/AAAI, 2011, pp. 1312–1317.

[26] M. Aumüller, E. Bernhardsson, A.J. Faithfull, ANN-Benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms, Inf. Syst. 87

[27] R.S. Oyamada, L.C. Shimomura, S.B. Junior, D.S. Kaster, Towards proximity
graph auto-configuration: An approach based on meta-learning, in: J.
Darmont, B. Novikov, R. Wrembel (Eds.), ADBIS, in: Lecture Notes in
Computer Science, vol. 12245, Springer, 2020, pp. 93–107.

[28] R. Paredes, E. Chávez, K. Figueroa, G. Navarro, Practical construction of k-
nearest neighbor graphs in metric spaces, in: C. Àlvarez, M.J. Serna (Eds.),
WEA, in: Lecture Notes in Computer Science, vol. 4007, Springer, 2006, pp.
85–97.

[29] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A.Y. Wu, An optimal
algorithm for approximate nearest neighbor searching fixed dimensions, J.
ACM 45 (6) (1998) 891–923.

[30] W. Dong, M. Charikar, K. Li, Efficient k-nearest neighbor graph construction
for generic similarity measures, in: WWW, ACM, 2011, pp. 577–586.

[31] K. Aoyama, K. Saito, T. Yamada, N. Ueda, Fast similarity search in small-
world networks, in: S. Fortunato, G. Mangioni, R. Menezes, V. Nicosia (Eds.),
CompleNet, in: Studies in Computational Intelligence, vol. 207, 2009, pp.
185–196.

[32] S. Barton, V. Dohnal, J. Sedmidubsky, P. Zezula, Toward self-organizing
search systems, in: Computational Social Network Analysis: Trends, Tools
and Research Advances, Springer London, London, 2010, pp. 49–80, http:
//dx.doi.org/10.1007/978-1-84882-229-0_3.

[33] J.M. Kleinberg, The small-world phenomenon: an algorithmic perspective,
in: F.F. Yao, E.M. Luks (Eds.), ACM STOC, ACM, 2000, pp. 163–170.

[34] Y.A. Malkov, D.A. Yashunin, Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs, IEEE
Trans. Pattern Anal. Mach. Intell. 42 (4) (2020) 824–836, http://dx.doi.org/
10.1109/TPAMI.2018.2889473.

[35] P. Brazdil, C.G. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning -
Applications to Data Mining, in: Cognitive Technologies, Springer, 2009.

[36] K.A. Smith-Miles, Towards insightful algorithm selection for optimisation
using meta-learning concepts, in: IJCNN, Part of the IEEE WCCI, IEEE, 2008,
pp. 4118–4124.

[37] R. Priya, B.F. de Souza, A.L.D. Rossi, A.C.P. de Leon Ferreira de Carvalho,
Using genetic algorithms to improve prediction of execution times of ML
tasks, in: HAIS, in: Lecture Notes in Computer Science, vol. 7208, Springer,
2012, pp. 196–207.

[38] C. Lemke, M. Budka, B. Gabrys, Metalearning: a survey of trends and
technologies, Artif. Intell. Rev. 44 (1) (2015) 117–130.

[39] R.G. Mantovani, A.L.D. Rossi, J. Vanschoren, B. Bischl, A.C.P.L.F. de Car-
valho, To tune or not to tune: Recommending when to adjust SVM
hyper-parameters via meta-learning, in: IJCNN, IEEE, 2015, pp. 1–8.

[40] C. Soares, P. Brazdil, P. Kuba, A meta-learning method to select the kernel
width in support vector regression, Mach. Learn. 54 (3) (2004) 195–209.

[41] G.F.C. Campos, S.M. Mastelini, G.J. Aguiar, R.G. Mantovani, L.F. de Melo,
S.B. Junior, Machine learning hyperparameter selection for contrast limited
adaptive histogram equalization, EURASIP 2019 (2019) 59.

[42] Q. Sun, B. Pfahringer, Pairwise meta-rules for better meta-learning-based
algorithm ranking, Mach. Learn. 93 (1) (2013) 141–161.

[43] J. Vanschoren, Meta-learning: A survey, 2018, CoRR abs/1810.03548. arXiv:
1810.03548.

[44] F. Korn, B.-. Pagel, C. Faloutsos, On the ‘‘dimensionality curse’’ and the
‘‘self-similarity blessing’’, IEEE Trans. Knowl. Data Eng. (2001) 96–111.

