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Abstract

We consider the problem of minimizing the neo-Hookean energy in 3D. The
difficulty of this problem is that the space of maps without cavitation is not com-
pact, as shown byConti &DeLellis with a pathological example involving a dipole.
In order to rule out this behaviour we consider the relaxation of the neo-Hookean
energy in the space of axisymmetric maps without cavitation. We propose a mini-
mization space and a new explicit energy penalizing the creation of dipoles. This
new energy, which is a lower bound of the relaxation of the original energy, bears
strong similarities with the relaxed energy of Bethuel–Brezis–Hélein in the context
of harmonic maps into the sphere.

1. Introduction

1.1. A Regularity Problem for the Well-Posedness of the Neo-Hookean Model

We consider the problem of the existence of minimizers for the neo-Hookean
energy, i.e.,

E(u) =
∫

�

[
|Du|2 + H(det Du)

]
dx, (1.1)

where H : (0,∞) → [0,∞) is a convex function such that

lim
t→∞

H(t)

t
= lim

s→0
H(s) = ∞, (1.2)

� ⊂ R
3 represents the reference configuration of an elastic body, and u : � → R

3

is the deformation map. The neo-Hookean energy is widely used in physics, en-
gineering and materials science and it can be derived from first principles [50,52]
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assuming that the gradient of the deformation remains bounded. Since interpenetra-
tion of matter is physically unrealistic, minimizers are sought in a suitable subclass
of

A := {u ∈ H1(�, R
3) : E(u) < ∞, u is injective a.e.}.

In his celebrated existence theory, Ball [2] was able to apply the direct method
of the calculus of variations to general polyconvex energies

∫
�

W (x, Du(x)) dx, (1.3)

where W : � × R
3×3 → R ∪ {∞} is the elastic stored-energy function of the

material. His approach is based on the identity

det Du = Det Du, 〈Det Du, ϕ〉 := −1

3

∫
�
u(x) · ((cof Du)Dϕ

)
dx, ϕ ∈ C1

c (�),

whereby the Jacobian determinant can be written as a distributional divergence, and
an analogous identity for cof Du, the matrix of 2× 2 cofactors of the deformation
gradient. The identities are obtained from a coercivity assumption on the stored-
energy function, the sharpest version of it (due to Müller, Tang & Yan [45]) being
that

W (x, F) � c1|F|2 + c2| cof F|3/2 + H(det F), (x, F) ∈ � × R
3×3.

However, this coercivity excludes the neo-Hookean materials. In fact, for neo-
Hookeanmaterials the hypothesis of finite energy alone is insufficient to ensure that
det Du = Det Du, as shown in the models for cavitation [3,44,48,49]. Because of
that, the neo-Hookean energy is not H1-quasiconvex, which is necessary for (1.3)
to be H1-weakly lower semicontinuous in A, as proven by Ball & Murat [4].

In order to overcome the lack of H1-weakly lower semicontinuity of the neo-
Hookean energy inA due to cavitation, one may look for minimizers in the smaller
class Ar of maps in A for which the divergence identities

Div
(
(adj Du)g ◦ u

) = (div g) ◦ u det Du ∀ g ∈ C1
c (R3, R

3) (1.4)

(of which det Du = Det Du is a particular case) are satisfied; see e.g. [22,27,42].
Unluckily, one has then to face a problem of lack of compactness: Conti &De Lellis
[11] constructed a sequence of deformations satisfying the divergence identities
(1.4), weakly converging in H1 but such that the limit does not satisfy (1.4). In this
paper we try to overcome this obstruction.

Sincewewant to rule out the formation of anomalies at the boundarywe assume
that � � �̃, where �̃ is a smooth bounded domain of R

3, and require the defor-
mations u to coincide with a bounded C1 orientation-preserving diffeomorphism
b : �̃ → R

3 not only on ∂� but on the whole of �̃ \ �, and to be injective a.e.
on the whole of �̃. This setting was used before in elasticity [32,48,49], and can
nevertheless be avoided with the techniques of [31].

Set

�b := b(�), �̃b := b(�̃).
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Since the Conti-De Lellis example is axisymmetric, we assume that �, �̃ and b are
axisymmetric (see the definition (2.5) in Sect. 2.3). Define

As := {u ∈ H1(�̃, R
3) : u is injective a.e. and axisymmetric,

det Du > 0 a.e., u = b in �̃ \ �, and E(u) � E(b)}. (1.5)

Interestingly, in the axisymmetric setting we can prove that E is weakly lower
semicontinuous and then that it has a minimum in As (see Proposition 3.1). How-
ever, the weak limit in the Conti-De Lellis example belongs to As . That example
exhibits a dipole singularity, i.e., a cavity opened at a point is filled bymaterial com-
ing from a small neighbourhood of another point. Such a flagrant interpenetration
of matter can hardly be accepted as physical. Because of that, in building an exis-
tence theory for the neo-Hookean energy we would like to prove more regularity
on minimizers by showing their existence in the class

Ar
s := {u ∈ As : the divergence identities (1.4) are satisfied}. (1.6)

In order to minimize E in Ar
s we employ a relaxation process. The reader can

think of the minimization of a functional in W 1,1. Since that space is not weakly
compact, one sets up the problem in the larger space BV of functions of bounded
variation, and relaxes the functional by adding a term that takes into account the
singular part of the distributional gradient. Here we propose something similar, but
the singular part appears on the inverse of the deformation. More precisely, we set
up the problem in the space

B := {u ∈ As : �̃b = imG(u, �̃) a.e. and

u−1 = (u−1
1 , u−1

2 , u−1
3 ) ∈ W 1,1(�̃b, R

2) × BV (�̃b)}, (1.7)

where the geometric image imG(u, �̃) is that ofDefinition 2.5. The spaceB contains
the weak H1 closure of Ar

s (see Theorem 5.1). The fact that in B the geometric
image coincides with �̃b means that any cavitation produced by a map in this class
must be filled with the image of some other part of the body (as happens in the
Conti-De Lellis example).

In B we provide a lower bound for the relaxation of E ,

F(u) :=
∫

�

[
|Du|2 + H(det Du)

]
dx + 2

∣∣∣Dsu−1
3

∣∣∣ (�̃b),

where |Dsu−1
3 |(�̃b) denotes the total variation of the singular part of the distri-

butional gradient of u−1
3 . We believe that this lower bound is sharp, i.e., that F

coincides with the relaxation of E . Indeed, in the companion paper [6] we improve
the construction of Conti & De Lellis, by showing that the relaxation of E on that
limit map (with a dipole) coincides with F . Proving the sharpness is important in
order to get, eventually, a negative result: if the minimizers of the relaxed energy
do not belong to Ar

s , then E has no minimizers in Ar
s . In any case, the energy and

the space we propose can serve to the purpose of providing a positive result, i.e.,
existence of minimizers for E .
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Theorem 1.1. The energy F has a minimizer in B. Moreover, if it belongs to Ar
s ,

then it is also a minimizer of the original neo-Hookean energy E of (1.1).

The new term 2|Dsu−1
3 |(�̃b) is the main contribution of this work. The strategy

we propose to answer the question of existence of minimizers of the neo-Hookean
energy in a class of regular maps is to obtain Sobolev regularity for the inverse u−1

of a minimizer u of F in B. This is left for future investigations. We remark that
the advantage of our results is that both B and F are explicit.

1.2. The Singular Energy

Weexplain here how the singular term |Dsu−1
3 |(�̃b) appears inTheorem1.1 and

why we believe it is the adequate term to add to minimize the neo-Hookean energy,
at least in the axisymmetric setting. Indeed, the only way in which the divergence
identities do not pass to the limit is when the cofactors are not equiintegrable. In
this, the behaviour of the sequence in the Conti-De Lellis example is generic: a
‘stack’ of surfaces with smaller and smaller diameters, orthogonal to the axis of
symmetry, are stretched without control. Due to the 2D nature of the axisymmetric
setting (see Lemma 6.1), we have

∫
Cδ

|Du j |2 dx � 2
∫

Cδ

∣∣(cof Du j )e3
∣∣ dx = 2

∫
u j (Cδ)

∣∣∣D(u−1
3 ) j

∣∣∣ d y,

where e3 is the direction of the symmetry axis andCδ is a small δ-cylinder around it.
The sets u j (Cδ) collapse to a set with zero volume (thanks to the equiintegrability
of the determinants); in the Conti-De Lellis example, they collapse to a sphere,
which is exactly the jump set of the vertical component of the inverse u−1

3 for the
limit map u. However,

∫
�

|Du|2 dx = lim
δ↘0

∫
�\Cδ

|Du|2 dx � lim inf
δ↘0

lim inf
j→∞

∫
�\Cδ

|Du j |2 dx,

so the original formula for the neo-Hookean energy completely misses out the
concentration of the Dirichlet energy if applied directly to the singular map u.

Note that in the reference configuration all evidence of the abnormal activity of
the regular sequence is lost and hidden in the one-dimensional symmetry axis; in
contrast, in the deformed configuration large (two-dimensional or fractal) structures
can remain, which make the singular map remember the energy spent in their
formation. All in all, the singular term 2|Dsu−1

3 |(�̃b) is not artificial, it emerges
naturally from the Dirichlet energy. At the very least, we prove, cf. equation (6.11),
that it is a lower bound of the abstract relaxed energy functional.

We want to make a last comment about recovering the regularity in order to
obtain minimizers of the neo-Hookean energy in the original space Ar

s . In this
task we will be confronted not with singularities that are physically relevant but
with pathological deformations that we would prefer to exclude. Indeed, in the
companion paper [6], under the additional assumption E(u) < ∞ for the surface
energy functional defined in Sect. 2.2, we prove that for any weak limit of regular
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maps there exist a countable family of dipoles ξ i , ξ
′
i lying on the axis of symmetry

and a countable family of sets of finite perimeter whose reduced boundaries �i

satisfy
|Dsu−1

3 |(�̃b) =
∑
i∈N

∣∣ξ i − ξ ′
i

∣∣H2(�i ). (1.8)

The discussion is therefore about how to reach a contradiction from the assumption
that a minimizing sequence of regular maps ends up forming those dipoles, and a
successful argument could probably use that if that were the case then the regular
maps in the sequence would produce an energy concentration of (at least)

2|Dsu−1
3 |(�̃b) = 2 · (area of the bubble) · (length of the dipole), (1.9)

which is presumably more than what a minimizer can afford.

1.3. Connection with Harmonic Map Theory

Bethuel, Brezis & Coron [7] (see also [23]) also derived a relaxed energy to
treat a problem of lack of compactness in the theory of harmonic maps from a
3D domain with values into S

2. The expression (1.9) shows that the energy we
obtain and the relaxed energy in the context of harmonic maps are very similar. In
particular, the right-hand side of (1.8) is the analogue of the ‘length of minimal
connection’, introduced in [8], connecting singularities of harmonic maps. Besides,
the supplementary term in the harmonic map relaxed energy can be expressed in
terms of this length of minimal connection in the case where the map has a finite
number of singularities. This reveals a strong connection between the problem of
minimizing the neo-Hookean energy and finding a smooth minimizing harmonic
map from B

3 into S
2 with a smooth boundary data with zero degree. This problem

was raised by Hardt & Lin in [25] and is still open. For the study of partial regu-
larity and prescribed singularities problem for harmonic maps from B

3 to S
2 in the

axisymmetric setting we refer to [26] and [39].

1.4. Recent Related Results

During the process of revision of this paper, we became aware of the recent
works [16,17]. Both exhibit coercivity conditions on W so that condition INV
(see Definition 4.5) is preserved under the weak limit in W 1,N−1: through a quick
enough growth to infinity when the determinant goes to zero in [16], and through
the equiintegrability of the cofactors in [17]. In fact, that the equiintegrability of
the cofactors implies the stability of condition INV was shown in [29]. In addition,
in [16] they construct an example of a map in the Conti–De Lellis style.

1.5. Outline of the Paper

The paper is organized as follows. In Sect. 2 we introduce some notation and
definitions that will be used in the sequel. More precisely, we define the geometric
image and the surface energy of a map. The latter notion quantifies the failure of
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the divergence identities (1.4). We then make precise the axisymmetry and specify
the boundary condition. We also introduce the notion of family of ‘good open sets’
and show how to relate the properties of a 3D axisymmetric map to the properties
of its associated 2D map.

Section 3 is devoted to the proof of existence of minimizers of E in the classAs .
These minimizers could, in principle, be irregular, forming pathologies similar to
that of theConti-DeLellis example. This leads to the question ofwhether conditions
exist underwhich such behaviour can be ruled out.With thismotivation inmind, our
main focus in this paper is to derive an explicit energy playing the role of a relaxed
energy for the neo-Hookean problem, in which the cost of creating pathological
singularities can be made visible.

In order to do that, in Sect. 4 we describe fine properties of maps in As . We
start with regularity properties of general axisymmetric maps, then we define the
topological degree and topological image of maps. We will need both definitions of
the classical degree for continuous functions and of theBrezis–Nirenberg degree for
Sobolev maps. A particular role is played by the topological image of the segment
formed by the intersection of the domain � and the symmetry axis. Then we focus
on the invertibility property of maps in As . The main result of that section states
that the first two components of the inverse of a map in As are Sobolev.

In Sect. 5, we focus first on regularity properties of weak limits of maps in
Ar

s . It is of crucial importance for the rest of the paper that their geometric image
equals (up to a null L3-set) the entire target domain, and that their inverses are in
BV (�̃b, R

3), with the first two components in W 1,1(�̃b). These results rest on the
preliminary analysis done in Sect. 4.

Finally, in Sect. 6, we give a lower semicontinuity result for our candidate
relaxed energy, hence proving a lower bound on the actual relaxed energy. We also
obtain various existence results thanks to the previous analysis and give a proof of
Theorem 1.1.

2. Notation and Preliminaries

2.1. Geometric Image and Area Formula

In this section � is a bounded open set of R
N . We use the following notation

for the density of a measurable set A ⊂ R
N at x ∈ R

N :

D(A, x) = lim
r→0

|B(x, r) ∩ A|
|B(x, r)| .

Here we use |·| for the Lebesgue measure in R
N . An alternative notation is LN .

The Hausdorff measure of dimension d is denoted byHd . The abbreviation a.e. for
almost everywhere or almost every will be intensively used. It refers to the Lebegue
measure, unless otherwise stated. Given two sets A, B of R

N , we write A ⊂ B a.e.
if LN (A\B) = 0, while A = B a.e. or A

a.e.= B a.e. both mean A ⊂ B a.e. and
B ⊂ A a.e. An analogous meaning is given to the expression Hd -a.e.
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The definition of approximate differentiability can be found in many places
(see, e.g., [19, Sect. 3.1.2.], [44, Def. 2.3] or [29, Sect. 2.3]).

