Supplemental Online Content

Ioannou A, Patel RK, Martinez-Naharro A, et al. Tracking treatment response in cardiac light-chain amyloidosis with native T1 mapping. *JAMA Cardiol*. Published online July 19, 2023. doi:10.1001/jamacardio.2023.2010

eAppendix.

eTable 1. International consensus criteria for haematological response and N-terminal pro-brain natriuretic peptide (NT-proBNP)

eTable 2. Demographics, serum biomarker, echocardiographic and cardiac magnetic resonance findings at diagnosis in patients with cardiac AL amyloidosis according to changes in native-T1 6-months after the initiation of chemotherapy

eTable 3. Baseline demographics, serum biomarker, echocardiographic and cardiac magnetic resonance findings at diagnosis in patients with cardiac AL amyloidosis according to changes in native-T1 6-months after the initiation of chemotherapy **eTable 4.** Changes in serum biomarkers, echocardiographic and cardiac magnetic resonance findings in patients with cardiac AL amyloidosis according to changes in

native-T1 6-months after the initiation of chemotherapy

eTable 5. Baseline demographics, serum biomarker, echocardiographic and cardiac magnetic resonance findings at diagnosis in patients with cardiac AL amyloidosis according to changes in native-T1 12-months after the initiation of chemotherapy

eTable 6. Changes in serum biomarkers, echocardiographic and cardiac magnetic resonance findings in patients with cardiac AL amyloidosis according to changes in native-T1 12-months after the initiation of chemotherapy

eTable 7. Univariable and multivariable analysis of mortality risk 6-months after the initiation of chemotherapy

eFigure 1. Flow chart demonstrating which patients had follow up imaging **eFigure 2.** Bland-Altman plot of the myocardial native-T1 measured in patients with end-stage renal failure before and immediately after haemodialysis

eFigure 3. Follow chart summarizing the longitudinal data for patients who underwent cardiac magnetic resonance (CMR) scans at all three timepoints (baseline, 6-months and 12-months)

eFigure 4. Illustration of the changes observed in serum biomarkers,

echocardiographic and cardiac magnetic resonance parameters following changes in myocardial native-T1

eFigure 5. Illustration of how changes in myocardial T2 and ECV influence changes in myocardial native-T1

This supplemental material has been provided by the authors to give readers additional information about their work.

© 2023 Ioannou A et al. JAMA Cardiololgy.

eAppendix.

Ethical approval

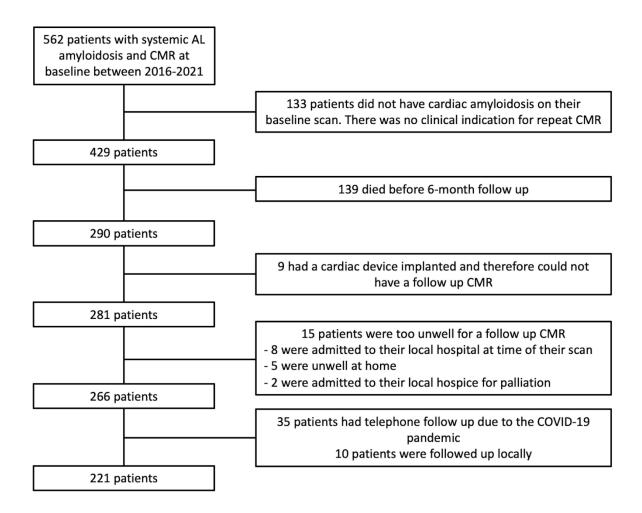
Patients were managed in accordance with the Declaration of Helsinki and provided written informed consent for analysis and publication of their data (REC reference: 09/H0715/58). A separate ethical approval was obtained for recruitment of patients who did not have systemic AL-amyloidosis, but had a diagnosis of end-stage renal failure (ESRF) and were established on haemodialysis. These patients underwent non-contrast CMR before and immediately after haemodialysis, and their images were analysed in order to establish a cut off for the change in native-T1 that would exceed any change attributable to fluid shift, or measurement error (REC reference: 07/H0715/101).