[45] M.E. Houle, Local intrinsic dimensionality I: An extreme-value-theoretic
foundation for similarity applications, in: C. Beecks, F. Borutta, P. Kröger,
T. Seidl (Eds.), SISAP, in: Lecture Notes in Computer Science, vol. 10609,
Springer, 2017, pp. 64–79.

[46] M. Aumüller, M. Ceccarello, Benchmarking nearest neighbor search: Influ-
ence of local intrinsic dimensionality and result diversity in real-world
datasets, in: EDML SDM, in: CEUR Workshop Proceedings, vol. 2436,
CEUR-WS.org, 2019, pp. 14–23.

[47] C.C. Aggarwal, A. Hinneburg, D.A. Keim, On the surprising behavior of
distance metrics in high dimensional spaces, in: J.V. den Bussche, V. Vianu
(Eds.), ICDT, in: Lecture Notes in Computer Science, vol. 1973, Springer,
2001, pp. 420–434.

[48] J.A. Costa, A.O.H. III, Geodesic entropic graphs for dimension and entropy
estimation in manifold learning, IEEE Trans. Signal Process. 52 (8) (2004)
2210–2221.

[49] D. François, V. Wertz, M. Verleysen, The concentration of fractional
distances, IEEE Trans. Knowl. Data Eng. 19 (7) (2007) 873–886.

[50] E. Levina, P.J. Bickel, Maximum likelihood estimation of intrinsic
dimension, in: NIPS, 2004, pp. 777–784.

[51] A.C. Lorena, L.P.F. Garcia, J. Lehmann, M.C.P. de Souto, T.K. Ho, How com-
plex is your classification problem?: A survey on measuring classification
complexity, ACM Comput. Surv. 52 (5) (2019) 107:1–107:34.

[52] K. Lin, H.V. Jagadish, C. Faloutsos, The TV-tree: An index structure for
high-dimensional data, VLDB J. 3 (4) (1994) 517–542.

[53] S. Berchtold, D.A. Keim, H. Kriegel, The X-tree : An index structure for
high-dimensional data, in: T.M. Vijayaraman, A.P. Buchmann, C. Mohan,
(2020). N.L. Sarda (Eds.), VLDB, Morgan Kaufmann, 1996, pp. 28–39.

27

http://refhub.elsevier.com/S0306-4379(22)00101-6/sb1
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb1
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb2
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb2
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb3
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb3
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb3
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb4
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb4
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb5
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb5
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb5
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb6
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb6
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb6
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb7
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb7
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb7
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb7
http://arxiv.org/abs/1408.2927
http://arxiv.org/abs/1408.2927
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb9
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb9
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb9
http://arxiv.org/abs/2102.08942
http://arxiv.org/abs/2102.08942
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb11
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb11
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb12
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb12
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb12
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb13
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb13
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb14
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb14
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb15
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb15
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb15
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb15
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb16
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb16
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb17
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb17
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb17
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb18
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb18
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb18
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb19
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb19
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb19
http://arxiv.org/abs/1810.07355
http://arxiv.org/abs/1810.07355
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb21
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb21
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb21
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb22
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb22
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb22
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb23
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb23
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb23
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb23
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb23
http://dx.doi.org/10.1145/1183579.1183583
http://dx.doi.org/10.1145/1183579.1183583
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb25
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb25
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb25
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb26
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb26
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb26
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb27
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb27
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb27
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb27
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb28
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb28
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb28
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb28
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb29
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb29
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb29
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb30
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb30
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb31
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb31
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb31
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb31
http://dx.doi.org/10.1007/978-1-84882-229-0_3
http://dx.doi.org/10.1007/978-1-84882-229-0_3
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb33
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb33
http://dx.doi.org/10.1109/TPAMI.2018.2889473
http://dx.doi.org/10.1109/TPAMI.2018.2889473
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb35
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb35
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb36
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb36
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb36
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb37
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb37
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb37
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb37
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb38
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb38
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb39
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb39
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb39
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb40
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb40
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb41
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb41
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb41
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb42
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb42
http://arxiv.org/abs/1810.03548
http://arxiv.org/abs/1810.03548
http://arxiv.org/abs/1810.03548
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb44
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb44
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb45
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb45
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb45
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb45
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb46
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb46
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb46
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb46
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb47
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb47
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb47
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb47
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb48
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb48
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb48
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb49
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb49
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb50
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb50
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb51
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb51
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb51
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb52
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb52
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb53
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb53
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb53

[54] K. Chakrabarti, S. Mehrotra, Local dimensionality reduction: A new ap-
proach to indexing high dimensional spaces, in: A.E. Abbadi, M.L. Brodie,
S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, K. Whang (Eds.), VLDB,
Morgan Kaufmann, 2000, pp. 89–100.