We recall the area formula of Federer ( [44, Prop. 2.6] and [19, Thm. 3.2.5 and
Thm. 3.2.3]). We will use the notationN (u, A, y) for the number of preimages of
a point y in the set A under u.

Proposition 2.1. Let u ∈ W 1,1(�, R
N ), and denote the set of approximate dif-

ferentiability points of u by �d . Then, for any measurable set A ⊂ � and any
measurable function ϕ : R

N → R,∫
A
(ϕ ◦ u) |det Du| dx =

∫
RN

ϕ( y)N (u,�d ∩ A, y) d y

whenever either integral exists. Moreover, if a map ψ : A → R is measurable and
ψ̄ : u(�d ∩ A) → R is given by

ψ̄( y) :=
∑

x∈�d∩A, u(x)= y

ψ(x)

then ψ̄ is measurable and∫
A

ψ(ϕ ◦ u) |det Du| dx =
∫
u(�d∩A)

ψ̄ϕ d y, y ∈ u(�d ∩ A), (2.1)

whenever the integral on the left-hand side of (2.1) exists.

Definition 2.2. Let u ∈ W 1,1(�, R
N ) be such that det Du > 0 a.e. We define �0

as the set of x ∈ � for which the following are satisfied:

(i) the approximate differential of u at x exists and equals Du(x).
(ii) there exist w ∈ C1(RN , R

N ) and a compact set K ⊂ � of density 1 at x such
that u|K = w|K and Du|K = Dw|K ,

(iii) det Du(x) > 0.

We note that the set �0 is a set of full Lebesgue measure in �, i.e., |� \ �0| = 0.
This follows from Theorem 3.1.8 in [19], Rademacher’s Theorem and Whitney’s
Theorem.

Two important properties for a map are Lusin’s properties (N) and (N−1).

Definition 2.3. Let X ⊂ R
N be ameasurable set.We say that ameasurable function

u : X → R
N satisfies Lusin’s condition (N) if for every A ⊂ X such that |A| = 0

we have |u(A)| = 0. We say that u satisfies condition (N−1) if for every A ⊂ R
N

such that |A| = 0 we have |u−1(A)| = 0.

We will use the following consequence of Proposition 2.1 (see, e.g., [5, Lemma
2.8]):

Lemma 2.4. Let u ∈ W 1,1(�, R
N ). Then u|�0 satisfies Lusin’s condition (N).

Moreover, if det Du(x) �= 0 for a.e. x ∈ �, then u satisfies Lusin’s (N−1) condition.

Definition 2.5. For any measurable set A of �, the geometric image of A under u
is

imG(u, A) := u(A ∩ �0),

with �0 being as in Definition 2.2.

7



2.2. The Surface Energy

In this subsection N ∈ N and � ⊂ R
N is a bounded open set. Let u ∈

W 1,N−1(�, R
N ) be such that det Du ∈ L1(�).

The adjugate matrix adj F of F ∈ R
N×N satisfies (det F)I = F adj F, where

I denotes the identity matrix. The transpose of adj F is the cofactor cof F. We start
by observing that, when N = 3, |cof F| is controlled in terms of |F|2. The proof
of the next result is elementary and based on singular value decomposition.

Lemma 2.6. |F|2 �
√
3 |cof F| for all F ∈ R

3×3, with optimal constant.

Definition 2.7. Let u ∈ W 1,1(�, R
N ) be such that cof Du ∈ L1(�, R

N×N ) and
det Du ∈ L1(�).

(a) For every φ ∈ C1
c (�) and g ∈ C1

c (RN , R
N ) we define

Eu(φ, g) =
∫

�

[
g(u(x)) · (cof Du(x)Dφ(x))

+φ(x) div g(u(x)) det Du(x)
]
dx.

(b) For all f ∈ C1
c (� × R

N , R
N ) we define

Eu( f ) =
∫

�

[
Dx f (x, u(x)) · cof Du(x) + div y f (x, u(x)) det Du(x)

]
dx

and

E(u) = sup{Eu( f ) : f ∈ C1
c (� × R

N , R
N ), ‖ f ‖L∞ � 1}.

Sometimes we will use the notation E(u, V ) to refer to E(u|V ), where V is an
open subset of �. Clearly, E � E . The following result shows that if E vanishes, so
does E . This implies that the divergence identities (1.4) are satisfied if and only if
the surface energy E is identically zero. The proof consists in using the continuity of
f �→ Eu( f ) and the density of the linear span of products of functions of separated
variables in C1

c (RN , R
N ) (see, e.g., [37, Cor. 1.6.5]).

Lemma 2.8. Let u ∈ W 1,N−1(�, R
N ) be such that det Du ∈ L1(�). If E(u) = 0

then E(u) = 0.

In the rest of this section we take N = 3. The following result is a particular
case of the calculation of the energy E for the Cartesian product of two functions:

Lemma 2.9. Let ω ⊂ R
2 and I ⊂ R be both open and bounded. Let v ∈

H1(ω, R
2). Then det Dv ∈ L1(ω) and E(v) = 0. Define w : ω × I → R

3 as
w(x1, x2, x3) = (v(x1, x2), x3). Then E(w) = 0.

Proof. Clearly, |det Dv| � 1
2 |Dv|2 ∈ L1(ω). The fact that E(v) = 0 is standard

and can be shown by approximation by smooth maps and integration by parts (e.g.,
[41, Lemma 2] or [45, Th. 4.2]). For x ∈ R

3, write x = (x̂, x3) with x̂ = (x1, x2),
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and analogously for y ∈ R
3. Using Lemma 2.8, it suffices to show that Ēw(φ, g) =

0 for φ ∈ C1
c (ω × I ) and g ∈ C1

c (R3, R
3) of the form

φ(x) = φ1(x̂) φ3(x3) and g( y) =
(
g11( ŷ) g13(y3)

g31( ŷ) g33(y3)

)
,

for some

φ1 ∈ C1
c (ω), φ3 ∈ C1

c (I ), g11 ∈ C1
c (R2, R

2),

g13 ∈ C1
c (R), g31 ∈ C1

c (R2), g33 ∈ C1
c (R).

For such φ and g we have

Dφ(x) =
(

φ3(x3) Dφ1(x̂)

φ1(x̂) φ′
3(x3)

)
, div g( y) = g13(y3) div g11( ŷ) + g31( ŷ) g′

33(y3).

On the other hand, for a.e. x ∈ ω × I

Dw(x) =
(

Dv(x̂) 0
0 1

)
, cof Dw(x) =

(
cof Dv(x̂) 0

0 det Dv(x̂)

)
,

det Dw(x) = det Dv(x̂).

Therefore, for a.e. x ∈ ω × I ,

g(w(x)) · (cof Dw(x)Dφ(x)) + φ(x) div g(w(x)) det Dw(x)

= φ3(x3) g13(x3)[
g11(v(x̂)) ·

(
cof Dv(x̂) Dφ1(x̂)

)
+ φ1(x̂) div g11(v(x̂)) det Dv(x̂)

]

+ g31(v(x̂)) φ1(x̂) det Dv(x̂)
[
g33(x3) φ′

3(x3) + φ3(x3) g′
33(x3)

]
.

(2.2)
Now, since E(v) = 0 and E(idI ) = 0 we have that
∫

ω

[
g11(v(x̂)) ·

(
cof Dv(x̂) Dφ1(x̂)

)
+ φ1(x̂) div g11(v(x̂)) det Dv(x̂)

]
dx̂ = 0

and
∫

I

[
g33(x3) φ′

3(x3) + φ3(x3) g′
33(x3)

]
dx3 = 0

so an integration of (2.2) in ω × I yields Ew(φ, g) = 0. ��
In what follows, we show that the precomposition of a map of zero energy with

a regular map has also zero energy; a related result was shown in the proof of [28,
Th. 7].

Lemma 2.10. Let u ∈ H1(�, R
3) ∩ L∞(�, R

3) be such that det Du ∈ L1(�)

and E(u) = 0. Let L : R
3 → R

3 be locally Lipschitz. Then E(L ◦ u) = 0.
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Proof. First assume that L is of class C2. Let φ ∈ C1
c (�) and g ∈ C1

c (R3, R
3).

The key of the proof consists in showing that

ĒL◦u(φ, g) = Ēu(φ, (adj DL)(g ◦ L)). (2.3)

The integrand corresponding to ĒL◦u(φ, g) is, for a.e. x ∈ �,

g((L ◦ u)(x)) · (cof D(L ◦ u)(x) Dφ(x)) + φ(x) div g((L ◦ u)(x)) det D(L ◦ u)(x)

= (adj DL(u(x)) g(L(u(x)))) · (cof Du(x)) Dφ(x))

+ φ(x) div g(L(u(x))) det DL(u(x)) det Du(x).

(2.4)
Now define ḡ := (adj DL)(g ◦ L). Then, for all y ∈ R

3, by Piola’s identity,

div ḡ( y) =
3∑

i, j=1

∂

∂yi

[
adj DL( y)i j g j (L( y))

] =
3∑

i, j=1

adj DL( y)i j
∂

∂yi

[
g j (L( y))

]
,

so, thanks to the matrix identity F adj F = (det F)I valid for F ∈ R
3×3,

div ḡ( y) =
3∑

i, j=1

adj DL( y)i j
∂

∂yi

[
g j (L( y))

]

=
3∑

i, j,k=1

adj DL( y)i j Dg(L( y)) jk DL( y)ki

= tr (DL( y) adj DL( y) Dg(L( y))) = tr (det DL( y) Dg(L( y)))

= det DL( y) div g(L( y)).

With this, we find that the integrand of Ēu(φ, ḡ) coincides with (2.4), so (2.3) is
proved. As E(u) = 0 we obtain that ĒL◦u(φ, g) = 0.

Now assume, as in the statement, that L is only locally Lipschitz, and take a
sequence {Ln} in C2(R3, R

3) such that Ln → L a.e., DLn → DL a.e. and

sup
n∈N

‖Ln‖W 1,∞(B(0,‖u‖L∞(�,R3)
)) < ∞.

The existence of such approximating sequence follows from a classic result (see,
e.g., [18, Th. 6.6.1]). By the first part of the proof,

0 =
∫

�

[
(adj DLn(u(x)) g(Ln(u(x)))) · (cof D(u(x) Dφ(x))

+ φ(x) div g(Ln(u(x))) det DLn(u(x)) det Du(x)
]
dx.

Taking limits, we obtain that ĒL◦u(φ, g) = 0. By Lemma 2.8, E(L ◦ u) = 0. ��
We recall now the definition of the distributional Jacobian determinant.

Definition 2.11. Let u ∈ H1(�, R
3) ∩ L∞(�, R

3). The distributional Jacobian
Det Du of u is the distribution defined by

〈Det Du, ϕ〉 := −1

3
〈adj Du u, Dϕ〉 = −1

3

∫
�

adj Du u · Dϕ, ϕ ∈ C1
c (�).
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2.3. The Axisymmetric Setting

In most of the paper we will work with axisymmetric (with respect to the x3-
axis) maps and domains, which are defined as follows. We say that the set � ⊂ R

3

is axisymmetric if
⋃
x∈�

(
∂ BR2((0, 0), |(x1, x2)|) × {x3}

) ⊂ �.

When we define

π : R
3 → [0,∞) × R P : [0,∞) × R × R → R

3

x �→ (|(x1, x2)|, x3) (r, θ, x3) �→ (r cos θ, r sin θ, x3),

the axisymmetry of � is equivalent to the equality

� = {P(r, θ, x3) : (r, x3) ∈ π(�), θ ∈ [0, 2π)} . (2.5)

Given an axisymmetric set �, we say that u : � → R
3 is axisymmetric if there

exists v : π(�) → [0,∞) × R such that

(u ◦ P)(r, θ, x3) = P (v1(r, x3), θ, v2(r, x3)) , i.e.,

u(r cos θ, r sin θ, x3) = v1(r, x3)(cos θe1 + sin θe2) + v2(r, x3)e3 (2.6)

for all (r, x3, θ) ∈ π(�)×[0, 2π). We will say that v is the function corresponding
to u. This v is uniquely determined by u. Note that if � and u are axisymmetric
then so is u(�).

Given δ > 0, we define Cδ as the (open, infinite, solid) cylinder of radius δ:

Cδ := {P(r, θ, x3) : (r, θ, x3) ∈ [0, δ) × [0, 2π) × R} . (2.7)

We have π(Cδ) = [0, δ) × R.

2.4. Prescribing the Boundary Data

As mentioned in the Introduction, we fix a smooth bounded open set �̃ of R
3

such that� � �̃ and consider an orientation-preservingC1 diffeomorphism b from
the closure of �̃ to R

3. We assume that�, �̃, and b are axisymmetric. The function
u, originally defined in �, is extended to �̃ by setting u = b in �D := �̃ \ �.

We assume that the extension to �̃, still called u, is in H1(�̃, R
3), as stated

in the definition (1.5) of our function space As . Regarding the class Ar
s of regular

maps defined in (1.6), its definition is the set the maps in As having zero surface
energy in the extended domain �̃:

Ar
s = {u ∈ As : E(u) = 0 in �̃}.

This way we avoid cavitation at the boundary ∂�. Observe that the condition
det Du > 0 a.e. in definition (1.5) is satisfied for any u ∈ H1(�̃, R

3) such that
E(u) � E(b), thanks to the blow-up behaviour (1.2) of the neo-Hookean energy
as the Jacobian vanishes.
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2.5. A Family of Good Open Sets

Given a nonempty open setU � �̃with a C2 boundary, we denote by d : �̃ →
R the signed distance function to ∂U given by

d(x) :=

⎧⎪⎨
⎪⎩
dist(x, ∂U ) if x ∈ U

0 if x ∈ ∂U

− dist(x, ∂U ) if x ∈ � \ U

and

Ut := {x ∈ �̃ : d(x) > t}, (2.8)

for each t ∈ R. It is a classical result (see e.g. [15]) that there exists δ > 0 such
that for all t ∈ (−δ, δ), the set Ut is open, compactly contained in �̃ and has a C2

boundary.

