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Ángeles Martı́nez Calomardo
Department of Mathematics and Geosciences

University of Trieste
Trieste, Italy

amartinez@units.it

Abstract—In this work, we consider the target of solving the
nonlinear and nonconvex optimization problems arising in the
training of deep neural networks. To this aim we propose a
nonmonotone trust-region (NTR) approach in a stochastic setting
under inexact function and gradient approximations. We use the
limited memory SR1 (L-SR1) updates as Hessian approximations
when the curvature information is obtained by several different
strategies. We provide results showing the performance of the
proposed optimizer in the training of residual networks for image
classification. Our results show that the proposed algorithm
provides comparable or better testing accuracy than standard
stochastic trust-region depending on the adopted curvature com-
puting strategy and outperforms the well-known Adam optimizer.

Index Terms—nonlinear optimization, stochastic quasi-Newton
methods, SR1, deep neural networks, nonmonotone trust-region

I. INTRODUCTION

In supervised learning problems, such as, image classifica-

tion, the goal is to minimize the empirical risk of the model,

e.g. a Deep Neural Network (DNN), by finding an optimal

parametric mapping function h(·;w) : Rn −→ R

min
w∈Rn

F (w) � 1

N

N∑
i=1

L(yi, h(xi;w)) �
1

N

N∑
i=1

Li(w), (1)

where w ∈ R
n is the vector of trainable parameters of the

model and (xi, yi) denotes the ith sample pair in an available

C-class training dataset {(xi, yi)}Ni=1 with an image xi and

its target yi. In image classification tasks, usually the softmax

cross-entropy function Li(w) = −∑C
j=1(yi)j log(h(xi;w))j ,

is used to measure the prediction error between the model

computed value h(xi;w) and the target yi. For solving the

(nonconvex) nonlinear problem (1), applying traditional opti-

mization algorithms is ineffective. Moreover, in most applica-

tions, both N and n can be very large, and thus the required

computations can be too costly. For this reason, the most pop-

ular approaches for solving (1) are stochastic approximation

methods in which only a small randomly-chosen sample set

(i.e., mini-batch) from the training data is needed at each

iteration to update the DNN parameters. Stochastic first-order

methods (e.g. [1], [2]) have been widely used due to their

low per-iteration cost and proven efficiency in practice. On the

other hand, second-order methods can often find good minima

in fewer steps due to their use of curvature information.

There have been many efforts to develop methods including

second-order information such as quasi-Newton (QN) [3] and

Hessian-free (HF) Newton methods [4]. In this work, we focus

on a QN-based algorithm; we consider the limited memory

symmetric rank one (L-SR1) method (see, e.g. [3]) to generate

Hessian approximations. L-SR1 methods in a stochastic trust-

region approach for training neural networks were proposed

in various works such as [5]–[7]. The main differences of

these methods are based on the sampling strategy used to ap-

proximate the objective function and its gradient (progressive

sampling with overlap batches [5], progressive without over-

lapping [6], [8], or fixed-size batches with overlapping [7]). In

[6], [8] progressive sampling strategies are used where the size

of the mini-batches increases at each iteration while in [5] it is

increased only at specific iterations under certain conditions.

In this work, we consider a stochastic quasi-Newton L-SR1

method with a nonmonotone Trust-region (TR) approach using

fixed-size mini-batches without overlapping. The potential

usefulness of nonmonotonicity may be traced back to [9]

where a nonmonotone line-search technique was proposed for

Newton’s method to solve minw∈Rn F (w) where F (w) is any

twice continuously differentiable function. All modifications

of Newton’s method to ensure global convergence towards

local minima require the use of a line-search technique which

guarantees a monotonical decrease. This, however, may slow

down the rate of convergence. This led to nonmonotone line-

search in order to relax some standard line-search conditions,

in the sense that it allows a local increase in the function

values without affecting the convergence properties. The idea

of using nonmonotonicity in trust-region could be dated back

to [10]. Later, various nonmonotone trust-region methods were

proposed for solving unconstrained optimization problems; see

e.g., [11]–[13].