[55] K. Echihabi, K. Zoumpatianos, T. Palpanas, H. Benbrahim, Return of the
lernaean hydra: Experimental evaluation of data series approximate simi-
larity search, Proc. VLDB Endow. 13 (3) (2019) 403–420, http://dx.doi.org/
10.14778/3368289.3368303.

[56] Z. Zhou, S. Tan, Z. Xu, P. Li, Möbius transformation for fast inner product
search on graph, in: H.M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E.B. Fox, R. Garnett (Eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019,
pp. 8216–8227, http://dx.doi.org/10.5555/3454287.3455025.

[57] W. Zhao, S. Tan, P. Li, SONG: Approximate nearest neighbor search on
GPU, in: 36th IEEE International Conference on Data Engineering, ICDE
2020, Dallas, TX, USA, April 20-24, 2020, IEEE, 2020, pp. 1033–1044,
http://dx.doi.org/10.1109/ICDE48307.2020.00094.

[58] J. Augustine, S. Shetiya, M. Esfandiari, S.B. Roy, G. Das, A generalized
approach for reducing expensive distance calls for a broad class of
proximity problems, in: G. Li, Z. Li, S. Idreos, D. Srivastava (Eds.), SIGMOD
’21: International Conference on Management of Data, Virtual Event, China,
June 20-25, 2021, ACM, 2021, pp. 142–154, http://dx.doi.org/10.1145/
3448016.3457303.

[59] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, X. Lin, Approximate nearest
neighbor search on high dimensional data - experiments, analyses, and
improvement (v1.0), 2016, CoRR abs/1610.02455. arXiv:1610.02455.

[60] M. Wang, X. Xu, Q. Yue, Y. Wang, A comprehensive survey and experi-
mental comparison of graph-based approximate nearest neighbor search,
Proc. VLDB Endow. 14 (11) (2021) 1964–1978, URL http://www.vldb.org/
pvldb/vol14/p1964-wang.pdf.

[61] M. Muja, D.G. Lowe, Fast approximate nearest neighbors with au-
tomatic algorithm configuration, in: VISAPP, INSTICC Press, 2009,
pp. 331–340.

[62] X. Zhou, C. Chai, G. Li, J. SUN, Database meets artificial intelligence: A
survey, IEEE Trans. Knowl. Data Eng. (2020) 1, http://dx.doi.org/10.1109/
TKDE.2020.2994641.

[63] D. Baranchuk, A. Babenko, Towards similarity graphs constructed by deep
reinforcement learning, 2019, CoRR abs/1911.12122. arXiv:1911.12122.

[64] D. Baranchuk, D. Persiyanov, A. Sinitsin, A. Babenko, Learning to route
in similarity graphs, in: K. Chaudhuri, R. Salakhutdinov (Eds.), ICML,
in: Proceedings of Machine Learning Research, vol. 97, PMLR, 2019,
pp. 475–484.

[65] C. Li, M. Zhang, D.G. Andersen, Y. He, Improving approximate nearest
neighbor search through learned adaptive early termination, in: D. Maier,
R. Pottinger, A. Doan, W. Tan, A. Alawini, H.Q. Ngo (Eds.), SIGMOD, ACM,
2020, pp. 2539–2554.

[66] M. Antol, J. Olha, T. Slanináková, V. Dohnal, Learned metric index -
proposition of learned indexing for unstructured data, Inf. Syst. 100 (2021)
101774.

[67] T. Slanináková, M. Antol, J. OIha, V. Kana, V. Dohnal, Data-driven learned
metric index: An unsupervised approach, in: N. Reyes, R. Connor, N.M.
Kriege, D. Kazempour, I. Bartolini, E. Schubert, J. Chen (Eds.), Similarity
Search and Applications - 14th International Conference, SISAP 2021,
Dortmund, Germany, September 29 - October 1, 2021, Proceedings, in:
Lecture Notes in Computer Science, vol. 13058, Springer, 2021, pp. 81–94,
http://dx.doi.org/10.1007/978-3-030-89657-7_7.

