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Abstract

We provide details about the procedure employed for the three-dimensional geological modelling of the lobes of comet
Churyumov-Gerasimenko (67P). The two lobes of 67P are characterized by well visible terraces and elongated cliffs that
revealed a pervasive layering arranged in an onion-like fashion. None of the layers can be traced for a continuity large
enough to provide a means of stratigraphic correlation. Therefore, an explicit modelling approach of the layered structure is
not easily applicable. We show how a very simple modelling strategy based on implicitly-defined analytical surfaces (spheres
or ellipsoids), and requiring very limited operator decision-making, can be successfully applied to produce a geological
model that easily fits the available scattered attitude observations. Our formulation has the advantage of providing a small
set of parameters with a precise geometrical meaning that can be compared with other parameters of the lobes (i.e. center of
ellipsoids and center of mass). The presented method originates outside commercial geological modelling software packages
and required devising some ad-hoc solutions for the visualization of the resulting models in comparison with observations
made on OSIRIS images. Some extracts of the visualization code, helpful for applying this procedure in similar operational
contexts, are also presented.

11.1 Introduction

ESA’s Rosetta spacecraft made it possible to observe the
surface of the comet Churyumov-Gerasimenko (67P) at
unprecedented resolution. The camera system onboard
the spacecraft, the OSIRIS (Keller et al., 2007), captured
tens of thousands of images during the two years of the
mission, which were used for shape model reconstruction
(Jorda et al., 2016; Preusker et al., 2017), spectrophot-
metric studies (Fornasier et al., 2015; Oklay et al., 2016),
geomorphological mapping (Giacomini et al., 2016; Lee
et al., 2016), and many other investigations on surface
morphology and geology (El-Maarry et al., 2015a, 2016;
Thomas et al., 2015; Birch et al., 2017; Vincent et al., 2017).

Comet 67P has a bilobate shape: the big lobe and the
small lobe are connected through a bridge of material,
known as the neck (see, for example, Sierks et al., 2015).
The comet’s nucleus is extremely rich in geomorphological
forms. Among the most prominent ones are small- to
large-scale fractures (El-Maarry et al., 2015b; Auger et al.,
2017), landslides (Pajola et al., 2016) and morphological
terraces. Terraces are flat portions of terrain, bounded
on one or more sides by almost vertical cliffs: terraces
and cliffs appear to be strongly associated and produce
the whole range of intermediate morphologies between
staircase-patterns of terraces to flat-topped mesas.

Terraces and cliffs are spatially organized, outly-
ing a large-scale pervasive pattern of concentric and
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semi-parallel layers (Thomas et al., 2015; Massironi et al.,
2015; Rickman et al., 2015). This arrangement strongly
recalls exposures of sedimentary and, less frequently,
volcanic rocks observed on Earth and other rocky planets
where the action of differential erosion enhances the orig-
inal differences in the physical properties of the rocks. On
comets the more prominent erosive process is expected to
be sublimation (e.g. Keller et al., 2015; Guilbert-Lepoutre
et al., 2015). Thus a process of differential sublimation
might be a good candidate for explaining the terrace for-
mation. The processes controlling terrace formation have
produced a topographic profile of non-equilibrium, which
alternates flat terrains with gravitationally failure-prone
cliffs (Pajola et al., 2016). Figure 11.1, modified from Penasa
et al. (2017a), shows the evidence for a tight alternation of
terraces and cliffs on a typical topographic profile of 67P.

Terraces seem to form in correspondence of pre-existent
extended surfaces, or bedding planes, which continue deep
inside the nucleus. Terraces are observed for at least 1.2 and
1.38 km of stratigraphic thickness for the big lobe and the
small lobe respectively, suggesting that a large portion of
the cometary body is layered (Penasa et al., 2017a).

The same surfaces controlling the terraces can also be
observed on vertical walls and inside pits, as linear traces
produced by the intersection of the bedding planes with the
surface (see, for example, Thomas et al., 2015; Massironi
et al., 2015; Basilevsky et al., 2017). These traces are clearly
aligned with nearby terraces and therefore represent the
continuation of the terraces within the subsurface. No
element contradicting this evidence has been found so far.
While these traces are locally visible they cannot be fol-
lowed for large distances, making the identification of key
horizons difficult, and precluding any lateral correlation
at the scale of the entire lobes. Their elusive appearance,
which seems to be highly sensitive to the illumination
condition (the same outcrop might show or not show

well-defined bedding planes, depending on the shadow-
ing), suggests that these traces might actually be the result
of small-scale terrace-like morphologies, at the limit with
the image resolution.

In the next sections we will describe the process that led
from the observation of terraces to a three-dimensional
model of the layering. We will discuss the main prob-
lems related with such an uncommon case of a three-
dimensional layered structure and how a working solution
was obtained. The analytical solution described in this
chapter was also used as a basis to create a more adaptive
3D model by Franceschi et al. (2020), where more details
on this topic can be found.

