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Abstract
The last decade witnessed a growing interest in Bayesian learning. Yet, the technicality 
of the topic and the multitude of ingredients involved therein, besides the complexity of 
turning theory into practical implementations, limit the use of the Bayesian learning para-
digm, preventing its widespread adoption across different fields and applications. This 
self-contained survey engages and introduces readers to the principles and algorithms of 
Bayesian Learning for Neural Networks. It provides an introduction to the topic from an 
accessible, practical-algorithmic perspective. Upon providing a general introduction to 
Bayesian Neural Networks, we discuss and present both standard and recent approaches 
for Bayesian inference, with an emphasis on solutions relying on Variational Inference and 
the use of Natural gradients. We also discuss the use of manifold optimization as a state-of-
the-art approach to Bayesian learning. We examine the characteristic properties of all the 
discussed methods, and provide pseudo-codes for their implementation, paying attention to 
practical aspects, such as the computation of the gradients.

Keywords  Bayesian learning · Bayesian neural networks · Bayesian inference

1  Introduction

Machine Learning (ML) techniques have been proven to be successful in many predic-
tion and classification tasks across natural language processing (Young et  al. 2018), 
computer vision (Krizhevsky et  al. 2012), time-series (Längkvist et  al. 2014) and 
finance applications (Dixon et al. 2020), among the several others. The widespread of 
ML methods in diverse domains is found due to their ability to scale and adapt to data, 
and their flexibility in addressing a variety of problems while retaining high predic-
tive ability. Recently, Bayesian methods have gained considerable interest in ML as 
an attractive alternative to the classical methods providing point estimations for their 
inputs. Despite the numerous advantages that traditional ML methods offer, they are, 

 *	 Martin Magris 
	 magris@ece.au.dk

	 Alexandros Iosifidis 
	 ai@ece.au.dk

1	 DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22, 
8200 Århus, Denmark

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-023-10443-1&domain=pdf


11774	 M. Magris, A. Iosifidis 

1 3

broadly speaking, prone to overfitting, dimming their generalization capabilities and 
performance on unseen data. Furthermore, an implicit consequence of the classical 
point estimation and modeling setup is that it delivers models that are generally inca-
pable of addressing uncertainties. This inability is twofold, as it includes both the esti-
mation and prediction aspects. Indeed, as opposed to the typical practice of statistical 
modeling and, e.g., econometrics methods, ML methods do not directly tackle aspects 
related to the significance and uncertainties associated with the estimated parameters. 
At the same time, predictions correspond to simple point estimates without reference to 
the confidence levels that such estimates have. Whereas some models have been devel-
oped to, e.g., provide confidence intervals over the forecasts (e.g. Gal and Ghahramani 
2016), it has been observed that such models are generally overconfident. To estimate 
uncertainties implicitly embedded in ML models, Bayesian inference provides an imme-
diate remedy and stands out as the main approach.

Bayesian methods have gained considerable interest as an attractive alternative to point 
estimation, especially for their ability to address uncertainty via posterior distribution, gen-
eralize while reducing overfitting (Hoeting et al. 1999), and for enabling sequential learn-
ing (Freitas et al. 2000) while retaining prior and past knowledge. Although Bayesian prin-
ciples have been proposed in ML decades ago (e.g. Mackay 1992, 1995; Lampinen and 
Vehtari 2001), it has been only recently that fast and feasible methods boosted a growing 
use of Bayesian methods in complex models, such as deep neural networks (Osawa et al. 
2019; Khan et al. 2018a; Khan and Nielsen 2018).

The most challenging task in following the Bayesian paradigm is the computation of 
the posterior. In the typical ML setting characterized by a high number of parameters and a 
considerable size of data, traditional sampling methods are prohibitive, and alternative esti-
mation approaches such as Variational Inference (VI) have been shown to be suitable and 
successful (Saul et al. 1996; Wainwright and Jordan 2008; Hoffman et al. 2013; Blei et al. 
2017). Furthermore, recent research advocates the use of natural gradients for boosting the 
optimum search and the training (Wierstra et al. 2014), enabling fast and accurate Bayesian 
learning algorithms that are scalable and versatile.

Recent years witnessed enormous growth in the interest related to Bayesian ML meth-
odologies and several contributions in the field. This survey aims at summarizing the major 
methodologies nowadays available, presenting them from an algorithmic, empirically-ori-
ented perspective. With this rationale, this paper aims to provide the reader with the basic 
tools and concepts to understand the theory behind Bayesian Deep Learning (DL) and walk 
through the implementation of the several Bayesian estimation methodologies available. 
We should note that the focus of this paper is purely on Bayesian methods. Indeed there 
are a number of network architectures that can resemble a Bayesian framework by, e.g., 
creating a distribution for the outputs, e.g., Deep Ensembles (Osband et al. 2018), Batch 
Ensembles (Wen et al. 2020), Layer Ensembles (Oleksiienko and Iosifidis 2022), or Vari-
ational Neural Networks (Oleksiienko et  al. 2022). These solutions, based on particular 
network designs, are, however, not implicitly Bayesian and out of scope in our context. 
Other surveys and tutorials do exist on the general topic (e.g. Jospin et al. 2022; Hecker-
man 2008, along with several lecture notes available online), yet the focus of this paper is 
on algorithms and mainly devoted to VI methods. In fact, despite the wide number of VI 
and non-VI methods published in the last decade, a comprehensive survey embracing and 
discussing all of them (or perhaps the major ones) is missing, and non-experts will easily 
find themselves lost in their pursuit to comprehend and different notions and processing 
steps in different methodologies. By filling this gap, we aim to promote applications and 
research in this area.
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1.1 � The Bayesian paradigm

The Bayesian paradigm in statistics is often opposed to the pure frequentist paradigm, a 
major area of distinction being in hypothesis testing (Etz et al. 2018). The Bayesian para-
digm is based on two simple ideas. The first is that probability is a measure of belief in the 
occurrence of events, rather than just some limit in the frequency of occurrence when the 
number of samples goes toward infinity. The second is that prior beliefs influence posterior 
beliefs (Jospin et al. 2022). The above two are summarized in the Bayes theorem, which we 
now review. Let D denote the data and p(D|�) the likelihood of the data based on a postu-
lated model with � ∈ Θ a k-dimensional vector of model parameters. Let p(�) be the prior 
distribution on � . The goal of Bayesian inference is the estimation of the posterior distribu-
tion (e.g., Gelman et al. 1995)

where p(D) is referred to as evidence or marginal likelihood, since 
p(D) = ∫

Θ
p(�)p(D|�)d� . p(D) acts as a normalization constant for retrieving an actual 

probability distribution for p(�|D) . In this light, as opposed to the frequentist approach, 
it becomes clear that the unknown parameter � is treated as a random variable. The prior 
probability p(�) , which intuitively expresses in probabilistic terms any knowledge about 
the parameter before the data has been collected, is updated in the posterior probability 
p(�|D) , mixturing prior knowledge and evidence supported by the data through the mod-
el’s likelihood. Bayesian inference is generally difficult due to the fact that the marginal 
likelihood is often intractable and of unknown form. Indeed, only for a limited class of 
models, where the prior is so-called conjugate to the likelihood, the calculation of the pos-
terior is analytically tractable. Standard examples are Normal likelihoods and prior (result-
ing in Normal posteriors) or Poisson likelihoods with Gamma priors (resulting in Nega-
tive Binomial posteriors). Yet, already for the simple linear regression example, Bayesian 
derivation is rather tedious, and already for the logistic regression, closed-form solutions 
are not generally available. It is clear that in complex models, such as deep neural networks 
typically used in ML applications, Bayesian inference can be tackled neither analytically 
nor numerically (consider that the integral in the marginal likelihood is multivariate, over 
as many dimensions as the number of parameters).

Monte Carlo (MC) methods for sampling the posterior are certainly a possibility that 
has been early explored and adopted. While it still remains a valid and appropriate method 
for performing Bayesian inference in retractable settings, especially in high-dimensional 
applications, the MC approach is challenging and may become infeasible, mainly because 
of the need for an implicit high-dimensional sampling scheme, which is generally time-
consuming and computationally demanding. As an alternative approach, VI gained much 
attention in recent years. VI turns the integration Bayesian problem in Eq. (1) into an opti-
mization problem. The idea behind VI is that of targeting an approximate form of the pos-
terior distribution, perhaps chosen within a family of well-behaved distributions, and find-
ing the corresponding parameter that optimizes a specific objective, i.e., that is optimal 
under some criterion.

In the following subsection, we review the standard non-Bayesian approach for neu-
ral network parameter estimation (Sect.  1.2.1), we introduce Bayesian Neural Networks 
(BNNs) (Sect.  1.4), and we provide some motivation for their use, also recalling some 
literature about their applications (Sect.  1.3). After providing the reader an introduction 

(1)p(�|D) =
p(D,�)

p(D)
=

p(�)p(D|�)
p(D)

,
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to standard and Bayesian neural networks, we introduce VI in Sect. 1.5, we describe the 
standard framework used in Bayesian learning, and we discuss how the standard Stochas-
tic Gradient Descent (SGD) approach can be used for solving the optimization problem 
therein (Sect. 1.5.1).

1.2 � Standard and Bayesian Neural Networks

A Bayesian Neural Network (BNN) is an Artificial Neural Network (ANN) trained with 
Bayesian Inference (Jospin et  al. 2022). In the following, we provide a quick overview 
of ANNs and their typical estimation based on Backpropagation (Sect.  1.2.1). We then 
describe what a Bayesian Neural Network (BNN) is (Sect.  1.4), provide motivations on 
why to use a BNN, over a standard ANN (Sect. 1.3), and lastly introduce VI (Sect. 1.5).