Cardiac Magnetic Resonance Imaging

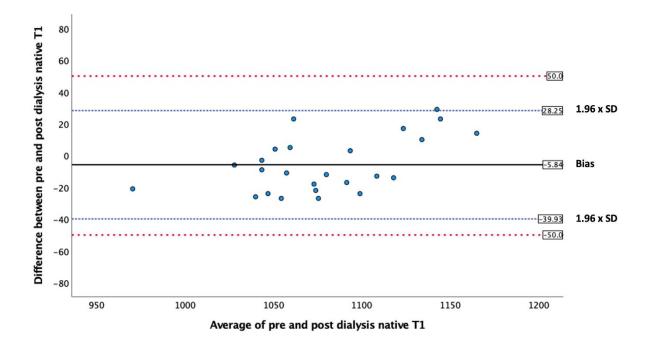
All subjects underwent CMR on a 1.5-T clinical scanner with localizers and cine imaging with steady state free precession sequence (SSFP). Native-T1 mapping was acquired using the modified look-locker inversion recovery sequence. For patients who received gadolinium contrast, late gadolinium enhancement (LGE) imaging was acquired with both magnitude inversion recovery and phase-sensitive inversion recovery sequence reconstructions with SSFP read-outs. After a bolus of gadoterate meglumine and LGE imaging, T1 mapping was repeated 15-minutes post-contrast using the same slice locations with the modified look-locker inversion recovery sequence, to produce automated inline ECV mapping reconstruction. T1-mapping protocols used 5s(3s)3s and 4s(1s)3s(1s)2s sampling, pre- and post-contrast, respectively. Patients with an estimated glomerular filtration rate (eGFR) <30ml/min/1.73m² who were not consented for the risks associated with gadolinium did not receive contrast and had a non-contrast CMR, even if contrast was administered during their baseline scan.

CMR analysis

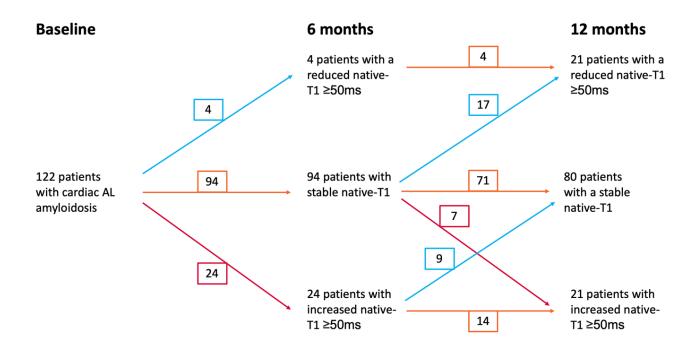
All CMR image analysis was performed offline using Osirix MD 9.0 (Bernex, Switzerland) and reporting clinicians were blinded to all other clinical data. Native-T1, T2 and ECV measurements were obtained by drawing a single region of interest in the basal to mid septum of the appropriate 4-chamber map. Follow-up CMR scans that took place 6 and/or 12-months after commencing chemotherapy, were compared with baseline scans to determine the change in native-T1. Only those patients who had a CMR scan at each timepoint were included in the analysis pertaining to that timepoint.