Definition 2.12. Let u ∈ H1(�̃, R
3) be such that det Du > 0 a.e. We define Uu as

the family of nonempty open sets U � �̃ with a C2 boundary that satisfy

(a) u|∂U ∈ H1(∂U, R
3), and (cof ∇u)|∂U ∈ L1(U, R

3×3),
(b) ∂U ⊂ �0, H2-a.e., where �0 is the set in Definition 2.2, and (∇u|∂U )(x) =

∇u(x)|Tx∂U for H2-a.e. x ∈ ∂U ,

(c) limε→0
∫ ε

0

∣∣∣∫∂Ut
| cof ∇u|dH2 − ∫

∂U | cof ∇u|dH2
∣∣∣ dt = 0,

(d) For every g ∈ C1(R3, R
3) with (adj Du)(g ◦ u) ∈ L1

loc(�̃, R
3),

lim
ε→0

∫ ε

0

∣∣∣∣
∫

∂Ut

g(u(x)) · (cof ∇u(x)νt (x)) dH2

−
∫

∂U
g(u(x)) · (cof ∇u(x)ν(x)) dH2

∣∣∣∣ dt = 0

where νt denotes the unit outward normal to Ut for each t ∈ (0, ε), and ν the
unit outward normal to U .

Since we are imposing that u coincides with the C1-diffeomorphism b in the
exterior Dirichlet neighbourhood �D of ∂�, without loss of generality we may
assume that � ∈ Uu.

The next result is obtained using the coarea formula and Lebesgue’s differen-
tiation theorem for the first part, and Uryshon functions and Sard’s lemma for the
second. It guarantees that there are enough sets in Uu.

Lemma 2.13. (Lemma 2.11 in [30]) Let u ∈ H1(�̃, R
3) be such that det Du > 0

a.e. Let U � �̃ be a nonempty open set with a C2 boundary. Then Ut ∈ Uu for a.e.
t ∈ (−δ, δ). Moreover, for each compact K ⊂ �̃ there exists U ∈ Uu such that
K ⊂ U.

12



2.6. Regularity, Injectivity and Weak Convergence of the Planar Function

Let Cδ be as in (2.7). The link between the regularity of u and its associated
2D map v is as follows.

Lemma 2.14. Let � be an axisymmetric domain, and u : � → R
3 an axisymmetric

map with corresponding function v. Let δ > 0. Then, u ∈ H1(�\Cδ, R
3) if and

only if v ∈ H1(π(�)\([0, δ] × R), R
2). Moreover, in this case,

‖u‖2
H1(�\Cδ,R3)

� 2π max{‖x‖L∞(�,R3), δ
−1} ‖v‖2H1(π(�)\([0,δ]×R),R2)

,

‖v‖2H1(π(�)\([0,δ]×R),R2)
� (2πδ)−1 ‖u‖2

H1(�\C̄δ,R3)

and for a.e. (r, θ, x3) with (r, x3) ∈ π(�)\([0, δ] × R) and θ ∈ R,

det Du(P(r, θ, x3)) = v1(r, θ)

r
det Dv(r, θ).

This can be proved by using that the change of variables from Cartesian to
cylindrical coordinates is a diffeomorphism when restricted to suitable domains
and by using the formula for the Dirichlet energy in cylindrical coordinates given
in the “Appendix”.

We recall that a function is injective a.e. if its restriction to a set of full measure
is injective. The orientation-preserving and injectivity conditions of u and v are
related as follows:

Lemma 2.15. Let � be an axisymmetric domain. Let u ∈ H1(�, R
3) be axisym-

metric, and let v be its corresponding function. The following hold:

(a) det Du > 0 a.e. in � if and only if det Dv > 0 a.e. in π(�).
(b) u is injective a.e. in � if and only if v is injective a.e in π(�).

The proof uses again the change of variables in cylindrical coordinates and is
left to the reader

The relationship between the weak convergences (hereafter denoted by ⇀) of
a sequence of axisymmetric functions and their associated functions is contained
in the two following lemmas, whose proofs are left again to the reader since they
just rely on a manipulation of the axisymmetry in cylindrical coordinates:

Lemma 2.16. Let � be an axisymmetric domain. For each j ∈ N, let u j ∈
H1(�, R

3) be axisymmetric. Let u ∈ H1(�, R
3), and assume that u j ⇀ u in

H1(�, R
3) as j → ∞. The following statements hold:

(i) u is axisymmetric.
(ii) Let v j and v be the corresponding functions of u j and u, respectively. Then

v j ⇀ v in H1(π(�)\([0, δ] × R), R
2) for each δ > 0.

Lemma 2.17. Let � be an axisymmetric domain. For each j ∈ N, let u j : � → R
3

be an axisymmetric map with corresponding function v j . Let v : π(�)\({0} ×
R) → R

3 and assume that v ∈ H1(π(�)\([0, δ] × R), R
3) and that v j ⇀ v in

H1(π(�)\([0, δ] × R), R
3) for every δ > 0. Define u : �\Re3 → R

3 by (2.6).
Then u j ⇀ u in H1(�\Cδ) for every δ > 0.
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2.7. Regularity of Maps in As Outside the Axis of Symmetry

We recall that orientation-preserving H1 maps in 2D are continuous and satisfy
Lusin’s condition (N ) and the divergence identities. These properties are inherited
by the 3D axisymmetric maps u in As away from the symmetry axis.

Lemma 2.18. Let � be an axisymmetric domain. Let u ∈ H1(�, R
3) be axisym-

metric and satisfy det Du > 0 a.e., and let v be its corresponding function. Then,

(a) v has a representative that is continuous at each point of π(�) \ ({0} × R),
differentiable a.e., and satisfies condition (N) in π(�)\({0} × R). Moreover,
E(v, π(�)\({0} × R)) = 0.

(b) u has a representative that is continuous at each point of �\Re3, differentiable
a.e., and satisfies condition (N) in �\Re3. Moreover, E(u,� \ Re3) = 0.

(c) For each j ∈ N, let u j ∈ H1(�, R
3) be axisymmetric. Let u ∈ H1(�, R

3),
and assume that u j ⇀ u in H1(�, R

3) as j → ∞. If det Du j > 0 a.e. for
all j ∈ N then v j → v uniformly in compact subsets of π(�) \ ({0} × R) and
u j → u uniformly in compact subsets of � \ ({(0, 0)} × R).

Proof. Let δ > 0. By Lemma 2.14, v is in H1(π(�)\([0, δ] × R), R
2) and,

by Lemma 2.15, det Dv > 0 a.e. By classical results on maps of finite distor-
sion, originally due to [46,51] (see also, e.g., [24, Th. 2.5.4, Th. 5.3.5 and its
Cors. 1 and 3] or [34, Th. 2.3, Cor. 2.25 and Th. 4.5]), v has a representative v

in π(�)\([0, δ] × R) that is continuous, differentiable a.e. and satisfies the (N)

property. That E(v, π(�)\([0, δ] × R)) = 0 is also a classical result (see, e.g.,
[41,43,45,49]). As this is true for every δ > 0, property a) is proved.

We define the representative ū of u through formula (2.6), but changing u, v

by ū, v̄, respectively. As in Lemma 2.15, we readily obtain that ū is continuous in
�\Re3 and differentiable a.e. We now show the (N) property for ū. Let A be a null
set in � \ Re3, and for each θ ∈ R define Aθ := {(r, x3) : P(r, θ, x3) ∈ A}. Since
L3(P−1(A)) = 0, we have thatL2(Aθ ) = 0 for a.e. θ ∈ R. For any such θ we have
that v̄(Aθ ) is L2-null. By (2.6), P(s, θ, y3) ∈ ū(A) if and only if (s, y3) ∈ v̄(Aθ ).
Consequently,

L3(ū(A)) =
∫
R

∫ 2π

0

∫ ∞

0
χū(A)(P(s, θ, y3)) s ds dθ dy3

=
∫
R

∫ 2π

0

∫ ∞

0
χv̄(Aθ )(s, y3) s ds dθ dy3.

Therefore, for any R > 0,

L3(ū(A) ∩ B(0, R)) �R
∫
R

∫ 2π

0

∫ ∞

0
χv̄(Aθ )(s, y3) ds dθ dy3

=R
∫ 2π

0
L2(v̄(Aθ )) dθ = 0.

As this is true for every R > 0, we obtain that L3(ū(A)) = 0. Thus, ū satisfies
condition (N) in � \ Re3.
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Let I ⊂ R be an open interval of length less than 2π and define the func-
tion w in the set {(r, θ, x3) : (r, x3) ∈ π(�)\({0} × R), θ ∈ I } as w(r, θ, x3) :=
(v1(r, x3), θ, v2(r, x3)).As shownabove,E(v, π(�)\({0}×R)) = 0, sobyLemma2.9,
E(w) = 0. By Lemma 2.10, E(P ◦ w) = 0, so by (2.6), u ◦ P has zero surface en-
ergy in {(r, θ, x3) : (r, x3) ∈ π(�)\({0} × R), θ ∈ I }. Let δ > 0. As P |(δ,∞)×I×R

is a diffeomorphism that admits an extension to an open set containing the closure
of (δ,∞) × I × R, by [28, Sect. 8] or [33, Sect. 6], u has zero surface energy in
� ∩ P ((δ,∞) × I × R). Considering now two open intervals I1 and I2 of length
less than 2π , it is easy to check (see, if necessary, the proof of [40, Lemma 4.8]) that
u has zero surface energy in �∩ P ((δ,∞) × (I1 ∪ I2) × R). Taking, additionally
I1 and I2 such that [0, 2π ] ⊂ I1 ∪ I2, we obtain that u has zero surface energy in
� \ Cδ . Consequently, E(u,� \ Re3) = 0.

Now we show c) and assume that det Du j > 0 a.e. for all j ∈ N. By
Lemma 2.15, we have that det Dv j > 0 a.e. for all j ∈ N. Since the H1 norm
of {v j } j∈N is bounded in π(�)\([0, δ] × R) for each δ > 0, by a classic result on
maps of finite distortion (see, e.g., [21, Lemma 2.1] for a precise reference), the
family {v j } j∈N is equicontinuous in each compact set of π(�)\([0, δ]× R), hence
in each compact set of π(�) \ ({0} × R). By the Ascoli–Arzelà theorem, and part
ii) of Lemma 2.16, v j → v uniformly in each compact set of π(�) \ ({0} × R),
in principle up to a subsequence, but in fact the convergence holds for the whole
sequence because v is uniquely determined. Having in mind (2.6), we obtain that
u j ◦ P → u ◦ P uniformly in each compact subset of

{(r, θ, x3) : (r, x3) ∈ π(�) \ ({0} × R), θ ∈ R} .

Then, as before, u j → u uniformly in each compact subset of � \ {(0, 0)} × R. ��
The assumptions of Lemma 2.18 will hold in most of the paper, and, in this

case, without further mention, u and v are taken to be the continuous representative
of themselves in the sets �\Re3 and π(�)\({0} × R), respectively.

3. Existence of Minimizers of the Neo-Hookean Energy in the Class As

Weprove in this section that, although the results of Ball &Murat show that E is
not weakly lower semicontinuous in the full 3D setting because of the phenomenon
of cavitation, when restricted to the axisymmetric setting we can prove that E is
weakly lower semicontinuous. The reason for that is that maps inAs are continuous
outside the axis of symmetry, so cavitation can only occur on the axis of symmetry.
Hence axisymmetric cavitation can be viewed as a cavitation on the boundary of
the 2D subdomain π(�) and does not contradict W 1,2-quasiconvexity.

Proposition 3.1. Let {un}n be a sequence in As . Then there exists u ∈ As such
that, up to a subsequence, un ⇀ u in H1(�̃, R

3),

det Dun ⇀ det Du in L1(�̃),

χimG(un ,�̃) → χimG(u,�̃) a.e. as n → ∞, and

E(u) � lim inf
n→∞ E(un). (3.1)
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Proof. Since E(un) � E(b) for all n ∈ N, we have, thanks to (1.1) and Poincaré’s
inequality together with the boundary condition un = b in �D , that {un}n∈N is
bounded in H1(�̃, R

3). Thus there exists u ∈ H1(�̃, R
3) such that, up to a subse-

quence un ⇀ u in H1 and un → u a.e. Therefore, u = b a.e. on �̃ \�. Moreover,
by Lemma 2.16, u is axisymmetric. Besides, we have supn

∫
�̃

H(det Dun) < +∞.
By using the De La Vallée Poussin criterion, we find that there exists d ∈ L1(�̃)

such that

det Dun ⇀ d in L1(�̃).

A standard argument based on (1.2) and Fatou’s lemma (see, e.g., [44, Th. 5.1])
shows that d > 0 a.e. in �̃. Let vn the 2D map associated to un . From 2.15
we have det Dvn > 0 a.e. in π(�̃). By Lemma 2.16 we also have vn ⇀ v

in H1
loc(π(�̃\({0} × R)), R

2). We can thus apply the result about higher inte-
grability of the Jacobians due to Müller [42] to obtain that det Dvn ⇀ det Dv

in L1
loc(π(�̃\({0} × R))). From Sobolev injections we find that vn

1 → v1 in
L2
loc(π(�̃\({0} × R))) and a.e. (up to a subsequence). Fix a small δ > 0. Since

u = b in �̃ \ �, a consequence of Lemma 2.18 applied to �̃ is that v is bounded
and (vn) is uniformly bounded in π(�̃) \ ([0, δ] × R). Also, in the axisymmetric
setting we have that

det Dun(x) = 1

r
vn
1 (r, x3) det Dvn(r, x3)

(see, e.g., (6.12) in the “Appendix”). Hence the use of Egorov’s theorem, see e.g.
[48, Lemma 6.7], implies that

det Dun ⇀ det Du in L1
loc(�̃ \ L).

Since L has zero Lebesgue measure, we find that det Du = d > 0 a.e. in �̃ and
det Dun ⇀ det Du in L1(�̃).

By Lemma 2.18, E(un, �̃\Re3) = 0 for all n ∈ N. Then, by [27, Th. 2], u
is injective a.e. and for a.e. δ > 0 we have χimG(un ,�̃\Cδ)

→ χimG(u,�̃\Cδ)
a.e. as

n → ∞. From here, using the equiintegrability of the Jacobians, it is easy to prove
that χimG(un ,�̃) → χimG(u,�̃) in L1(�̃). Passing to a subsequence we obtain the
stated a.e. convergence.

Thanks to the weak continuity of the Jacobian and the convexity of H , we have
that E is sequentially lower semicontinuous for the weak convergence in H1, i.e.,
(3.1) holds, and, in particular, E(u) � E(b). ��

Theorem 3.2. The energy E has a minimizer in As .

Proof. It follows from the direct method of calculus of variations, since Propo-
sition 3.1 shows the weak lower semicontinuity of E and the sequential weak
compactness of As . ��
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4. Regularity of Inverses of Maps in As

The goal of this section is to give the appropriate definition of the inverse of
maps in As and to prove that its first two components enjoy Sobolev regularity.
This property is crucial in the proof of Proposition 6.2, which is the key for our
main result Theorem 1.1.