1.2.1 � Artificial Neural Networks

For completeness, we review the general ingredients, principles, ideas, and standard termi-
nology behind ANN. A comprehensive and more detailed introduction to the topic is here 
out of scope; the interested reader can e.g., consult the accessible book (Haykin 1998).

Neurons are elementary building blocks which can be thought of as processing units 
that, when combined, constitute a neural network. Each neuron processes the information 
presented to its input by applying a transformation to it. When affine neurons are used, the 
transformation corresponds to computing the weighted sum of the inputs to the neuron 
(received from the neurons that are connected to it or corresponding to the inputs to the 
neural network) and generates a value, which is further introduced to a (usually nonlinear) 
activation function to produce the neuron’s output (input to other neurons or the neural 
network output). In order to account for the need of a shift to the value needed to produce 
an activation response, a bias is also added as an input to the activation function, which is 
commonly included in the weighted sum by augmenting the input to the neuron with an 
additional input with a constant value of 1, associated with the corresponding bias term. 
While activation functions squeezing their outputs to a pre-determined range of values, 
like the sigmoid (with outputs in [0, 1]) or the tanh (with outputs in [−1, 1] ) functions, have 
been widely used in the past, piece-wise linear functions, like the Rectified Linear Unit 
(ReLU) or the parametric ReLU functions (He et al. 2015), are nowadays widely adopted 
in building the hidden layers of neural networks. Linear and softmax activation functions 
are commonly used in the output layer for regression and classification problems, respec-
tively. A common characteristic of activation functions used in neural networks is that they 
are differentiable with respect to their parameters over the range of their inputs. The trans-
formation performed by an affine neuron is illustrated in Fig. 1.

Whenever the information flow between neurons has no feedback (i.e., neurons do not 
process information resulting from their outputs), in the sense that information flows from 
the input through the neurons producing the output of the network, the network is referred 
to as feedforward. Neurons are arranged in layers, and a network formed by neurons in one 
layer is called single layer network. When more than one layer forms a neural network, 
layers are generally called hidden layers since they stand between the input and the output, 
i.e., the “tangible” information, which consists of the input samples and their classification 
targets/outputs. A feedforward neural network receiving as input a d-dimensional vector 
and producing a 3-dimensional output is shown in Fig. 2.
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The most relevant feature of a neural network is its capacity of learning. This cor-
responds to the ability to improve its outputs (performance in classification) by tuning 
the parameters (weights and biases) of its neurons. Learning algorithms of neural net-
works use a set of training data to iteratively update the parameters of a neural network 
such that some error measure is decreased or some performance measure is increased 
(see, e.g., Goodfellow et  al. 2016). The data D consists of vectors Di = {yi, xi} , with 
xi representing an input and yi the corresponding target for i = 1,… ,N . Let ŷi denote 
the output of the network corresponding to the sample xi , that is ŷi = NN�

(
xi
)
 , with 

NN�

(
xi
)
 denoting a Neural Network parametrized over � and evaluated at xi . An error 

function E(D,�) is defined at a particular parameter � , which is used to guide the learn-
ing process. Several error functions have been used to this end, the most widely adopted 
ones being the mean-squared error (suitable for regression problems) and the cross-
entropy (suitable for classification problems). The gradient of the error between the net-
work’s outputs ŷi and the targets yi over the entire data set (full-batch) or a subset of the 
data (mini-batch) is commonly used to update the network parameter values through an 
iterative optimization process, commonly a variant of the Backpropagation algorithm 
(Rumelhart et al. 1986). Widely used iterative optimization methods are the Stochastic 

Fig. 1   Representation of the operations within the jth neuron at layer is l. Connections between this neuron 
and neurons in layer l − 1 are represented by lines corresponding to weights �l

⋅j
 . The inputs to the neuron 

ol−1
⋅

 interact with the weights �l
⋅j
 , computing the weighted sum al

j
 . The so-called activation function g(⋅) is 

applied to al
j
 leading to the output ol

j
 , which is sent to nodes at layer l + 1

Fig. 2   A feedforward network with multiple layers. Dots represent neurons across different layers (colors). 
The d-dimensional input vector xi = [x1

i
,… , xd

i
]T is sequentially parsed to the output, from left to right, fol-

lowing the connections represented in grey which correspond to the weights of the network’s layers. (Color 
figure online)
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Gradient Descent (SGD) (Robbins and Monro 1951), Root Mean Squared Propagation 
(RMSProp) (Tieleman and Hinton 2012) and Adaptive Moment Estimation (ADAM) 
(Kingma and Ba 2014).

While feedforward neural networks with affine neurons have been briefly described 
above, a large variety of neural networks have been proposed and used for modeling dif-
ferent input–output data relationships. Such networks follow the main principles as those 
described above (i.e., they are formed by layers of neurons, which perform transforma-
tions followed by differentiable activation functions), but they are realized by using dif-
ferent types of neurons and/or transformations. Examples include the Radial Basis Func-
tion (RBF) networks (Broomhead and Lowe 1988), which replace affine transformations 
with distance-based transformations, Convolutional Neural Networks (Homma et al. 1987), 
which receive a tensor input and use neurons performing convolution, Recurrent Neural 
Networks (e.g., Long-Short Term Memory, LSTM Hochreiter and Schmidhuber 1997 and 
Gated Recurrent Unit, GRU Cho et  al. 2014 networks), which model sequences of their 
inputs by using recurrent units, and specialized types of neural networks, such as the Tem-
poral-Augmented Bilinear Layer (TABL) network (Tran et al. 2019) based on bilinear map-
ping, and the Neural Bag-of-Features network (Passalis et al. 2020), extending the classical 
Bag-of-Features model with a differentiable processing suitable to be used in combination 
with other types of neural network layers.

1.3 � Motivation for adopting Bayesian Neural Networks

Bayesian neural networks are interesting tools under three perspectives: (i) theoretical, (ii) 
methodological, and (iii) practical. In the following, we shall briefly discuss what we mean 
by the above three interconnected perspectives.

From a theoretical perspective, BNNs allow for differentiating and quantifying two dif-
ferent sources of uncertainty, namely epistemic uncertainty, and aleatoric uncertainty (see, 
e.g. Der Kiureghian and Ditlevsen 2009, from a ML perspective). Epistemic uncertainty 
is the one referring to the lack of knowledge, and it is captured by p(�|D) . In light of the 
Bayes theorem, epistemic uncertainty can be reduced with the use of additional data so 
that the lack of knowledge is addressed as more data are collected. After the data is col-
lected, this results in the update of the prior belief (before the experiment is conducted) 
to the posterior. Thus, the Bayesian perspective allows the mixing of expert knowledge 
with experimental evidence. This is quite relevant in small-sample applications where the 
amount of collected data is inappropriate for classical statistical tools and results to apply 
(e.g., inference based on asymptotic theory), yet it nevertheless allows the update of the a 
priori belief on the parameters, p(�) , into the posterior. On the other hand, the likelihood 
term captures the aleatoric uncertainty, that is the intrinsic uncertainty naturally embedded 
in the data, i.e., p(y|�) , in the Bayesian framework is clearly distinguished and separated 
from the aleatoric one.

Methodologically, is remarkable the ability of Bayesian methods to learn from small data 
and eventually converge to, e.g., non-Bayesian maximum likelihood estimates or, more gen-
erally, to agree with alternative frequentist methods. When the amount of the collected data 
overwhelms the role of the prior in the likelihood-prior mixture, Bayesian methods can be 
clearly seen as generalizations of standard non-Bayesian approaches. Within the Bayesian 
methods family, certain research areas such as PAC-Bayes (Alquier 2021), Empirical Bayes 
(Casella 1985) and Approximate Bayes Computations (Csilléry et al. 2010) deal with such 
connections very tightly. In this regard, there are many examples in the statistics literature; we 



11779Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

focus on the ML perspective. For instance, regularization, ensemble, meta-learning, Monte 
Carlo dropout, etc., can all be understood as Bayesian methods, and, e.g., Variational Bayes 
can be seen as standard linear regression (Salimans and Knowles 2013). More in general, 
many ML methods can be seen as approximate Bayesian methods, whose approximate nature 
makes them simpler and of practical use. Furthermore, as the learned posterior can be reused 
and re-updated once new data become available, Bayesian learning methods are well-suited 
for online learning (Opper and Winther 1999). In this regard, also the explicit use of the prior 
in Bayesian formulations is aligned with the No-Free-Lunch Theorem (Wolpert 1996) whose 
philosophical interpretation, among the others, is that any supervised algorithm implicitly 
embeds and encodes some form of prior, establishing a tight connection with Bayesian theory 
(Serafino 2013; Guedj and Pujol 2021).

From a practical perspective, the Bayesian approach implicitly allows for dealing with 
uncertainties, both in the estimated parameters and in the predictions. For a practitioner, 
this is by far the most relevant aspect in shifting from a standard ANN approach to BNNs. 
Thus, with little surprise, Bayesian methods have been well-received in high-risk application 
domains where quantifying uncertainties is of high importance. Examples can be found across 
different fields, such as industrial applications (Vehtari and Lampinen 1999), medical applica-
tions (e.g. Chakraborty and Ghosh 2012; Kwon et al. 2020; Lisboa et al. 2003), finance (e.g. 
Jang and Lee 2017; Sariev and Germano 2020; Magris et al. 2022a, b), fraud detection (e.g. 
Viaene et al. 2005), engineering (e.g. Cai et al. 2018; Du et al. 2020; Goh et al. 2005), and 
genetics (e.g. Ma and Wang 1999; Liang and Kelemen 2004; Waldmann 2018).