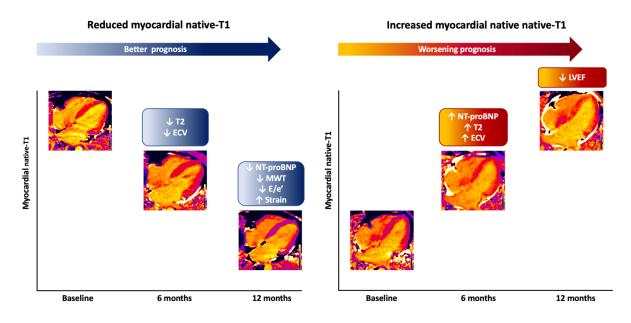

Native-T1 cut off

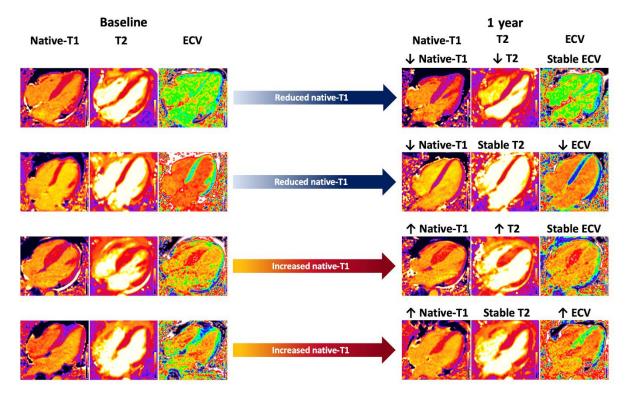
We included 25 patients who did not have systemic AL-amyloidosis, but had ESRF requiring haemodialysis (mean age:63.9±10.6 years, male:68.0%) and who had repeated CMR scans before and immediately after haemodialysis. When compared to the 221 patients (mean age:64.7±10.6years, male:58.8%) diagnosed with cardiac AL-amyloidosis there was no significant difference in age (P=0.853) or proportion of males (P=0.375). The cut-off for change in myocardial native-T1 in response to treatment was determined following the analysis of the CMR scans that took place before and immediately after hemodialysis in the cohort with ESRF. Native-T1 measurements were obtained by drawing a single region of interest in in the basal to mid septum of the appropriate 4-chamber map. Haemodialysis resulted in a bias of -5.84ms (95%CI: -39.93 to 28.25) (Supplementary Figure S2). Therefore, an absolute change in native-T1 of \geq 50ms, was far greater than any change attributable to fluid shift, or measurement error, and was considered a significant change in native-T1. Following this analysis, patients with cardiac AL-amyloidosis were classified as having a native-T1 reduction (native-T1 reduction \geq 50ms), a stable native-T1 (change in native-T1 <50ms) or a native-T1 increase (native-T1 increase \geq 50ms). A significant change in the myocardial ECV was considered as previously described as an absolute change in ECV of 0.05.


Subgroup analysis of patients with 6-month and 12-month CMR scans

We identified 122 patients who had follow up CMR scans at both 6 and 12-months. Of this subgroup, there were 4 patients who demonstrated a native-T1 reduction \geq 50ms at 6-months, and all 4 patients had a native-T1 reduction of \geq 50ms at 12-months. At 12-months, there were an additional 17 patients who had a stable native-T1 at 6-months and demonstrated a native-T1 reduction of \geq 50ms at 12-months, all of whom demonstrated a sustained good haematological response between the two scans.


At 6-months, 24 patients demonstrated an increase in native-T1 \geq 50ms, 14 of also whom had an increase in native-T1 \geq 50ms at 12-months, and 9 patients who no longer had an increased native-T1 \geq 50ms at 12-months. The 9 patients who had an increase in native-T1 at 6-months and a stable native-T1 at 12-months (compared with their baseline CMR scan) all demonstrated a sustained good haematological response between the two scans (Supplementary Figure S3 and S4).


eFigure 1. Flow chart demonstrating which patients had follow up imaging.


eFigure 2. Bland-Altman plot of the myocardial native-T1 measured in patients with endstage renal failure before and immediately after haemodialysis.

eFigure 3. Follow chart summarizing the longitudinal data for patients who underwent cardiac magnetic resonance (CMR) scans at all three timepoints (baseline, 6-months and 12-months).

eFigure 4. Illustration of the changes observed in serum biomarkers, echocardiographic and cardiac magnetic resonance parameters following changes in myocardial native-T1.

eFigure 5. Illustration of how changes in myocardial T2 and ECV influence changes in myocardial native-T1.

Haematological response					
Complete response (CR)	Normal free light-chains (FLC) levels, normal kappa/lambda ratio and				
	negative serum immunofixation				
Very good partial response	Reduction in dFLC [difference in concentration between aberrant and				
(VGPR)	uninvolved class of FLC] to <40mg/L				
Partial response (PR)	PR: >50% reduction in dFLC				
No response (NR)	≤50% reduction in dFLC				
	NT-proBNP response				
NT-proBNP improvement	Reduction of >30% and >300ng/L				
Stable NT-proBNP	Change of <30% or <300ng/L				
NT-proBNP worsening	Increase of >30% and >300ng/L				

eTable 1. International consensus criteria for haematological response and N-terminal probrain natriuretic peptide (NT-proBNP).