4.1. Topological Degree

We first recall how to define the classical Brouwer degree for continuous func-
tions [14,20]. Let N � 2. Let U ⊂ R

N be a bounded open set. If u ∈ C1(U , R
N )

then for every regular value y of u we set

deg(u, U, y) =
∑

x∈u−1(y)∩U

det Du(x). (4.1)

This sum is finite thanks to the inverse function theorem.We can show that the right-
hand side of (4.1) is invariant by homotopies. This allows to extend the definition
(4.1) to every y /∈ u(∂U ) and to show its depends only on the boundary values
of u. If u is only in C(∂U, R

N ), we may extend u to a continuous map in U by
Tietze’s theorem and set

deg(u, U, ·) = deg(v, U, ·),
where v is any map in C1(U , R

N ) which is homotopic to the extension of u.
If U is of class C1 and u ∈ C1(∂U, R

N ), by using (4.1), Sard’s theorem and
the divergence identities (1.4), we can make a change of variables and integrate by
parts to obtain

∫
RN

deg(u, U, y) div g( y) d y =
∫

∂U
(g ◦ u) · (cof Du ν) dHN−1. (4.2)

This formula can be used as the definition of the degree for maps in W 1,N−1 ∩
L∞(∂U, R

N ) as noticed by Brezis & Nirenberg [9]. For any open set U having a
positive distance away from the symmetry axis R

3 it is possible to use the classical
degree since there every map inAs has a continuous representative (Lemma 2.18).
However, for open sets U crossing the axis (where maps inAs may have singular-
ities) we use the Brezis–Nirenberg degree.

Definition 4.1. Let U ⊂ R
N be a bounded open set. For any u ∈ C(∂U, R

N ) and
any y ∈ R

N \u(∂U ) we denote by deg(u, U, y) the classical topological degree of
u with respect to y. Suppose now that U ⊂ R

N is a C1 bounded open set and u ∈
W 1,N−1(∂U, R

N ) ∩ L∞(∂U, R
N ). Then the degree of u, denoted by deg(u, U, ·),

is defined as the only L1 function that satisfies (4.2) for all g ∈ C∞(RN , R
N ).

To see that this definition makes sense we refer to [9] or [11, Rk. 3.3]. Also,
using (4.2) for a sequence of smooth maps approximating u we can see that for
any u ∈ C(∂U, R

N ) ∩ W 1,N−1(∂U, R
N−1) such that LN

(
u(∂U )

) = 0 the two
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definitions are consistent (as stated in [44, Prop. 2.1.2]). Thanks to Lemma 2.18,
our maps u satisfiy the (N) property, so the condition on u(∂U ) is satisfied for
all regular open sets U that are a distance apart from the axis. On the one hand,
by the continuity property of the degree we can see that the topological image
(Definition 4.2 below) of a bounded open set is open. This will give us adequate
ambient spaces to workwith in the deformed configuration, see Equation (4.10). On
the other hand, it is by working with the Brezis–Nirenberg degree that the Sobolev
regularity of the inverses (crucial for the lower semicontinuity result presented in
this paper) is obtained in the presence of singularities (Proposition 4.12).

We will invoke many previous results about the degree and related concepts
(such as the topological image or the condition INV; see below). Most of the
references that we cite use the degree with slightly different assumptions on u.
Nevertheless, their proofs apply to our case with only small modifications.

4.2. Topological Image for the Classical Degree

An important part of our analysis refers only to open sets U that either are a
distance apart from the symmetry axis or enclose entirely the closed segment

L := � ∩ Re3 (4.3)

where the singularities can occur. To be precise, we use the setting of Sect. 2.4 and
frequently deal with open sets U ⊂ �̃ such that ∂U ∩ L = ∅. Since u = b in
the Dirichlet region �D = �̃ \ �, the map u is continuous in ∂U and, hence, the
classical degree deg(u, U, ·) is well defined. For those setsU the topological image
is defined as follows:

Definition 4.2. Let N � 2. Let U be a bounded open set of R
N and let u ∈

C(∂U, R
N ). We define imT(u, U ), the topological image of U under u, as the set

of y ∈ R
N \u(∂U ) such that deg(u, U, y) �= 0.

In the 2D case, the topological image through an orientation-preserving H1

map enjoys some nice geometric properties. Let A be a bounded domain of R
2

and let v ∈ H1(A, R
2) be a map such that det Du > 0 a.e. in A. As recalled in

the proof of Lemma 2.18, v has a continuous representative. In what follows, we
identify v with that representative. Let V be compactly included in A. We assume
that V ∈ Uv , i.e., all the analogous properties of Definition 2.12 are satisfied for
the planar map v. In [5, Lemma 5.4] it was proved the following result:

imT(v, V ) = imT(v, V ) ∪ v(∂V ) and ∂ imT(v, V ) = v(∂V ). (4.4)

Define (cf. [5, Def. 5.6]) the topological image of a point x as

imT
(
v, x

) :=
⋂

ρ>0, B(x,ρ)∈Uv

imT
(
v, B(x, ρ)

)
.

Since our map v is continuous, we have the characterization

imT
(
v, x

) = {v(x)} for every x ∈ V .
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Indeed, by [49, Cor. 1], v(B(x, ρ)) is included a.e. in imT(v, B(x, ρ)), for each ρ >

0 with B(x, ρ) ∈ Uv . Therefore, since imT(v, B(x, ρ)) is compact, the continuity
implies that v(x) belongs to imT(v, B(x, ρ)) and therefore to imT

(
v, x

)
, since ρ

is arbitrary. On the other hand, again by the continuity, imT(v, x) is a singleton as
proved in [49, Lemma 4].

Assume now v is injective a.e. in A. Let

G( y) := {x ∈ V : v(x) = y} and T := { y ∈ imT(v, V ) : G( y) is not a singleton}.

Thus, T is the image of the points where v is not injective. By [5, Lemma 5.13
and Prop. 5.14] we have that if y ∈ imT(v, V ), then G( y) ⊂ V and G( y) is
connected. Moreover, imT(v, V ) ⊂⋃x∈V imT(v, x) and G( y)∩ V �= ∅ for every
y ∈ imT(v, V ). This means that whenever we take y ∈ imT(v, V ), there is at least
an x ∈ V such that y ∈ imT(v, x). By [49, Th. 7], we have H1(T ) = 0. We will
use this last property later in order to define the inverse. To sum up: ∂V is mapped
by v onto ∂ imT(v, V ), while V is mapped in imT(v, V ), with the possibility that a
point x is mapped to a point y ∈ ∂ imT(v, V ). However, when this happens, there
exists a set G( y) ⊂ V such that x ∈ G( y) and G( y)∩∂V �= ∅. Roughly speaking,
the deformation v may pinch an internal part of the domain to the boundary (see
Fig. 1).

Lemma 4.3. Let A be a bounded domain of R
2 and let v ∈ H1(A, R

2) be injective
a.e. and such that det Dv > 0 a.e. Moreover, let V ∈ Uv and let be U an open set
such that U � V . Then imT(v, U ) ⊂ imT(v, V ).

Proof. By [47, Lemma 6.2], imT(v, U ) ⊂ imT(v, V ). Assume by contradiction
that there exists y ∈ imT(v, U ) such that y ∈ ∂ imT(v, V ). Let x1 ∈ U and x2 ∈ ∂V
be such that v(x1) = v(x2) = y. Since v is continuous and imT(v, U ), imT(v, V )

are open, there exist x′
1 ∈ U and x′

2 ∈ V \U such that v(x′
1) = v(x′

2) = y′ for
some y′ ∈ imT(v, U )∩ imT(v, V ) close to y. Then, since G( y′) is connected, there
exists x′

3 ∈ ∂U ∩ G( y′). Therefore, v(x′
1) = v(x′

3) ∈ ∂ imT(v, U ), and the initial
assumption must be false since imT(v, U ) is open. ��

Someof the properties of the topological image in the 2D case can be transposed
to the axisymmetric setting, thanks to the following result:

Lemma 4.4. Let � ⊂ R
3 be an axisymmetric domain. Let u ∈ H1(�, R

3) be
axisymmetric and satisfy det Du > 0 a.e., and let v be its corresponding func-
tion. Let U ⊂ � be an axisymmetric open set such that U ∩ Re3 = ∅. Then
imT(v, π(U )) = π(imT(u, U )).

Proof. Let z ∈ R
2\v(∂π(U )) and θ ∈ R. Let I be an open interval of length less

than 2π containing θ . Set UI := {(r, θ ′, x3) : (r, x3) ∈ π(U ), θ ′ ∈ I }. By the
product property for the degree (see, e.g., [10, Th. 8.7]),

deg ((v1, idR, v2), UI , (z1, θ, z2)) = deg (v, π(U ), z) deg(idR, I, θ) = deg (v, π(U ), z) ,
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where idR is the identity map in R. As P : U I → R
3 can be extended to an

orientation-preserving diffeomorphism in an open set containing U I we obtain by
the composition formula for the degree (see, e.g., [14, Th. 5.1]) that

deg ((v1, idR, v2), UI , (z1, θ, z2)) = deg (P ◦ (v1, idR, v2), UI , P(z1, θ, z2))

= deg (u ◦ P, UI , P(z1, θ, z2)) ,

where in the last formula we have used (2.6). Applying again the composition
formula we obtain

deg (u ◦ P, UI , P(z1, θ, z2)) = deg (u, P(UI ), P(z1, θ, z2)) .

Altogether, we have shown that

deg (v, π(U ), z) = deg (u, P(UI ), P(z1, θ, z2)) .

Now we show that
P(z1, θ, z2) /∈ u

(
U \ P(UI )

)
. (4.5)

Indeed, let x ∈ U \ P(UI ). Then x = P(r cos θ ′, r sin θ ′, x3) with (r, x3) ∈ π(U )

and θ ′ ∈ R\(I +2πZ). By (2.6), u(x) = P(v1(r, x3), θ ′, v2(r, x3)), which implies
(4.5). In turn, (4.5) and the excision property of the degree (see, e.g., [14, Th. 3.1]
or [10, Th. 8.4]) yield

deg (u, P(UI ), P(z1, θ, z2)) = deg (u, U, P(z1, θ, z2)) ,

which, together with (4.5) shows that

deg (v, π(U ), z) = deg (u, U, P(z1, θ, z2)) . (4.6)

Recapitulating,wehave shown that if z ∈ R
2\v(∂π(U )) and θ ∈ R then P(z1, θ, z2) /∈

u(∂U ) and formula (4.6) holds.
Now let z ∈ imT(v, π(U )). Then z /∈ v(∂π(U )) and deg (v, π(U ), z) �= 0. By

(4.6), deg (u, U, P(z1, θ, z2)) �= 0 for any θ ∈ R, so P(z1, θ, z2) ∈ imT(u, U ).
Consequently, z = (π ◦ P)(z1, θ, z2) ∈ π (imT(u, U )).

To prove the converse inclusion, we start with the following simple facts:

(i) If (r, x3) ∈ π(U ) and θ ∈ R then P(r, θ, x3) ∈ U .
(ii) If (r, x3) /∈ π(U ) and θ ∈ R then P(r, θ, x3) /∈ U .
(iii) If (r, x3) ∈ ∂π(U ) and θ ∈ R then P(r, θ, x3) ∈ ∂U .

Property ii) is obvious, while i) is a consequence of the axisymmetry of U . Let
us show iii). Let (r, x3) ∈ ∂π(U ) and θ ∈ R. Note that π(U ) is an open set in R

2,
so

∂π(U ) = π(U ) \ π(U ).

As (r, x3) ∈ π(U ), an elementary argument based on i) and the continuity of P
shows that P(r, θ, x3) ∈ U . On the other hand, property ii) shows that P(r, θ, x3) /∈
U , so P(r, θ, x3) ∈ ∂U and iii) is proved.
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We are in a position to show the inclusion π(imT(u, U )) ⊂ imT(v, π(U )). Let
z ∈ π(imT(u, U )). Then there exists θ ∈ R such that P(z1, θ, z2) ∈ imT(u, U ).
Therefore,

P(z1, θ, z2) /∈ u(∂U ) and deg (u, U, P(z1, θ, z2)) �= 0. (4.7)

We shall show that z /∈ v(∂π(U )) by assuming that z = v(r, x3) for some (r, x3) ∈
π(U ). Due to (2.6),

P(z1, θ, z2) = P(v1(r, x3), θ, v2(r, x3)) = u ◦ P(r, θ, x3),

so, by (4.7), P(r, θ, x3) /∈ ∂U , and, by iii), z /∈ v(∂π(U )). Thanks to (4.6) and
(4.7), deg (v, π(U ), z) �= 0, so z ∈ imT(v, π(U )). ��

4.3. Topological Image of the Singular Segment

Throughout this section assume that b, �, �̃, and �D are as in Sect. 2.4. Note
that all u ∈ As satisfy the properties stated in Lemma 4.6.

Away from the segment L = � ∩ Re3 condition INV is defined as follows.

Definition 4.5. Let U be a bounded open set in R
3. If u ∈ C(U, R

3), we say that
u satisfies property (INV) in U provided that for every point x0 ∈ U and a.e.
r ∈ (0, dist(x0, ∂U )):

(a) u(x) ∈ imT(u, B(x0, r)) for a.e. x ∈ B(x0, r)

(b) u(x) /∈ imT(u, B(x0, r)) for a.e. x ∈ �̃\B(x0, r).

The degree of any map u in As with respect to any open set U separated from
the symmetry axis coincides a.e. with the number of preimages (at which u is
approximately differentiable) by u in that open set. This is shown now and relies
on the fine regularity properties satisfied away from the axis and on the preservation
of orientation.

Lemma 4.6. Suppose that u ∈ H1(�̃, R
3) is axisymmetric, satisfies det Du > 0

a.e. and u = b in �D. Then:

(a) u is continuous in �̃ \ L and E(u, �̃ \ L) = 0.
(b) For any U ∈ Uu (see Definition 2.12) such that U ∩ L = ∅

deg(u, U, ·) = N (u,�d ∩ U, ·) a.e. and imG(u, U ) = imT(u, U ) a.e.,
(4.8)

where �d is the set of approximate differentiability.
(c) u satisfies condition (INV) in �̃\ L if and only if u is injective a.e. In particular,

all maps in As satisfy (INV) in �̃ \ L.

Proof. Part (a) follows from Lemma 2.18 and [40, Lemma 4.8]. Parts (b) and (c)
can be obtained with the same proof of [5, Th. 4.1 and Lemma 5.1.(a)]. ��

Recall that �b := b(�) and �̃b := b(�̃).
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Definition 4.7. Let u ∈ As and let U s
u := {U ∈ Uu is axisymmetric and U �

�̃\Re3}.
(a) We define the topological image of �̃\L by u as

imT(u, �̃ \ L) := b(�D) ∪
⋃

U∈U s
u

imT(u, U ).

