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Abstract—Harmonic current estimation is required in active 

power filters for compensation purposes. The most efficient way of 
calculating the total harmonic current up to the infinite order is to 
subtract the fundamental component from the distorted current. 
Direct determination of the fundamental component of a distorted 
current of mains frequency was realized recently with a 3rd-order 
modulation integral observer. This paper shows that using an 
exponential modulation function (Exp-MF) for the integral 
observer will (i) significantly enhance the robustness of the 
observer against noise and (ii) automatically remove the low-
frequency envelope arising from the D/A and A/C sampling 
processes compared to previous polynomial modulation function. 
These new and advantageous features are supported with detailed 
analysis and experimental verification. The robust observer can be 
implemented in grid-connected power electronics circuits that 
require the instantaneous information of the fundamental and/or 
harmonic currents. Practical comparative tests with the Adaptive 
Notch Filter and Recursive DFT methods in an active power filter 
have confirmed the good performance under both steady and 
dynamic state of the proposed Exp-MF Integral Observer. 
 

Index Terms—fundamental extraction, harmonics detection, 
active power filters 
 
Nomenclature and Notations 
𝑖 line current 
𝑖1, 𝑖𝑘 fundamental current and kth order harmonic 

current 
𝑐 dc current component 
𝑎,𝜔 amplitude and frequency of the 

fundamental current 
𝑦 sum of fundamental current and dc offset 
𝑧 state vector of the sinusoidal signal state-

space model   
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𝑇Δ, 𝑇𝑟 temporal window length and resetting 
period of the modulation integral observer 

𝑡 time variable  
𝑡𝑘 time instant of the kth resetting sequence  
𝑑 process disturbance 
𝜙ℎ general modulation functions, h = 1, 2, 3  

𝜙𝑝,ℎ, 𝜙𝑒,ℎ polynomial and exponential modulating 
functions, h = 1, 2, 3 

𝑤ℎ weighting parameters of the modulating 
functions, h = 1, 2, 3 

Γ, Γ), Γ* general modulating function matrix and the 
variants formed by 𝜙𝑝,ℎ and 𝜙𝑒,ℎ 

𝑣ϕ,h auxiliary modulated signals 
 
Subscripts, superscripts and accents 
𝑥! estimated signal  
𝑥" estimation error 
𝑥𝑖 𝑖th component of the vector  
𝑥(𝑖) 𝑖th order time-derivative of the signal  
𝑥⊤ transpose 

I. INTRODUCTION 
HE increasing use of nonlinear loads has prompted the 

harmonics pollution issues in power systems since the 
1980s [1]. The power electronics community responded to this 
challenge by developing active power (APF) filters [2]-[4] 
which inject approximate harmonic currents into the ac mains 
(Fig. 1) in order to comply with various international 
electromagnetic compatibility (EMC) regulations such as the 
IEC-61000.  A seminal review paper [5] on harmonics detection 
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methods for active power filters was published in 2007. This 
review paper compares six methods listed as follows:  Discrete 
Fourier Transform (DFT) [6][7], Recursive DFT [8][9], 
Synchronous Fundamental dq-Frame [10][11], 5th Harmonic 
dq-Frame [12], p-q Theory [13]; Generalized Integrators. But 
since its publication, new methods not previously included have 
been reported. Among them is a modulation integral observer 
algorithm that adopts a totally different approach [14].  

Based on the theoretical work in [14], it is reported in [15] 
that using Modulation Integrator observer, which determines 
only the fundamental component of a periodic signal, can be 
used to obtain the total current harmonic content up to infinite 
order by simply subtracting the fundamental component from 
the nonlinear input current. Because such a method can be 
implemented with a 3rd order observer, it is shown in [15] that 
it is a fast method with high accuracy. Such an approach is 
conceptually simple and computationally efficient. It has an 
advantage of no phase delay between the actual and 
reconstructed fundamental components of the distorted 
waveform. Moreover, the proposed method requires only 
single-phase current measurements for fundamental signal 
reconstruction. Therefore, it can be easily extended to a three-
phase system without being affected by the unbalanced load. 

In this paper, the robustness of the modulation integrator 
observer method against noise and the aliasing issues caused in 
the A/D and D/A conversion process are explored for practical 
implementation of the modulation integral observer in a noisy 
environment. The novel contribution involves the use of a new 
exponential modulation function (Exp-MF) which can both 
increase the observer’s robustness against noise and eliminate 
the practical aliasing issues. The mathematical proof on the 
robustness of the exponential MF over the original MF is 
included. Practical comparisons of the exponential and the 
original MF is also provided to confirm the robust performance 
the exponential modulation integral observer. Finally, the real- 

 

 
Fig. 1   A typical setup of an Active Power Filter. 

time performance of the time-domain Exp-MF method is 
practically compared with that of the Adaptive Notch Filter 
(ANF) and frequency-domain Recursive DFT (RDFT) methods 

in an active power filter application (Fig. 1). 
 

II. A SUMMARY OF THE INTEGRAL OBSERVER WITH 
POLYNOMIAL MODULATION FUNCTION FOR DETECTING 

THE FUNDAMENTAL COMPONENT 
This section briefly summarizes the integral observer based 

on the polynomial modulation function (Fig. 2) that was 
published in [15]. The line current 𝑖(𝑡) is expressed as: 

𝑖(𝑡) = 𝑐 + 𝑖1(𝑡) + ∑ 𝑖2(𝑡)					3
245     (1) 

where t is the time variable, c is the dc current component, 𝑖1(𝑡) 
is the fundamental current, 𝑖𝑘(𝑡) is the kth current harmonic 
component and ∑ i2(𝑡)3

245  is the total harmonic current.  Let 
the fundamental current be: 

	7
𝑖1(𝑡) = 𝑎	 sin 𝜃(𝑡)

�̇�(𝑡) = 𝜔
	𝜃(0) = 𝜑

                            (2)   

and                           𝑦(𝑡) = 𝑐 + 𝑖1(𝑡)																																						(3) 

where 𝑎 is the amplitude of the fundamental current, 𝜔 is the 
angular frequency, 𝜃  is the phase angle and 𝜑  is the initial 
phase angle. The integral observer considers the total harmonic 
current as “noise” initially. If 𝑦(𝑡)  can be obtained by the 
observer, from (1) and (3), the total harmonic current can be 
obtained easily as follows: 

?i2(𝑡) = 𝑖(𝑡) − 𝑦(𝑡)
6

245

																											(4) 