Baseline characteristics (n = 221)							
Demographics							
Age (years)	64.7 ± 10.6						
Sex (male)	130 (58.8%)						
Body surface area (m ²)	1.88 ± 0.25						
Serum biomarkers							
NT-proBNP (ng/L)	2443 (926 - 5230)						
Troponin (ng/L)	52 (28 - 100)						
dFLC (mg/L)	201 (71 – 427)						
Mayo stage							
1	18 (8.1%)						
2	77 (34.8%)						
3a	102 (46.2%)						
3b	21 (9.5%)						
Missing	3						
Echocardiographic parameters							
IVSd (mm)	14.1 ± 2.5						
RWT	0.68 ± 0.17						
E/e'	15.8 ± 6.8						
LS (%)	-13.8 ± 4.9						
Cardiac magnetic resonance paramet	ers						
MWT (mm)	15.7 ± 3.9						
LV mass indexed (g/m ²)	97.6 ± 34.0						
LVEF (%)	64.3 ± 10.7						
MAPSE (mm)	8.4 ± 3.2						
TAPSE (mm)	16.1 ± 5.8						
LA area (cm ²)	26.6 ± 7.3						
RA area (cm ²)	22.5 ± 6.4						
Native T1 (ms)	1165.7 ± 57.6						
T2 (ms)	52.0 ± 2.9						
ECV*	0.47 ± 0.08						

eTable 2. Demographics, serum biomarker, echocardiographic and cardiac magnetic resonance findings at diagnosis in patients with cardiac AL amyloidosis according to changes in native-T1 6-months after the initiation of chemotherapy. *ECV measurements were available for 218 patients who received gadolinium contrast during their baseline scan.

NT-proBNP = N-terminal pro-brain natriuretic peptide, IVSd = Interventricular septal diameter in diastole, RWT = Relative wall thickness, LS = Longitudinal strain, MWT = Maximal wall thickness, LV = Left ventricular, LVEF = Left ventricular ejection fraction, MAPSE = Mitral annular plane systolic excursion, TAPSE = Tricuspid annular plane systolic excursion, LA = Left atrial, RA = Right atrial, ECV = Extracellular volume.

Baseline characteristics								
	Reduced native-T1	Reduced native-T1Stable native-T1 (nIncreased native-T1						
	(n = 8, 4.4%)	= 130, 71.0%)	(n = 45, 24.6%)					
Demographics								
Age (years)	64.76±14.83	65.38±10.78	63.14±8.63	0.286				
Sex (male)	3 (37.5%)	81 (62.3%)	26 (57.8%)	0.355				
Serum biomarkers								
NT-proBNP (ng/L)	3896 (1326-8485)	2674 (941-5158)	1989 (670-5792)	0.421				
Troponin (ng/L)	42 (34-74)	54 (29-106)	54 (26-130)	0.765				
Echocardiographic parar	neters							
IVSd (mm)	12.63±2.62	14.16±2.43	14.42±2.82	0.267				
RWT	0.60±0.12	0.69±0.16	0.68±0.16	0.224				
E/e'	14.56±4.04	15.94±6.94	15.69±7.34	0.947				
LS (%)	-14.14±4.61	-14.05±4.78	-13.92±5.64	0.986				
Cardiac magnetic resona	nce parameters							
MWT (mm)	14.25±3.81	15.82±4.16	15.98±4.10	0.507				
LV mass indexed (g/m ²)	80.00±23.60	98.57±34.35	102.60±39.71	0.268				
LVEF (%)	63.50±14.85	64.61±9.69	63.62±12.43	0.922				
MAPSE (mm)	6.83±1.94	8.40±3.08	8.71±3.29	0.462				
TAPSE (mm)	15.00±4.84	16.31±5.31	16.36±7.02	0.805				
LA area (cm ²)	23.13±6.64	27.12±7.12	27.91±7.61	0.352				
RA area (cm ²)	20.00±6.74	22.78±6.36	23.76±6.02	0.248				
Native T1 (ms)	1162.25±32.63	1168.19±61.71	1171.58±45.74	0.894				
T2 (ms)	52.00±2.39	52.08±3.04	52.26±2.71	0.627				
ECV*	0.45±0.05	0.47±0.08	0.49±0.08	0.290				

eTable 3. Baseline demographics, serum biomarker, echocardiographic and cardiac magnetic resonance findings at diagnosis in patients with cardiac AL amyloidosis according to changes in native-T1 6-months after the initiation of chemotherapy. Reduced native-T1 was defined as a native-T1 reduction \geq 50ms, stable native-T1 was defined as a change in native-T1 <50ms, and increased native-T1 was defined as a native-T1 reduction \geq 50ms. *ECV measurements were available for the 164 patients who received gadolinium contrast during both their baseline and 6-month follow up CMR scans.