(b) We define the topological image of L by u as

imT(u, L) := �̃b \ imT(u, �̃ \ L).

Lemma 4.8. If u ∈ As , then:

(a) u(x) ∈ �b for every x ∈ � \ L,
(b) imT(u, �̃\L) ⊂ �̃b, and
(c) imT(u, �̃\L) = imG(u, �̃\L) = imG(u, �̃) a.e.

Proof. Part (a): the map u cannot send a point x ∈ �\L in b(�D). Indeed, by
continuity, a ball centered at x should be mapped into b(�D), against the fact that
u is injective a.e.

Let us show that u cannot send a point x ∈ �\L outside �̃b. Observe that
�D wraps �: for η > 0 small enough, {x ∈ R

3\� : dist(x,�) < η
} ⊂ �D .

Since b is a homeomorphism, b(�D) wraps �b: for η > 0 small enough, { y ∈
R
3\�b : dist( y,�b) < η

} ⊂ b(�D). Therefore, in order to ‘exit’ from �b one
has to pass through b(�D).

Given x ∈ �\L , let γ be a continuous curvewith endpoints x and x′ ∈ ∂� such
that γ \{x′} ⊂ �\ L . We have that u(γ ) is connected since u is continuous in �̃\L .
Moreover, u(x′) ∈ u(∂�) � �̃b. If u(x) /∈ �̃b, then u(γ ) has to cross b(�D).
This implies that umaps at least one point x′′ ∈ � in b(�D). This contradicts what
was proved at the beginning, finishing the proof of (a).

Part (b): let v be the planar function corresponding to u. Given U ∈ U s
u, let

V ∈ Uv be such that and π(U ) ⊂ V � π(�̃\Re3). Thanks to what was observed
in Sect. 4.2, imT(v, V ) ⊂ v(V ). Moreover, by Lemmas 4.3 and 4.4 we have

π(imT(u, U )) = imT(v, π(U )) ⊂ imT(v, V ).

Therefore, by (a), imT(u, U ) ⊂ �̃b.
Part (c): for any k ∈ N, let Uk ∈ U s

u be an axisymmetric open set containing

{x ∈ �̃ : dist(x, Re3) > 1/k},
and such that Vk := π(Uk) ∈ Uv . Any set U ∈ U s

u is included in some Uk .
Moreover, since by Lemma 4.3 imT(v, π(U )) ⊂ imT(v, Vk), by Lemma 4.4 we
have imT(u, U ) ⊂ imT(u, Uk). This proves that

⋃
U∈U s

u

imT(u, U ) =
⋃
k∈N

imT(u, Uk).
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By Lemma 4.6, imT(u, Uk) = imG(u, Uk) a.e. for all k ∈ N. Hence, since |L| = 0,

imG(u, �̃)
a.e.= imG(u, �̃ \ L) = b(�D) ∪

⋃
k∈N

imG(u, Uk)

a.e.= b(�D) ∪
⋃
k∈N

imT(u, Uk) = imT(u, �̃ \ L),

where Lemma 2.4 was used in the first equality. ��
Note that imT(u, �̃ \ L) is open as a union of open sets and hence imT(u, L)

is closed. Also, by Lemma 4.8.(b),

imT(u, �̃ \ L) = �̃b \ imT(u, L). (4.9)

For example, in the construction of Conti &DeLellis [11] imT(u, L) consists (apart
from the corresponding segment in the symmetry axis) of the sphere ∂ B

(
(0, 0, 1

2 ),
1
2

)
,

whichmay be regarded as new surface inside the elastic body created by the singular
map u.

4.4. Sobolev Regularity of Inverses

As b : �̃ → R
3 is a diffeomorphism, �b = imT(b,�). Moreover, for u ∈ As ,

as u = b in �D , the traces of u and b on ∂� coincide. As b|∂� is continuous,
it is a representative of u|∂�, hence the degree deg(u,�, ·) is defined and equals
deg(b,�, ·). In particular,

�b = b(�) = imT(b,�) = imT(u,�), �̃b = imT(u, �̃). (4.10)

Let �0 be the set of Definition 2.2. Note that since maps in As are defined in
�̃, then �0 also contains points outside �; in fact, it is of full measure in �̃. It was
proven in [28, Lemma 3] that if u is one-to-one a.e., then u|�0 is injective.

Definition 4.9. Let u ∈ As . We define its inverse as the map u−1 : imG(u,�) →
R
3 that sends every y ∈ imG(u,�) to the only x ∈ �0 such that u(x) = y.

Let A be a bounded domain of R
2 and let v ∈ H1(A, R

2) be injective a.e. and
such that det Dv > 0 a.e. From the comments in Sect. 4.2, given V ∈ Uv , we can
define on imT(v, V )

v−1( y) = any element of G( y).

The definition is well posed; moreover, for every y ∈ imT(v, V )\T we have y =
v(v−1( y)). Finally, by [49, Lemma 6] we have v−1 is continuous at any point of
imT(v, V ) \ T , while by [49, Th. 8] we have v−1 ∈ W 1,1(imT(v, V ), R

2) and

Dv−1(v(x)) = Dv(x)−1 = adj Dv(x)

det Dv(x)
for a.e. x ∈ V .

All the properties above can be transposed to the axisymmetric case. Let �

be an axisymmetric domain, u ∈ H1(�, R
3) be axisymmetric, and let v be its
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corresponding planar function. Assume that u is injective a.e. and that det Du > 0
a.e. in �. By Lemma 2.15 the same properties hold for v in π(�). Moreover, by
Lemma 2.14, if U ⊂ � is an axisymmetric open set such that U ∩ Re3 = ∅,
then v ∈ H1(π(U ), R

2). Thanks to Lemma 2.18, we will consider a representative
of u that is continuous at each point of � \ Re3, and a representative of v that
is continuous at each point of π(�) \ ({0} × R). We have π(U ) ⊂ V for some
V ∈ Uv (using the analogue of Lemma 2.13 in 2D). Let v−1 be the map defined in
imT(v, V ) as above. Recalling that by Lemma 4.4, imT(v, π(U )) = π(imT(u, U )),
while by Lemma 4.3, imT(v, π(U )) ⊂ imT(v, V ), we can define on imT(u, U )

a map u−1 through formula (2.6), changing u, v by u−1, v−1, respectively. Let
R be the axisymmetric set such that π(R) = T ; we have H2(R) = 0 and for
every y ∈ imT(u, U )\R we have y = u(u−1( y)). Since by (4.8), imG(u, U ) =
imT(u, U ) a.e., if u ∈ As , then u−1 in imT(u, U ) is a specific representative of
the inverse defined in Definition 4.9. As in Lemma 2.18, we obtain that u−1 is
continuous at any point of imT(u, U ) \ R. Moreover, as in Lemma 2.14, we obtain
that u−1 ∈ W 1,1

loc (imT(u, U ), R
3) and

Du−1(u(x)) = Du(x)−1 = adj Du(x)

det Du(x)
for a.e. x ∈ U. (4.11)

Lemma 4.10. Let u ∈ As . Then u−1 ∈ W 1,1(�̃b\ imT(u, L), R
3) and formula

(4.11) holds for a.e. x ∈ �̃.

Proof. Let {Uk}k∈N be a sequence in U s
u as in the proof of Lemma 4.8. From

what we wrote before, u−1 ∈ W 1,1(imT(u, Uk), R
3), and this implies that u−1 ∈

W 1,1
loc (imT(u, �̃\L), R

3).Using (4.9)wefind thatu−1 ∈ W 1,1
loc (�̃b\ imT(u, L), R

3).
Moreover, formula (4.11) holds for a.e. x ∈ Uk , from which we get immediately
that it also holds for a.e. x ∈ �̃. Using that formula and a change of variables, we
find that

∫
imT(u,�̃\L)

|Du−1( y)| d y =
∫

�̃

|cof Du(x)| dx < ∞,

since u ∈ H1(�̃, R
3). Therefore, u−1 ∈ W 1,1(imT(u, �̃\L), R

3). ��

We now prove that when u has zero surface energy in �̃ then also the geometric
image of �̃ (not only its topological image) coincides with �̃b (up to a Lebesgue-
null set). The first step for the proof is to establish (4.8) also for open sets U
enclosing the singular segment L .

Proposition 4.11. Suppose that u ∈ H1(�̃, R
3) is axisymmetric and satisfies

det Du > 0 a.e., u = b in �D, and E(u) = 0 in �̃. Then

(a) u ∈ L∞(�, R
3), Det Du = det Du, and u is injective a.e.

(b) imG(u, �̃) = �̃b a.e.
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(c) For any U ∈ Uu,
deg(u, U, ·) = χimG(u,U ) a.e. (4.12)

In particular, when ∂U ∩L = ∅ (so that the classical degree and the topological
image is well defined),

imG(u, U ) = imT(u, U ) a.e. (4.13)

Proof. The results were proved in [5, Th. 4.1] for maps u ∈ W 1,p with p > 2.
Here we only explain the very minor modifications needed for the generalization
to our H1 setting. Now that we have E(u) = 0 in �̃ (as opposed to Lemma 4.6
where essentially any axisymmetric map was considered, so that E(u) = 0 only in
�̃\L), arguing exactly as in [5, Th. 4.1] we obtain both (4.13) and

deg(u, U, ·) = N (u,�d ∩ U, ·) a.e., (4.14)

where �d is the set of approximate differentiability, for any U ∈ Uu such that
∂U ∩ L = ∅ (as opposed to Lemma 4.6 where the stronger restriction U ∩ L = ∅

was imposed). In particular, applying (4.14) to any U ∈ Uu such that � � U � �̃,
we find that for a.e. x ∈ �0

u(x) ∈ imG(u, U )
a.e.= imT(u, U ) = imT(b, U ) ⊂ �̃b,

thus proving the L∞ bound. In addition,

N (u,�d ∩ U, ·) a.e.= deg(u, U, ·) = deg(b, U, ·).
As b is an orientation-preserving diffeomorphism,

deg(b, U, ·) =

⎧⎪⎨
⎪⎩
1 in b(U ),

0 in R
3 \ b(U ),

undefined in b(∂U )

and b(∂U ) has measure zero. We conclude thatN (u,�d ∩ U, ·) = deg(b, U, ·) =
χb(U ) a.e., which implies that u is injective a.e. in U . As this is true for all U ∈ Uu
with � � U , and �̃ can be written as the union of countably many such U , we
conclude that u is injective a.e. and imG(u, �̃) = b(�̃) a.e. Since the L∞ bound
has already been established, the identity Det Du = det Du can be proved exactly
as in [5, Th. 4.1].

Take now an arbitrary U ∈ Uu (on whose boundary u is not necessarily contin-
uous). Proceeding as in [5, Thm. 4.1] one still obtains that there exists c ∈ Z such
that

N (u,�d ∩ U, ·) − deg(u, U, ·) = c a.e.,

where deg(u, U, ·) is now the Brezis–Nirenberg degree (see Definition 4.1 and the
remark after it). Since u is injective a.e., the first term coincides a.e. (see Lemma2.4)
with χimG(u,U ). As u ∈ L∞(�, R

3), there exists a set N ⊂ � of measure zero such
that u(�\N ) ⊂ B(0, ‖u‖L∞). Therefore, imG(u,�) ⊂ B(0, ‖u‖L∞)∪u(�0∩N ).
The set u(�0 ∩ N ) has measure zero thanks to Lemma 2.4. Thus, χimG(u,U ) = 0
a.e. outside R

3\B(0, ‖u‖L∞). By Definition 4.1, deg(u, ∂U, ·) = 0 a.e. outside
B(0, ‖u‖L∞). Consequently, c = 0 and (4.12) holds. ��
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Next, we show that the inverse of a map u in Ar
s has W 1,1 regularity. This

follows essentially from [30, Th. 3.4]; nevertheless, some clarifying statements are
in order due to the potential lack of continuity of u on L .

Proposition 4.12. Let u ∈ Ar
s . Then u−1 ∈ W 1,1(�̃b, R

3).

Proof. Following [11], in the H1 setting the sets

Au,U := { y ∈ R
3 : deg(u, U, y) �= 0}

are given an auxiliary role, the actual topological images being now defined as

imBN
T (u, U ) := { y ∈ R

3 : D
(

Au,U , y
) = 1}.

The superscript ‘BN’ has been added to indicate that use is made of the Brezis–
Nirenberg degree. That notation and definition will only appear in this proof.

Part I: if u ∈ Ar
s then for any U ∈ Uu,

imG(u, U ) = imBN
T (u, U ) a.e. (4.15)

The proof consists in recalling (4.12), which implies that

imG(u, U ) = Au,U a.e. (4.16)

Now, by Lebesgue’s differentiation theorem,

imG(u, U ) = { y ∈ R
3 : D(imG(u, U ), y) = 1} a.e.

Using (4.16) as well, we conclude (4.15).
Part II: maps in Ar

s satsify INV in the whole �̃. Let U ∈ Uu and assume that
u|U\N is injective for some set N ⊂ U of measure zero. Take a ∈ U and define
ra := dist(a, ∂U ). Then B(a, r) ∈ Uu|U for a.e. r ∈ (0, ra). Fix any such r .
For all x ∈ B(a, r) ∩ �0 we have that u(x) ∈ imG(u, B(a, r)). By (4.15) and
Lemma 2.4, we infer that u(x) ∈ imBN

T (u, B(a, r)) for a.e. x ∈ B(a, r). Now, for
all x ∈ U\(B(a, r) ∪ N ), by the injectivity, u(x) /∈ imG(u, B(a, r)). As before,
u(x) /∈ imBN

T (u, B(a, r)) for a.e. x ∈ U \ B(a, r). We have then shown that u|U
satisfies the condition INV for H1 maps (with the topological images defined using
the Brezis–Nirenberg degree). As �̃ can be written as the union of countably many
U ∈ Uu, we conclude that u satisfies condition INV.

Part III: regularity of the inverse when u ∈ Ar
s . Once condition INV for H1

maps has been established, we obtain by [30, Th. 3.4] that the extension of u−1 by
zero to all R

3 is in SBV and the restriction of Du−1 to imBN
T (u, U ) is absolutely

continuous with respect to the Lebesgue measure for any U ∈ Uu. Apply this
to any U ∈ Uu such that � � U � �̃. Since b is a C1 orientation-preserving
diffeomorphism, applying the measure-theoretic inverse function theorem in [44,
Lemma 2.5] we find that imBN

T (b, U ) = imT(b, U ). As imT(b, U ) is open, we
obtain that u−1 ∈ W 1,1(imT(b, U ), R

3). Since u−1 = b−1 in �̃b \ imT(b, U ), it
follows that u−1 ∈ W 1,1(�̃b, R

3), as desired. ��
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4.5. Pointwise Convergence of Inverses

The following result shows that the inverse is stable under the weak limit in
H1.