11.1.1 From Terraces to Geological Cross-sections

The OSIRIS system is composed by two cameras: the Wide
Angle Camera (WAC) camera with a larger field of view
(FoV) of 12∘ and the Narrow Angle Camera (NAC) with a
smaller FoV of 2.35∘. Thanks to the large number of images
collected during the Rosetta mission, three-dimensional
meshes of the surface were produced by using either the
stereophotogrammetry (SPG; Preusker et al., 2017) or the
stereophotoclinometry method (SPC; Jorda et al., 2016).
The models were produced incrementally by including
new images in the reconstruction pipeline as they became
available, so that the first generation of models comprised
only the northern hemisphere of the comet.

From the analysis of the orientation of the terraces,
Massironi et al. (2015) drew the first geological cross-
sections of the inner layering, also showing that the ter-
races are aligned with the gravity equipotentials of each
lobe taken individually, rather than being coherent with
the gravity field of the entire bi-lobated nucleus. That
evidence demonstrated the independent nature of the lay-
ering of the two lobes. To derive geological cross-sections
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Figure 11.1 A topographic profile obtained by
cutting the shape model of Churyumov-
Gerasimenko (67P) with a plane. Terraces and cliffs
alternate, producing staircase pattern morphologies.
Modified from Penasa et al. (2017a).
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11.2 A Modelling Strategy for Onion-Like Layers 201

of the cometary nucleus, Massironi et al. (2015) estimated
the orientation of the terrace on the 3D shape model that
was available at the time, hence limited to the northern
hemisphere of the Churyumov-Gerasimenko (67P) comet
(Jorda et al., 2016) and characterized by a lower resolution.
In particular, to estimate a best-fitting normal for each
terrace surface, portions of the 3D shape model were
extracted by using the meshlab software (Cignoni et al.,
2008). The extracted vertices of the triangular mesh were
then employed to obtain a best-fitting plane estimate of the
terrace by means of a least squares method (e.g. Fernández,
2005).

From the three-dimensional shape model a set of
cross-sections were extracted providing topographic pro-
files of the comet nucleus. A subset of the obtained
terraces, located within a buffer from the section plane,
was then plotted on the same cross-section to represent the
local orientation of the layering. From this information,
Massironi et al. (2015) interpreted the inner layering as
formed by extended surfaces, whose intersections with the
two-dimensional section were traced by respecting the ori-
entation imposed by the terraces. A similar methodology
was employed for drawing geological cross-sections used
during planning of the Brenner basis tunnel (Bistacchi
et al., 2008; Schiavo et al., 2015).

This approach provided geological sections like the one
in Figure 11.2, in which the terraces, interpreted as proxies
for the underlying bedding planes, are extended inside
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Figure 11.2 One of the geological cross-sections realized by
Massironi et al. (2015), redrawn and simplified. Red marks
represent the measured orientations at the section plane of the
observed terraces and their normals. Dashed lines are the
interpreted continuation of the terraces as extended bedding
planes inside the nucleus, which were traced in accordance with
the observed attitudes at the surface. On some regions the
stratigraphic series is well exposed for some hundreds of meters
of the total thickness (dotted ellipses).

the nucleus. This provided an indication not only about
the expected orientation of the layers below the surface
but also about the overall layered sequence thickness,
which was shown to be of the order of hundreds of meters.
Although being limited to the northern hemisphere, this
analysis showed that large portions of the layered sequence
were actually missing, for example on the Hathor cliff,
where the layers meet the topographic surface at a high
angle (Figure 11.2).

To better constrain the geometry of the layers, the cre-
ation of a three-dimensional model was of primary impor-
tance. A typical workflow for producing three-dimensional
models of sedimentary sequences involves the creation of
a set of cross-sections on which the subsurface continua-
tion of layers/horizons is tracked and/or interpreted. As
layers are intersected by each cross-section in depth, it is
possible to create surfaces fitting the traces of each layer
in three dimensions. This approach is defined as explicit
modelling (Caumon et al., 2009). Although cross-sections
of Churyumov-Gerasimenko (67P) were readily available
(at least for the northern hemisphere) from Massironi et al.
(2015), the creation of a explicit model turned out to be a
difficult task. Using 67P it is not possible to clearly identify
any stratigraphic key horizon that could be identified and
traced on all the cross-sections. This makes it difficult
to establish a sure lateral continuity of the strata over a
couple of hundred meters. Indeed, on 67P only scattered
attitude information exists, and hence each geological
section can be internally self-consistent with the nearby
strata attitudes but there is no objective way to establish
the stratigraphic correlation among different sections (see
Figure 11.3). Although it would in principle be possible to
solve this problem by explicitly correlating the layers on
different sections, any resulting model would be highly
interpretative and subject to the choices enforced by the
operator performing the modelling.

The 67P case indeed highlights the severe limitations of
generating 3D models from two-dimensional cross-sections
when little or no information about the stratigraphic
sequence is available.