[68] M. Hünemörder, P. Kröger, M. Renz, Towards a learned index structure
for approximate nearest neighbor search query processing, in: N. Reyes, R.
Connor, N.M. Kriege, D. Kazempour, I. Bartolini, E. Schubert, J. Chen (Eds.),
Similarity Search and Applications - 14th International Conference, SISAP
2021, Dortmund, Germany, September 29 - October 1, 2021, Proceed-
ings, in: Lecture Notes in Computer Science, vol. 13058, Springer, 2021,
pp. 95–103, http://dx.doi.org/10.1007/978-3-030-89657-7_8.

[69] M. Aumüller, M. Ceccarello, The role of local dimensionality measures in
benchmarking nearest neighbor search, Inf. Syst. 101 (2021) 101807.

[70] C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex
hulls, ACM Trans. Math. Softw. 22 (4) (1996) 469–483.

[71] M. Ester, H. Kriegel, J. Sander, X. Xu, A density-based algorithm for
discovering clusters in large spatial databases with noise, in: E. Simoudis,
J. Han, U.M. Fayyad (Eds.), KDD, AAAI Press, 1996, pp. 226–231.

[72] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego, T. Piccioli, F.
Rabitti, CoPhIR: A test collection for content-based image retrieval, 2009,
Computing Research Repository abs/0905.4627v2.

[73] L. Boytsov, B. Naidan, Engineering efficient and effective non-metric space
library, in: SISAP, in: Lecture Notes in Computer Science, vol. 8199,
Springer, 2013, pp. 280–293.
28

http://refhub.elsevier.com/S0306-4379(22)00101-6/sb54
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb54
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb54
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb54
http://dx.doi.org/10.14778/3368289.3368303
http://dx.doi.org/10.14778/3368289.3368303
http://dx.doi.org/10.5555/3454287.3455025
http://dx.doi.org/10.1109/ICDE48307.2020.00094
http://dx.doi.org/10.1145/3448016.3457303
http://dx.doi.org/10.1145/3448016.3457303
http://arxiv.org/abs/1610.02455
http://arxiv.org/abs/1610.02455
http://www.vldb.org/pvldb/vol14/p1964-wang.pdf
http://www.vldb.org/pvldb/vol14/p1964-wang.pdf
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb61
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb61
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb61
http://dx.doi.org/10.1109/TKDE.2020.2994641
http://dx.doi.org/10.1109/TKDE.2020.2994641
http://arxiv.org/abs/1911.12122
http://arxiv.org/abs/1911.12122
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb64
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb64
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb64
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb64
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb65
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb65
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb65
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb65
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb66
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb66
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb66
http://dx.doi.org/10.1007/978-3-030-89657-7_7
http://dx.doi.org/10.1007/978-3-030-89657-7_8
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb69
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb69
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb70
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb70
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb71
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb71
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb71
http://arxiv.org/abs/0905.4627v2
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb73
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb73
http://refhub.elsevier.com/S0306-4379(22)00101-6/sb73

	A meta-learning configuration framework for graph-based similarity search indexes
	Introduction
	Background
	Proximity Graphs for Similarity Search
	Searching in Proximity Graphs
	Meta-Learning
	Measuring the Hardness of Similarity Searching

	The Graph-based Method Parameterization Problem and Related Work
	Typical Parameterization Scenarios
	Related Work

	A Meta-learning Framework for Proximity Graph Parameter Recommendation
	Modeling Proximity Graph Recommendation as a Meta-Learning Problem
	The Proposed Framework
	Strategy for Gathering Meta-Knowledge
	Meta-features
	Meta-targets
	Data Augmentation based on Interpolation

	Meta-learning
	Recommendation

	Framework Instantiations of Meta-learning Recommenders
	A Global Meta-Learning Recommender Instantiation
	A Dataset-Similarity-based Meta-Learning Recommender Instantiation
	Meta-Feature Selection
	Dataset Clustering
	Meta-model Inference

	Experimental Evaluation
	Datasets and Experimental Setup
	Analysis of the Instantiations' Prediction Accuracy and Execution Time
	Analysis of the Recommendation Effectiveness
	Generic Methods
	Tuned Methods

	Summary of the Results

	Analysis of the Supporting Techniques
	Impact of the Data Augmentation Technique
	Impact of the Additional Meta-features and Datasets
	Analysis of Feature Selection Techniques to Generate the Dataset-similarity-based Meta-Models

	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A. Recommendation Effectiveness of Generic Methods
	Required recall 0.90
	Required recall 0.99

	Appendix B. Recommendation Effectiveness of Tuned Methods
	Required recall 0.90
	Required recall 0.99

	References