Therefore, 𝑦(𝑡) is chosen to be the single output of the 
integral. Differentiating (3) twice leads to: 

𝑦(5)(𝑡) = −𝜔5𝑖1(𝑡)																													(5) 

where �̈�(𝑡) is the second-order time-derivative of y(t). Based 
on (3) and (5), one can form the following expression: 

D
𝑦(𝑡)
y(5)(𝑡)F = G1 1

0 −𝜔5I G
c

𝑖1(𝑡)I 																					(6) 

 
Fig. 2   Block diagram of the MF Integral Observer 

As it can be noticed, 𝑦(𝑡) can be formulated as the output of a 
3rd order state-space observable system: 

Lz
(1)(𝑡) = 𝐴7𝑧(𝑡)
y(t) = 𝐶78z(t)

	 																																	(7) 

where               𝑧(𝑡) = R
𝑧1(𝑡)
𝑧5(𝑡)
𝑧9(𝑡)

S = T
𝑐 + 𝑎 sin 𝜃(𝑡)
a𝜔cos 𝜃(𝑡)

𝜔5𝑐
W															(8)	 
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𝐴7 = T
0 1 0

−𝜔5 0 1
0 0 0

W, 𝐶7=T
1
0
0
W 

Since 𝑧1(𝑡) = 𝑦(𝑡), the total harmonic current can be derived 
if 𝑧1(𝑡)  is available. In addition, the dc offset and the 
fundamental component can be individually recovered after 
simple algebra [6]:  

L𝑖1
(𝑡) = 𝐺z(t)
𝑐 = 	𝐻z(t) 	 																																					(9) 

where 𝐺 = G1 0 − 1
:!
I and 𝐻 =	 G0 0 1

:!
I. 

III. EXISTING POLYNOMIAL MODULATION FUNCTION AND 
THE PROPOSED EXPONENTIAL MODULATION FUNCTION FOR 

THE INTEGRAL OBSERVER 
In previous works [14][15], a polynomial MF (10) in Table I 

was used to illustrate the effectiveness of the integral observer 
in determining the fundamental component. In this paper, we 
focus on the use of the new exponential MF (11) and compare 
the performance of these two MFs. As it can be noticed, the 
exponential MF 𝜙*,;(𝑡)	 inherits from the polynomial MF 
𝜙),;(𝑡) by multiplying an exponentially increasing term 𝑒<"= .	 
The purposes of introducing the exponential MF will be 
illustrated in Section IV.   

Table I The Polynomial Modulation Function and the Exponential Modulation 
Function. 

polynomial exponential 

𝜙),;(𝑡) =
𝑤;𝑡56>;

(2𝑛 − ℎ)!	 

for	ℎ	 ∈ {1,2,3}   (10) 

𝜙*,;(𝑡) =
𝑤;𝑡56>;𝑒<"=

(2𝑛 − ℎ)!  

	for	ℎ	 ∈ {1,2,3}   (11) 

The index n is equal to 3 since the fundamental signal is estimated 
through a 3rd order system (see (7)). 𝑤!, 𝑤", 𝑤# are suitable positive 
weighting factors. 

 

In the following, we will use 𝜙ℎ(𝑡) to denote an unclassified 
modulation function (which can be either polynomial or 
exponential). The MFs designed for this application must 
satisfy two conditions:  

1) the MF and its first (𝑛 − 1)-th derivatives have 0 initial 
conditions, such that: 

𝜙ℎ
(𝑖)(0) = 0,							𝑖 = {0,1,2}																(12) 

2) The modulation function matrix defined as: 

Г(𝑡) = h
𝜙1
(5)(𝑡) −𝜙1

(1)(𝑡) 𝜙1(𝑡)
𝜙5
(5)(𝑡) −𝜙5

(1)(𝑡) 𝜙5(𝑡)
𝜙9
(5)(𝑡) −𝜙9

(1)(𝑡) 𝜙9(𝑡)
i 

is invertible for any 𝑡 ≥ 𝑡? > 0 , where  𝑡?  is a small time 
instant. 

Condition 2) can be verified by calculating the determinant of 
Г(𝑡) . For example, with the MFs selected from (10), it is 
immediate to obtained  

detnГ(𝑡)o = 	−
𝑤1𝑤5𝑤9𝑡@

8640 ≠ 0，∀𝑡 > 0 

which implies the invertibility of Г(𝑡) . Following the same 
steps, the invertibility of Г(𝑡) in the context of the exponential 
MF (see (11)) also can be verified by simple algebras. 

With the availability of the modulation function matrix, the 
following matrix equation can be formed: 

𝑉A(𝑡) = Г(t)𝑧(𝑡)																											(13)	 

Hence, 

𝑧(𝑡) 	= Г(t)>1𝑉A(𝑡)																								(14)    

where the elements of column vector 𝑉A(𝑡) =
s𝑣A1(𝑡)	𝑣A5(𝑡)	𝑣A9(𝑡)t

8
can be obtained from the practical 

measurements of the line current 𝑖(𝑡). It follows that, 

𝑣A; = u 𝜙;
(9)(𝜏)

=

B
𝑖(𝜏) + 𝜔5𝜙;

(1)(𝜏)𝑖(𝜏)	𝑑𝜏									(15) 

To avoid error-accumulation and windup of the pure integrator 
operator (15) in case the measurement of 𝑖(𝑡)  is noisy, a 
periodic resetting strategy is integrated (see Appendix for the 
derivation of the resetting mechanism [14]). As such, the 
integral operator (15) is rescaled at time instants 𝑡2, defined as: 

										𝑡2 = 𝑇C 	+ (𝑘	 + 1)𝑇D  , 𝑘 = 0, 1,2, …                 (16) 

where 𝑇D	 is the period of the resetting scheme, while 𝑇C 
represents the temporal window length of the integration after 
each rescaling event, 𝑇D ≥ 𝑇C.  When k = 0, 𝑡B = 𝑇C + 𝑇D	 , 
which represents the first resetting instant. Subsequently, the 
resetting period is fixed at 𝑇D. In this context, the first derivative 
of 𝑣A;

(1)(𝑡)	can be obtained from the practical measurement of 
the line current 𝑖(𝑡), as follows: 

𝑣"#
(%)(𝑡) = 

&
'𝜙#

(')(𝑡) + 𝜔(𝜙#
(%)(𝑡)+ 𝑖(𝑡)										for	0 ≤ 𝑡 < 𝑡)

'𝜙#
(')(𝑡 − 𝑡* + 𝑇∆) + 𝜔(𝜙#

(%)(𝑡 − 𝑡* + 𝑇∆)+ 𝑖(𝑡)		for		𝑡* < 𝑡 ≤ 𝑡*,%
     

        (17) 

Then, 𝑣A;(𝑡) can be calculated iteratively, and the value of the 
modulated signal 𝑣A;(𝑡2) at 𝑡 = 𝑡2 is rescaled by 

𝑣A;(𝑡2) = 𝐸;Γ(𝑇E)Γ>1(𝑇E + 𝑇F)𝑉A(𝑡2)		for	𝑡 = 𝑡2		(18) 

where   𝐸1 = [1 0 0],	𝐸5 = [0 1 0],	𝐸9 = [0 0 1]. 