11.2 A Modelling Strategy
for Onion-Like Layers

Three-dimensional modelling strategies in geoscience can
be grouped into two categories: implicit or explicit (e.g.
Rolo et al., 2017). In the explicit approach, the surfaces
are constructed as meshes and modified through direct
interaction with their geometrical parameters. In the
implicit approach, instead, surfaces are constructed as
iso-potential surfaces of a scalar field. The first method
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202 11 Application of Implicit 3D Modelling to Reconstruct the Layered Structure of the Comet 67P

Figure 11.3 The geological cross-sections realized by Massironi et al. (2015) imported and aligned within GoCAD/SKUA© 3D
geological modelling software: the sections provide a framework for the generation of an explicit interpretation, but the absence of
any clear stratigraphic marker that could be extended throughout all the sections does not allow an explicit approach to be strictly
followed. The top frame highlights the inconsistencies that are introduced when trying to correlate layers on different sections that
were independently realized.

works better when good constraints (e.g. in the form of
key horizons) are available but it proved not to be well
suitable for comet 67P as the explicit creation of bedding
planes would have required the identification of lines and
terraces well correlated at the scale of the entire comet (i.e.
terraces belonging to an original continuous or semicontin-
uous bedding plane of global extension). Such correlation,
as already noted, could not be done on 67P without
involving a series of assumptions not supported by clear
evidence.

An implicit modelling approach (see, for example, Hillier
et al., 2014; Calcagno et al., 2008; Grose et al., 2021) was

thus pursued to obtain a simplified numerical representa-
tion of the layered sequences of Churyumov-Gerasimenko
(67P) lobes. Implicit models seek a representation of a
specific layer as a contour surface of a three-dimensional,
real-valued function f :

f (p) = f1 (11.1)

where f 1 is a scalar associated with a specific layer and
p = [x, y, z]T is a point part of it. Function f should ideally
represent the stratigraphic position (a value representing
the position of a point in the stratigraphic pile) of any
given three-dimensional point. The modelling function
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11.2 A Modelling Strategy for Onion-Like Layers 203

f is normally an interpolator that satisfies some a-priori
constraints, typically related to the smoothness of the
generated surfaces. Several different interpolation algo-
rithms have been proposed, mostly based on Radial Basis
Functions (RBFs) (Hardy, 1990), kriging (Hardy, 1990),
or discrete interpolants (Caumon et al., 2013). Although
interpolation-based modelling schemes are extremely
adaptive and can be used to represent highly complex
geological bodies (e.g. mineralization ores), the param-
eters of the models lack a concise physical meaning,
making it more difficult to interpret the results of the
modelling.

For these reasons we made use of the knowledge about
the layering on 67P lobes, to formulate an ad-hoc modelling
function. The terraces, and hence the layering, appear to
be geometrically aligned to the gravity equipotentials of
each lobe (Massironi et al., 2015), thus suggesting that
a roundish shape could be well representative of the
layers.

A simple spherical modelling (SP) function in three
dimensions can be constructed as follows (see Figure 11.4):

f (p) = ‖p − c‖ (11.2)

This kind of implicit function predicts the stratigraphic
position of any point p = [x, y, z]T as a distance from a
center c = [x0, y0, z0]T . Such a simple model represents
each layer by a spherical surface, centered on the point c
(see the two-dimensional example in Figure 11.4). Notice
that in this case the gradient of the function at any given
point is always unitary:

‖∇f (p)‖ = 1 (11.3)

Hence this kind of model represents a real metric of dis-
tance (being defined as such) in the depth space: if we con-
sider two different layers at f 1 and f 2 we can compute the
thickness of the comprised layering as the difference of the
scalar field between the two (f 1 − f 2).

The modelling strategy based on spherical shells can also
be adapted to other analytical shapes. To derive a modelling
function that could account for the evident non-sphericity
of the lobes of 67P we made use of ellipsoids: Figure 11.4
illustrates this concept in two dimensions. A first possibil-
ity consists in using a family of concentric ellipsoids shar-
ing the same axial ratios (Fixed axial Ratios model, here-
after FR). The obtained modelling function (see also Penasa
et al., 2017a) is

f (p) = g(RT ⋅ (p − c)) (11.4)

and the relative gradient is

∇f (p) = R ⋅ ∇g(RT ⋅ (p − c)) (11.5)

where the function g(p) is defined as

g(p) = 1
bc

√
b2c2x2 + b2z2 + c2y2 (11.6)

The rotation matrix R represents the orientation of the
ellipsoidal shells in space, and can also be parametrized as
three angles 𝛼, 𝛽, 𝛾 (yaw–pitch–roll), while c is the com-
mon center of the ellipsoidal shells. The parameters b and
c are the axial ratio of the ellipsoidal family and x, y, z
are the coordinates of any point p. This choice provides a
modelling function that has a simple analytical expression
but has the drawback of producing ellipsoidal shells that
are not parallel to each other; thus the thickness of the
layers is variable (see Figure 11.4, FR model).