Lemma 4.13. For each j ∈ N, let u j , u ∈ H1(�̃, R
3) be axisymmetric. Assume

that u j ⇀ u in H1(�̃, R
3) as j → ∞. Suppose that det Du j > 0 a.e. for all

j ∈ N and det Du > 0 a.e., and that u j and u are invertible a.e. Then u−1
j → u−1

a.e.

Proof. By Lemma 2.16, u is axisymmetric. Let v j and v be the corresponding 2D
functions to u j and u, respectively. By Lemmas 2.14, 2.15 and 2.18, det Dv j >

0 a.e., v j is injective a.e., v j ∈ H1(π(�̃)\([0, δ] × R))) for any δ > 0, and
analogously for v. Moreover, v j ⇀ v in H1(π(�̃)\([0, δ] × R))) for each δ > 0,
and E(v j , π(�̃)\({0}×R)) = 0, and analogously for v. By [5, Th. 6.3], v−1

j → v−1

a.e. Arguing as in Lemma 2.16 (on the inverses) shows that u−1
j → u−1 a.e. ��

4.6. The Horizontal Components of the Inverse have No Singular Parts on
imT(u, L)

For general maps in As the equality �̃b = imG(u, �̃) does not hold in gen-
eral, as can be seen by the classical example of a radial cavitation. Furthermore,
even when imG(u, �̃) does coincide a.e. with �̃b, the inverse is not necessarily
in W 1,1(�̃b, R

3) as shown by the Conti-De Lellis example [11] where imT(u, L)

consists (apart from the symmetry axis) of the sphere ∂ B
(
(0, 0, 1

2 ),
1
2

)
in the de-

formed configuration and u−1 has a jump across this sphere. Nevertheless, in the
following lemma we show that any such singularities in u−1 are due to the vertical
component u−1

3 of the inverse, whereas its horizontal components u−1
1 and u−1

2
enjoy a Sobolev regularity.

From now on, for α ∈ {1, 2, 3}, we denote by u−1
α the α-th component of u−1.

Recall that equalities (4.10) hold and that

�̃b = imT(u, �̃ \ L) ∪ imT(u, L) (4.17)

by Definition 4.7 and Lemma 4.8.(b). We shall need the following gluing theorem
for BV functions [1, Th. 3.84].

Proposition 4.14. Let N , m � 1. Let� ⊂ R
N be an open set. Letu, v ∈ BV (�, R

m)

and let E be a set of finite perimeter in �, with ∂∗E ∩ � oriented by νE . Let u+
∂∗ E ,

v−
∂∗ E be the traces of u and v on ∂∗E, which are defined for H2-a.e. point of ∂∗E.

Set w = uχE + vχ�\E . Then

w ∈ BV (�, R
m) ⇔

∫
∂∗ E∩�

|u+
∂∗ E − v−

∂∗ E | dHN−1 < ∞,

and in this case,

Dw = Du E1 + (u+
∂∗ E − v−

∂∗ E ) ⊗ νEHN−1 (∂∗E ∩ �) + Dv E0,

where E0 and E1, respectively, denote the set of points at which E has density 0
and 1.
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Proposition 4.15. Let u ∈ As and α = 1, 2. Denote bŷu−1
α : �̃b → R the map

̂u−1
α =

{
u−1

α in imT(u, �̃ \ L) = �̃b \ imT(u, L),

0 in imT(u, L).

Then,̂u−1
α ∈ W 1,1(�̃b) and̂u−1

α has a precise representative whose restriction to
the complement of a certain H2-null set is continuous.

Proof. Let v be the planar function corresponding to u. As usual we identify v

with its continuous representative in π(�̃) \ ({0} × R).
Part I: covering the 2D domain π(�) \ ({0} × R) with an increasing sequence

of good open sets, ever closer to the singular segment.
Thanks to Lemma 2.14, v ∈ H1(π(�̃)\([0, δ] × R), R

2) for each δ > 0.
Then, by Lemma 2.13, for a.e. small δ > 0 it is possible to find1 an open set
E (δ) � π(�̃)\({0} × R), with a C2 boundary, such that

∂ E (δ) ∩ π(�) = {(r, x3) ∈ π(�) : r = δ}
and E (δ) ∈ Uv (that is, all the analogous properties of Definition 2.12 are satisfied
for the planar map v). Indeed, it can be seen that for every small c > 0 it is possible
to construct a C2 open set E � π(�̃ \ ({0} × R) such that

∂ E ∩ π(�) = {(r, x3) ∈ π(�) : r = c}
(begin with the set ({c}×R)∩π(�), which consists of a finite number of segments
and is nonempty because c is small; stretch this set vertically so as to obtain a
new finite union of segments containing the former ones but having their endpoints
on π(�D) = π(�̃\�); then close the loop—or loops—with a C2 curve entirely
contained in π(�D)). Applying Lemma 2.13 to E we find that Et ∈ Uv for a.e.
t > 0, with Et defined in (2.8). It can be seen that

∂ Et ∩ π(�) = {(r, x3) ∈ π(�) : r = c − t}.
Recall that Et ∈ Uv for every small c > 0 and a.e. small t > 0. Since a.e. small
δ > 0 can be written as δ = c − t for an appropriate choice of c and t , the claim
follows.

Part II: the inverse and the definition of the H1-null exceptional set.
From the comments in Sect. 4.4, v−1 ∈ W 1,1(imT(v, E (δ)), R

2) and it is con-
tinuous at every point of imT(v, E (δ))\Tδ , where Tδ has zeroH1-measure and it is
defined by

Tδ :=
{
(s, y3) ∈ imT(v, E (δ)) : there exist at least

two different points (r, x3) ∈ E (δ) such that (s, y3) ∈ imT
(
v, (r, x3)

)}
.

1 In principle, wewould like to use Eδ := π(�̃)\([0, δ]×R) itself. However, our analysis
is based on previous works where having a C2 boundary (and not just piecewise C2), as
well as being compactly contained in the working domain, were added as requirements for
membership to the class of good open sets (for the sake of achieving concise statements such
as the assertion ‘Ut ∈ Uu for a.e. t’ in Lemma 2.13).
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Observe that for every (r, x3) ∈ π(�̃)\({0} × R),

v(r, x3) ∈ imT(v, E (δ)) \ Tδ ⇒ v−1(v(r, x3)
) = (r, x3). (4.18)

Fix a sequence (Ek)k∈N of the sets E (δ) of Part I with Ek = E (δk ) and (δk)k∈N
a sequence decreasing to zero. Without loss of generality, assume that Ek � Ek+1
for all k, that each Ek is the projection by π of a good 3D open set Vk ∈ Uu, and
that π(�̃)\({0} × R) =⋃k∈N Ek . Set

T :=
⋃
k∈N

Tδk ∪
⋃
k∈N

v(∂ Ek \ π(�0)),

where �0 is the set of Definition 2.2. By property (b) in Definition 2.12 and the
fact that H1(�, R

2) functions on a smooth curve � mapH1-null sets ontoH1-null
sets (see [38], [44, Prop. 2.7]), it follows thatH1(T ) = 0.

Denote by w : π(�̃b) → R the function

w =
{

v−1
1 in π(imT(u, �̃ \ L)),

0 in π(imT(u, L)),

wherev−1
1 is thefirst component of the inverse ofv. In particular u−1 = v−1

1 (cos θe1+
sin θe2) + v−1

2 e3.
From (4.4) we have ∂ imT(v, Ek) ⊂ v(∂ Ek) for all k. But ∂ Ek = (

∂ Ek ∩
π(�̃\�)

) ∪ (({δk} × R) ∩ π(�)
)
. Thus we find ∂ imT(v, Ek) ⊂ v

(
π(�̃\�)

) ∪
v (({δk} × R) ∩ π(�)). However, thanks to the boundary condition b, we know
that v

(
π(�̃\�)

) = π
(
b(�̃\�)

)
. Hence π(�b) ∩ v

(
π(�̃\�)

) = ∅. But we also
have v(π(�)) = π(�b). Thus we infer that v

(
({δk} × R) ∩ π(�)

) ∩ π(�b) =
v
(
({δk} × R) ∩ π(�)

)
and we deduce

∂ imT(v, Ek) ∩ π(�b) = v
(
({δk} × R) ∩ π(�)

)
. (4.19)

Let (δk, x3) ∈ π(�) be such that (s, y3) := v(δk, x3) ∈ π(�b)\T . We claim
that

(s, y3) ∈ π
(
imT(u, �̃ \ L)

)
, w is continuous at (s, y3), and w(s, y3) = δk .

(4.20)

First, we show that (s, y3) ∈ imT(v, Ek+1). Suppose, for a contradiction, that this
were false. Since, by continuity, it is easy to see that (s, y3) ∈ imT(v, Ek+1),
by (4.4) it follows that (s, y3) = v(δk+1, x ′

3) for some (δk+1, x ′
3) ∈ π(�). But

(s, y3) /∈ T , so both (δk, x3) and (δk+1, x ′
3) belong to �0. Thus, on the one hand,

v(δk, x3) = v(δk+1, x ′
3). On the other hand, u is injective in �0 [28, Lemma 3],

yielding a contradiction.
By Lemma 4.4 and Definition 4.7, we conclude that (s, y3) indeed belongs to

imT(u, �̃\L). In addition, since (s, y3) ∈ imT(v, Ek+1)\Tk+1, v−1 is continuous
at (s, y3). By (4.18), v−1(s, y3) = (δk, x3) and w(s, y3) = δk .

Combining (4.19) with (4.20) we find that if (s, y3) ∈ ∂ imT(v, Ek)∩π(�b)\T

and (s( j), y( j)
3 ) is any sequence converging to (s, y3) then w

(
(s( j), y( j)

3 )
) j→∞−→ δk .

This is the motivation for the definition of the exceptional set T .
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Part III: imT(v, Ek) ∪ π
(
b
(
�̃\(� ∪ Cδk )

)) = imT
(
v, π(�̃)\([0, δk] × R)

)
for

every k ∈ N. In preparation for using the excision property of the degree, let us show
first that

if y′
0 ∈ imT(v, Ek) then y′

0 /∈ v
(
∂ Ek ∪ ∂

(
π(�̃) \ ([0, δk] × R

)))
. (4.21)

By definition of topological image, y′
0 /∈ v(∂ Ek). Suppose, for a contradiction, that

y′
0 ∈ v

(
∂
(
π(�̃)\([0, δk]×R

))\∂ Ek

)
. Then y′

0 = v(x′
0) for some x′

0 = (r0, x3) ∈
∂π
(
�̃
)
with r0 � δk , or some x′

0 = (r0, x3) ∈ ∂
(
π(�̃)\(Ek ∪ ([0, δk]×R)

))
with

r0 = δk . In both cases, x′
0 is in the region where v is defined through the boundary

data b. By [44, Lemma 2.5]

D
(
v
(
π(�̃) \ (Ek ∪ ([0, δk] × R)

))
, y′

0

)
� 1

2
.

At the same time, since y′
0 belongs to the open set imT(v, Ek)

a.e.= imG(v, Ek),
using (4.8) and Lemma 4.4 we find that

L2
(
imG(v, Ek) ∩ v

(
π(�̃) \ (Ek ∪ ([0, δk] × R)

)))
> 0.

Since v is injective a.e. we arrive at a contradiction.
A similar proof yields that

if y′
0 ∈ imT

(
v, π(�̃) \ ([0, δk] × R

)) \ π
(
b
(
�̃ \ (� ∪ Cδk )

))

then y′
0 /∈ v

(
∂ Ek ∪ ∂

(
π(�̃) \ ([0, δk] × R

)))
.

Having both relations, let us now prove that imT(v, Ek) ⊂ imT
(
v, π(�̃)\([0, δk]×

R
))

. Let y′
0 ∈ imT(v, Ek). By (4.21), the excision property gives that

deg(v, Ek, y′
0) + deg(v, π(�̃) \ (Ek ∪ ([0, δk] × R)

)
, y′

0)

= deg(v, π(�̃) \ ([0, δk] × R
)
, y′

0). (4.22)

Since the restriction of v to π(�̃)\(Ek ∪ ([0, δk] × R)
)
is an orientation-

preserving diffeomorphism (given by the planar function corresponding to the ax-
isymmetric boundary data b), then a proof similar to that of (4.21) shows that

y′
0 /∈ v

(
π(�̃)\(Ek ∪ ([0, δk] × R)

))
. Hence, the second degree in (4.22) is

zero. By definition of imT(v, Ek), the first degree in (4.22) is 1, hence y′
0 ∈

imT
(
v, π(�̃)\([0, δk] × R

))
, as desired.

The proof that π
(
b
(
�̃\(� ∪ Cδk )

)) ⊂ imT
(
v, π(�̃)\([0, δk] × R

))
is easier,

because in that region v is dictated by the diffeomorphism b. Finally, to prove that

imT

(
v, π(�̃) \ ([0, δk] × R

)) \ π
(
b
(
�̃ \ (� ∪ Cδk )

)) ⊂ imT(v, Ek),
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suppose that y′
0 belongs to the set on the left. Then, by (4.22),

deg(v, Ek, y′
0) + deg(v, π(�̃) \ (Ek ∪ ([0, δk] × R)

)
, y′

0) �= 0.

The second term is zero since v restricted to π(�̃)\(Ek ∪ ([0, δk] × R)
)
is a dif-

feomorphism and y′
0 /∈ π

(
b
(
�̃\(� ∪ Cδk )

))
, a set which contains v

(
π(�̃)\(Ek ∪

([0, δk] × R)
))
. Consequently, the first degree is nonzero and y′

0 ∈ imT(v, Ek),

finishing the proof of this Part III.

Part IV: H2-continuity of̂u−1
α . For each k ∈ N define wk : π(�̃b) → R as

wk =
{

v−1
1 in imT

(
v, π(�̃) \ ([0, δk] × R

)
,

δk otherwise,

where v−1
1 is defined in terms of b−1 in π

(
b
(
�̃\(� ∪ Cδk )

))
. By Parts II and III,

the function wk is continuous at every point in π(�̃b) \ T . Since

sup
π(�̃b)\T

|w − wk | = δk,

we have that wk → w uniformly in π(�̃b)\T as k → ∞.
For the bound |w − wk | � δk in the image of π(�̃) ∩ ((0, δk] × R

)
we use

that if (r, x3) ∈ π(�) with r > 0 and v(r, x3) ∈ π(�b) \ T then v(r, x3) ∈
π
(
imT(u, �̃\L)

)
, w is continuous at v(r, x3), and w

(
v(r, x3)

) = r . That can be
proved similarly as Part II, finding k such that δk < r and assuming that (s, y3) =
v(r, x3) is both on v(∂ Ek) and on v(∂ Ek+1).