For solving (1), one can refer to the aforementioned non-

monotone techniques whether in line-search or trust-region

regime. However, since in deep learning applications the

sample size N and the number of parameters n of the model

are huge, applying these techniques can be very costly.

In [14], a class of algorithms was proposed that use non-

monotone line-search rules fitting a variable sample scheme at

each iteration. The main contribution of this work is the anal-

ysis for the first time of a nonmonotone stochastic trust-region
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method. Our method relies on inexact (subsampled) function,

gradient and Hessian approximations obtained using fixed-size

batches. We leave the study of different sampling strategies,

like progressive or adaptive ones, for future research.

The paper is organized as follows: section II provides a

general overview of the L-SR1 method within a trust-region

framework (L-SR1-TR) for solving problem (1). In section III,

we introduce a new training algorithm named L-SR1-NTR

featuring a new nonmonotone trust-region technique and de-

scribe several strategies for computing curvature information

to construct the L-SR1 approximated Hessian matrix. Our

experimental results are presented in section IV. Finally, some

concluding remarks are given in section V.

II. A BRIEF REVIEW OF THE STOCHASTIC L-SR1-TR

ALGORITHM

A trust-region (TR) method [15] can iteratively solve the

optimization problem (1) by replacing its objective function

by a quadratic model in a region which is usually a ball of

radius δk > 0 around the current iterate wk. This requires

dynamically adjusting δk, and solving a quadratic (nonconvex)

constrained optimization problem (the TR subproblem). Let

fk := fJk

k , gk := gJk

k be, respectively, the subsampled

function and the subsampled gradient with respect to a mini-

batch Jk of size bs whose samples are randomly selected at

each iteration k, i.e.,

fJk

k =
1

bs

bs∑
i=1

Li(wk),

gJk

k =
1

bs

bs∑
i=1

∇Li(wk),

(2)

and Bk any approximation of the true Hessian of the objective.

Then the stochastic TR subproblem can be written as

pk = arg min
p∈Rn

qk(p) �
1

2
pTBkp+ gTk p s.t. ‖p‖2 ≤ δk.

(3)

After solving (3) a (stochastic) TR method proposes a trial

iterate wt = wk + pk. Let ft := fJk
t as defined in (2); then

accepting wt is subject to the value of the ratio between the

actual and predicted reduction

ρTR
k := ρk =

ft − fk
qk(pk)

. (4)

If ρk ≥ η̄ > 0, then wk+1 � wt; otherwise, wk+1 � wk.

Moreover, it makes sense to adjust the region by increasing

δk when ρk is sufficiently large and decreasing δk when ρk is

small.

A quasi-Newton (QN) method (see, e.g. [3]) can be used

to construct matrix Bk in (3). In our work, we consider the

limited memory SR1, L-SR1, method. Given an initial Hessian

approximation B0 = γkI , and curvature vectors pair (sk, yk)

provided that (yk −Bksk)
T sk �= 0, then the SR1 updates are

defined as

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

T

(yk −Bksk)T sk
, k = 0, 1, . . . .

(5)

Using two storage matrices Sk and Yk with at most l columns

where l 	 n for storing the most recent l pairs {sj , yj}, the

compact form of L-SR1 updates can be written as

Bk = B0 +ΨkMkΨ
T
k , k = 1, 2, , . . . , (6)

where

Ψk = Yk −B0Sk,

Mk = (Dk + Lk + LT
k − ST

k B0Sk)
−1,

with matrices Lk and Dk which are, respectively, the strictly

lower triangular part and the diagonal part of ST
k Yk.

In the next section, we introduce a stochastic L-SR1 method

using a nonmonotone TR method. Function and gradient are

computed approximately using fixed-size sampling without

overlapping. Regardless of the sampling strategy and the type

of TR ratio adjustment, the solution of the TR subproblem

(3) is the computational bottleneck of most TR methods. In

our work, we use an efficient algorithm called OBS [16],

exploiting the structure of the L-SR1 matrix to obtain global

solutions. Regarding the selection of γk for the initial Hessian

approximation B0 = γkI , we refer to the strategy proposed in

[5]. Our training algorithm uses Jacobian regularization [17]

to penalize large changes in predictions with respect to small

changes in inputs in order to make the network more robust.