The smoothness of the rescaling strategy is justified in the 
Appendix. 
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Note that the line current is sampled at a relatively high speed 
within each repetitive period, and the integral values of (18) can 
provide the time-domain vector 𝑉A(𝑡) continuously at each 
sampling instant, then the state vector 𝑧(𝑡)  can be obtained 
from (14) as 

𝑧(𝑡) = |
	Г(𝑡)>1(𝑡)𝑉A(𝑡)																					for	𝑡G ≤ 𝑡 ≤ 𝑡B
	Г(𝑡 − 𝑡2 + 𝑇C)>1𝑉A(𝑡)							for	𝑡2 < 𝑡 ≤ 𝑡2H1

                    

(19)  

IV. ISSUES IN PRACTICAL IMPLEMENTATION 
A. Aliasing issues in A/D and D/A conversion process 

In practical implementation, analog-digital (AD) and digital-
analog (DA) conversion processes are involved in the sampling 
of waveforms that tends to introduce additional perturbations to 
the current signal fed to the observer. A periodic reset of the 
algorithm (see (17) and (18)) is needed to avoid the 
accumulation of integral estimation errors. Such processes 
would lead to an aliasing phenomenon resulting in low-
frequency ripples in the envelope of the estimated fundamental 
component. This section mathematically characterizes the 
aliasing phenomenon, which is then addressed by the newly 
developed exponential MF. 

To proceed with the analysis, let us consider that the 
harmonic current signal 𝑖(𝑡)	is perturbed by a broadband noise 
𝑛(𝑡). Then, the perturbed signal is expressed as:  

�̂�(𝑡) = 𝑖(𝑡) + 𝑛(𝑡) = 𝑦(𝑡) + 𝑛(𝑡) +$ i𝑘(𝑡)
𝑁

𝑘=2

 

where 𝑛(𝑡)  and the unmodeled high-order harmonics 
∑ i𝑘(𝑡)𝑁
𝑘=2  are treated as the additive disturbance in the 

estimation scheme. With reference to (17), the noisy input �̂�(𝑡) 
gives rise to a noisy auxiliary signal 𝑣&𝜙ℎ(𝑡), as shown by (20) 
with 𝑑(𝑡) ≜ 	𝑛(𝑡) + ∑ i2(𝑡)6

245 . In contrast to the precise 
counterpart 𝑣𝜙ℎ(𝑡)  that is driven by 𝑦(𝑡) , the additive 
perturbation 𝑑(𝑡) leads to an error signal, 𝑣'𝜙ℎ(𝑡) ≜ 𝑣&𝜙ℎ(𝑡) −
𝑣𝜙ℎ(𝑡) , expressed as (21) where 𝑣'𝜙ℎ(𝑡𝑘+) =
	𝐸ℎΓ(𝑇Δ)Γ−1(𝑇Δ + 𝑇r)𝑉(𝜙(𝑡𝑘) is the rescaled error, depending 
on the terminal error of previous time interval 

𝑉(𝜙(𝑡𝑘) = )𝑣'𝜙1(𝑡𝑘)	𝑣'𝜙2(𝑡𝑘)	𝑣'𝜙3(𝑡𝑘)*
𝑇
. 

In view of (19) and (21), the estimation error of 𝑦(𝑡), defined 
by  𝑦'(𝑡) ≜ 𝑦&(𝑡) − 𝑦(𝑡) takes on the form of (22) with  

Φ(𝑡) ≜ h
𝜙1
(9)(𝑡) 𝜙1

(1)(𝑡)
𝜙5
(9)(𝑡)

𝜙9
(9)(𝑡)

𝜙5
(1)(𝑡)

𝜙9
(1)(𝑡)

i 

and      𝑦'(𝑡𝑘+) = E1Γ(𝑡 − 𝑡𝑘 + 𝑇∆)−1𝑉(𝜙(𝑡𝑘+) 

is the rescaled terminal error at the end of the previous time-
interval. Because of  (9), the total error 𝑦'(𝑡) consists of two 
parts: the fundamental current estimation error 𝑖1̃(𝑡) ≜ �̂�1(𝑡) −
𝑖1(𝑡) = 𝐺	𝑧'(𝑡) and the dc offset estimation error�̃�(𝑡) ≜ �̂�(𝑡) −
𝑐=𝐻	�̃�(𝑡), such that �̃�1(𝑡) + 	�̃�(𝑡) = 𝑦�(𝑡).   

In view of (22), the integral operator offers satisfactory 
attenuation of the high frequency components, including the 
harmonics ∑ i2(𝑡)3

245 	 and the high frequency contents 
contained in 𝑛(𝑡) . However, the remaining low-frequency 
components, unless being zero-mean and uncorrelated with the 
modulation function Φ(𝑡) , the error signal 𝑦�(𝑡)  is prone to 
diverge due to the error accumulation within two continuous 
resetting instants. In combination with the resetting mechanism 
that inherently prevents the drift by downscaling the estimation 
error, the resulting fundamental signal estimates appear as a 
swinging sinewave. A numerical example is shown in Fig. 3, 
which is obtained by repeating the simulation example 
presented in [6] whereas the harmonic current signal is affected 
by a non-zero mean uniform distributed disturbance. 

 
Fig. 3 Reconstructed fundamental signal by the modulation integral observer 

in the presence of a non-zero mean uniform disturbance. 

B. Anti-aliasing solutions 

Now, two possible approaches are introduced to reduce the 
aliasing effect.  