As widely recognized, the estimation of BNN is not a simple task due to the generally 
non-conjugacy between the prior and the likelihood and the non-trivial computation of the 
integral involved in the marginal likelihood. For this reason, application of BNNs is relatively 
infrequent, and their use is not widespread across the different domains. As of now, apply-
ing Bayesian principles in a plug-and-play fashion is challenging for the general practitioner. 
On top of that, several estimation approaches have been developed, and navigating through 
them can indeed be confusing. In this survey, we collect and present parameter estimation and 
inference methods for Bayesian DL at an accessible level to promote the use of the Bayesian 
framework.

1.4 � Bayesian Neural Networks

From the description in Sect. 1.2.1, it can be seen that the goal of approximating a function 
relating the input to the output in classical ANNs is treated under an entirely deterministic per-
spective. Switching towards a Bayesian perspective in mathematical terms is rather straight-
forward. In place of estimating the parameter vector � , BNNs target the estimation of the pos-
terior distribution p

(
�|Dx,Dy

)
 , that is (Jospin et al. 2022):

which stands as a simple application of the Bayes theorem. Here we assume, as it is usu-
ally the case, that the data D is composed of an input set Dx and the corresponding set of 
outputs Dy . In general, Dx is a matrix of regressors, and Dy is either the vector or matrix 
(depending on whether the nature of the output is univariate or not) of the variables that the 
networks aim at modeling based on Dx . Alternatively but analogously, D can be thought as 
the collection of all input–output pairs D = {yi, xi}

N
i=1

 , where N denotes the sample size, 

(2)p
(
�|Dx,Dy

)
=

p
(
Dy|Dx,�

)
p(�)

∫
Θ
p
(
Dy|Dx,�

�
)
p
(
��
)
d��

,
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and xi and yi are the input and output vectors of observations for the ith sample, respec-
tively. Using this notation, Dx = {xi}

N
i=1

 and Dy = {yi}
N
i=1

.
While Eq.  (2) provides a theoretical prescription for obtaining the posterior distri-

bution, in practice solving for the form of the posterior distribution and retrieving its 
parameters is a very challenging task. The estimation of a BNN with MC techniques 
and VI is discussed in the remainder of the review, here we continue the discussion 
towards different aspects.

Equation (2) involves all the ingredients required for performing Bayesian infer-
ence on ML models, and specifically neural networks. In the first place, Eq. (2) involves 
a likelihood function for the data Dy conditional on the observed sample Dx and the 
parameter vector � . The forward pass parses the input into predictions via some parame-
ter values, such outputs (conditional on the data and the parameters) follow a prescribed 
likelihood function. Intuitive examples are the Gaussian likelihood (for regression) and 
the Binomial one (for classification). An underlying neural network is implicit in the 
likelihood term p

(
Dy|Dx,�

)
 , that links the inputs to the outputs. In other words, as is 

the case for ANNs, the first step in designing a BNN is that of identifying a suitable 
neural network architecture (e.g., how many layers and of which kind and size) followed 
by a reasonable assumption for the likelihood function.

A major difference between ANNs and BNNs is that the latter requires the introduc-
tion of the prior distribution over the model parameters. After all, a prior must be in 
place for Bayesian inference to be performed; thus, priors are required in the BNN setup 
(Jospin et al. 2022). This means that the practitioner needs to decide on the parametric 
form of the prior over the parameters.

Example 1  Consider a BNN to model the variables Dy = {yi}
N
i=1

 where yi ∈ {0, 1} , based 
on the matrix of covariates Dx . The likelihood is of a certain form and parametrized over a 
neural network whose weights are denoted by � , i.e., NN�(⋅).

We can approach the above problem as a 2-class classification with yi ∈ [0, 1] , and 
derive the likelihood from the Bernoulli distribution

where p̂i = NN�

(
xi
)
 denotes the output of the network for the ith sample, that is the prob-

ability that sample i belongs to class 1. The prior (on the network parameters) can be a 
diagonal Gaussian p(�) = N(�|0, �I) , where 𝜏 > 0 is a scalar and I the identity matrix.

We can also approach the above problem as a regression to yi ∈ ℝ
d and derive the like-

lihood from the Multivariate Normal distribution

where ŷi = NN�

(
xi
)
 . Assuming that the covariance matrix Σ−1 is known, the prior on � 

could be as well a diagonal Gaussian. If Σ is unknown, the prior could be the product of the 
above Gaussian prior with, e.g., an Inverse Wishart prior distribution on Σ . In this case, the 
goal of the Bayesian inference is that of estimating the joint posterior of (�,Σ).

(3)p
(
Dy|Dx,�

)
=

N∏
i=1

p̂
yi
i

(
1 − p̂i

)1−yi ,

(4)

p
(
Dy|Dx,�

)
=(2𝜋)−Nk∕2|det(Σ)|−N∕2

× exp

(
−
1

2

N∑
i=1

(
yi − ŷi

)⊤
Σ−1

(
yi − ŷi

))
,



11781Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

The inference goal is the posterior distribution. (i) If the problem has a form for which 
the posterior can be solved analytically, we find p

(
�|DxDy

)
 to be of a known paramet-

ric form and identify the parameters characterizing it [standard Bayesian setting, so-called 
conjugacy between the prior and the likelihood, (e.g., Gelman et  al. 1995)]. (ii) In gen-
eral, we may proceed via MC sampling, in which case the estimation leads to a sample, of 
arbitrary size, approximating the true posterior. The true posterior remains unknown in its 
exact form, yet MC enables sampling from it and thus estimating an approximate represen-
tation (e.g., Gamerman and Lopes 2006), see Sect. 3. (iii) Alternatively, following VI, one 
sets a certain chosen parametric form for the posterior and optimizes its parameters for a 
certain objective function (e.g., Nakajima et al. 2019), see Sect. 1.5. While the actual pos-
terior remains unknown, in VI one seeks an approximation that is optimal in some sense of 
optimization of a certain objective on the provided data.

Figure 3 provides an analogous representation of Fig. 2, now for a BNN. Opposed to 
traditional ANNs, weights in BNNs are stochastic and represented with distributions. A 
probability distribution over the weights is learned by updating the prior with the evidence 
supported by the data. Even though Fig. 3 might give the opposite impression, the poste-
rior over the weights is, in general, a truly multivariate distribution where independence 
among its dimensions generally does not hold.

While the above clarifies that the estimation goal is a distribution whose, e.g., variance 
can be indicative of the level of confidence in the estimated parameters, the uncertainty 
associated with the outputs and the generation of the model outputs themselves remains 
unaddressed. The predictive distribution is defined as (e.g., Gelman et al. 1995)

As the posterior [Eq. (2)] is solved, the predictive distribution can also be recovered. Yet, in 
practice, it is indirectly sampled. Indeed, an intuitive MC-related approach for approximat-
ing the predictive distribution is that of sampling Ns values from the posterior to create Ns 
realizations of the neural network, each based on a different parameter sample, which are 
used to provide predictions. This results in a collection of predictions that approximate the 

(5)p
(
yi|xi,D

)
= ∫Θ

p
(
yi|xi,�

)
p(�|D)d�.

Fig. 3   A BNN with multiple layers. Connections correspond to random variables, and outputs here corre-
spond to a tri-variate distribution, whose marginals are represented in the rightmost boxes
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actual predictive distribution. In this way, it is relatively simple to recover (approximations 
of) the predictive distribution from which, e.g., confidence intervals can be constructed. A 
way to reduce the sample forecast to single values conveying relevant information is by, 
e.g., using common (sampling) moment estimators (e.g., Casella and Berger 2021, Chap. 
7.2.1). One may evaluate

to approximate the posterior mean through model averaging (across the different realiza-
tions �j, j = 1,… ,Ns and thus different outputs) or compute

with

to approximate the covariance matrix, which is indicative of the uncertainty associated 
with the prediction. Ns corresponds to the number of samples generated from the posterior 
and used to generate the prediction of the network NN�j

(⋅) receiving as input xi . In classifi-
cation, one may analogously approximate predictive densities for the joint probability of 
the different classes and average such probabilities to summarize the average probabilities 
of each class and implicitly the uncertainties associated with a certain class decision, which 
is typically determined by the predicted class of maximum probability (e.g., Osawa et al. 
2019; Magris et al. 2022a):

with C being the total number of classes and p̂i,c the predicted probability of class c for the 
sample i.

1.5 � Variational Inference (VI)

Let D denote the data and p(D|�) the likelihood of the data based on a postulated model 
with � ∈ Θ a k-dimensional vector of model parameters. Let p(�) be the prior distribution 
on � . The goal of Bayesian inference is the posterior distribution

where p(D) is referred to as evidence or marginal likelihood, since p(D) = ∫
Θ
(D|�)p(�)d� . 

p(�) acts as a normalization constant for retrieving an actual probability distribution for 
p(�|D) . Bayesian inference is generally difficult due to the fact that the evidence is often 
intractable and of unknown form. In high-dimensional applications, Monte Carlo meth-
ods for sampling the posterior turn challenging and infeasible, and VI is an attractive 
alternative.