The regularized problem is formulated as:

F (w) � 1

N

N∑
i=1

(Li(w) +
λ

2
‖Jxi

‖2F ), (7)

where λ > 0 is a regularization parameter and ‖Jxi‖F stands

for the Frobenius norm of the input-output Jacobian matrix

J := Jxi
∈ R

C×n w.r.t. the ith input image xi. Given v ∈
R

C , v ∼ N(0, 1), an approximation of the Frobenius norm

is obtained by the Hutchinson’s trick, i.e., Ev[v
TJJT v] =

trace(JJT ), so that we end up with

‖Jxi
‖2F ≈ C

1

mp

mp∑
j=1

∥∥∥∥∥
∂(vT[j]ŷ)

∂x

∥∥∥∥∥
2

2

, (8)

where ŷ = h(xi;w) ∈ R
C is the output of the network

and v[j], j = 1, . . . ,mp are random vectors drawn from a

standard normal distribution. In practice mp can be considered

as unit; see [17] for more details on the effective better

performance of Jacobian regularization to increase the gen-

eralization capability with respect to L2. Equation (8) shows

that the regularization term is equivalent in cost to one gradient

evaluation w.r.t inputs when mp = 1.
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III. THE NEW TRAINING ALGORITHM

A. Nonmonotone trust-region

Monotone techniques require the value of the function to

be decreased at each iteration which may reduce the speed

of convergence for some problems, especially in the presence

of narrow curved valley. To improve the efficiency of trust

region methods, a variety of nonmonotone techniques have

been proposed. In [9] a technique called nonmonotone line-

search was introduced to relax some standard conditions by

allowing the objective function value to increase in some

iterations and accepting the step-length αk whenever

F (wk + αkpk) ≤ Fm(k) + c1αk∇F (wk)
T pk, (9)

where c1 ∈ (0, 0.5) and Fm(k) is the maximum function value

of a prefixed number (M ) of previous iterates, i.e.,

Fm(k) = max
0≤j≤m(k)

{F (wk−j)}, k = 0, 1, . . .

in which m(0) = 0, 0 ≤ m(k) ≤ min{m(k − 1) + 1,M} for

all k ≥ 1, and M ≥ 0.

Considering that the TR method is a generalization of the

Armijo line-search approach [18], a nonmonotone trust-region

(NTR) was also proposed [10]. The most common NTR ratio

is defined as

ρ̄NTR
k =

F (wk + pk)− Fm(k)

Qk(pk)
, (10)

where Qk(p) is a quadratic model of F around the current

iterate wk and is similarly defined as qk(p) in (3). There

are also other variants to (10) where the nonmonotone term

Fm(k) is replaced with ck (see e.g. [12]) or rk (see e.g. [11]),

where ck is defined as a weighted moving average of objective

function values and rk is a convex combination of Fm(k) and

the latest objective function value.

As mentioned in section I, the sample size N and the

number of parameters n are usually large numbers in deep

learning applications; therefore, applying these techniques can

be costly. In [14], a class of algorithms was proposed that

use nonmonotone line-search rules fitting a variable sample

scheme in which the sample size may increase or decrease

at each iteration. In this work we present a nonmonotone

trust-region algorithm using subsampled function and gradient

obtained with fixed-size batches.

B. Stochastic L-SR1 nonmonotone trust-region

In this section, we describe our stochastic algorithm by

exploiting a nonmonotone term rk similar to the one proposed

in [11]. Given the inexact evaluated quantities at iteration k
(i.e. fk, gk, andBk), the solution pk obtained by solving (3),

and the subsampled objective function evaluated at the trial

parameter wt = wk+pk, ft, we define a stochastic NTR ratio

as follows

ρNTR
k =

ft − rk
qk(pk)