𝑣�A;
(1)(𝑡) = �

n𝜙;
(9)(𝑡) + 𝜔5𝜙;

(1)(𝑡)	on𝑦(𝑡) + 𝑑(𝑡)o																																					for	0 ≤ 𝑡 < 𝑡B
�𝜙;

(9)(𝑡 − 𝑡2 + 𝑇∆) + 𝜔5𝜙;
(1)(𝑡 − 𝑡2 + 𝑇∆)� n𝑦(𝑡) + 𝑑(𝑡)o								for		𝑡2 < 𝑡 ≤ 𝑡2H1

								(20) 

v�ST(t) =

⎩
⎪
⎨

⎪
⎧u nϕT

(9)(τ) + ω5ϕT
(1)(τ)	o

U

B
d(τ)	dτ,																																																										0 ≤ t < tB,					

u �ϕT
(9)(τ − tV + T∆) + ω5ϕT

(1)(τ − tV + T∆)�
U

U#
d(τ)	dτ + v�ST(tVH), tV < t ≤ tVH1,

				 (21) 

𝑦�(𝑡) =

⎩
⎪
⎨

⎪
⎧ E1Γ(t)>1u Φ(𝜏) G 1𝜔5I 𝑑(𝜏)

=

B
	𝑑𝜏,																				0 ≤ 𝑡 < 𝑡B,					

E1Γ(𝑡 − 𝑡2 + 𝑇∆)>1u Φ(𝜏 − 𝑡2 + 𝑇∆) G
1
𝜔5I 𝑑(𝜏)

=

=$
+ 𝑦�(𝑡2H), 𝑡2 < 𝑡 ≤ 𝑡2H1,

														(22) 
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(i)    Pre-filtering of the current signal 𝑖(𝑡)  

It is intuitive to apply a pre-filter to filter out the low-
frequency contents in 𝑖(𝑡), such that the swing phenomenon 
can be removed. With the aim of maintaining the amplitude and 
phase angle of the fundamental signal 	𝑖1(𝑡)  in the filtered 
signal, a specialized band-pass filter 

𝐹(𝑠) =
𝐾W5𝜔W𝑠

𝑠5 +𝐾W𝜔W𝑠 + 𝜔W5
																													(23)	 

is designed with 𝜔𝑠 = 2𝜋 ⋅ 50	 and 𝐾𝑠 = 1.  
It is important to note that the gain of the filter F(s)	at the 

fundamental frequency 50Hz is 0dB and the associated phase 
shift is 0, and consequently the fundamental signal	i1(t) can be 
accurately estimated by the observer without using any post-
correction scheme for the phase and amplitude. The 
effectiveness of 𝐹(𝑠)  are illustrated by the same simulation 
example deployed in the previous section. As shown in Fig. 4, 
the swing phenomenon is favorably eliminated by adding the 
band-pass filter to the observer scheme. However, the 
additional filter slows down the convergence speed at the 
beginning due to the transient response of the filter, and also 
increases the overall complexity of the methodology.  

 
Fig. 4 Reconstructed fundamental signal by the modulation integral observer 
with the pre-filter in the presence of a non-zero mean uniform disturbance. 

 (ii)  Exponential modulation function 

In this section, it will be shown that the aliasing issue can be 
addressed by the newly designed exponential MF 𝜙𝑒,ℎ(𝑡)	(see 
Table I) without using an additional filter, thereby the 
convergence speed is not compromised.  

To proceed with the analysis, let us first recall the MFs 
selected from (10) and (11): 

𝜙𝑝,1(𝑡) =
𝑤1𝑡5

5!
, 𝜙𝑝,2(𝑡) =

𝑤2𝑡4

4!
,				𝜙𝑝,3(𝑡) =

𝑤3𝑡3

3!
									(24) 

𝜙𝑒,1(𝑡) = 𝑒𝑤1𝑡
𝑤1𝑡5

5!
, 𝜙𝑒,2(𝑡) = 𝑒𝑤2𝑡

𝑤2𝑡4

4!
,		 

𝜙𝑒,3(𝑡) = 𝑒𝑤3𝑡
𝑤3𝑡3

3!
		(25) 

In view of (21), the estimation error	𝑣'𝜙ℎ(𝑡) at an arbitrary time 
instant is composed of two parts: 1) the rescaled terminal error 
at the end of the previous time-interval (initial error at 𝑡 = 0 is 
0), and 2) the accumulated error within the present time-
interval. Next, the error comes from 2) will be investigated first 
whereas the error signal 1) will be studied later.  

Without loss of generality, let us pick the first time-interval 
𝑡 ∈ [0, 𝑡B]. In the context of the polynomial case, the estimation 
error 𝑣�A)1(𝑡) induced by 𝜙),1(𝑡) can be evaluated by: 

	𝑣�A)1(𝑡) = u �𝜙),1
(9)(𝜏) + 𝜔5𝜙),5

(1)(𝜏)�
=

B
𝑑(𝜏)	𝑑𝜏		 

	= u �
𝑤1𝜏5

2! + 𝜔5𝑤1𝜏
]

4! �𝑑
(𝜏)	𝑑𝜏

=

B
								(26) 

Assuming that 𝑑(𝑡) is a periodic signal formed by 𝑀 sinusoidal 
components, 𝑑1, 𝑑5, ⋯ , 𝑑^  with associated frequencies 
𝜔_( , 𝜔_! , ⋯ ,𝜔_). Due to the linearity of the integral operator, 
the error term 	𝑣�A)1(𝑡)  can be expressed as the sum of 
𝑀	components 𝑣�A)1,1(𝑡), 𝑣�A)1,5(𝑡),⋯ , 	𝑣�A)1,^(𝑡)  induced by 
each individual component of 𝑑(𝑡),  respectively. Therefore, 
with reference to (26) it holds that  

	

𝑣�A)1,`(𝑠) = 𝑤1𝑠 �
1
2�

𝑑5

𝑑𝑠5
𝜔_*

𝑠5 +𝜔_*
5 �

+
𝜔5

24 �
𝑑]

𝑑𝑠]
𝜔_*

𝑠5 +𝜔_*
5 ��		(27) 

 
where 	𝑖 = 1,2, … ,𝑀 , 𝑠  is the Laplace variable. After some 
algebra, we obtain  

𝑣�A)1,`(𝑠) = 𝐺)1,`(𝑠)𝑑`(𝑠),			𝑖 = 1,2, … ,𝑀											(28) 
where  

𝐺)1,`(𝑠) = 𝑠
𝑤1
2 �

8𝑠5

n𝑠5 +𝜔_*
5 o5

−
2

𝑠5 +𝜔_*
5   

+𝑠
𝜔5𝑤1
24 �

384𝑠]

n𝑠5 +𝜔_*
5 o]

−
288𝑠5

n𝑠5 +𝜔_*
5 o9

+
24

n𝑠5 +𝜔_*
5 o5

 . 