VI consists in an approximate method where the posterior distribution is approximated 
by the so-called variational distribution (e.g., Blei et  al. 2017; Nakajima et  al. 2019; 

(6)ŷi =
1

Ns

Ns∑
j=1

NN�j

(
xi
)
,

(7)Σ̂yi
=

1

Ns − 1

Ns∑
j=1

�j,i�
⊤
j,i
,

(8)�j,i = NN�j

(
xi
)
− ŷi,

(9)ŷi = argmaxc∈Cp̂i,c,

(10)p(�|D) =
p(D,�)

p(D)
=

p(D|�)p(�)
p(D)

,
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Tran et al. 2021b). The variational distribution is a probability density q(�) , belonging to 
some tractable class of distributions Q such as, e.g., the Exponential family. VI thus turns 
the Bayesian inference problem in Eq. (10) into that of finding the best approximation 
q⋆(�) ∈ Q to p(�|D) by minimizing the Kullback–Leibler (KL) divergence from q(�) to 
p(�|D) (Kullback and Leibler 1951),

By simple manipulations of the KL divergence definition, it can be shown that

Since log p(D) is a constant not depending on the model parameters, the KL minimization 
problem is equivalent to the maximization problem of the so-called Lower Bound (LB) on 
log p(D) (e.g., Nakajima et al. 2019),

For any random vector � and a function g(�) we denote by �f [g(�)] the expectation of g(�) 
where � follows a probability distribution with density f, i.e. �f [g(�)] = ��∼f [g(�)] . To 
make explicit the dependence of the LB on some vector of parameters � parametrizing the 
variational posterior we write L(�) = L

(
q�
)
= �q�

[
log p(�) − log q� (�) + p(D|�)] . We 

operate within the Fixed-Form Variational Inference (FFVI) framework, where the para-
metric form of the variational posterior is set (e.g., Tran et al. 2021b). That is, FFVI seeks 
at finding the best q ≡ q� in the class Q of distributions indexed by a vector parameter � 
that minimizes the LB L(�) . In this context, � is called variational parameter. A common 
choice for Q is the Exponential family, and � is the corresponding natural parameter.

1.5.1 � Estimation with Stochastic Gradient Descent (SGD)

A straightforward approach to maximize L(�) is that of using a gradient-based method such 
as Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (ADAM) (Kingma 
and Ba 2014), or Root Mean Squared Propagation (RMSProp) (Tieleman and Hinton 
2012). The form of the basic SGD update is

where t denotes the iteration, �t a (possibly adaptive) step size, and ∇̂�L(�) a stochastic 
estimate of ∇�L(�) . The derivative, considered with respect to � , is evaluated at � = � t.

Under a pure Gaussian variational assumption, it is instinctive to optimize the LB for 
the mean vector �1 = � and variance-covariance matrix �2 = Σ . In the wider FFVI set-
ting with Q being the Exponential family, the LB is often optimized in terms of the natural 
parameter � (Wainwright and Jordan 2008). The application of the SGD update based on 
the standard gradient is problematic because it ignores the information geometry of the 
distribution q� (Amari 1998), as it implicitly relies on the Euclidean distance to capture the 
dissimilarity between two distributions in terms of the Euclidean norm ||� t − �||2 , which 
can be a quite poor and misleading measure of dissimilarity (Khan and Nielsen 2018). By 

(11)q⋆ = argminq∈Q KL(q||p(�|D)) = argminq∈Q ∫ q(�) log
q(�)

p(�|D)
d�.

(12)KL(q||p(�|D)) = −∫ q(�) log
p(D|�)p(�)

q(�)
d� + log p(D).

(13)L(q)∶=∫ q(�) log
p(D|�)p(�)

q(�)
d� = �q

[
log

p(D|�)p(�)
q(�)

]
.

(14)� t+1 = � t + 𝛽t
[
∇̂�L(�)

]|||�=� t ,
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replacing the Euclidean norm with the KL divergence, the SGD update results in the fol-
lowing natural gradient update:

The natural gradient update results in better step directions toward the optimum when opti-
mizing the distribution parameter. The natural gradient of L(�) is obtained by rescaling the 
gradient ∇

�
L(�) by the inverse of the Fisher Information Matrix (FIM) I

�
,

where subscript in I−1
�

 remarks that the FIM is expressed in terms of the natural parameter 
� . By replacing in the above ∇

�
L(�) with a stochastic estimate ∇̂

�
L(�) one obtains a sto-

chastic natural gradient update.

Example 2  Consider a BNN to model the targets yi , based on the covariates xi . The 
likelihood, of a certain form, is parametrized over a neural network, whose weights are 
denoted by � . The prior could be a Gaussian distribution with, e.g., zero-mean, diagonal 
p(�) = N(�|0, I∕�) or not p(�) = N

(
�|0,Σ0

)
 . Q is the set of multivariate Gaussian distri-

butions, specified, e.g., in terms of the natural parameter �.
The objective is that of finding the corresponding variational parameter such that the LB 

�q�

[
log p(�) − log q

�(�) + p(D|�)] is maximized. The update of the variational parameter 
� follows a gradient-based method with natural gradients. The training terminates after the 
LB L(�) does not improve for a certain number of iterations: the terminal � provides the 
natural parameter of the variational posterior approximation minimizing the KL divergence 
to the true posterior p(�|D).

2 � Sampling methods

2.1 � Monte Carlo Markov Chain (MCMC)

MCMC is a set of methods for sampling from a probability distribution. MCMCs have 
numerous applications, and especially in Bayesian statistics are a fundamental tool. 
The foundation of MCMC methods are Markov Chains, stochastic models describing a 
sequence of events in which the probability of each event depends only on the state of the 
previous one (Gagniuc 2017). By constructing a Markov Chain that has the desired dis-
tribution as its stationary distribution, towards which the sequence eventually converges, 
one can obtain samples from it, i.e., one can sample any generic probability distribution, 
including, e.g., a complex, perhaps multi-modal, Bayesian posterior. Early samples may 
be autocorrelated and not representative of the target distribution, so that MCMC methods 
generally require a burnout period before attaining the so-called stationary distribution. In 
fact, while the construction of a Markov Chain converging to the desired distribution is 
relatively simple, determining the number of steps to achieve such convergence with an 
acceptable error is much more challenging and strongly dependent on the initial setup and 
starting values. With burnout, the large collection of samples is practically subsampled by 
discarding an initial fraction of draws (e.g., 20%) to obtain a collection of approximately 
independent samples from the desired distribution. An accessible introduction to Markov 

(15)�t+1 = �t + 𝛽t
[
∇̃

�
L(�)

]
.

(16)∇̃
�
L(�) = I−1

�
∇L

�(�),



11785Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

Chains can be found in Gagniuc (2017), for a dedicated monograph on MCMC methods 
oriented toward Bayesian statistics and applications see, e.g., Gamerman and Lopes (2006).

Within the class of MCMC methods, some popular ones are not effective in large Bayes-
ian problems such as BNNs. For example, the plain Gibbs sampler (Geman and Geman 
1984), despite its simplicity and desirable properties (Casella and George 1992), suffers 
from residual autocorrelation between successive samples and becomes increasingly dif-
ficult as the dimensionality increases in multivariate distributions (e.g. Lynch 2007, 
Chap.  4). We review the most widespread MC approaches in the context of performing 
Bayesian learning for Neural Networks.

2.2 � Metropolis–Hastings (MH)

The MH algorithm (Metropolis et al. 1953; Hastings 1970) is particularly helpful in Bayes-
ian inference as it allows drawing samples from any probability distribution p, given that 
a function f proportional up to a constant to p can be computed. This is particularly con-
venient as it allows to sample a Bayesian posterior by only evaluating f (�) = p(�|y)p(�) , 
completely excluding the normalization factor from the computations. The values of the 
Markov Chain are sampled iteratively, with each value depending solely on the preceding 
one: at each iteration, based on the current value, the algorithm picks a candidate value 
� (proposed value), which is either accepted or rejected randomly with a probability that 
depends on the current and earlier values. Upon acceptance, the proposed value is used for 
the next iteration, otherwise is discarded, and the current value is used in the next iteration. 
As the algorithm proceeds and more sample values are generated, the sampled-value distri-
bution more and more closely approximates the target distribution p.

A key ingredient in MH is the proposal density determining the drawing of the proposed 
value at each iteration. This is formalized by an arbitrary probability density g

(
�⋆|⋅) , 

upon which depends the probability of drawing �⋆ given the previous value � . g is usually 
assumed symmetric, and a common choice is provided by a Gaussian distribution centered 
on � . Algorithm 1 summarizes the above steps.

The acceptance ratio � is representative of the likelihood of the proposed sample �⋆ over the 
current one �t according to p. Indeed, 𝛼 = f

(
�⋆

)
∕f
(
�t

)
= p

(
�⋆

)
∕p

(
�t

)
 as f is proportional to 
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p. A proposed sample value �⋆ that is more probable than �t ( 𝛼 > 1 ) is always accepted; oth-
erwise, it may be rejected with probability � . The algorithm thus moves around the sample 
space, tending to stay in regions where p is of high density and, seldomly, in regions of low 
density. The final collection of samples follows the distribution p. As the Markov chain even-
tually converges to the target distribution p, initial samples may be quite incompatible with 
p, especially if the algorithm is initialized at a low-density region. Thus, it is customary to 
discard a number B of samples and retain only the subsample 

{
�t

}N

t=B
 . Note that by construc-

tion, successive samples of the Markov chain are correlated. Even though the chain eventually 
converges to p nearby samples are correlated, causing a reduction of the effective sample size 
(e.g., for ��∼p�

[�] the central limit theorem applies but, e.g., the limiting variance is inflated by 
the non-zero autocorrelation in the chain).

An important feature of the MH algorithm is that it is applicable to high dimensions as 
it does not suffer from the course of dimensionality problem, causing an increasing rejec-
tion rate as the number of dimensions increases. This makes MH suitable for large Bayes-
ian inference problems such as training BNNs.

2.3 � Hamiltonian Monte Carlo (HMC)

HMC generates efficient transitions by using the derivatives of the density function being 
sampled by using approximate Hamiltonian dynamics, later corrected for performing an 
MH-like acceptance step (Neal 2011).