, (11)

where rk = τkfmk
+ (1 − τk)fk in which τk ∈ [τmin, τmax]

with τmin ∈ [0, 1), τmax ∈ [τmin, 1], and fmk
is the

nonmonotone term. The parameter τk determining the level

of monotonicity can be updated by the following formula

τk =

{
τ0
2 , if k = 1,
τk−1+τk−2

2 , if k ≥ 2.
(12)

The definition of fmk
in the stochastic context is what

differentiates our proposed nonmonotone trust-region ratio

from the one used in [11]. We consider the following three

options:

1) The first trivial option is to compute the nonmonotone

term rk using the subsampled function values rather than

the true function value. In our algorithm, the quantity

fmk
in rk can be the maximum value of the (at most) M

recent subsampled function values; i.e., for k = 0, 1, . . .

fmk
= max{fJj

j | k −M + 1 ≤ j ≤ k}. (13)

2) It may be possible to reduce the stochasticity of the

first choice by taking fmk
as a reference point which is

updated at specific iterations. For this reason, our second

choice for fmk
is the maximum value of the most recent

M subsampled function evaluations which is computed

every M iterations. In other words, (13) is computed

only if k = 0 or mod(k,M) = 0; otherwise fmk
=

fmk−1
.

3) Since ft and rk in ρNTR
k are evaluated w.r.t different

mini-batches, the ratio ρNTR
k may suffer from some

noise resulting from function differences in the numer-

ator. Therefore, another natural but costly option can be

computing all functions involved in the numerator w.r.t

to the same (current) mini-batch. In this option, fmk
is

the maximum value of the M most recent subsampled

functions evaluated w.r.t Jk; i.e., for k = 0, 1, . . .

fmk
= max{fJk

j | k −M + 1 ≤ j ≤ k}. (14)

Experimentally, we found that the second choice performed

slightly better than the others, even if all the choices behave

identically, in the sense that they allow for almost the same

final testing accuracy. The stochastic nonmonotone trust-region

ratio is then used to adjust the trust-region radius δk and

accepting the trial point as explained in section II. The

stochastic L-SR1 nonmonotone trust-region method (denoted

by sL-SR1-NTR from now on) is outlined in Algorithm 1.

C. Curvature computing strategies

In this section, we describe different strategies for com-

puting the curvature vector yk needed to update the L-SR1

matrix Bk (6). The L-SR1 update (5) is originally obtained

by defining the iterate and gradient displacements so that

it satisfies the secant equation yk = Bk+1sk, meaning that

a second-order Taylor expansion is satisfied along the most

recent direction sk [3], i.e.,

sk = pk, yk = gt − gk, (15)

where gt := gJk
t = 1

bs

∑bs
i=1 ∇Li(wt). However, quasi-

Newton updating is inherently an overwriting process rather
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Algorithm 1 sL-SR1-NTR

1: Inputs: k = 0, w0, S = Y = [ ]
2: for epoch = 1, 2, . . . , do
3: Shuffle N samples for randomly creating Nb mini-batches
4: for iter = 1, 2, · · · , Nb do
5: Compute fk and gk w.r.t given Jk of size bs at wk

6: if ‖gk‖2 < η0 or other stopping conditions then
7: Stop training
8: end if
9: if k = 0 or S = [ ] then

10: Set Bk = γ0I , and compute pk = −δkgk
‖gk‖

11: else
12: Compute Bk = γkI +ΨkM

−1
k ΨT

k , and pk by OBS
13: end if
14: Set wt = wk + pk
15: Compute ft w.r.t Jk at wt

16: Compute ρk NTR ratio (11) using rk with τk defined in (12)
17: if ρk > η1 then
18: Compute sk = pk , and yk by one of the strategies in Table I
19: Construct a new well-defined Bk+1 by (6)
20: Set wk+1 = wt

21: else
22: Find αk by a stochastic nonmonotone line-search (NLS), i.e.,

fJk (wk + αkpk) ≤ rk + c1αkg
T
k pk

23: if NLS succeeds then
24: Set wt = wk + αkpk
25: Compute sk = αkpk , and yk by one of the strategies in