 
As it can be noticed, the sensitivity function of system (28) 

(that is ¡1 − 𝐺)1,`(𝑗𝜔)¡) has the sensitivity peak at 𝜔_* since the 
closed-loop transfer function 𝐺)1,`(𝑠)  is characterized by 
imaginary poles at ±𝑗𝜔_*. Therefore, the system (28) is  

sensitive to 𝑑`(𝑡), which also implies that 𝑣�A)1(𝑡) is sensitive 
to all frequency components. Analogously, it can be inferred 
that 𝑣�A)5(𝑡)  and 𝑣�A)9(𝑡)  are also sensitive to periodic 
disturbances when polynomial MFs (24) are applied.  

By analogy to (26), the error term 𝑣�A1(𝑡)  driven by the 
exponential MF 𝜙*,1(𝑡) is expressed as (29), with 𝑝5 = 1, 𝑝9 =
2, 𝑝] = 3, 𝑝a = 4, 𝑞1 = 1, 𝑞a = 2, 𝛼5 = 2, 𝛼9 = 2, 𝛼] =
8, 𝛼a = 120, 𝛽] = 24, 𝛽a = 120. By following the same steps 
(27)-(28) taken in the polynomial case, we have 

𝑣�A*1,`(𝑠) = 𝐺*1,`(𝑠)𝑑`(𝑠),			𝑖 = 1,2, … ,𝑀											(30) 

where 𝐺*1,`(𝑠) is the transfer function induced by exponential 
MFs. Due to the exponential term 𝑒<(=, all the imaginary poles 
at ±𝑗𝜔_* are shifted to the right-hand side of the complex plane 
by 𝑤1, such that the new poles are 𝑤1 ± 𝑗𝜔_*. In this context, 
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the sensitivity to sinusoidal disturbances, 𝑑` , 𝑖 = 1,2, … ,𝑀,	is 
significantly reduced. For the sake of completeness, the bode 
plots of 𝐺)1,`(𝑠), 𝐺*1,`(𝑠)  with 𝑤1 = 45  and 𝜔_* = 5Hz are 
depicted in Fig. 5 as an illustrative example. As it can be seen, 
the sensitivity peak appears in 𝐺)1,`(𝑠) is effectively removed 
in the exponential counterpart	𝐺*1,`(𝑠). 

 
Fig. 5 Bode diagram of the transfer functions 𝐺$!,&(𝑠), 𝐺'!,&(𝑠) with 𝑤! = 45 

and 𝜔(! = 5Hz. 

Although closed-loop transfer functions 𝐺𝑝1,𝑖(𝑠), 𝐺𝑒1,𝑖(𝑠) in 
both cases are not stable (because of multiple 0 poles in the 
polynomial case and poles with positive real parts in the 
exponential case), the divergence of the estimation error 
𝑣'𝜙1,𝑖(𝑠) evoked by the unstable poles (introduced by on the 
polynomial and exponential functions, respectively) are highly 
attenuated in 𝑦'(𝑡) by the MF matrix  Γ(𝑡)>1 as the rates of the 
divergence are compensated by the rate of decay (i.e., Γ(𝑡)>1 
formed by the same type of MFs in each case). Finally, the 
boundedness of the 𝑦'(𝑡) is rigorously ensured by the resetting 
mechanism with the properly selected	𝑇Δ, 𝑇r, and the observer 
scheme is subject to Input-to-State stability [15]. Generality 
speaking, the algorithm has to be reset frequently enough to 
avoid error accumulation and thereby to ensure stability. 

Next, the initial error (rescaled terminal error at the end of 
the previous time-interval) at each time-interval will be studied. 
Let us start by demonstrating that the rescaling gain of the 
exponential MFs is much smaller than the one induced by the 
polynomial MFs for possible choices of 𝑇Δ	and	𝑇r around 0.1s 
(which is selected for both resetting coefficients in [6]). Let us 
consider the norm of the rescaling gains in both cases 

𝛾𝑖 ≜ |Γi(𝑇Δ)Γi(𝑇Δ + 𝑇𝑟)
−1|	, 𝑖 = {𝑝, 𝑒} 

where Γp	and	Γe  represent the MF matrix formed by 
polynomial and exponential MFs, respectively. The map of the 
ratio 𝛾𝑝/𝛾𝑒  with respect to 𝑇Δ	and	𝑇r	is illustrated in Fig. 6, 

where the benefit of exponential MFs in terms of scaling down 
the gain is clearly presented. As such, the rescaled error of the 
exponential MFs at each resetting instant tends to be smaller as 
compared to the polynomial counterparts by also considering 
the noise sensitivity in both scenarios. 

Now, it is possible to infer from the analysis that the 
robustness of the modulation integral observer is expected to be 
improved by replacing the polynomial MFs with the 
exponential ones. Thus, the swing phenomenon tends to be 
suppressed without adding an extra filter, which will be 
experimentally verified in Section IV. 

  
Fig. 6 Ratio between norms of rescaling gains induced by both MFs with 

respect to 𝑇)	and	𝑇*. (Both types of MFs have same parameter settings: 𝑤! =
45,𝑤" = 35,𝑤# = 15). 

V. PRACTICAL IMPLEMENTATION AND 
EVAULATION 

Four sets of practical tests have been conducted to evaluate 
the performance of the proposed method. First, the robustness 
of the exponential and the polynomial modulation functions are 
compared under different noise levels. Second, a comparison of 
the computation time between polynomial and exponential 
modulation on FPGA and microcontroller is evaluated. Third, 
the practical implementation of the exponential modulation in 
an active power filter is demonstrated in a hardware setup. 
Finally, the dynamic performance has been compared between 
RDFT and Exp-MF. 