P-values for pairwise comparison: α = Regression vs Stable, β = Regression vs Progression. NT-proBNP = N-terminal pro-brain natriuretic peptide, IVSd = Interventricular septal diameter in diastole, RWT = Relative wall thickness, LS = Longitudinal strain, MWT = Maximal wall thickness, LV = Left ventricular, LVEF = Left ventricular ejection fraction, MAPSE = Mitral annular plane systolic excursion, TAPSE = Tricuspid annular plane systolic excursion, LA = Left atrial, RA = Right atrial, ECV = Extracellular volume.

	Reduced native-T1 (n=8, 4.4%)			Stable native-T1 (n=130, 71.0%)			Increased native-T1 (n=45, 24.6%)			
	Baseline	6 months	Р-	Baseline	6 months	Р-	Baseline	6 months	Р-	
			value			value			value	
Serum biomark	ers					•			•	
Haematological	CR = 7 (87.5%)			CR = 63 (48.5)	CR = 63 (48.5%)			CR = 9 (20.0%)		
response	VGPR = 1 (12)	2.5%)		VGPR = 32 (24.6%)			VGPR = 9 (20.0%)			
	PR = 0 (0.0%))		PR = 25 (19.2%)			PR = 16 (35.6%)			
	NR = 0 (0.0%))		NR = 10 (7.7%)			NR = 11 (24.4%)			
NT-proBNP	3772 (964-	1146 (340-	0.076	2817 (937-	2295 (882-	0.596	2349 (710-	3136 (1685-	0.002	
(ng/L)	9210)	3037)		5275)	5010)		5802)	10979)		
NT-proBNP	Improvement	= 4 (50.0%)		Improvement	= 31 (23.8%)	•	Improvement =	= 11 (24.4%)	•	
response	Stable = 2 (25	.0%)		Stable = $49(3)$	37.7%)		Stable $= 8 (17.3)$	8%)		
	Worse $= 1 (12)$	2.5%)		Worse $= 42$ (3)	32.3%)		Worse = 24 (53.3%)			
	Missing data =	= 1 (12.5%)		Missing data =	= 8 (6.2%)		Missing data = $2(4.4\%)$			
Echocardiograp	hic parameters	5								
IVSd (mm)	12.17±2.23	12.17±2.32	0.999	14.18±2.45	14.24±2.44	0.338	14.66±3.03	14.88±2.97	0.070	
RWT	0.57±0.06	0.54±0.08	0.135	0.69±0.16	0.07±0.14	0.080	0.69±0.17	0.71±0.17	0.474	
E/e'	15.25±4.37	12.30±5.36	0.237	15.67±6.94	15.39±6.11	0.590	16.05±7.67	16.61±7.84	0.455	
LS (%)	-13.74±4.75	-14.64±4.20	0.200	-14.33±4.81	-13.89±4.62	0.167	-13.48±5.57	-12.98±4.07	0.375	
Cardiac magnet	ic resonance pa	arameters								
MWT (mm)	14.25±3.81	12.63±3.11	0.195	15.86±4.16	15.62±3.88	0.230	16.09±4.07	16.11±3.65	0.947	
LV mass	80.00±23.60	74.38±17.12	0.253	98.57±34.35	97.42±34.23	0.515	102.60±39.71	101.47±35.96	0.638	
indexed (g/m ²)										
LVEF (%)	63.00±14.85	64.38±14.15	0.742	64.61±9.69	63.72±10.45	0.204	63.62±12.45	60.63±13.31	0.012	
MAPSE (mm)	6.83±1.94	7.00±2.90	0.867	8.49±3.05	8.30±2.67	0.374	8.88±3.14	8.23±2.61	0.103	
TAPSE (mm)	15.00±4.84	17.38±5.21	0.154	16.31±5.36	15.88±5.36	0.215	16.36±7.02	14.95±5.94	0.062	
LA area (cm ²)	23.13±6.64	22.88±4.16	0.845	27.12±7.15	26.57±6.12	0.168	27.91±7.61	27.24±7.74	0.298	
RA area (cm ²)	20.00±6.74	19.50±3.96	0.775	22.78±6.36	22.49±5.50	0.482	23.70±6.08	23.93±7.71	0.775	
T2 (ms)	52.00±2.39	48.88±2.90	0.002	52.08±3.04	52.45±3.30	0.084	52.23±2.71	55.47±3.99	< 0.001	
ECV*	0.46±0.05	0.40±0.06	0.009	0.47±0.08	0.49±0.09	< 0.001	0.49±0.08	0.57±0.09	< 0.001	
ECV response*	Regression =	4 (50.0%)		Regression = 3 (2.3%)			Regression = $0 (0.0\%)$			
	Stable = $3(37)$.5%)		Stable = 94 (72.3%)			Stable = 11 (24.4%)			
	Progression =	0 (0.0%)		Progression = 21 (16.2%)			Progression = 28 (62.2%)			
	Non-contrast	CMR = 1 (12.59)	%)	Non-contrast CMR = $12 (9.2\%)$			Non-contrast CMR = $6(13.3\%)$			