Table I
26: Construct a new well-defined Bk+1 by (6)
27: Set wk+1 = wt

28: else
29: Skip updating Bk and wk

30: end if
31: end if
32: if ρk > η2 then
33: δk+1 = min{2δk, 10}
34: else if η1 ≤ ρk ≤ η2 then
35: δk+1 = δk
36: else
37: δk+1 = η3δk
38: end if
39: end for
40: k = k + 1
41: end for

than an averaging process; therefore, a single poor update

might have long-lasting effects on several next iterations. This

can cause a detrimental effect in a stochastic setting. Indeed,

the curvature estimate yk must reproduce the action of the

Hessian of the entire objective function in (1) while this is

not achieved by subsampled gradient differences based on a

limited number of samples. An effective approach to achieving

a more stable Hessian approximation is to decouple the cal-

culations of stochastic gradient done for updating parameters

and computing yk [19], [20]. In this manner, one can employ a

different and larger random mini-batch, if necessary, for both

gradients involved in yk (15).

Considering the first-order Taylor expansion for approxi-

mating gradient difference, an alternative strategy is a sub-

sampled Hessian matrix-vector product which might better

represent the action of the true Hessian even with a high

variance subsampled gradient. To do so, a different and large

enough random mini-batch JHk of size Bs is considered for

computing yk such that

sk = pk, yk = H̃
JHk

k sk, (16)

where H̃
JHk

k = 1
Bs

∑Bs
i=1 ∇2Li(wk). Regardless of the def-

inition of yk whether in (15) or (16), the cost of computing

yk with respect to a larger set of samples is high. To address

this issue, the curvature estimate vector yk can be computed

periodically, where the quasi-Newton approximation (L-SR1)

is updated after a sequence of iterations (say L iterations) and

is kept fixed within these iterations. Note that the subsampled

Hessian-vector product H̃
JHk

k sk in (16) can be coded directly

in practice, without explicitly constructing H̃
JHk

k . In our

work, we use the Hessian automatic differentiation technique

provided by MATLAB software. This technique performs one

forward-backward process in order to retain trace of the first

order derivatives in g
JHk

k . Subsequently, given vector sk, it

calculates the gradient of g
JHk

k

T
sk by one more forward-

backward process. More precisely,

∂(gJHk )T sk
∂w

=
∂(gJHk )T

∂w
sk + (gJHk )T

∂sk
∂w

=
∂(gJHk )T

∂w
sk,

(17)

where the first equality comes from applying the chain rule,

the second equality is because of ∂sk
∂w = 0. The last expres-

sion in (17) produces the subsampled Hessian matrix-vector

product at wk, i.e., H̃
JHk

k sk. This shows that H̃
JHk

k sk can be

obtained at a computational cost of no more than two gradient

evaluations.

Note that the computation of yk by (16) or (15) increases

the per iteration cost with respect to first-order stochastic

methods which require only one subsampled gradient estimate

per iteration. As mentioned in [19], this is not too serious

as long as the per-iteration improvement outweighs the extra

per-iteration cost. Nevertheless, we consider a third strategy

for computing yk using a variant of the empirical Fisher

Information Matrix (eFIM), see e.g. [21], which is called

accumulated eFIM (aeFIM). Given a memory budget of Lf ,

we use aeFIM-vector products for curvature computations as

sk = pk, yk =
1

γ

k∑
j=k−γ+1

gjg
T
j sk, (18)

where gj := gJj (wj) and γ = min{k, Lf}. Obviously,

this can only come at the expense of one storage matrix

to store Lf computed stochastic gradients. Although aeFIM

can reduce the computational cost considerably, using old

noisy gradient estimates for computing yk can produce poor

curvature information. The choice of the curvature matrix for

the computation of yk must address the trade-off between

providing informative curvature information and the computa-

tional and storage expenses.