Therefore, w|π(�̃b)\T is continuous. Since ̂u−1
1 e1 + ̂u−1

2 e2 = w(cos θe1 +
sin θe2) we have then that̂u−1

α has a precise representative whose restriction to
the complement of a certain set of zero H2-measure (the preimage by π of T ) is
continuous.

Part V: Sobolev regularity of ̂u−1
α . Let Vk � �̃ be the good (3D) open set

such that π(Vk) = Ek . By [29, Prop. 2.17.(vi)], imT(u, Vk) has finite perimeter
and ∂∗ imT(u, Vk) = imG(u, ∂Vk) H2-a.e. The set b

(
�̃\(� ∪ Cδk )

)
also has finite

perimeter since b is diffeomorphism up to the boundary of �̃. By Part III and
Lemma 4.4,

imT(u, Vk) ∪ b
(
�̃ \ (� ∪ Cδk )

) = imT(u, �̃ \ Cδk ) (4.23)

for every k ∈ N. Hence, imT(u, �̃\Cδk ) is a set of finite perimeter. By Lemma 4.10
the map u−1

Vk
: R

3 → R
3 given by

u−1
Vk

( y) =
{
u−1( y), y ∈ imT(u, Vk),

0, y ∈ R
3 \ imT(u, Vk)
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is in SBV (R3, R
3) and Du−1

Vk
imT(u, Vk) is absolutely continuous. Applying

Proposition 4.14 to u−1
Vk

and to b−1, with imT(u, Vk) as the set of finite perimeter
in the hypotheses of that gluing theorem, we obtain that the map

y ∈ �̃b �→
{
u−1( y), y ∈ imT(u, Vk)

b−1( y), y ∈ �̃b \ imT(u, Vk)

is in SBV (�̃b, R
3), with derivative given by

Du−1
Vk

imT(u, Vk) + Db−1 (
�̃b \ imT(u, Vk)

)
+((u−1)+ − (b−1)−

)
νimT(u,Vk )H2 imG(u, ∂Vk).

(The set imT(u, Vk) has neither density zero nor one atH2-a.e. point in ∂ imT(u, Vk)

thanks to [44, Lemma 2.5]) Since u = b in�D , taking (4.23) into account, the map
can be rewritten as

y ∈ �̃b �→
{
u−1( y), y ∈ imT(u, �̃ \ Cδk )

b−1( y), otherwise,

with a corresponding rewriting for the derivative. At this point, taking into account
(4.23), we apply Proposition 4.14 again, now to the first two components of the
above map and to the function

y = (s cos θ, s sin θ, y3) ∈ �̃b �→ δk(cos θ, sin θ)

(which belongs to W 1,1(�̃b, R
2)), with imT(u, �̃\Cδk ) as the set of finite perimeter

in the hypothesis of that gluing theorem, to find that the mapW k : �̃b → R
2 given

by

W k : y = (s cos θ, s sin θ, y3) ∈ �̃b �→
{(

u−1
1 ( y), u−1

2 ( y)
)

y ∈ imT(u, �̃ \ Cδk )

δk(cos θ, sin θ) otherwise,

(4.24)

is in SBV (�̃b, R
2), with derivative given by

D(u−1
1 , u−1

2 ) imT(u, �̃ \ Cδk ) + δk(− sin θ, cos θ) ⊗ Dθ
(
�̃b \ imT(u, �̃ \ Cδk )

)
+((u−1

1 , u−1
2 )+ − δk(cos θ, sin θ)

)
νimT(u,�̃\Cδk )

H2 (
�̃b ∩ ∂∗ imT(u, �̃ \ Cδk )

)
.

However, by Lemma 4.4, the radial component of what would be the planar map
corresponding toW k in (4.24) is preciselywk , so by Part IV we know that the jump
(u−1

1 , u−1
2 )+ −δk(cos θ, sin θ) is zero forH2-a.e. point on �̃b∩∂∗ imT(u, �̃\Cδk ).

Therefore, the maps W k under consideration belong to W 1,1(�̃b).
The uniform convergence wk → w of Part IV translates, in particular, into the

a.e. convergence of the maps W k in (4.24) to the map (
̂u−1
1 ,

̂u−1
2 ) in the statement
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of the proposition. On the other hand, Lemma 2.14 shows that the gradients of the
maps W k are equiintegrable because

∫
A

|DW k | d y �
∫

A∩imT(u,�̃\L)

|Du−1| d y +
∫

A∩�̃b

δk |Dθ | d y

for anymeasurable subset A ⊂ π(�̃b). Therefore, the limit (̂u−1
1 ,

̂u−1
2 ) also belongs

to W 1,1(�̃b, R
2), finishing the proof. ��

5. Weak Limits of Regular Maps

We investigate here the properties of maps in Ar
s : the weak H1 closure of the

class of regular maps. We start by proving that Ar
s is contained in the space B

defined in (1.7).

Theorem 5.1. Let u ∈ Ar
s . Then

(i) u belongs to As .
(ii) imG(u,�) = �b a.e. and L3(imT(u, L)) = 0.
(iii) u−1 ∈ BV (�̃b, R

3)and supp Dsu−1 ⊂ imT(u, L). Moreover,‖u−1‖BV (�̃b,R
3) �

M for some M > 0 not depending on u.
(iv) u−1

α ∈ W 1,1(�̃b) for α = 1, 2.

Proof. Let {un}n∈N ⊂ Ar
s satisfy un ⇀ u in H1(�̃, R

3). By Proposition 3.1,
u ∈ As , det Dun ⇀ det Du in L1(�̃), and χimG(un ,�̃) → χimG(u,�̃) a.e. Now,
by Proposition 4.11.(b), imG(un, �̃) = �̃b a.e. for every n ∈ N, hence u inherits
this property. By (4.17) and Lemma 4.8, it then follows that L3(imT(u, L)) = 0,
completing the proof of ii).

From Proposition 4.12 we have that u−1
n ∈ W 1,1(�̃b, R

3) for all n ∈ N and

‖Du−1
n ‖L1(�̃b,R

3×3) = ‖cof Dun‖L1(�̃,R3×3)

� ‖Dun‖2L2(�,R3×3)
+ ‖Db‖2L2(�D;R3×3)

� E(un) + C � E(b) + C,

where we have used Lemma 2.6.
On the other hand the image of each u−1

n is contained in �, so ‖u−1
n ‖L∞(�̃b,R

3)

and, hence ‖u−1
n ‖L1(�̃b,R

3) are bounded by a constant only depending on � and
�̃b. Thus, by the theorem of compactness in BV we find that, up to a subsequence,
there exists w ∈ BV (�̃b, R

3) such that u−1
n → w in L1(�̃b, R

3) and a.e. in �̃b.
By Lemma 4.13, w = u−1 a.e. Finally, by Lemma 4.10 we have supp Dsu−1 ⊂
imT(u, L). This shows iii).

Since L3(imT(u, L)) = 0, the functions u−1
α and̂u−1

α (see Proposition 4.15)
coincide a.e. Thus, by Proposition 4.15, u−1

α ∈ W 1,1(�̃b), which shows iv). ��
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For u ∈ Ar
s wehave, byTheorem5.1, that u−1 ∈ BV (�̃b, R

3) andwe introduce
the following standard decomposition of the distributional derivative of u−1:

Du−1 = ∇u−1 + Dsu−1 = ∇u−1 + D ju−1 + Dcu−1;
see, e.g., [1, Sect. 3.9]. In this decomposition ∇u−1 denotes the absolutely contin-
uous part of Du−1 with respect to the Lebesgue measure, Dsu−1 is the singular
part which can be furthermore decomposed in a jump part D ju−1 and a Cantor
part Dcu−1. Moreover, we denote by Ju−1 the set of jump points of u−1. We fix a
Borel orientation ν of Ju−1 , and, with respect to this orientation, the lateral traces
of u−1 are denoted by (u−1)+ and (u−1)−. Analogously, the jump is defined as
[u−1] := (u−1)+ − (u−1)−.

The following lemma, which uses many ideas of [28, Th. 2], relates the surface
energy Eu with the singular part of Du−1. With a small abuse of notation, given
φ ∈ C1

c (�), we define [φ ◦ u−1] in Ju−1 as φ ◦ (u−1)+ − φ ◦ (u−1)−. Recall that
u−1 initially is defined only on imG(u, �̃) but if imG(u, �̃) = �̃b a.e. then u−1

is defined a.e. in the open set �̃b. Assume that u−1 is the precise representative of
itself.

Lemma 5.2. Let u ∈ H1(�̃, R
3) ∩ L∞(�, R

3) be such that det Du ∈ L1(�̃) and
det Du > 0 a.e. Let φ ∈ C1

c (�̃) and g ∈ C1
c (R3, R

3). Suppose that imG(u, �̃) =
�̃b a.e., u is injective a.e. and u−1 ∈ BV (�̃b, R

3). Then

Eu(φ, g) = −〈Ds(φ ◦ u−1), g〉
= −

∫
�̃b

∇φ(u−1( y)) ⊗ g( y) · dDcu−1( y) −
∫

Ju−1

[φ ◦ u−1] g · ν dH2.

Proof. By the change of variables formula and using that imG(u, �̃) = �̃b a.e.,
we find

Eu(φ, g) =
∫

�̃b

[
g( y) · Du(u−1( y))−T Dφ(u−1( y)) + φ(u−1( y)) div g( y)

]
d y.

(5.1)
By the chain rule for BV functions (see, e.g., [1, Th. 3.96]), φ◦u−1 ∈ BV (�̃b, R

3)

and

∇(φ ◦ u−1) = ∇φ(u−1)∇u−1,

Ds(φ ◦ u−1) = ∇φ(u−1)Dcu−1 + [φ ◦ u−1] ⊗ νuHn−1
Ju−1 .

(5.2)

By Lemma 4.10, ∇u−1(u(x)) = ∇u(x)−1 for a.e. x ∈ �̃. This and (5.2) imply
that, for a.e. y ∈ �̃b,

∇(φ ◦ u−1)( y) = ∇φ(u−1( y))∇u(u−1( y))−1.

Therefore, ∫
�̃b

g( y) · Du(u−1( y))−T Dφ(u−1( y)) d y

=
∫

�̃b

∇(φ ◦ u−1)( y) · g( y) d y = 〈∇(φ ◦ u−1), g〉. (5.3)
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On the other hand, by definition of distributional derivative,
∫

�̃b

φ(u−1( y)) div g( y) d y = −〈D(φ ◦ u−1), g〉. (5.4)

Putting together (5.1), (5.3) and (5.4), we obtain

Eu(φ, g) = 〈∇(φ ◦ u−1) − D(φ ◦ u−1), g〉 = −〈Ds(φ ◦ u−1), g〉.
This, together with (5.2), concludes the proof. ��

Recall the definition of the singular segment L = � ∩ Re3 in (4.3).

Proposition 5.3. Let u ∈ Ar
s . Then u−1( y) ∈ L for |Dcu−1|-a.e. y ∈ �̃b and

(u−1)±( y) ∈ L for H2-a.e. y ∈ Ju−1 .

Proof. Without loss of generality, u−1 is the precise representative of itself.
Let g ∈ C1

c (R3, R
3) and φ ∈ C1

c (�̃\Re3). Then, there exists δ > 0 such that
φ ∈ C1

c (�̃\Cδ). By Lemma 2.18, we have that Eu(φ, g) = 0, so due to Lemma 5.2
we obtain that∫

�̃b

∇φ(u−1( y)) ⊗ g( y) · dDcu−1( y) +
∫

Ju−1

[φ ◦ u−1] g · ν dH2 = 0. (5.5)

By approximation, the previous equality, which does not involve derivatives of g,
is also valid for every bounded Borel function g : R

3 → R
3.

Let Dcu−1 = A |Dcu−1| be the polar decomposition of Dcu−1, so A : �̃b →
R
3×3 is Borel, |Dcu−1|-integrable and |A| = 1 in |Dcu−1|-a.e. �̃b. Let y0 ∈ �̃b

be a |Dcu−1|-Lebesgue point of u−1, i.e.,

lim
r→0+

∫
B( y0,r)

|u−1( y) − u−1( y0)| d|Dcu−1|( y)
|Dcu−1|(B( y0, r))

= 0, (5.6)

and note that |Dcu−1|-a.e. point of �̃b satisfies that. Let us suppose that u−1( y0) /∈
L and take a closed cube Q ⊂ �̃ centered at u−1( y0) with Q ∩ L = ∅. Consider
the Borel set

U := { y ∈ �̃b : u−1( y) ∈ Q and u−1 is approximately continuous at y}.
Given any ψ ∈ C1(R), take φ ∈ C1

c (�̃\Re3) such that φ(x) = ψ(xα)

for all x ∈ Q. For 1 � α, i � 3 and r > 0 fixed, we apply (5.5) to g =
sgnψ ′ sgn AαiχB( y0,r)∩U ei and deduce that
∫

{ y∈B( y0,r):u−1( y)∈Q}
sgnψ ′ sgn Aαi

(
∇φ(u−1( y)) ⊗ ei

)
· A d|Dcu−1| = 0.

This can also be written as∫
{ y∈B( y0,r):u−1( y)∈Q}

∣∣∣ψ ′(u−1
α ( y))

∣∣∣ |Aαi | d|Dcu−1| = 0.
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We use the previous equality first with ψ(t) = cos t and then with ψ(t) = sin t .
We sum the two equalities and use that | cos t | + | sin t | � 1 to get

∫
{ y∈B( y0,r):u−1( y)∈Q}

|Aαi | d|Dcu−1| = 0.

We then sum this equality for 1 � α, i � 3 to obtain

|Dcu−1|
(
{ y ∈ B( y0, r) : u−1( y) ∈ Q}

)
= 0.

This equality implies that |u−1( y) − u−1( y0)| > diam Q/2 for |Dcu−1|-a.e. y ∈
B( y0, r). Being true for all r > 0, this is a contradiction with (5.6). Therefore,
|Dcu−1|-a.e. y ∈ �̃b satisfies u−1( y) ∈ L .

Now we show that (u−1)±( y) ∈ L for H2-a.e. y ∈ Ju−1 . Let y0 ∈ Ju−1 be a
H2

Ju−1 -Lebesgue point for both (u−1)+ and (u−1)−, i.e.,

lim
r→0+

∫
Ju−1∩B( y0,r)

|(u−1)±( y) − (u−1)±( y0)| dH2( y)

H2(Ju−1 ∩ B( y0, r))
= 0, (5.7)

and note thatH2-a.e. point in Ju−1 satisfies that. For each r > 0, we apply (5.5) to
g = χJu−1∩B( y0,r)ν and deduce that

∫
Ju−1∩B( y0,r)

[φ ◦ u−1] dH2 = 0.