A   Comparison of the exponential and polynomial 
modulation functions for the integral observer  
Practical tests have been conducted to compare the 

performance of the two MFs under noiseless and noisy 
situations. The reference waveform used in this test is shown in 
Fig. 7 and its harmonic content is tabulated in Table II. Note 

	𝑣'𝜙𝑒1(𝑡) = . /𝑒𝑤1𝜏 0
𝑤1
4𝜏5

120
+
𝑤1
3𝜏4

8
+
𝑤1
2𝜏3

2
+
𝑤1𝜏2

2
+ 𝜔2 1

𝑤1
2𝜏5

120
+
𝑤1𝜏4

24
234 𝑑(𝜏)	𝑑𝜏

𝑡

0

= . 6𝑒𝑤1𝜏 /$
𝑤1
𝑝𝑖𝜏𝑖

𝛼𝑖

2

345

+ 𝜔2 0$
𝑤1
𝑞𝑖𝜏𝑖

𝛽𝑖

2

346

347 𝑑(𝜏)	𝑑𝜏
𝑡

0
																																																																												(29)	 
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that this reference waveform is based on the example (with the 
same relative harmonic ratios) used in the comparison in [5] for 
a range of harmonic detection methods. The third harmonic is 
not included because it is cancelled in a 3-phase power system 
with a delta-connected transformer. In the experiment, the 
weighted coefficients 𝑤1, 𝑤5, 𝑤9 are selected as 45, 35 and 15 
for both polynomial and exponential MFs. The fundamental 
rule for tuning 𝑤1, 𝑤5, 𝑤9 is to minimize the condition number 
of Γ(𝑡), in order to render feasible the practical inversion of 
Γ(𝑡) ,  in the interval [𝑡?	, 𝑇E 	+	𝑇D	] . Note that the inverse 
matrix Γ(𝑡)>1 can be computed analytically once the MFs have 
been chosen, thereby the inverse can be implemented directly, 
to avoid online matrix inversion. The noise used for the 
practical tests is the Gaussian white noise and the peak to peak 
magnitude of the noise is set at 0.26V, 1V, 2V, and 3V. The 
reset time is 𝑇C = 𝑇D = 0.1s and the sampling frequency is 
10kHz.The harmonic current and the noise are generated by the 
function generator Tektronix AFG3102C and the algorithm is 
implemented by dSPACE DS1006. 
 

 
 
Fig. 7 Practical periodic distorted waveform for evaluation of fundamental 
detection algorithm 
 

Table II   Fundamental and harmonic content to reference waveform 
Fundamental/Harmonic Voltage (V) 

dc offset 0 
Fundamental 7.8 
5th harmonic 2.25 
7th harmonic 0.39 
11th harmonic 0.39 
13th harmonic 0.39 

The error is calculated by the following method. First a pre-
designed harmonic current and fundamental current are injected 

by a functional generator to the dSPACE. Also, a fundamental 
current is injected to the dSPACE at the same time. Hence, the 
reconstructed fundamental current will be subtracted by the 
injected fundamental current in the program and output by the 
digital-to-analog converter (DAC) to the scope and further 
analysis can be carried out by capturing the data. The method 
used here is to eliminate the phase error between the 
reconstructed and injected fundamental current as the 
functional generator can provide the two signals that are 
perfectly in phase. 

Fig. 8a to Fig. 8c show the actual and reconstructed 
fundamental waveforms by the polynomial MF integral 
observer under noiseless and different noisy conditions. The 
corresponding measurements for the exponential MF integral 
observer are shown in Fig. 9a to Fig. 9c. It can be seen from 
Fig. 8a to Fig. 8c that the polynomial MF integral observer can 
estimate the fundamental component accurately when there is 
no noise. But the quality of the reconstructed fundamental 
waveform deteriorates with the increasing noise level. The 
reconstructed fundamental is affected by the noise and suffers 
from a swing issue. Therefore, the results are highly affected. 
However, the reconstructed fundamental waveforms using the 
exponential MF integral observer are relatively closer to their 
ideal sinusoidal references with no obvious swing phenomena. 

An alternative way to observe the robustness against noise is 
to plot the error-time series. Such results under different noise 
conditions (noise level of 0V, 2V and 3V) are plotted in Fig. 
10a-Fig. 10c. In all cases, the exponential MF has less error and 
outperforms the polynomial MF. These practical results 
confirm that the exponential MF integral observer has more 
robustness against noise than the polynomial counterpart. These 
waveforms are further analyzed so that their root-mean-square 
(RMS) error and error boundary (which is the maximum error 
minus the minimum error) are obtained. Table III shows the 
RMS error and the error boundary for both MFs. 

B. Comparison of computational times of online 
implementations in microcontroller and FPGA  

The previous section shows that the exponential modulation 
function has better performance and robustness against noise 
than the polynomial function when used in the integral observer. 
A typical active power filter is controlled by a microcontroller 
or DSP which has a limited computation power. Therefore, a 
microcontroller and FPGA are selected to implement the 
algorithm for comparison of the computing times. The basic 
specifications of the microcontroller and FPGA are listed in 
Table IV and Table V. 

Table III. The error of the modulating function 
Noise 
Level 
(Vpp) 

Exponential MF Polynomial MF Polynomial MF with band 
pass filter 

RMS 
error(V) 

Error 
boundary(V) 

RMS 
error(V) 

Error 
boundary(V) 

RMS 
error(V) 

Error 
boundary(V) 

noiseless 0.3703 2.4594 0.8445 4.6135 0.5865 2.0737 
0.26 0.3725 2.5037 1.028 5.1721 0.6002 2.0796 

1 0.4082 2.4353 1.0209 5.3679 0.6053 2.0521 
2 0.417 2.4221 1.1967 7.7316 0.6019 2.1556 
3 0.4077 3.2128 1.4236 9.0187 0.6032 2.2391 
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Fig. 8a   Actual and reconstructed fundamental by polynomial MF under 
noiseless condition 

 
Fig. 8b   Actual and reconstructed fundamental by polynomial MF under 2V 

noise condition 

 
Fig. 8c   Actual and reconstructed fundamental by polynomial MF under 3V 

noise condition 

 
Fig. 9a   Actual and reconstructed fundamental by exponential MF under 

noiseless condition 

 
Fig. 9b   Actual and reconstructed fundamental by exponential MF under 2V 

noise condition 

 
Fig. 9c   Actual and reconstructed fundamental by exponential MF under 3V 

noise condition 

 
(i) Polynomial MF               (ii)           Exponential MF 
Fig. 10a Comparison of error-time series of the (i) polynomial and (ii) 
exponential MF under Noiseless condition 

 
(i) Polynomial MF               (ii)           Exponential MF 
Fig. 10b Comparison of error-time series of the (i) polynomial and (ii) 
exponential MF under 2V noise condition 