eTable 4. Changes in serum biomarkers, echocardiographic and cardiac magnetic resonance findings in patients with cardiac AL amyloidosis according to changes in native-T1 6-months after the initiation of chemotherapy. Reduced native-T1 was defined as a native-T1 reduction \geq 50ms, stable native-T1 was defined as a change in native-T1 <50ms, and increased native-T1 was defined as a native-T1 reduction \geq 50ms. *ECV measurements were available for the 164 patients who received gadolinium contrast during both their baseline and 6-month follow up CMR scans.

NT-proBNP = N-terminal pro-brain natriuretic peptide, IVSd = Interventricular septal diameter in diastole, RWT = Relative wall thickness, LS = Longitudinal strain, MWT = Maximal wall thickness, LV = Left ventricular, LVEF = Left ventricular ejection fraction, MAPSE = Mitral annular plane systolic excursion, TAPSE = Tricuspid annular plane systolic excursion, LA = Left atrial, RA = Right atrial, ECV = Extracellular volume.

Baseline characteristics								
	Reduced native-T1	Increased native-T1	P-value					
	(n = 24, 15.0%)	= 112, 70.0%)	(n = 24, 15.0%)					
Demographics								
Age (years)	59.26±11.58	64.73±11.35	63.88±8.34	0.115				
Sex (male)	13 (54.2%)	65 (58.0%)	16 (66.7%)	0.653				
Serum biomarkers								
NT-proBNP (ng/L)	2638 (914-5767)	2270 (927-4314)	1622 (553-5487)	0.750				
Troponin (ng/L)	37 (28-70)	49 (30-93)	57 (26-122)	0.492				
Echocardiographic param	neters							
IVSd (mm)	13.42±2.98	14.06±2.54	14.50±2.65	0.403				
RWT	0.66±0.19	0.68±0.17 0.70±0.18		0.669				
E/e'	14.93±9.97	15.94±7.09	14.18±4.27	0.667				
LS (%)	-14.76±3.98	-13.67±5.07	-14.31±4.46	0.455				
Cardiac magnetic resona	nce parameters							
MWT (mm)	14.83±3.60	15.56±4.16	15.41±3.80	0.864				
LV mass indexed (g/m ²)	88.83±32.59	98.38±35.73	97.63±33.35	0.416				
LVEF (%)	67.67±12.00	64.50±10.51	65.79±11.41	0.190				
MAPSE (mm)	8.64±3.14	8.43±3.14	7.91±3.10	0.636				
TAPSE (mm)	17.48±5.75	15.75±5.70	15.55±5.07	0.404				
LA area (cm ²)	20.75±4.85	26.62±7.70	27.04±7.32	0.450				
RA area (cm ²)	20.75±4.67	22.95±7.16	21.83±6.09	0.400				
Native T1 (ms)	1183.38±39.90	1157.12±61.50	1152.38±51.19	0.099				
T2 (ms)	52.42±2.84	51.56±2.99	52.52±2.69	0.100				
ECV*	0.47±0.07	0.47+0.09	0.48±0.09	0.933				

eTable 5. Baseline demographics, serum biomarker, echocardiographic and cardiac magnetic resonance findings at diagnosis in patients with cardiac AL amyloidosis according to changes in native-T1 12-months after the initiation of chemotherapy. Reduced native-T1 was defined as a native-T1 reduction \geq 50ms, stable native-T1 was defined as a change in native-T1 <50ms, and increased native-T1 was defined as a native-T1 reduction \geq 50ms. *ECV measurements were only available for the 146 patients who received gadolinium contrast during their baseline and 12-month follow up CMR scans.