IV. NUMERICAL EXPERIMENTS

We provide in this section some experimental results1 to

illustrate the performance of our nonmonotone trust-region

method on image classification of the CIFAR10 benchmark2

dataset on ResNet-20, a deep residual network with around

1Codes available at: https://github.com/MATHinDL/sL QN TR/
2Available at: https://www.cs.toronto.edu/∼kriz/cifar.html

4



TABLE I
EXPERIMENTAL CONFIGURATION

Task
Cifar10 images classification

Approach
ResNet-20 with 273,258 parameters [22]

Problem
Solving (7) where λ = 1

Training algorithms
sL-SR1-NTR Algorithm 1 using NTR ratio (11)
sL-SR1-TR Algorithm 1 using TR ratio (4)
Adam [2]

Curvature strategies for computing yk
Gd: bs = 1000
Fv: bs = 1000
Hv-T0: Jk = JHk

and bs = 1000, Bs = bs
pHv-T0: Jk = JHk

and bs = 1000, Bs = bs
Hv-T1: Jk �= JHk

and bs = 1000, Bs = bs
pHv-T1: Jk �= JHk

and bs = 1000, Bs = bs
pHv-T2: Jk �= JHk

and bs = 1000, Bs = 3bs
pHv-T0 + Fv: Jk = JHk

and bs = 1000, Bs = bs
pHv-T1 + Fv: Jk �= JHk

and bs = 1000, Bs = bs
pHv-T2 + Fv: Jk �= JHk

and bs = 1000, Bs = 3bs

Training time
90 minutes (GPU Time)

Hyper-parameters
δ0 = 1, γ0 = 1,

η0 = 10−4, η1 = 0.1, η2 = 0.75, η3 = 0.5,
l = 30, L = 5, Lf = 100, M = 10, τ0 = 0.25, τ1 = τ0

2

27k parameters [22]. To this goal, 10000 images (out of 60000

images) are set aside as testing set during the training phase.

Table I describes the configuration of our experiments. All

of them were performed with the MATLAB DL toolbox on a

Ubuntu 20.04.4 LTS (64-bit) Linux server VMware with 20GB

memory using a VGPU NVIDIA A100D-20C. We have used

the same initial parameter w0 ∈ R
n by specifying the same

seed to the MATLAB random number generator. Due to the

employment of the Jacobian regularization technique, whose

benefit can be observed in Fig. 1, we solved the optimization

problem of minimizing (7) rather than solving the original

problem (1). Note that our algorithm uses subsampled loss

which includes the regularization term for network training

while the quantity (denoted as Loss) which is displayed in

the training progress plots reported in Fig. 1 does not include

the regularization term. In Fig. 2–5 we show the performance

of the algorithms in terms of the testing accuracy of the

classification model versus training time or iteration number

of the training process. Accuracy is defined as the percentage

of correct predictions for the test data. It can be calculated

easily by dividing the number of correct predictions by the

number of total predictions. We consider several different

strategies for computing vector yk in both sL-SR1-TR and

sL-SR1-NTR which have been described in subsection III-C,

that is, gradient differences (15), accumulated empirical Fisher

matrix-vector product (18) and Hessian matrix-vector product

(16) (respectively denoted as Gd, Fv and Hv in Table I). The

latter approach can be implemented in many different settings

depending on the sampling strategy used and the frequency in
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Fig. 1. The effect of regularization over testing accuracy for sL-SR1-NTR
with bs = 500 and the Fv approach.
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Fig. 2. Testing accuracy provided by sL-SR1-TR (left) and sL-SR1-NTR
(right) using different pHv + Fv approaches.

which this computation is performed. We have studied also

different sampling techniques for computing yk, i.e. using

the same mini-batch, using the same batch size but different

samples or using different mini-batches with different sizes for

computing the subsampled gradient and subsampled Hessian
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approximations (respectively denoted as T0, T1 and T2 in

Table I). We have also investigated the periodic computation

of yk and thus the decoupling of the parameters’ update from

the quasi-Newton update. In Table I, the letter p stands for

periodic. Finally, we have also experimented to see wether in

the periodic setting keeping the QN Hessian approximation

Bk fixed between curvature updates is beneficial or better

results can be obtained when computing yk in the intermediate

iterations by eaFIM (e.g. pHv-T2+Fv).