SP FR PE
5

4

3

2

1

0

–1
–2 0 2 4 –2 0 2 4 –2 0 2 4

4 6

4

2

2

1

0

3

2

1

Figure 11.4 Three different modelling functions for roundish concentric layers. A simple modelling function (SP) can be defined as the
distance from a point. Contour lines (or surfaces in 3D) can then be traced and used to represent concentric shells. The gradient at any
given point (arrows) provides a means of estimating the local orientation of the layers, which can be compared with measured
orientations (the observed orientations of terraces). The layers for an FR model (concentric ellipsoids with fixed axial ratios) are not
parallel to each other, which is a common requirement in geological modelling. This issue can be solved with the Parent Ellipsoid (PE)
model (distance field from a parent ellipsoid), but this would produce unrealistic lens-shaped layers in the interior of the parent
ellipse (or ellipsoid in 3D). In this example units are arbitrary.
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On the other hand, a model in which thickness is pre-
served (Parallel Ellipsoids model, hereafter PE) can be
obtained by defining the function f (p) as the distance from
a parent ellipsoid, which can be defined by its a,b,c param-
eters, R and c (see also Laurent, 2016, for a discussion on
thickness preservation when dealing with discrete implicit
models). This kind of model thus requires the distance from
an ellipsoid to be computed, a problem that does not have
an analytical solution and has to be solved numerically by
finding the zeroes of a sixth degree polynomial. A robust
algorithm is described in Eberly (2013) and its imple-
mentation can be found in the Geometric Tools repository
(www.geometrictools.com). This type of model, which
would have the desirable property of having a unitary gra-
dient everywhere, has the serious drawback of producing
unrealistic lenticular shapes inside the parent ellipsoid
(see the two-dimensional representation of Figure 11.4,
PE model).

Table 11.1 summarizes some simple models that can
be used for modelling onion-like layered bodies. All these
models can find application when modelling roundish
layered bodies, although an SP model can be too simple to
approximate complex shapes well. For solving this issue
an FR or PE model can be used to obtain a more adaptive
shape, although the FR model has better properties in term
of the resulting shapes (no lens-shaped shells inside the
parent ellipsoid) and it is simpler to implement, having
an analytical solution for the function value and its gra-
dient. This function has the only drawback of not being
thickness-preserving, but it might be acceptable if there
are not strict reasons to impose this constraint, as in the
case of 67P, where continuous layers of constant thickness
have not been observed.

As a side note, we highlight the fact that the implicit
formulation of these models simplifies their use as “base
models” for other implicit modelling techniques: if the
object to be modelled deviates locally from the base shape
(e.g. the ellipsoid), additional implicit functions (e.g. RBF)
can be used to account for residuals by just summing the

Table 11.1 Some of the functions that were tested as a
modelling function for the layers of 67P lobes.

Abbreviation Function
Number of
parameters

Analytical
solution

SP Spherical 3 (x,y,z) Yes – very
simple

FR Fixed ratios 3 (x,y,z) + 2 (b,c) +
3 (𝛼, 𝛽, 𝛾)

Yes – very
simple

PE Parallel
Ellipsoid

3 (x,y,z) + 3 (a,b,c)
+ 3 (𝛼, 𝛽, 𝛾)

None

contribution of the base-shape implicit model with a more
adaptive one. For example, an extended model f ′ (p) could
be obtained as

f ′(p) = f (p) + r(p) (11.7)

and the gradient as

∇f ′(p) = ∇f (p) + ∇r(p) (11.8)

where f (p) is any of the SP, FR, or PE models, and r(p) is
another, more flexible, interpolator (e.g. RBF or kriging)
that could be used to take into account the deviations from
the base shape.

11.3 Model Fitting

The parameters of the model must be determined by
maximizing the agreement between predictions and obser-
vations. In this case, each observation is a point in space
pi = [x, y, z]T associated with a unit vector ni = [nx, ny, nz]T

representing the direction perpendicular to the layers at
that location, as depicted in Figure 11.5. The available data
does not provide any direct observation of the scalar field
to be modelled (values of the function f ), but only of its
normalized gradient ni, which can be compared with the
predicted gradient as an angular measure:

𝜃i = arccos
( ∇f (pi)‖‖∇f (pi)‖‖ ⋅ ni

)
(11.9)

By minimizing these angles via a non-linear least-squares
solver, the best-fitting parameters for any selected f model
can be found. We made use of the CERES C ++ package
(Agarwal et al., 2016) to develop a simple toolkit for fitting
implicit models. Each model requires the definition of
two methods: one for computing the value of f (p) and
one for its gradient ∇f (p), and can then be easily fit-
ted to any dataset of observations. Alternatively to unit
normals, polylines describing the edges of the terraces
could also be used to constrain the model, with just
minor changes to the fitting strategy of Equation (11.9).
More information on this approach can be found in
Ruzicka et al. (2019).

In the case of the fixed-ratios ellipsoidal model (FR) the
parameter vector can be written as

x = [cx, cy, cz, b, c, 𝛼, 𝛽, 𝛾]T (11.10)

Given a set of initial values, the solver finds the vector
of parameters that minimizes the angular residuals of
Equation (11.9).