NT-proBNP = N-terminal pro-brain natriuretic peptide, IVSd = Interventricular septal diameter in diastole, <math>RWT = Relative wall thickness, LS = Longitudinal strain, MWT = Maximal wall thickness, <math>LV = Left ventricular, LVEF = Left ventricular ejection fraction, MAPSE = Mitral annular plane systolic excursion, TAPSE = Tricuspid annular plane systolic excursion, LA = Left atrial, RA = Right atrial, ECV = Extracellular volume.

	Reduced native-T1 (n=24, 15.0%)			Stable native-T1 (n=112, 70.0%)			Increased native-T1 (n=24, 15.0%)		
	Baseline	12 months	Р-	Baseline	12 months	Р-	Baseline	12 months	P-
			value			value			value
Serum biomark	ers	•			•			•	
Haematological	CR = 18 (75.0)%)		CR = 51 (45.5)	5%)		CR = 4 (16.7%)		
response	VGPR = 6 (25)	5.0%)		VGPR = 40 (35.7%)			VGPR = 3 (12.5%)		
	PR = 0 (0.0%))		PR = 14 (12.5%)			PR = 13 (54.2%)		
	NR = 0 (0.0%))		NR = 7 (6.3%)			NR = 4 (16.7%)		
NT-proBNP	2638 (913-	423 (128-	< 0.001	2270 (927-	1568 (561-	0.009	1622 (554-	3150 (1161-	0.007
(ng/L)	5767)	1777)		4314)	3475)		5487)	8745)	
NT-proBNP	Improvement	= 19 (79.1%)		Improvement	= 42 (37.5%)	1	Improvement =	3 (12.5%)	
response	Stable = $3(12)$	2.5%)		Stable = 33 (2	.9.5%)		Stable = $9(37.5\%)$		
	Worse $= 2 (8.$	3%)		Worse = 31 (2	27.7%)		Worse = 12 (50).0%)	
	Missing data =	= 0 (0.0%)		Missing data =	= 6 (5.4%)		Missing data =	0 (0.0%)	
Echocardiograp	hic parameters	5							
IVSd (mm)	13.42±2.98	13.33±3.02	0.714	14.13±2.48	14.18±2.48	0.603	14.45±2.30	15.05±2.40	0.050
RWT	0.66±0.19	0.65±0.17	0.759	0.69±0.17	0.67±0.15	0.080	0.69±0.15	0.74±0.14	0.045
E/e'	14.93±6.84	12.04±5.24	0.007	16.26±7.24	15.77±6.52	0.416	14.39±4.28	16.71±6.25	0.064
LS (%)	-14.76±3.98	-16.68±4.00	0.004	-13.19±4.79	-13.09±4.73	0.754	-14.19±4.34	-13.50±4.55	0.274
Cardiac magnet	ic resonance pa	arameters				1			•
MWT (mm)	14.83±3.60	13.61±3.88	0.009	15.62±4.14	15.42±3.97	0.351	15.41±3.80	15.55±3.61	0.731
LV mass	88.83±32.59	85.29±36.54	0.505	98.59±35.82	99.27±42.99	0.798	97.63±33.35	104.54±37.67	0.070
indexed (g/m ²)									
LVEF (%)	67.67±12.00	67.21±8.45	0.801	63.77±10.51	62.92±11.03	0.309	65.79±11.41	61.50±12.40	0.009
MAPSE (mm)	8.71±3.20	9.38±3.28	0.095	8.48±3.14	8.34±2.55	0.581	7.91±3.10	7.55±1.82	0.515
TAPSE (mm)	17.39±6.15	19.67±5.21	0.093	15.67±5.68	15.65±5.51	0.966	15.55±5.07	15.05±4.97	0.413
LA area (cm ²)	24.38±4.85	22.88±4.85	0.066	26.62±7.70	26.09±5.77	0.220	27.04±7.32	27.83±5.65	0.407
RA area (cm ²)	20.70±4.73	20.17±4.08	0.556	22.95±7.16	22.96±5.92	0.970	21.83±6.09	23.79±7.47	0.107
T2 (ms)	52.33±2.85	49.42±2.00	< 0.001	51.61±2.96	52.06±2.77	0.069	52.52±2.67	55.26±4.23	< 0.001
ECV*	0.47±0.07	0.42±0.08	< 0.001	0.47±0.09	0.47±0.09	0.243	0.48±0.09	0.56±0.09	< 0.001
ECV response*	Regression =	18 (75.0%)	1	Regression = 13 (11.6%)			Regression = $0 (0.0\%)$		
_	Stable = $5(20)$).8%)		Stable = 77 (68.8%)			Stable = $1 (4.2\%)$		
	Progression =	0 (0.0%)		Progression = 10 (8.9%) Non-contrast CMR = 12 (10.7%)			Progression = $22 (91.7\%)$		
	Non-contrast	CMR = 1 (4.2%))				Non-contrast CMR = $1 (4.2\%)$		
				1.011 contrast civit = 12 (10.770)					