HMC augments the target probability density p(�) by introducing an auxiliary momen-
tum variable � and generating draws from

Typically the auxiliary density is taken as a multivariate Gaussian distribution, independ-
ent of �:

Σ can be conveniently set to the identity matrix, restricted to a diagonal matrix, or esti-
mated from warm-up draws. The Hamiltonian is defined upon the joint density p(�,�):

The term T(�|�) = − log p(�|�) is usually called kinetic energy and V(�) = − log p(�) is 
called potential energy. To generate transitions to a new state, first, a value for the momen-
tum is drawn independently from the current � ; then, Hamilton’s equations are adopted to 
describe the evolution of the joint system (�,�) , i.e.:

(17)p(�,�) = p(�|�)p(�).

(18)� ∼ N(0,Σ).

(19)H(�,�) = − log p(�,�) = − log p(�|�) − log p(�)

(20)= T(�|�) + V(�).

(21)
d�

dt
= +

�H

��
= +

�T

��
,

(22)
d�

dt
= −

�H

��
= −

�T

��
−

�V

��
.
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By having the momentum density being independent of the target density, p(�|�) = p(�) , 
�T∕�� = 0 , the transitions are governed by the derivatives

Note that −�V∕�� is simply the gradient of the negative loglikelihood, which can be com-
puted using automatic differentiation. The main difficulty is the simulation of the Ham-
iltonian dynamics, for which there is a variety of approaches (see, e.g. Leimkuhler and 
Reich 2005; Berry et al. 2015; Hoffman and Gelman 2014, ). Yet, to solve the above sys-
tem of differential equations, a leapfrog integrator is generally used due to its simplicity 
and volume-preservation and reversibility properties (Neal 2011). The leapfrog integrator 
is a numerically stable integration algorithm specific to Hamiltonian systems. It discretizes 
time using a step size � and alternates half-step momentum updates and full-step parameter 
updates:

By repeating the above steps L times, a total of L� time is simulated, and the resulting state 
is 
(
𝜌⋆,�⋆

)
 . Note that both L and � are hyperparameters, and their tuning is often difficult 

in practice. In this regard, see the Generalized HMC approach of Horowitz (1991) and 
developments aimed at resolving the tuning of the leapfrog iterator (Fichtner et al. 2020; 
Hoffman and Sountsov 2022).

Instead of generating a random momentum vector right away and sampling a new state (
𝜌⋆,�⋆

)
 , to account for numerical errors in the leapfrog integrator (an analysis in this regard 

is found in Leimkuhler and Reich 2005), a M–H step is used. The probability of accepting the 
proposal 

(
𝜌⋆,�⋆

)
 by transitioning from (�,�) is

If the proposal 
(
𝜌⋆,�⋆

)
 is accepted, the leapfrog integrator is initialized with a new 

momentum draw and �⋆ ; otherwise, the same (�,�) parameters are returned to start the 
next iteration. The HMC procedure is summarized in Algorithm 2. Besides the difficulty of 
calibrating the hyperparameters L and � , HMC suffers from multimodality, yet the Hamil-
tonian boosts the local exploration for unimodal targets.

(23)
d�

dt
=

�H

��
,

(24)
d�

dt
= −

�V

��
.

(25)� = � −
�

2

�V

��
,

(26)� = −� + �Σ−1�,

(27)� = � −
�

2

�V

��
.

(28)min
(
1, e−H(𝜌,�)+H(𝜌⋆,�⋆)

)
.
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3 � Monte Carlo Dropout (MCD)

MCD is an indirect method for Bayesian inference. Dropout has been earlier proposed as a 
regularization method for avoiding overfitting and improving neural networks’ predictive per-
formance (Srivastava et al. 2014). This is achieved by applying a multiplicative Bernoulli noise 
on the neurons constituting the layers of the network. This corresponds to randomly switching 
off some neurons at each training step. The dropout rate sets the probability pi of a neuron i 
being switched off. Though Bernoulli noise is the most common choice, note that other types 
of noise can be as well adopted (e.g. Shen et al. 2018). Neurons are randomly switched off 
only in the training phase, and the very same network configuration in terms of the activated 
and disabled neurons is used during backpropagation for computing gradients for weights’ cal-
ibration. On the other hand, all the neurons are left activated for predictions. Though it is intui-
tive that the above procedure implicitly connects to model averaging across different randomly 
pruned architectures obtained from a certain DL network, the exact connection between MC 
dropout and Bayesian inference follows a quite elaborated theory.

Gal and Ghahramani (2016) shows that a neural network of arbitrary depth and non-linearity 
with dropout applied before every single layer is mathematically equivalent to an approximation 
to the probabilistic deep Gaussian Process (GP) model (Damianou and Lawrence 2013), and 
(Jakkala 2021) for a recent survey. That is, the dropout objective minimizes the KL divergence 
between a certain approximate variational model and the deep GP. A treatment limited to multi-
layer perceptron networks is provided in Gal and Ghahramani (2015).

With ŷ being the output of a Neural Network with L layers whose loss function is E, for 
each layer i = 1,… , L let Wi denote the corresponding weight matrix of dimension Ki × Ki−1 , 
and bi the bias vector of dimension Ki . Be yn the target for the input xn for n = 1,… ,N and 
denote the input and output sets respectively with Dx and Dy . A typical optimization objective 
includes a regularization term weighted by some decay parameter λ , that is
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Now consider a deep Gaussian process for modeling distributions over functions corre-
sponding to different network architectures. Assume its covariance is of the form

where �(⋅) is an element-wise non-linearity, and p(w) , p(b) distributions. Now let Wi be a 
random matrix of size Ki × Ki−1 for each layer i, be � = {Wi}

L
i=1

 . The predictive distribu-
tion of the deep GP model can be expressed as

where p
(
�||Dx,Dy

)
 is the posterior distribution. p

(
yn|xn,�

)
 is determined by the likeli-

hood, while ŷn is a function of xn and �:

mi are vectors of size Ki for each GP layer. For the intractable posterior p
(
�|Dx,Dy

)
 , Gal 

and Ghahramani (2016) uses the variational approximation q(�) defined as

where the collection of probabilities pi and matrices Mi , i = 1,… , L constitute the vari-
ational parameter. Thus, q stands as a distribution over (non-random) matrices whose col-
umns are randomly set to zero, and zi,j = 0 implies that the unit j in layer i − 1 is dropped as 
an input to layer i. For minimizing the KL divergence form q to p

(
�|Dx,Dy

)
 , the objective 

corresponds to

By use of Monte Carlo integration and some further approximations (see Gal and Ghah-
ramani 2016, for details), the objective reads

(29)Ldropout =
1

N

N∑
n=1

E
(
yn, ŷn

)
+ λ

L∑
i=1

(||Wi||22 + ||bi||22
)
.

(30)K(x, y) = ∫ p(w)p(b)𝜎
(
w⊤x + b

)
𝜎
(
w⊤y + b

)
dw db,

(31)p
(
yn|xn,Dx,Dy

)
= ∫ p

(
yn|xn,�

)
p
(
�|Dx,Dy

)
d�,

(32)p
(
yn|xn,�

)
= N

(
yn;ŷn, I∕𝜏

)
,

(33)ŷ ≡ ŷ
(
xn,�

)
=

√
1

KL

WL𝜎

(
…

√
1

K1

W2𝜎
(
W1xn +m1

)
…

)
.

(34)� =
{
Wi

}L

i=1
,

(35)Wi = Mi diag
([
zi,j

]Ki

j=1

)
,

(36)
zi,j ∼ Bernoulli

(
pi
)
,

for i = 1,… , L, j = 1,… ,Ki−1,

(37)−∫ q(�) log p
(
Dy|Dx,�

)
+ KL(q(�)||p(�)).

(38)L ∝
1

𝜏N

N∑
n=1

− log p
(
yn|xn, �̂n

)
+

L∑
i=1

(
pil

2

2𝜏N
||Mi||22 + l2

2𝜏N
||mi||22

)
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which, up to the constant 1

�N
 , is a feasible and unbiased MC estimator of Eq.  (37) 

where �̂ denotes a single MC draw from the posterior �̂n ∼ q(�) . By taking 
E
(
yn, ŷn

)
= − log p

(
yn|xn, �̂n

)
∕𝜏 Eqs.  (38) and   (29) are equivalent for an appropri-

ate choice of the hyperparameters � and l. This shows that the minimization of the 
loss in Eq.  (29) with dropout is equivalent to minimizing the KL divergence from q to 
p
(
�|Dx,Dy

)
 , thus performing VI on the deep Gaussian process.

With an SGD approach, one can maximize the above LB and estimate the variational 
parameters from which one can simply obtain samples from the predictive distribution 
q
(
y⋆|x⋆) , and approximate its mean by the naive MC estimator:

x⋆ denotes a new observation, not in Dx , for which the corresponding prediction is ŷ⋆ . 
That is, the predictive mean is obtained by performing Ns forward passes through the net-
work with Bernoulli realizations {zs

1
,… , zs

L
}
Ns

s=1
 with zs

i
= [zs

i,j
]
Ki

j=1
 for s = 1,… ,Ns , giving 

{Ws
1
,… ,Ws

L
}
Ns

s=1
 . Such average predictions are generally referred to as MC dropout esti-

mates. Similarly, by simple moment-matching, one can estimate the predictive variance 
and higher-order statistics synthesizing the properties of q

(
y⋆|x⋆).

The predictive distribution is, in general, a multi-modal distribution resulting from superpos-
ing bi-modal distributions on each weight matrix column. This constitutes a drawback of MCD, 
as well the implicit VI on a GP. Furthermore, the VI approximation in Eqs.  (34)–(36) may be 
adequate or not. It is clear that even though MCD is a possibility for VI in deep-learning models, 
it is constrained by the very specific form in Eq. (34) of the variational posterior that implicitly 
corresponds to performing VI on a deep GP. Furthermore, there is evidence that MCD does not 
fully capture uncertainty associated with model predictions (Chan et al. 2020), and there are issues 
related to the use of improper priors and singularity of the approximate posterior. The latter ones 
are addressed and explored in Hron et al. (2018), suggesting the use of the so-called Quasi-KL 
divergence as a remedy. Clearly, high dropout rates drive the convergence rate slow, expand the 
network training time, and can cause important training data to be missed or given little relative 
importance. However, compared to the traditional approach for neural networks, applying dropout 
places no additional effort and is often of faster training than other VI methods. Furthermore, if 
a network has been trained with dropout, only by including an additional form of regularization 
acting as a prior turns the ANN into a BNN, without requiring re-estimation (Jospin et al. 2022).