In Fig. 2 and 3, we report the results of the experiments

comparing the testing accuracy reached with the different

curvature computing strategies when using sL-SR1-TR or sL-

SR1-NTR. Fig. 3 shows that computing yk using Hessian

matrix-vector products (Hv) by the T0 strategy leads to a

more oscillatory testing curve than when using T1 for both

algorithms sL-SR1-TR and sL-SR1-NTR. On the other hand,

periodically computing yk produces smoother testing curves,

in general. Nevertheless, there are some strong instabilities

in the testing accuracy of sL-SR1-NTR when using pHv-T0
while they are damped by pHv-T1. This result shows that

using different samples for computing yk with respect to the

ones used for computing the subsampled gradient is more

important in sL-SR1-NTR than in sL-SR1-TR.

Fig. 3 shows that using a hybrid approach for computing

yk leads to more stable testing accuracy for both sL-SR1-

TR and sL-SR1- NTR even though it produces lower testing

accuracy for sL-SR1-NTR. Fig. 2 illustrate that the periodical

approaches behave similarly both in sL-SR1-TR or sL-SR1-

NTR. Therefore, pHv-T1 + Fv from Fig. 2 is selected as the

better curvature computation strategy in the NTR framework.

Since the pHv-T1 + Fv approach produces more stable testing

accuracy than pHv-T1, we have considered this approach as

the best Hv-based strategy for computing yk, and compared

it with other strategies in Fig. 4. Finally, the most important

conclusion that can be extracted from Fig. 3 is that computing

the curvature at each iteration by accumulated empirical Fisher

matrix-vector product allows for faster training and higher final

testing accuracy in all cases, but the improvement is greater

when using NTR.

Fig. 4 shows the testing accuracy versus iterations of sL-

SR1-TR and sL-SR1-NTR using three different curvature

strategies, i.e., from left to right Fv, Gd and pHv-T1 + Fv.

The results reported in this figure show that the best and worst

performances of our proposed algorithm are obtained with Fv-

and Gd-based curvature computing strategies, respectively. We

include also for comparison the testing accuracies provided

by the state-of-the-art Adam optimizer [2]. Adam is run for

the same amount of time than the stochastic QN algorithms

with learning rate αk = 10−3 experimentally found to be the

optimal one. It can be observed that sL-SR1-NTR provides

a comparable or a better testing accuracy than Adam in the

same fixed amount of training time.

Fig. 5 shows the results obtained in minimizing function (7)

with sL-SR1-TR and sL-SR1-NTR using the periodic hybrid

strategy pHv + Fv for curvature computation and different

values bs of the batch-size Jk. This time we allowed the code

to run for three hours to show that the final testing accuracy

increases with respect to the previous experiments in which

the training process was stopepd after 90 minutes. The results

reported in Fig. 5 include both training and testing accuracies

versus time and show that the best approach reveals always

sL-SR1-NTR.

Finally, in Fig. 6 we complete the study performed in

Fig. 5 including also for comparison the training and testing

accuracies provided by Adam.

V. CONCLUSION

In this work, we have studied a stochastic limited memory

SR1 quasi-Newton method in a nonmonotone trust-region

framework for solving the optimization problems arising in

image classification tasks on deep neural networks. As far as

we know this is the first attempt to analyze a nonmonotone

trust-region method in a stochastic setting. We have also

experimented with three different strategies for computing the

curvature vector yk required for SR1 updates of the Hessian

approximation. We have found that using accumulated empiri-

cal Fisher matrix-vector products produces better training than

when curvature is obtained by subsampled gradient differences

or subsampled Hessian matrix-vector products.

Our experiments show that our proposed algorithm (sL-

SR1-NTR) provides better testing accuracy when using the

accumulated empirical Fisher matrix-vector products to com-

pute yk and its performance is comparable or superior than

sL-SR1-TR and the state-of-the-art Adam optimizer.

Future work we are currently undergoing regards the con-

vergence analysis of nonmonotone trust-region under inexact

objective, gradient and Hessian information.
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Fig. 3. Testing accuracy with sL-SR1-TR (up) and sL-SR1-NTR (down) using different curvature computing strategies.
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