This and (5.7) imply that [φ ◦u−1]( y0) = 0. If (u−1)+( y0) /∈ L and (u−1)−( y0) ∈
L , we choose φ ∈ C1

c (�̃\Re3) such that φ(u−1)+( y0) �= 0 and reach a contradic-
tionwith [φ◦u−1]( y0) = 0. Analogously if (u−1)+( y0) ∈ L and (u−1)−( y0) /∈ L .
If (u−1)+( y0) /∈ L and (u−1)−( y0) /∈ L , we choose φ ∈ C1

c (�̃\Re3) such that
φ((u−1)+( y0)) �= φ((u−1)−( y0)), which contradicts [φ ◦ u−1]( y0) = 0. Hence,
the only possibility is that (u−1)+( y0) ∈ L and (u−1)−( y0) ∈ L . ��

6. Lower Bound for the Relaxed Energy and an Explicit Alternative
Variational Problem

In this section we study the energetic cost for a weak limit of functions inAr
s to

leaveAr
s . Note that, by the Conti-De Lellis example, condition INV is not satisfied,

in general, by functions in Ar
s . This is due to the lack of equiintegrability of the

cofactors, so the theory of [29] cannot be applied.
A standard diagonal argument shows that Ar

s is closed under the weak conver-
gence of H1(�, R

3). From Theorem 5.1 we see that the energy

F(u) := E(u) + 2|Dsu−1
3 |(�̃b). (6.1)

is well defined onAr
s . We start with the following lemma, which plays a role of an

energy-area inequality and should be compared with Lemma 2.6:
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Lemma 6.1. Let u ∈ As . Then |adj Du e3| � 1
2 |Du|2. This inequality is optimal

and cannot be attained by a map in As .

Proof. With the expressions of Du and cof Du in terms of the associated 2D map
v, cf. (6.12), we find

|adj Du e3| = |v1|
r

(
|∂rv1|2 + |∂x3v1|2

)1/2

� 1

2

( |v1|2
r2

+ |∂rv1|2 + |∂x3v1|2
)

� 1

2
|Du|2.

The equality implies v1
r = (|∂rv1|2 + |∂x3v1|2)1/2 and ∇v2 = 0. This cannot

be attained by a map in As , since ∇v2 = 0 implies det Dv = 0, so det Du =
0. Nonetheless, the constant is optimal in As , as can be checked by considering
v1(r, x3) = r and v2(r, x3) = εx3 for ε ↘ 0, which corresponds to u(x) =
(x1, x2, εx3). ��

The following lower semicontinuity result is the cornerstone of the strategy in
this paper for the study of the regularity of the minimizers of the neo-Hookean
energy.

Proposition 6.2. The energy F defined in (6.1) is sequentially lower semicontinu-
ous in Ar

s for the weak convergence in H1(�̃, R
3).

Proof. Recall from Theorem 5.1 that Ar
s ⊂ As . Let {uk}k∈N be a sequence in Ar

s
tending weakly in H1(�̃, R

3) to u ∈ Ar
s . Thanks to Theorem 5.1 iii), the BV norm

of u−1
k is bounded, so, due to Lemma 4.13, we have that, up to a subsequence,

u−1
k

∗
⇀ u−1 in BV (�̃b, R

3) and a.e. By Proposition 3.1, we have that det Duk ⇀

det Du in L1(�̃) and, because of the convexity of H ,
∫

�̃

H(det Du) � lim inf
k→∞

∫
�̃

H(det Duk). (6.2)

We first prove that the sequence {det Du−1
k }k∈N is equiintegrable. This can be

proved as in [5, Prop. 7.8]. Indeed, define H1 : (0,∞) → R as H1(t) := t H(1/t).
Then H1 grows superlinearly at infinity and

∫
�̃b

H1(det Du−1
k ) d y =

∫
�̃

H(det Duk) dx � E(b).

Thus the equiintegrability follows from the De La Vallée Poussin criterion.
Now, let ε > 0. Recall that Cδ is given by (2.7). Choose δ0 > 0 such that

∫
Cδ0∩�̃

|Du|2 dx < ε. (6.3)

Becauseof the axial symmetry, it canbe seen that the sequence {χ�̃\Cδ0
cof Duk}k∈N

is equiintegrable, cf. [33, Th. 1.3]. This is due to the fact that the corresponding 2D
maps vk are bounded in H1

(
π(�̃\Cδ0), R

2
)
and then by a result of Müller [42],
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since we also have det Dvk > 0 a.e., det Dvk are equiintegrable. Nowwe obtain the
equiintegrability result for {χ�̃\Cδ0

cof Duk}k∈N by expressing the cofactor matrix
in terms of the 2D map vk and observing that one entry is det Dvk and the others
are products of a sequence converging strongly in L2 by a sequence converging
weakly in L2; cf. (6.12) in the “Appendix”.

Hence, there exists η > 0, independent of k, such that if A ⊂ �̃ is measurable,

|A| < η ⇒
∫

A\Cδ0

|cof Duk | dx < ε, ∀k ∈ N. (6.4)

Given any open subset V of �̃b (which we shall later choose to be a thin
neighbourhood of imT(u, L)), and any good δ1 < δ0,
∫

V
|∇(u−1

k )3| d y =
∫
u−1

k (V )∩Cδ1

| adj∇uk e3| dx +
∫
u−1

k (V )\Cδ1

| adj∇uk e3| dx.

(6.5)

By Lemma 6.1 the first integral in the right-hand side of (6.5) is bounded by the
integral of 1

2 |Duk |2 in Cδ1 ∩ �̃. As for the second integral, note that

|u−1
k (V ) \ Cδ1 | �

∫
V
det Du−1

k d y. (6.6)

Since L3
(
imT(u, L)

) = 0 combining (6.6), (6.4), and the equiintegrability of
{det Du−1

k }k∈N it is possible to find δ1 > 0, with δ1 < δ0 and an open set V ⊂ �̃b
such that

imT(u, L) ⊂ V and
∫
u−1

k (V )\Cδ1

|cof Duk | dx < ε, ∀k ∈ N. (6.7)

By (6.7), for this V we get
∫

V
|∇(u−1

k )3| d y � 1

2

∫
Cδ1∩�̃

|Duk |2 dx + ε,

and therefore

|D(u−1
k )3|(V ) =

∫
V

|∇(u−1
k )3| d y + |Ds(u−1

k )3|(V )

� 1

2

∫
Cδ1∩�̃

|Duk |2 dx + ε + |Ds(u−1
k )3|(�̃b).

Observe that by Theorem 5.1 iii) the inclusions supp Dsu−1 ⊂ imT(u, L) ⊂ V

hold. Then, by the inequality above, as u−1
k

∗
⇀ u−1 in BV (�̃b, R

3) we have that

|Ds(u−1)3|(�̃b) � ε+lim inf
k→∞

[
1

2

∫
Cδ1∩�̃

|Duk |2 dx + |Ds(u−1
k )3|(�̃b)

]
. (6.8)
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On the other hand, by (6.3), as uk ⇀ u in H1(�̃, R
3×3) we have also that

1

2

∫
Cδ1∩�̃

|Du|2 dx + 1

2

∫
�̃\Cδ1

|Du|2 dx � ε + lim inf
k→∞

1

2

∫
�̃\Cδ1

|Duk |2 dx.

(6.9)

Gathering (6.8) and (6.9), since ε > 0 is arbitrary we obtain that

1

2

∫
�̃

|Du|2 + |Ds(u−1)3|(�̃b) � lim inf
k→∞

[
1

2

∫
�̃

|Duk |2 + |Ds(u−1
k )3|(�̃b)

]
.

(6.10)
The proof of the proposition is concluded by gathering (6.2) and (6.10). ��
Remark 6.3. Without the Sobolev regularity for the horizontal components of the
inverse, the estimate of the first term of the right-hand side of (6.5) would have
been made for the whole cofactor matrix, yielding in (6.1) the suboptimal prefactor√
3 of Lemma 2.6 instead of the prefactor 2 coming from Lemma 6.1.

Remark 6.4. From Proposition 6.2 we get in particular that if uk is a sequence in
Ar

s with H1-weak limit u, then

F(u) � lim inf
k→∞ E(uk).

Since we are in the presence of a problem of lack of compactness it is natural
to seek for an explicit description of the space Ar

s and the relaxed energy defined
on this space by

Erel(u) := inf{lim inf
k→∞ E(uk) : {uk}k∈N ∈ Ar

s and uk ⇀ u in H1(�, R
3)}.

It is well known that Erel is the largest lower semicontinuous functional in Ar
s

(for the H1-weak topology) that is below E inAr
s . Since F is lower semicontinuous

in Ar
s and

Erel = E in Ar
s

we conclude that
Erel � F in Ar

s . (6.11)

It is tempting to conjecture that the equality Erel = F holds at least for some
special choices of the function H . In view of Proposition 6.2 (and its consequence
(6.11)), it remains to characterize Ar

s and to show that for any u ∈ Ar
s there exists

a sequence {un}n∈N ⊂ Ar
s converging weakly to u in H1(�, R

3) such that

lim
n→∞ E(un) = F(u).

There are serious difficulties in constructing this sequence {un}n∈N (if it exists
at all). One of them relies on the restrictions of being orientation-preserving and
injective a.e., even though there are some partial results in this direction (see [12,
13,35,36,40] and the references therein).

At any rate, the interest of defining the relaxed energy in an abstract way is to
be able to prove that it attains its infimum in Ar

s , and that the initial energy attains
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its minimum in Ar
s if and only if there exists a minimizer of Erel in Ar

s which is
in Ar

s . These two facts are classical in the theory of relaxation and follow from
abstract arguments. The energy F satisfies analogous properties and, hence, can be
a substitute of Erel.

Theorem 6.5. The energy F has a minimizer in Ar
s . If it belongs to Ar

s , then it is
also a minimizer of E.

Proof. Recall that Ar
s is closed for the weak convergence in H1(�̃, R

3). It is also
bounded in H1(�̃, R

3). From Proposition 6.2, F is lower semicontinuous in Ar
s .

Clearly, F is coercive in Ar
s . This readily implies the existence of minimizers.

As for the second part of the statement, we assume that there exists a minimizer
u0 of F in Ar

s such that u0 ∈ Ar
s . We then have F(u0) � F(w) for any w ∈ Ar

s .
But since F = E in Ar

s , we find that E(u0) � E(w) for all w ∈ Ar
s . That is, u0 is

a minimizer of E in Ar
s . ��

In the same vein, we have

Proposition 6.6. The energy E has a minimizer in Ar
s .

Proof. FromLemma2.16we have thatAr
s ⊂ As and fromProposition 3.1 that E is

lower semicontinuous onAs .Moreover,Ar
s is closed for the H1-weak convergence.

As noted before, E is coercive inAs . These are the three main ingredients to obtain
the conclusion. ��

It would be nice to have an explicit description ofAr
s . Although this character-

ization is missing, we are able to prove the existence of minimizers of the energy
F in the explicit space B defined in (1.7) which is a priori larger than Ar

s . Indeed,
from Theorem 5.1 we have that Ar

s ⊂ B ⊂ As . Besides, the energy F is well
defined on B, it controls the BV norm of the inverses, and a slight adaptation of
Proposition 6.2 yields the lower semicontinuity of F in B.

Proposition 6.7. The energy F is sequentially lower semicontinuous in B for the
H1-weak convergence.

Proof. Let {uk}k∈N be a sequence inB tending weakly in H1(�̃, R
3) to u ∈ B. We

can assume that lim infk→∞ F(uk) < ∞. In particular, supk∈N |Du−1
k |(�̃b) < ∞.

As ‖uk‖L∞(�̃,R3) and, hence, ‖uk‖L1(�̃,R3) are bounded, the BV norm of u−1
k is

bounded, so, due to Lemma 4.13, we have that, up to a subsequence, u−1
k

∗
⇀ u−1

in BV (�̃b, R
3) and a.e. From here, the proof is the same as in Proposition 6.2. ��

Proof of Theorem 1.1. Let {uk}k be a minimizing sequence for F in B. Clearly
supk F(uk) < ∞, and we can assume that uk ⇀ u in H1(�̃, R

3). Since, by
Proposition 6.7, F is lower semicontinuous for theweak convergence in H1 ofmaps
inB, it suffices to show that the weak limit u is inB. We know from Proposition 3.1
that u ∈ As , det Duk ⇀ det Du in L1(�̃) and imG(uk, �̃) → imG(u, �̃) a.e. In
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particular, �̃b = imG(u, �̃) a.e. and from (4.17), imT(u, L) is a null Lebesgue set.
Now we use Lemma 2.6 to show that

F(uk) �
∫

�̃

|cof Duk | dx + 2|Dsu−1
k |(�̃b)

�
∫
imG(u,�̃)

|∇u−1
k | d y + |Dsu−1

k |(�̃b) = |Du−1
k |(�̃b).

As {u−1
k }k∈N is bounded in L∞(�̃b, R

3),wefind thatu−1
k is bounded in BV (�̃b, R

3).
Up to a subsequence, thanks toLemma4.13,wehave thatu−1

k → u−1 in L1(�̃b, R
3)

and a.e., with u−1 ∈ BV (�̃b, R
3). From Proposition 4.15 we also infer that

u−1
1 , u−1

2 are in W 1,1(�̃b). This proves that u minimizes F in B.
The other statement ofTheorem1.1 can be shownas in the proof ofTheorem6.5.

��
The following is a summary of existence results we obtained in this article.

Spaces Ar
s Ar

s Ar
s B As

Energies E E F F E
Minimizers ? yes Prop. 6.6 yes Th. 6.5 yes Th. 1.1 yes Th. 3.2
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Appendix: Working with Axially Symmetric Maps

Werecall from theAppendix in [33] that if u : � → R
3 is axisymmetric and is given

in cylindrical coordinates by u(r cos θ, r sin θ, x3) = v1(r, x3)er +v2(r, x3)e3 then
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Du =
⎛
⎝∂rv1 0 ∂x3v1

0 v1
r 0

∂rv2 0 ∂x3v2

⎞
⎠ , cof Du =

⎛
⎝

v1
r ∂x3v2 0 − v1

r ∂rv2
0 det Dv 0

− v1
r ∂x3v1 0 v1

r ∂rv1

⎞
⎠ ,

det Du = 1

r
v1 det Dv,

(6.12)
and the Dirichlet energy is given by

∫
�

|Du|2 dx = 2π
∫

π(�)

(
|∂rv|2 + |∂x3v|2

)
r dr dx3 + 2π

∫
π(�)

v21

r
dr dx3.
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