 
(i) Polynomial MF               (ii)           Exponential MF 

Fig. 10c Comparison of error-time series of the (i) polynomial and (ii) 
exponential MF under 3V noise condition 

 
Table IV. Specifications of the microcontroller 

MCU model STM32H7 
Max Main Clock frequency  400MHz 
Microarchitecture ARM Cortex-M7F 

 
Table V. Specifications of the FPGA 

FPGA Board Arty S7-50 
Look-up Tables (LUTs) 32,600 
Flip-Flops 65,200 
Block RAM 337.5 KB 
 
Two development boards for the MCU and FPGA have been 

implemented with the exponential modulation integral observer 
algorithms. The sampling frequency is set at 10kHz. The 
periodic distorted waveform generated by the signal generator 
and the reconstructed fundamental waveform generated by the 
STM32H7 development board are shown in the Fig. 11. The 
comparison of the execution times between polynomial and 
exponential function are listed in Table VI.  It is noted that the 
exponential modulation function requires only 67.5µs, with is 
well within the sampling time of 100µs of the 10kHz sampling 
time. This result confirms that such an algorithm can be 
implemented in MCU. The execution times of the algorithms 
are about 6µs in FPGA. 
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Table VI. Computational times on MCU and FPGA 
Microcontroller computational time  
Polynomial MF Exponential MF 
22.5µs   (<100 µs for 10kHz 
sampling) 

67.5 µs (<100 µs for 10kHz 
sampling) 

FPGA computational time 
Polynomial  Exponential  
6.09µs 6.24 µs 

 
Fig. 11 Reconstructed fundamental (orange) and injected harmonic (green) by 
exponential MF executed by low-cost MCU at a sampling rate of 10kHz 
 
C. Practical comparison of ANF, RDFT and Exp-MF 
methods in an active power filter application 

The hardware setup similar to that of Fig. 1 has been 
employed to investigate the real-time performance of the 
proposed algorithm. Fig. 12 shows the photograph of such a 
setup. In the experiment, a KIKUSUI PBZ40-10 bipolar power 
supply is to emulate the power grid; a Delta VDF015M21A 
drive system (VFD) is used as the non-linear load to generate 
the harmonic current; another KIKUSUI PBZ40-10 bipolar 
power supply has been set to current mode and acts as the active 
power filter. Since the bi-polar power supply could only supply 
a 48V AC voltage, an autotransformer is connected in between 
the VFD and the bi-polar supply to step-up the voltage to 200V. 

 
Fig. 12 Hardware setup for active power filter 

(i)  Steady-state Performance 
The non-linear load current drawn by the variable speed drive 

system is sampled at a frequency of 10kHz. The proposed 
integral observer with the exponential modulation function 
(Exp-MF) is compared with the ANF and RDFT methods. For 
the integral observer, the weighting factors are tuned offline to 
be w1 = 45, w2 = 35 and w3 = 15. Tr = TΔ = 0.1. A pair of RDFT 
filters are employed with the order 0 and 1 for the offset and 

fundamental respectively. The ANF is tuned with ζa  = 1 and γ  
= 10.  Also, the test frequency is extended to a range between 
48-52Hz in order to study the robustness of the algorithms for 
both strong and weak power grids. Details of ANF and RDFT 
implementations can be found in the appendix of [15]. 

The total harmonic distortion (THD) of the grid current is 
calculated by the Voltech PM6000 power analyzer. The data are 
captured after one minute of operation so as to reduce the error 
caused by transients. 

Fig. 13 shows the mains voltage and the highly distorted 
input current before harmonic compensation by the active 
power filter. The total harmonic content is about 50%. The 
corresponding mains voltage and input current at 50Hz after 
compensation by the active power filter based on the ANF, 
RDFT and the Exp-MF methods are shown in Fig. 14, Fig. 15 
and Fig. 16, respectively.  

 
Fig. 13 The input current (blue) and power supply voltage (red) without 

compensation at 50Hz 
 

 
Fig. 14 The input current (blue), power supply voltage (red) by ANF at 50Hz 
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Fig. 15 The input current (Blue), power supply voltage (Red) by RDFT at 

50Hz 
 

 
Fig. 16  The input current (blue), power supply voltage (red) by exponential 

MF at 50Hz 
  
 The total harmonic distortion (THD) values of the 
compensated currents of the three methods under comparison 
have been measured from 48Hz to 52Hz with an increment of 
1Hz. These THD values are tabulated in Table VII. These 
results show that the performances of both RDFT and the 
integral observer with the exponential modulation function are 
comparable and are much better than the ANF method. In this 
set of tests, the Exp-MF method has a slightly lower THD than 
RDFT.  

 
Table VII. Grid current THD under different frequencies 

Method 
 
Frequency 

ANF RDFT Exp-MF  Without 
compensation  

48Hz 20.33% 5.86% 5.12% 49.84% 
49Hz 19.19% 5.34% 4.97% 49.44% 
50Hz 18.47% 5.49% 5.09% 49.40% 
51Hz 17.73% 5.25% 5.27% 49.69% 
52Hz 17.3% 5.19% 5.49% 50.12% 
Averaged THD 18.60% 5.43% 5.19% 49.70% 

 
(ii)  Dynamic Performance 
 A normal power grid in Hong Kong and the U.K. should 
operate between 49.5 to 50.5 Hz and the rate of change of 
frequency (RoCoF) should not exceed 0.4Hz/s (It would 
increase to 1Hz/s with more renewable energy connected to the 

grid in the future) [16][17]. Under these practical requirements, 
three representative cases are studied where the fundamental 
frequency comprises a frequency ramp from 50.5Hz to 49.5Hz 
with different slopes: 
(a) RoCoF = -0.2Hz/s for a period of T=5s 
(b) RoCoF = -0.4Hz/s for a period of T=2.5s 
(c) RoCoF = -1.0Hz/s for a period of T=1s 

A dynamic response test is set up to evaluate the performance 
of the exponential MF and the RDFT methods. A dSPACE 
system is used to control a bipolar power supply to generate a 
distorted current of the shape shown in Fig. 7 for the three cases 
with specified RoCoF values. The exponential-MF and RDFT 
methods are implemented to derive the fundamental component 
of the distorted current. To compare their transient 
performance, the root-mean-square (RMS) estimation errors of 
both methods within the transient period are evaluated by: 

 

ª∑(𝑖6 − 𝑖6
∗ )5

𝑇  

where in and in* are the ideal and sampled current values, 
respectively. For the three cases, the largest error boundaries 
(which is the maximum error minus the minimum error) are 
also recorded. These results are tabulated in Table VIII. It can 
be shown that the exponential MF method has smaller RMS 
errors and error boundaries than the RDFT method in all of the 
three cases.  
 