eTable 6. Changes in serum biomarkers, echocardiographic and cardiac magnetic resonance findings in patients with cardiac AL amyloidosis according to changes in native-T1 12-months after the initiation of chemotherapy. Reduced native-T1 was defined as a native-T1 reduction \geq 50ms, stable native-T1 was defined as a change in native-T1 <50ms, and increased native-T1 was defined as a native-T1 reduction \geq 50ms. *ECV measurements were available for the 146 patients who received gadolinium contrast during their baseline and 12-month follow up CMR scans.

NT-proBNP = N-terminal pro-brain natriuretic peptide, IVSd = Interventricular septal diameter in diastole, <math>RWT = Relative wall thickness, <math>LS = Longitudinal strain, MWT = Maximal wall thickness, <math>LV = Left ventricular, LVEF = Left ventricular ejection fraction, MAPSE = Mitral annular plane systolic excursion, TAPSE = Tricuspid annular plane systolic excursion, <math>LA = Left atrial, RA = Right atrial, ECV = Extracellular volume.

	Univariable		Multivariable with n without EC		Multivariable with ECV and without native-T1	
	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value
Haematological response						
CR	Reference		Reference		Reference	
VGPR	1.95 (0.73-5.21)	0.180	1.64 (0.61-4.42)	0.329	1.09 (0.37-3.29)	0.874
PR	6.98 (3.09-15.78)	< 0.001	4.66 (1.96-11.11)	< 0.001	2.77 (1.12-6.88)	0.028
NR	16.94 (7.38-38.89)	< 0.001	11.32 (4.69-27.28)	< 0.001	9.92 (4.12-23.90)	< 0.001
NT-proBNP response						
Improvement	Reference		Reference		Reference	
Stable	0.90 (0.40-2.02)	0.804	0.98 (0.43-2.26)	0.961	1.19 (0.49-2.91)	0.699
Worsening	2.19 (1.10-4.36)	0.025	1.14 (0.56-2.32)	0.716	1.14 (0.54-2.41)	0.730
Native T1 response						
Reduced/stable	Reference		Reference		Reference	
Increased	3.92 (2.31-6.66)	< 0.001	2.41 (1.36-4.27)	0.003	-	-
ECV response						
Regression/stable	Reference		Reference		Reference	
Progression	6.32 (3.47-11.50)	< 0.001	-	-	4.67 (2.41-9.06)	< 0.001
Harrell's c	-	-	0.799 (0.744-0.853)	< 0.001	0.824 (0.769-0.879)	< 0.001
AIC	-	-	477.24		385.68	

eTable 7. Univariable and multivariable analysis of mortality risk 6-months after the initiation of chemotherapy. Reduced native-T1 was defined as a native-T1 reduction \geq 50ms, stable native-T1 was defined as a change in native-T1 <50ms, and increased native-T1 was defined as a native-T1 reduction \geq 50ms. CR = Complete response, VGPR = Very good partial response, PR = Partial response, NR = No response, NT-proBNP = N-terminal probrain natriuretic peptide, ECV = Extracellular volume, AIC = Akaike information criterion.