Figure 11.6 shows the histograms of the best-fitting
model residuals in the case of the spherical model (SP), the
fixed ratios model (FR), and for a model based on shells
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Figure 11.5 The 3D shape model of
Churyumov-Gerasimenko (67P) (Preusker et al.,
2017; Jorda et al., 2016). Each arrow represents
an observation used as a constraint to model
the layers. These attitudes were obtained by
selecting a portion of the 3D model
representative of terraces. A best-fitting
procedure on selected vertices provided a unit
normal perpendicular to each terrace. Colored
patches correspond to the portions of the shape
model that were used for the plane fitting.
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Figure 11.6 Histograms and statistics for the angular residuals for three different best-fitting models for the Big Lobe of comet 67P. In
the case of the spherical model (SP), each layer is approximated by a concentric sphere. A family of ellipsoids with fixed axial ratios
(FR) provide similar average residuals as the one based on parallel shells (PE). The FR model is simpler to implement and avoids the
creation of lens-shaped shells within the parent ellipsoid. The average residuals is of ∼10∘ smaller using the PE ellipsoidal model,
with respect to the simpler spherical one, where almost no residuals below 10∘ are present.

parallel to a parent ellipsoid (PE). The FR model was used
in Penasa et al. (2017a) and was chosen to be the reference
model for the layers on 67P because it provided a residual
comparable to the PE model with the additional benefit
of not producing the inner lenticular shapes that can be
observed in Figure 11.4. The residuals can be also evalu-
ated for their location on the cometary body. Figure 11.7
shows each observation as a vector in space, colored by the
angular residual of the model at that location. Observations

with higher residuals does not cluster in specific locations,
but are rather well-scattered on the whole body, suggesting
that they can mostly be considered as outliers, rather than
deviations of the layers from the ellipsoidal shape that was
employed.

In the case of an FR model, three parameters are needed
to define the center of the ellipsoid, while b and c are the
axial ratios of the ellipsoidal shells and 𝛼, 𝛽, 𝛾 are yaw, pitch,
and roll angles, defining their orientation in space.

 10.1002/9781119313922.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119313922.ch11 by U

niversita D
egli Studi D

i, W
iley O

nline L
ibrary on [16/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

7



�

� �

�

206 11 Application of Implicit 3D Modelling to Reconstruct the Layered Structure of the Comet 67P

Y
Z

X

90

80

60

40

20

A
ng

ul
ar

 r
es

id
ua

l [
de

gr
ee

s]

0

Figure 11.7 The angular residuals resulting
from the model can be visualized by mapping
the angles to a color scale (0∘ to 90∘) and
using them to color the vectors representing
the observations. In this case (the best-fitting
FR model), the residuals have been also
interpolated on the surface for visualization
purposes.

The management of the angular parameters 𝛼, 𝛽, and
𝛾 requires some special attention during implementation
because an ellipsoid has three symmetry axes and thus
different triplets of angles might actually represent ellip-
soidal models with an equivalent orientation in space. As
an example, consider a generic triaxial ellipsoid: a rotation
of 180∘ around any axis produces an ellipsoidal model that
is equivalent for the scope of our modelling to the one in
the non-rotated state.

Also, the a, b, and c parameters require a similar care.
These parameters are often constrained in this way:

a ≥ b ≥ c > 0 (11.11)

Although several non-linear optimization packages allow
the solution to be constrained by defining the bounds
for each parameter, we found that this strategy could be
counter-productive, slowing down or preventing conver-
gence. A working solution consists in letting the solver
reach convergence through the more convenient path in the
parameters space, for example by providing a solution of
the kind b ≥ c ≥ a > 0, which can be easily reformulated in
the expected form by reordering the columns of the orien-
tation matrix R and the respective values of the semi-axis.

When determining parameters by nonlinear methods,
it is important to initialize the vector of parameters with
values that are near the global minimum, to have faster
convergence and possibly avoid local minima. The overall
topography of the object can be used as a first approxi-
mation of the shape of the layers and thus the center of
the model can be set to match the centroid of the observa-
tions. Initializing the orientation and the axial parameters
might be more complex and can be, for example, obtained
by Principal Component Analysis (PCA) applied on the
locations of the observations.

11.3.1 Errors Determination

To associate an error to each model’s parameter, a bootstrap
method based on a Monte Carlo resampling (Efron, 1979;
Chernick, 2008) has been applied. The method can be
implemented in the following iterative way:

1. A new dataset of observations is generated by resam-
pling with replacement of the original dataset. This
simulates the effect that might be introduced by a new
data-collection campaign.

2. The best-fitting solution is determined as described
above, and the vector of the best-fitting parameters is
stored.

These two steps are repeated for a large number of times
(i.e. 10,000), thus providing a new best-fitting solution at
each iteration. We found that in the specific case, when fit-
ting an FR ellipsoidal model, even starting with a naive ini-
tialization of the parameters (i.e. the center located in the
centroid of the observations, randomly chosen axial ratios
in between 0.6 and 1.0, and axes aligned with the Carte-
sian axes of the reference frame), the rate of convergence
resulted in 100% (all iterations converged properly).