4 � Bayes‑By‑Backprop (BBB)

A common approach for estimating the variational posterior over the networks’ weights is 
the BBB method of Blundell et al. (2015), perhaps a breakthrough in probabilistic deep-
learning as a practical solution for Bayesian inference.

The key argument in Blundell et al. (2015) is the use of the local reparametrization 
trick under which the derivative of an expectation can be expressed as the expectation 
of a derivative. It introduces a random variable � having a probability density given by 
q(�) and a deterministic transform t(�, �) such that w = t(�, �) . The main idea is that the 
random variable � is a source of noise that does not depend on the variational distribu-
tion, and the weights w are sampled indirectly as a deterministic transformation of � , 
leading to a training algorithm that is analogous to that used in training regular net-
works. Indeed, by writing w as w = t(�, �) , in place of evaluating

(39)�q(y⋆|x⋆)
(
y⋆
)
≈

1

Ns

Ns∑
s=1

ŷ⋆
(
x⋆,�s =

{
Ws

1
,… ,Ws

L

})
.
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which can be complex and rather tedious, under the assumption q(�)d� = q(w|�)dw , Blun-
dell et al. (2015) prove that

With f (w,�) = log q(w|�) − log p(w)p(y|w) , the right side of Eqs. (41) and  (42) provide 
an alternative approach for the estimation of the gradients of the cost function with respect 
to the model parameters.

In fact, upon sampling � and obtaining w , log q(w|�) − log p(w)p(y|w) 
is a stochastic approximation of the VI objective 
KL

[
q(w|�)||p(w|D)

]
= �q(w|�)

[
log q(w|�) − log p(w)p(D|w)] to be minimized.

The sampled value � ∼ q(�) , resampled at each iteration, is independent of the variational 
parameters, while w is not directly sampled but here it is a deterministic function of � . Given 
� , all the quantities in the square bracket of Eq. (42) are non-stochastic, enabling the use of 
backpropagation. A single draw for � approximates the right side of Eq.  (41), and suffices 
for providing an unbiased stochastic gradient estimation of the relevant gradient on the left 
side. Equation (41) makes explicit the possibility of using automatic differentiation to com-
pute the gradient of f with respect to the parameter � . By using a single sampled draw � for 
approximating the expectation on the right side of Eq.  (41), the only parameter in the loss 
is � , and the use of backpropagation for evaluating the gradients is straightforward. Equa-
tion (42) instead employs backpropagation in the “usual” sense, involving gradients of the 
cost with respect to the network parameters w , further rescaled by �w∕�� and shifted by 
�f (w,�)∕�� . Equation (42) concerns the usual backpropagation computations in terms of the 
network’s weights, the specific form of the partial derivative with respect to � that the choice 
of t implies, while the last term depends on the chosen form of the variational posterior only 
[ w is here not seen as a function of � , as the form of Eq. (42) results from applying the multi-
variable chain rule]. This results in a general framework for learning the posterior distribution 
over the network’s weights. The following Algorithm 3 summarizes the BBB approach.

Algorithm 3 is initialized by preliminary setting the initial values of the variational param-
eter � and, of course, by specifying the form of the prior and the posterior along with the form 

(40)
�

��
�q(w|�)

[
f (w,�)

]
=

�

�� ∫ q(�|w)f (w,�)dw,

(41)
�

��
�q(w|�)

[
f (w,�)

]
= �q(�)

[
�

��
f (t(�, �),�)

]

(42)= �q(�)

[
�f (w,�)

�w

�w

��
+

�f (w,�)

��

]
.
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of the likelihood involving the outputs of the forward pass obtained from the specified underly-
ing network structure. The update is very similar to the one employed in standard non-Bayes-
ian settings, where standard optimizers such as ADAM are applicable. It is the applicability 
of standard optimization algorithms and the use of classic backpropagation that constitute the 
major breakthrough element in BBB, making it a feasible approach for Bayesian learning.

To make the description more explicit and aligned with the following sections, we pre-
sent the case where the variational posterior is a diagonal Gaussian with mean � and covar-
iance matrix �2I . In this case, the transform t takes the simple and convenient form

As � is required to be always non-negative, Blundell et al. (2015) adopts the reparametriza-
tion � = log (1 + exp (�)) and the variational posterior parameter � = (�, �) . In this case, 
Algorithm 4 summarizes the BBB approach.

As for Algorithm 4, one may backpropagate the gradients of f w.r.t. � and � directly. 
Alternatively, as for Algorithm 3, one may use backpropagation for computing the gradi-
ents �f (w,�)∕�w , which are furthermore shared across the updates for � and � , or, if pre-
ferred, adopt a general automatic differentiation setup, if, e.g., the form of the variational 
likelihood does not allow for a simple analytic form of the gradient.

5 � Exponential family and natural gradients

Assume q
�(�) belongs to an exponential family distribution. Its probability density func-

tion is parametrized as

where � ∈ Ω is the natural parameter, �(�) the sufficient statistic. 

A(�) = log∫ h(�) exp(�(�)⊤�)d� log∫ h(�) exp(�(�)⊤�)d� is the log-partition function, deter-
mined upon the measure � , � and the function h. The natural parameter space is defined as 
Ω = {� ∈ ℝ

d ∶ A(�) < +∞} . When Ω is a non-empty open set, the exponential family is 
referred to as regular. Furthermore, if there are no linear constraints among the components 

(43)w = t(�,w) = � + ��.

(44)q
�(�) = h(�) exp

(
𝜙(�)⊤� − A(�)

)
,
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of � and �(�) , the exponential family in Eq. (44) is said of minimal representation. Non-
minimal families can always be reduced to minimal families through a suitable transforma-
tion and reparametrization, leading to a unique parameter vector � associated with each 
distribution (Wainwright and Jordan 2008). The mean (or expectation) parameter m ∈ M 
is defined as a function of � , m(�) = �q�

[�(�)] = ∇
�
A(�) . Moreover, for the Fisher Infor-

mation Matrix I
�
= −�q�

[
∇2

�
log q

�(�)
]
 it holds that I

�
= ∇2

�
A(�) = ∇

�
m. Under minimal 

representation, A(�) is convex, thus the mapping ∇
�
A = m ∶ Ω → M is one-to-one, and I

�
 

is positive definite and invertible (Nielsen and Garcia 2009). M denotes the set of realiz-
able mean parameters. Therefore, under minimal representation we can express � in terms 
of m and thus L(�) in terms of L(m) and vice versa (Khan and Nielsen 2018).

Example 3  (The Gaussian distribution as an exponential-family member) The multivariate 
Gaussian distribution N(�,Σ) with k-dimensional mean vector � and covariance matrix Σ 
can be seen as a member of the exponential family [Eq. (44)]. Its density reads

where

and A(�) = −
1

4
�
⊤

1
�
−1
2
�1 −

1

2
log

(
−2�2

)
 . On the other hand, � =

[
�⊤
1
, �⊤

2

]⊤ with 
�1 = � = m1 and �2 = Σ = m2 − ��⊤ , constitutes the common parametrization of the mul-
tivariate Gaussian distribution in terms of its mean and variance–covariance matrix.

By applying the chain rule, ∇
�
L = ∇

�
m∇mL = ∇

�

(
∇

�
A
)
L = ∇2

�
A(�)L = I

�
∇mL , 

from which

The quantity ∇̃
�
L is referred to as the natural gradient of L with respect to λ and it is 

obtained by pre-multiplying the Euclidean gradient by the inverse of the FIM (parametrized 
in terms of � ). In general, L can be a generic function whose derivative with respect to a 
parameter � (not necessarily the natural parameter) exists. The standard reference for natu-
ral gradients computation is the seminal work of Amari (1998). Within a SGD context, 
the application of simple Euclidean gradients is problematic as it ignores the information 
geometry of the distribution q

�
 . Euclidean gradients implicitly rely on the Euclidean norm 

to capture the dissimilarity between two distributions which can be a quite poor dissimilar-
ity measure (Khan and Nielsen 2018). In fact, the SGD update can be obtained by writing

and setting to zero its derivative. Although the above implies that � moves in the direction 
of the gradient, it remains close to the previous �t in terms of Euclidean distance. As � is a 
parameter of a distribution, the adoption of the Euclidean measure is misleading. An Expo-
nential family distribution induces a Riemannian manifold with a metric defined by the FIM 
(Khan and Nielsen 2018). By replacing the Euclidean metric with the Riemannian one,

(45)q
�(�) = (2𝜋)k∕2 exp

{
𝜙(�)⊤� −

1

2
�⊤Σ−1� −

1

2
log |Σ|

}
,

(46)𝜙(�) =

[
𝜃

𝜃𝜃⊤

]
, � =

[
�1

�2

]
=

[
Σ−1�

−
1

2
Σ−1

]
, m =

[
m1

m2

]
=

[
�

Σ + ��⊤

]
,

(47)∇̃
�
L = I−1

�
∇

�
L = ∇mL.