Table VIII   Comparison of Dynamic Performance of Exponential MF and 
RDFT for a range of RoCoF 

 
For illustrative purposes, the error signals of RDFT and 

exponential MF method in case (c) are depicted in Fig. 17, 
where the scale of both methods is the same. The results verify 
the superior performance of the proposed estimation scheme.  

 
 

Fig.17 The estimation error signal of the MF exp and RDFT during a 
frequency ramp change. Top: fundamental frequency. Middle: fundamental 

signal estimation error of RDFT. Bottom: fundamental signal estimation error 
of Exp-MF  

 

RoCoF 
(Hz/s)  

Exp-MF RMS 
Error (A)  

RDFT 
 RMS Error 

(A)  

Exp-MF 
Error boundary 

(A)  

RDFT error 
boundary (A)  

0.2  0.1191  0.1103  0.4698  0.5013  

0.4  0.2037  0.2879  1.0176  1.3455  

1  0.5009  0.7042  1.956 2.4309 
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VI. CONCLUSION 
An integral-observer-based modulation function was 

recently reported to be a fast and effective solution in detecting 
the fundamental and thus the total harmonic content of a 
periodic waveform. The novel contributions of this paper 
include a thorough theoretical analysis, a mathematic proof and 
practical verification that an integral observer based on an 
exponential modulation function will offer better robustness 
against noise and aliasing issues than that based on a 
polynomial modulation function. The computational times 
obtained in real-time implementation confirm that the proposed 
exponential modulation integral observer can be used in low-
cost MCU for real-time operation.  The proposed method has 
been practically compared with the ANF and RDFT methods in 
a practical real-time application of an active power filter. The 
total harmonic distortion values confirm the good performance 
of the proposed method. Under a range of rate of change of 
frequency in an a.c. power system, the proposed method 
provides a re-constructed fundamental component from a 
distorted waveform with smaller error and error boundary than 
the RDFT method. Thus, the proposed method can provide 
good performance in both fixed and variable frequency 
situations. The study advances the integral observer technology 
for identifying the fundamental and hence the total harmonic 
content by introducing a new exponential modulation function 
to enhance the integral observer’s robustness against noise and 
mitigate the aliasing issues. Its ability to withstand noise in the 
sampled signal has been theoretically analyzed and proved, and 
also experimentally verified. The exponential modulation 
function integral observer offers the combined advantages of 
fast computation and high robustness. It is a feasible option for 
adoption in grid-tied power inverters that require the 
information of the fundamental and harmonic content in real 
time for control purposes. 
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V. APPENDIX 

A. Periodic rescaling strategy 
To introduce the rescaling strategy, let us now consider the 
time-shifted counterpart of the modulation integral (15) 
 

𝑣A;(𝑡|𝑡B) = u 𝜙;
(9)(𝜏 − 𝑡B)

=

=,
𝑖(𝜏)

+ 𝜔5𝜙;
(1)(𝜏 − 𝑡B)𝑖(𝜏)	𝑑𝜏																	(𝐴. 1) 

where 𝑡B is a time instant different from 0. On this occasion, a 
time-shifted version of (14) can be obtained 

																				𝑧(𝑡) 	= Г(t − tB)>1𝑉A(𝑡|𝑡B).																	(𝐴. 2) 
 
Define two positive scalars 𝑇C and 𝑇D, dividing the time span 
into successive segments terminated at 

𝑡2 = 𝑇C 	+ (𝑘	 + 1)𝑇D ,			𝑘 = 0,1,⋯ 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

12 

 
Noting that (A.2) holds for any generic	𝑡B, the following two 
equations both hold, for all 𝑡	 > 	 𝑡2 	−	𝑇E, 𝑘 = 1,2,⋯.  

𝑧(𝑡) 	= Г(𝑡 − (𝑡2 − 𝑇C))>1𝑉A(𝑡|𝑡2 − 𝑇C) 
							𝑧(𝑡) 	= Гn𝑡 − (𝑡2>1 − 𝑇C)o

>1𝑉A(𝑡|𝑡2>1
− 𝑇C)																																			(𝐴. 3) 

It is worth to point out that the vector signal 𝑉A(𝑡|𝑡2 − 𝑇C) 
contains the information collected in the time-window [𝑡2 −
𝑇E, 𝑡], while 𝑉A(𝑡|𝑡2>1 − 𝑇C) contains information collected in 
a longer time-window [𝑡2>1 − 𝑇E, 𝑡] .  Referring the two 
identities in (A.3), it is possible to establish an algebraic relation 
between 𝑉A(𝑡|𝑡2 − 𝑇C)  and 𝑉A(𝑡|𝑡2>1 − 𝑇C)  that permits to 
discard old information carried by the data processed in the 
interval [𝑡2>1 − 𝑇E, 𝑡2 − 𝑇E]. Therefore, for 𝑡 = 𝑡2, according 
to (A.3), it holds that 

Г(𝑡2 − (𝑡2 − 𝑇C))>1𝑉A(𝑡2|𝑡2 − 𝑇C) = Гn𝑡2 − (𝑡2>1 −
𝑇C)o

>1𝑉A(𝑡2|𝑡2>1 − 𝑇C), 

which can be reformed as 

𝑉A(𝑡2|𝑡2 − 𝑇C) = Г(𝑇C)Г(𝑇D + 𝑇C)>1𝑉A(𝑡2|𝑡2>1 − 𝑇C). 

That is to say, the vector 𝑉A(𝑡2|𝑡2 − 𝑇C) can be computed from 
the vector 𝑉A(𝑡2|𝑡2>1 − 𝑇C)	 through a simple algebraic 
rescaling, which is smooth as a result of (A.3). For clarification, 
𝑇D	is the time between two rescaling events, while 𝑇C represents 
the length of the equivalent integration window after each 
operation.  

To ensure the error signal is downscaled after each resetting 
instant, the constant rescaling gain |Г(𝑇C)Г(𝑇D + 𝑇C)>1|needs 
to be sufficiently small (fulfilled by suitably designed 𝑇D  and 
𝑇C). Readers can refer to [14] for detailed characterization. 

 