The bootstrap method provides a large number of
parameter vectors for the chosen model, which can be
summarized as histograms. As an example, Figure 11.8
shows three histograms for each lobe representing the coor-
dinates of the FR ellipsoidal model center. The histograms
exhibit well-shaped Gaussian distributions, suggesting
that the parameters converge toward the same solution:
this makes the hypothesis of multiple solutions for the
considered model unlikely. From these distributions it is
possible to obtain the maximum likelihood solution, while
the associated standard errors can be obtained by statistical

 10.1002/9781119313922.ch11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119313922.ch11 by U

niversita D
egli Studi D

i, W
iley O

nline L
ibrary on [16/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

8



�

� �

�

11.3 Model Fitting 207

1200 1400

1200

1000

800

600

400

200

0

1000

800

600

400

200

0
–0.8 –0.50 –0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50–0.6 –0.4 –0.2 0.0

BL EM center [km] SL EM center [km]
0.2 0.4

Cx

xjrd xjrdzjrd zjrdyjrd yjrd

Cy

Cz

Cx

Cy

Cz

Figure 11.8 Distributions of the ellipsoidal model center [cx , cy , cz] resulting from the bootstrap iterations. The coordinates for the
center of mass computed by Jorda et al. (2016) are reported with the jrd subscript.

Centre of mass

Centre of the ellipsoidal model
(a) (b) (c)

Figure 11.9 The center of mass of the modelled lobe would be expected to correspond to the center of the ellipsoidal model
whenever the object is (a) intact or (b) when it underwent an approximately homogeneous erosional process. In the case of localized
material removals, the center of mass is expected to be significantly shifted (c), as was in fact observed for comet 67P (Based on
Penasa et al., 2017a).

means, taking care to use circular statistics for the angles
(Fisher, 1993). A complete table of the parameters and
their errors, as determined by the described procedure
assuming an FR ellipsoidal model, can be found in Penasa
et al. (2017a). We will limit the discussion here to the
coordinates of the center of the ellipsoidal models.

The proposed modelling strategy has the advantage
of providing a set of parameters with an unambigu-
ous geometrical meaning and may help to provide
quantitative/semi-quantitative measurements useful to the
study of the comet. For instance, the center [cx, cy, cz] of
the ellipsoids can be compared with the center of mass of
the respective lobe. Assuming a homogeneous density
of the nucleus, the center of the ellipsoidal model and the
center of mass of the lobe are expected to coincide. Any
deviation from this configuration might suggest that the

lobe underwent a localized erosional process that removed
more material in specific locations. Figure 11.9 illustrates
this concept.

In the case of 67P this analysis revealed that the center
of mass in both cases does not coincide with the center of
the respective ellipsoidal models. Table 11.2 reports on the
center of mass for the two lobes of 67P, which are also dis-
played in Figure 11.8 as white arrows.

We found that the two centers of mass are significantly
shifted with respect to the centers of the FR ellipsoidal
models, by about 300 and 500 meters for the big and the
small lobe respectively. To evaluate whether these values
are significant or not, the estimated errors must be con-
sidered. The center of mass was computed by considering
a homogeneous density for the material and, under this
assumption, the error can be considered as negligible when
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Figure 11.10 Comparison of a cross-section. On the left, the section number 4, from Extended Data Figure 8 by Massironi et al. (2015),
was obtained by interpretation of orientation data. The one on the right was obtained from the ellipsoids-based FR model by Penasa
et al. (2017b).

Table 11.2 Center of mass of the lobes, as computed by Jorda
et al. (2016), compared to the center of the FR model from
Penasa et al. (2017a).

Center of mass Center of FR model

Big lobe [−0.673, 0.147, −0.049]
km

[−0.473, 0.320, −0.167]
km

Small lobe [1.524, −0.391, 0.208]
km

[1.060, −0.346, 0.010]
km

compared to the standard errors for the centers of the FR
ellipsoidal models. When these values are compared with
the distributions of the ellipsoidal model parameters (see
Figure 11.8), it appears evident that there is a consistent
shift of the coordinates (well above the significance level),
especially along some directions. For example, the x coor-
dinate of the center of the FR ellipsoidal model for the
small lobe is shifted by about 500 meters. This shift can be
ascribed to the large volumes of cometary material, which
are missing on the Hathor cliff (see Figure 11.2). The statis-
tically significant differences between the centers of mass
and the center of the respective ellipsoidal models thus
support the idea that the nucleus underwent significant
processes of uneven material removal (see Figure 11.9).

11.4 Visualization and Validation of the
Models

Once the most likely ellipsoidal model is found through
the described bootstratp method, it is necessary to con-
vey the model so that is can be used to validate the
geological interpretation. The simplest approach consists

in generating a series of geological cross-sections of the
model. Figure 11.10 shows the comparison of two sections
obtained from the FR most-likely model and the original
section by Massironi et al. (2015). The obtained section
is now granted to be consistent with any other section
that could be generated from the model. This picture also
highlights the great improvements that were obtained for
the 3D shape model of 67P during the years of the mission.

Alternatively, a certain number of ellipsoidal shells of the
model can then be overlaid in any 3D visualization soft-
ware. Although this approach gives the precise idea of the
geometry of the used model, it does not allow the model
to be easily compared with other information because the
shells tend to occlude the view, even if some transparency
rendering is employed. In particular, the obtained model is
expected to produce shells that, once intersected with the
local topography, should be parallel to nearby terraces fol-
lowing the related scarps.