(48)�t+1 = argmin
�
�
⊤
[
∇

�
L
(
�t

)]
−

1

2𝛽
||� − �t||2
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the resulting update is indeed expressed in terms of the natural parameter:

generally referred to as natural gradient update. More in general, one could replace the 
Euclidean distance with a proximity function such as the Bregman divergence and obtain 
richer classes of SGD-like updates, like mirror descent (which can be interpreted as natu-
ral gradient descent), see, e.g., Nielsen (2020). A very interesting point on the limitations 
of plain gradient search is made in Wierstra et al. (2014) concerning the impossibility of 
locating, even in a one-dimensional case, a quadratic optimum. The example provided 
therein involves the Gaussian distribution, pivotal in VI. For an one-dimensional Gauss-
ian distribution with mean � and standard deviation � , the gradient of L with respect to the 
parameters � and � lead to the following SGD updates:

For the updates to converge and the optimum to be precisely located, � must decrease (i.e., 
the distribution shrinks around � ). The fact that � appears in the denominator of both the 
updates is problematic: as it decreases, the variance of the updates increases as Δ� ∝

1

�
 and 

Δ� ∝
1

�
 . The updates become increasingly unstable, and a large overshooting update makes 

the search start all over again rather than converging. Increased population size and small 
learning rates cannot avoid the problem. The choice of the starting value is problematic, 
too: starting with 𝜎 ≫ 1 makes the updates minuscule; conversely, 𝜎 ≪ 1 makes them huge 
and unstable. Wierstra et al. (2014) discusses how the use of natural gradients fixes this 
issue that, e.g., may arise with BBVI.

Algorithm  5 summarizes the generic scheme upon the implementation of a natural 
gradient update. In Algorithm 5, � denotes a generic variational parameter, e.g., the natu-
ral parameter or not, while methods for evaluating ∇�L , I  , and efficiently computing its 
inverse I−1 are discussed in the following sections.

6 � Black‑Box methods

A major issue in VI is that it heavily relies upon model-specific computations, on which a gen-
eralized, ready-to-use, and plug-and-play optimizer is difficult to design. Black-Box methods 
aim at providing solutions that can be immediately applied to a wide class of models with little 

(49)�t+1 = argmin
�
�
⊤
[
∇

�
L
(
�t

)]
−

1

2𝛽

(
� − �t

)⊤
I
�

(
� − �t

)

(50)�t+1 = �t + �I−1
�
∇

�
L
(
�t

)
,

(51)� = � + �∇�L = � + �
z − �

�2
,

(52)� = � + �∇�L =
(z − �)2 − �2

�3
.
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effort. In the first instance, the ubiquitous use of model’s gradients that traditional ML and 
VI approaches rely upon struggles with this principle. As Ranganath et al. (2014) describes, 
for a specific class of models, where conditional distributions have a convenient form and a 
suitable variational family exists, VI optimization can be carried out using closed-form coordi-
nate ascent methods (Ghahramani and Beal 2000). In general, there is no close-form solution 
resulting in model-specific algorithms (Jaakkola and Jordan 1997; Blei and Lafferty 2007; 
Braun and McAuliffe 2010) or generic algorithms that involve model-specific computations 
(Knowles and Minka 2011; Paisley et al. 2012). As a consequence model assumptions and 
model-specific functional forms play a central role, making VI practical. The general idea 
of Black-Box VI is that of rewriting the gradient of the LB objective as the expectation of 
an easy-to-compute function of the latent and observed variables. The expectation is taken 
with respect to the variational distribution, and the gradient is estimated by using stochastic 
samples from it in a MC fashion. Such stochastic gradients are used to update the variational 
parameters following an SGD optimization approach. Within this framework, the end-user is 
required to develop functions only for evaluating the model log-likelihood, while the remain-
ing calculations are easily implemented in libraries of general use applicable to several classes 
of models. Black-Box VI falls within stochastic optimization where the optimization objec-
tive is the maximization of the LB using noisy, unbiased, estimates of its gradient. As such, 
variance reduction methods have a major impact on stability and convergence, among them 
control variates are the most effective and of immediate implementation.

6.1 � Black‑Box Variational Inference (BBVI)

BBVI optimizes the LB with stochastic optimization, through an unbiased estimator of its gra-
dients obtained from samples from the variational posterior (Ranganath et al. 2014). By using 
the LB definition and the log-derivative trick on the gradient of the LB with respect to the 
variational parameter, ∇�L can be expressed as

where � denotes the parameter of the variational distribution q� . The above expression 
rewrites the gradient as an expectation of a quantity that does not involve the model’s gra-
dients but only those of log q(w|�) . A naive noisy unbiased estimate of the gradient of the 
LB is immediate to obtain with Ns samples obtained from the variational distribution,

where �s ∼ q(�|�) . The above MC estimator enables the immediate and feasible com-
putation of the LB gradients as, given a sample �s , log q

(
�s|�

)
 is a quantity that solely 

depends on the form of the variational posterior and can be of simple form. On the 
other hand, log p(D,�) − log q(�|�) is immediate to compute as it only requires evalu-
ating the logarithm of the joint p

(
D,�s

)
 and the density of the variational distribu-

tion in �s . This process is summarized in Algorithm 6. If sensible, one may assume that 
log p(D,�) = log p(D|�)p(�) but this is not explicitly required as of Ranganath et  al. 
(2014): there are no assumptions on the form of the model; the approach only requires the 
gradient of the variational likelihood with respect to the variational parameters to be feasi-
ble to compute.

(53)∇�L = �q

[
∇� log q(�|�)(log p(D,�) − log q(�|�))],

(54)∇�L =
1

Ns

Ns∑
s=1

∇� log q
(
�s|�

)[
log p

(
D,�s

)
− log q

(
�s|�

)]
,
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In Ranganath et al. (2014), the authors employ an adaptive learning rate satisfying the 
Robbins Monroe conditions 

∑
t �t = ∞ and 

∑
t 𝛽

2
t
< ∞ , and for controlling the variance of 

the stochastic gradient estimator adopt Rao–Blackwellization (Rao 1945; Blackwell 1947; 
Robert and Roberts 2021) and use the of control variates (e.g. Lemieux 2014; Robert et al. 
1999, Chap.  3) within Algorithm 6.

6.2 � Natural‑Gradient Black‑Box Variational Inference (NG‑BBVI)

We shall review the approach of Trusheim et al. (2018) boosting BBVI with natural gra-
dients, referred to as Natural-Gradient Black-Box Variational Inference (NG-BBVI) . The 
FIM corresponds to the outer product of the score function with itself (see Sect. 5) and is 
furthermore equal to the second derivative of the KL divergence to the approximate poste-
rior q(x|�):

For the practical implementation, Trusheim et al. (2018) uses a mean-field restriction on 
the variational model, i.e. the joint is factorized into the product of K independent terms, 
where each term is in general a multivariate distribution:

The above restriction is also suggested by Ranganath et  al. (2014) in order to allow for 
Rao–Blackwellization (Robert and Roberts 2021) as a tool to be used in conjunction with 
control variates (e.g. Lemieux 2014, Chap.  3) for reducing the variance of the stochastic 
gradient estimator. Under the above assumption, the FIM simplifies to:

which significantly simplifies the general form q� (�) while implicitly enabling Rao–Black-
wellization with the variable-wise local expectations and thus reducing the variance of the 
FIM, estimated via a Monte Carlo approach. In fact, besides a few variational models it is 
difficult to compute the above expectations analytically so Trusheim et al. (2018) adopts 
the following naive MC estimator:

(55)F(�) =
d2KL

[
q� (�)||q�̂ (�)

]

(d�)2

|||||�̂=�
= �q�

[
∇� log q� (�)∇� log q� (�)

⊤
]
.

(56)q� (�) =

K∏
k=1

q�k

(
�k

)
.

(57)I� =

{
�qi(�|�)

[
∇� i

log q� i

(
�i

)
∇� i

log q� i

(
�i

)
∇⊤

� i

]
, i = j,

0, i ≠ j,
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with �(s)

i
∼ q� i

(
�i

)
 denoting a sample from the ith factor of the posterior mean-field 

approximation. Note that the above does not introduce additional computations as the score 
of the samples �(s)

i
 is anyway required in the computation of the LB gradient. Furthermore, 

instead of using a plain SGD-like update, Trusheim et  al. (2018) adopts an ADAM-like 
version, boosted with natural gradient computations. Algorithm  7 summarizes the NG-
BBVI approach.

The NG-BBVI implementation is slightly more complex than the original BBVI, see 
Algorithm 7. The MC computation involves both the black-box stochastic gradient estima-
tion and the estimation of the optimal control variate coefficient a⋆ . Thus the posterior 
samples are split into two subsets. The first one X aimed at estimating a⋆ , and the second 
one Y at implementing the MC estimators, independently from X, and with the control vari-
ate correction term a⋆ earlier computed. The computation of the FIM follows immediately 

(58)Î� =

⎧
⎪⎨⎪⎩

1

Ns

∑Ns

s=1

�
∇� i

log q� i

�
�
(s)

i

�
∇� i

log q� i

�
�
(s)

i

�⊤
�
, i = j,

0, i ≠ j,
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from Eq.  (55), and the computation of ∇�k
L is analogous to BBVI. The last four lines 

of Algorithm  7 correspond to the implementation of the ADAM update, operators are 
intended to be applied element-wise, �1 , �2 (exponential decay rates) are typical ADAM 
hyperparameters, 𝜀 > 0 is a small offset preventing divisions by zero.

Trusheim et al. (2018) differs from BBVI by the use of natural gradients (and the adop-
tion of the ADAM-like update, though applicable to BBVI as well). On the other hand, the 
use of control variates and Rao–Blackwellization for variance reduction is found in both 
BBVI and NG-BBVI. As the natural gradient approach is preferable for the reasons dis-
cussed in Sect. 5, NG-BBVI is favored over BBVI.