For this reason we used the modelling equation (i.e.
Equation (11.4)) to compute the scalar value of the ellip-
soidal model function f (p) for each vertex of the shape
model, thus providing a scalar field that can be easily visu-
alized thanks to the ParaView software (Squillacote et al.,
2007) by mapping the values to a color scale (Figure 11.11a).
The scalar values computed using Equation (11.4), in the
case of an ellipsoidal model with fixed axial ratios, corre-
spond to the value of the semimajor axis of the ellipsoidal
shell passing for that location (hence its name, Reference
Ellipsoid Semimajor axis, or simply RES). ParaView is an
open source software for scientific visualization built on
top of the VTK library (Schroeder et al., 2006) and can be
used to visualize three-dimensional mesh models and the
associated scalar fields (scalar values associated with the
vertices or the facets of the models).
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(a)

(b)

(c)

(d) (e)

Figure 11.11 To overlay the RES contour lines on a real OSIRIS image, the geometry of the shape model must be taken into account.
This can be done by (d) creating a mask and (b) using an ad-hoc color mapping. The mask can then be used to extract the contour lines
from (a) to obtain the color contour-lines image, as shown in (c). These can then be easily overlaid to any NAC or WAC image (e).
(ImageID reference NAC_2016-01-27T16.27.58.970.)

The primary source of information used in this work is
the collection of images generated by osiris, thus compar-
ing the modelling results with any NAC or WAC image
(Figure 11.11a) is of primary importance. To correctly
overlay ParaView-generated images with OSIRIS images,
we created a Python script to align the camera to the NAC
or the WAC cameras, by using the information provided by
the mission’s SPICE kernels (https://www.cosmos.esa.int/
web/spice/spice-for-rosetta)(Acton et al., 2018). Retrieving
the camera’s orientation and position with respect to 67P
can be done in Python by using the spiceypy toolkit (Annex
et al., 2017):

import os
import spiceypy

# load the spice kernels
os.chdir("cgkernels/mk/")
spiceypy.furnsh("ROS_V111.TM")

# the time at which the camera position is needed
t = "2016-01-27T16:27:58.970"
# transform the string to a time
t = spiceypy.str2et(t)

# get the position of Rosetta spacecraft in 67p
# refence frame,
# centered in 67P, no light time correction
center = spiceypy.spkpos("ROSETTA", t,
"67P/C-G_CK", "NONE", "67P/C-G")[0]

# rotation matrix of the NAC camera,
# in respect to 67P reference frame
Rot = spiceypy.pxform("ROS_OSIRIS_NAC",
"67P/C-G_CK", t);

The variables center and Rot correspond to the optical
center and the rotation matrix of the camera, and can be
used to align the view of ParaView with the NAC or WAC
camera at the time t. The code first obtains the rotation
matrix and the position vector as above, then resets the
current camera position to a known one, and finally applies
the transformation matrix build by using the variables cen-
ter and Rot. This strategy can be easily scripted to process
a large number of camera’s positions and to automatically
obtain matching screenshots for any number of NAC or
WAC images.
# and the active camera
camera = GetActiveCamera()
view = GetActiveView()
view.CameraParallelProjection = 0

# get center and rotation of camera
center, Rot = getNacCenterAndRotationAtTime(t)
# as above
# we create a homogeneous transformation matrix,
# embedding center and rotation
Rt = np.zeros((4,4))
Rt[3,3] = 1
Rt[:3,:3] = Rot
Rt[:3,3] = center
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# we do a total reset to start in a known
position

camera.SetFocalPoint(0, 0, 1)
camera.SetPosition(0, 0, 0)
camera.SetViewUp((0, 1, 0))
camera.SetRoll(-90)
camera.SetWindowCenter(0, 0)

# create a transform
t = vtk.vtkTransform()

# finally set to the transform
t.SetMatrix(Rt.ravel().tolist())

# and apply to the camera
camera.ApplyTransform(t)

# set the FoV depending on the camera
camera.SetViewAngle(2.35) # 12 for WAC

Render() # update render

# we might save a screenshot
SaveScreenshot(/path/to/screenshot.png,
ImageQuality=100,
viewOrLayout=view,
TransparentBackground=True,
ImageResolution=(2048, 2048))

By computing the contours of the RES field at evenly
spaced intervals, which can be easily done in ParaView,
it is also possible to obtain three-dimensional traces of
the predicted layers (see, as an example, Figure 11.11).
These traces do not correspond to any specific layer but can
convey the orientation of the layering in different regions
of the body in a fairly efficient way. ParaView displays the
ellipsoidal model contours on top of the three-dimensional
shape model, but producing contour lines overlaid to the
actual osiris image (e.g. Figure 11.11e) requires the occlu-
sions generated by the shape of 67P to be correctly taken
care of. This operation can be scripted in the following
way:

1. The paraview camera orientation, position, and field of
view is set as the osiris camera was when the original
image was acquired.

2. The screenshot of Figure 11.11a is then saved.
3. The colors of the shape model are changed to red, while

the contour lines are colored with a unique black color
and a screenshot is saved (Figure 11.11b).

4. The screenshot is processed to create a mask of black pix-
els (Figure 11.11d).

5. This mask is applied to the first screenshot taken, in
order to extract only the contour lines (Figure 11.11c).

6. The extracted image can then be overlaid on the original
osiris image (Figure 11.11e).

The 3D shape model (Preusker et al., 2017; Jorda et al.,
2016) is the result of processing hundreds of OSIRIS images

to produce a three-dimensional mesh of the surface, and
can be used to create additional views of the same scene
that can be helpful in correctly understanding the resolved
morphological features on the comet surface. Figure 11.12b
was created in Blender (e.g. Kent, 2013) to reflect the alter-
nation of terraces and cliffs. Gravitational slopes greater
than 35∘ were used to artificially color the cliffs, while
flatter terrains were left in gray by creating an ad-hoc
shader. Also, Blender can be easily scripted to align its own
camera with the view of any OSIRIS image, as shown in the
next script:

import bpy
# using transform3d package convert rot mat to
euler angles import transforms3d as tr

render = bpy.context.scene.render
render.resolution_x = 2048
render.resolution_y = 2048
render.resolution_percentage = 100

cc = bpy.data.cameras[0]
cc.sensor_width = 1.35e-02*2048 # pixel size
times number of pixels
cc.sensor_height = 1.35e-02*2048
cc.angle = 2.35 / 180 * np.pi # would be 12 for
WAC

center, Rot = getNacCenterAndRotationAtTime(t)
# as explained above

camera = bpy.context.scene.camera
camera.location = center

# this transform is needed because the camera in
# blender is differently defined in respect to
# NAC/WAC inside spice
Rb = np.array([[0,1,0],[1,0,0],[0,0,-1]])

bpy.context.object.rotation_mode = 'XYZ'
eulers = np.array(tr.euler.mat2euler(Rot.dot(Rb),
'sxyz'))
camera.rotation_euler = eulers

# render the scene to a file
render.filepath = "/path/to/render.png"
bpy.ops.render.render(write_still=True)

This script requires the user to correctly set up Blender
beforehand by importing the three-dimensional model
together with per-vertices gravitational slopes and setting
the lighting and the materials as desired. The code can be
easily extended to correctly orient the light source to repro-
duce the observed shadows, as was done in Figure 11.12b,
where the shadowing effect was slightly reduced. The
complete scripts can be obtained from the author’s github
page (https://github.com/luca-penasa) or by contacting
the author.
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(a) (b)

A

B

500 m

Figure 11.12 (a) Render of the shape-model made with Blender: the cliffs (regions with gravitational slopes greater than 35∘) were
shaded in red to highlight the alternation of cliffs with terraces. White arrows highlight some of the more extended cliffs. The same
point of view of the NAC camera was obtained by means of the Pythons scripts reported in this work. (b) RES contour lines traced only
on cliffs to highlight locations where layers are expected to be well exposed. The two ellipses show regions where the model fits the
observed cliffs perfectly (A) and where the predicted lines are instead at a slight angle (B).

Figure 11.12 demonstrates the use of the proposed meth-
ods as a visual aid for validating the modelling results.
The layering of comet Churyumov-Gerasimenko (67P)
is documented by the presence of terraces separated by
steep cliffs. The cliffs themselves can be easily identified by
isolating the regions with a gravitational slope greater than
35∘, as shown in Figure 11.12a: cliffs are clearly aligned in
strips of terrain displaying lateral continuity. Some of these
extended cliffs are highlighted by arrows in Figure 11.12a
in iorder to help the interpretation. The contour lines
obtained from the model (Figure 11.12b) are expected to be
parallel to the orientation of the cliffs. More comparisons
of this kind can be found in Penasa et al. (2017a) and its
additional material.

11.5 Conclusions

The attempt to reconstruct a 3D model of the layered
structure of the lobes of comet 67P is challenged by the
scattered observations of the bedding planes. This issue
was tackled by a very simple modelling strategy based
on the approximation of the layers as shapes derived
from analytical functions (spheres or ellipsoids). The
implementation of the solver was required to take into
account the rotational symmetry of the ellipsoids and
to correctly devise a strategy for the initialization of the
model parameters. We found that convergence between
model and observations for 67P was robust to random
initialization of the parameters. The described approach

has the advantage of providing a small set of parameters
with a precise physical meaning whose standard errors can
be easily determined by using a bootstrap strategy. These
errors made it possible to compare the center of the con-
centric layering (the center of the ellipsoidal model) with
the center of mass of the respective lobe from a statistical
point of view, demonstrating that the two points do not
correspond.

The proposed modelling strategy was implemented out-
side commercial 3D geomodelling platforms and required
the development of ad-hoc visualization strategies useful
for comparing the results with the morphological features
that could be observed from osiris images.

We stress that the modelling of the layers of 67P lobes
through ellipsoids is a simplification of a more complex
shape whose further investigation will require improve-
ments able to take into account higher complexity.
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