The use of the black-box framework for computing the gradients of the LB along the MC 
estimator for the FIM renders NG-BBVI of general applicability and not constrained to a 
certain form of the variational posterior. Yet the MC-computations of the FIM are implicitly 
approximate, whereas for certain distributions the FIM computation can be carried out ana-
lytically and in an exact form. NG-BBVI furthermore requires the inversion of the FIM, which 
is a computational bottleneck. The following VON (Khan and Nielsen 2018), VADAM (Khan 
et al. 2018a) and VOGN (Khan et al. 2018a; Osawa et al. 2019) methods indeed fix this issue: 
assuming a variational posterior within the exponential distribution family, natural gradients 
are enabled without the direct computation of the FIM and its inverse.

7 � Natural gradient methods for Exponential‑family variational 
distributions

In the following subsections, we review methods based on Natural gradients and Exponential-
family variational approximations. The following techniques are built on natural parameter 
updates in the natural parameter space and rely on simplified but exact FIM computations 
based on the natural/expectation parameter duality [Eq. (47)].

7.1 � Exact gradient computations for the exponential family

The computation of the FIM required in the natural gradient computation is, in general, 
not trivial. In a generic perspective, not bound to a specific variational form, the sampling 
approach for the FIM estimation of Trusheim et al. (2018) is feasible. Yet for certain distribu-
tions, namely for those in the Exponential family class, natural gradients can be computed in 
an exact form with an analytical solution which furthermore does not involve the computation 
of the FIM.

The theoretic foundation of such a viable approach is provided in Khan and Nielsen (2018) 
and traces back to Eq. (47). For an Exponential family of minimal representation, the natural 
gradient with respect to the natural parameter � is equal to the gradient with respect to the 
expectation parameter m . This is a powerful result that allows the computation of the natural 
gradient as an Euclidean gradient, avoiding the computation of the FIM and its inversion.

This section presents some baseline methods using the above duality for the natural gra-
dient computation. Differently from BBB, BBVI, and NG-BBVI the following approaches 
explicitly deal with variational distributions members of the Exponential family with a focus 
on updating their natural parameter:

(59)�t+1 = �t + 𝛽∇̃
�
L
(
�t

)
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From the above updates on natural parameters, update rules for alternative and perhaps a 
more usual parametrization can often be obtained, see e.g. Sect. 7.2.

7.2 � Natural‑Gradient Variational Inference (NGVI)

NGVI constitutes a baseline methodology for natural gradient computation under a Gauss-
ian variational distribution, upon which several other approaches have been developed.

The natural gradients in the natural parameter space can be computed under the 
expectation parametrization as Euclidean gradients. Khan and Nielsen (2018) shows 
that such gradients are of simple form and correspond to

By using the definition of natural gradients in terms of � and Σ , the update in Eq. (60) for 
the natural parameter �1 = � , �2 = −

1

2
Σ−1 rewrites as

The above two constitute the NGVI update rules for updating the mean � and covariance 
matrix Σ of the variational posterior with a natural gradient update, that however does not 
involve the computation of the FIM as it relies on Euclidean gradients.

For a diagonal covariance matrix Σ = diag
(
�2
)
 , the corresponding NGVI updates 

read

With respect to the NGVI update two points are important to stress out. First, at each itera-
tion, the update for � implicitly requires Σt+1 . This means that the update for � follows that 
for Σ−1 and that � readily uses the one-step ahead updated information on Σ . Though it 
may appear counter-intuitive, Lyu and Tsang (2021) and Magris et al. (2022b) show that 
this update is not optimal (in the terms therein discussed), while an update of the form 
�t+1 = �t + �Σt

[
∇�L

]
 would be. Also, note that the update for � involves Σt+1 and not Σ−1

t+1
 , 

(60)= �t + �I−1
�t
∇

�t
L
(
�t

)
= �t + �∇mL

(
mt

)
.

(61)∇̃
�1
L = ∇m1

L = ∇�L − 2
[
∇ΣL

]
�,

(62)∇̃
�2
L = ∇m2

L = ∇ΣL.

(63)Σ−1
t+1

= Σ−1
t
∇�L − 2�

[
∇ΣL

]
�,

(64)�t+1 = Σt+1

[
Σ−1
t
� + �

(
∇�L − 2

[
∇ΣL

]
�
)]

(65)= Σt+1

[(
Σ−1
t

− 2�
[
∇ΣL

]
�
)
+ �∇�L

]

(66)= Σt+1

[
Σ−1
t+1

�t + �∇�L
]

(67)= �t + �Σt+1

[
∇�L

]
.

(68)�−2
t+1

= �−2
t

− 2�
[
∇�2Lt

]
,

(69)�t+1 = �t + 𝛽𝜎2
t+1

⊙
[
∇�Lt

]
.
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meaning that in the NGVI an online inversion of Σ−1 is implicitly required at each iteration. 
Clearly, for the diagonal case, this is trivial and effortless to obtain. Second, in the full-
covariance case, there is no guarantee that the updates guarantee Σ to be a positive-definite 
covariance matrix. This issue is tackled in Sect. 8. For the diagonal case, the constraint on 
Σ results in guaranteeing the positivity of the entries in the diagonal. This can be achieved 
via a proper reparametrization, e.g. BBVI updates � where � = log (1 + exp (�)) , or (e.g. 
Tan 2021) updates the Cholesky factor. Alternatively, the learning rate can be adapted to 
guarantee that the step size does not drive the updates �−2 negative (e.g., Khan and Nielsen 
2018; Magris et al. 2022c).

7.3 � Variational Online Newton (VON)

A computational burden in NGVI is that the gradients of the LB are still required: VON 
develops on NGVI but does not require the gradients of the variational objective. Further-
more, it only involves the gradient and Hessian of the model log-likelihood which can be 
computed with usual backpropagation.

Khan et al. (2018b) express the lower bound as

where N is the sample size, and f (�) = −
1

N

∑N

i=1
log p

�
Di��

�
 is negative log-likelihood of 

the model, i.e. standard MLE objective, where Di denotes a data example, i.e. Di =
(
yi, xi

)
 . 

VON uses the theoretical results of Opper and Archambeau (2009) and Rezende et  al. 
(2014) to express the gradients of the LB objective in terms of gradient and Hessian of 
f (�) . By linearity of the expectation, the gradients of the L consist of the sum of the gradi-
ents of three expectation terms, in particular:

where g = ∇�f (�) and H(�) = ∇2
��
f (�) denote the gradient and Hessian of the MLE objec-

tive, respectively. With these relations the gradients of the LB objective write

and

By using these gradients in the NGVI update, one obtains

(70)L = �q�

[
−Nf (�) + log p(�) − log q(�)

]
,

(71)∇��q

[
f (�)

]
= �q

[
∇�f (�)

]
= �q

[
g(�)

]
,

(72)∇Σ�1

[
f (�)

]
=

1

2
�q

[
∇2

��
f (�)

]
=

1

2
�q[H(�)],

(73)∇�L = ∇��q

[
−Nf (�) + log p(�) − log q(�)

]

(74)= −
(
�q

[
N∇�f (�)

]
+ 0 + ��

)

(75)= −
(
�q

[
Ng(�)

]
+ ��

)

∇ΣL =
1

2
�q

[
−N∇2

��
f (�)

]
+ 0 −

1

2
�I +

1

2
Σ−1

=
1

2
�q[−NH(�)] −

1

2
�I +

1

2
Σ−1.
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where the expectations can be again evaluated via MC sampling. By using a single draw 
�t ∼ N

(
�|�t,Σt

)
 , the feasible update reads

To obtain a form for the update that resembles Newton’s method where the scaling matrix 
is estimated online, Khan et  al. (2018b) defines St =

(
Σ−1
t

− �I
)
∕N and conversely 

Σt =
(
N
(
St + �I∕N

))−1 , and write the final form of the VON update

Similarly, for a diagonal covariance matrix (thus under a mean-field assumption), with 
𝜎2
t
=
[
N
(
st +

�

N

)]−1
=
[
N
(
st + �̃

)]−1 and �t ∼ N
(
�|�t, diag

(
�2
t

))

where the division is intended to be element-wise. Algorithm 8 summarizes the main ele-
ments of VON implementation.

In a mini-batch setting for estimating the stochastic gradient, with M denoting a mini-batch 
containing M samples, the stochastic estimates

(76)�t+1 = �t − �Σt+1

[
�q

[
Ng(�)

]
+ ��

]
,

(77)Σ−1
t+1
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t

+ �
(
�q[NH(�)] + �I

)
,

(78)�t+1 = �t − �Σt+1

[
Ng

(
�t

)
+ ��

]
,

(79)Σ−1
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t

+ �
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(
�t

)
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)
.
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,
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(
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.
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(
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)
,
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(
H
(
�t
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,
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enable the practical implementation of the VON update by replacing g and H. To make 
this statement clear, think of f (�) as the typical negative log-likelihood of a sample (as it 
is an average across samples), then g is the typical gradient for a sample in � and, analo-
gously, H is interpreted as the typical (average) value of the Hessian evaluated in � , result-
ing when using a single data point. Stochastic gradient estimation estimates g by using 
a single observation Di picked at random as an unbiased estimate of the actual gradient 
of f (�) = −

1

N

∑N

i=1
log p

�
Di��

�
 , g =

1

N

∑n

i=1
∇�

�
− log p

�
Di��

��
 , which would require the 

parsing of the entire sample. Analogously, one constructs a stochastic estimate of the Hes-
sian with one or M observations (the higher M the lower the variance of the estimator, 
which is in any case unbiased).

7.4 � Variational ADAM (VADAM)

The principle of Variational ADAM (VADAM) is that of augmenting the natural gradient 
update by incorporating a momentum factor, i.e.,

which slightly extends the form of the update in Eq. (59).
Under a Gaussian variational q, Khan et al. (2018b) expresses the momentum update as 

a VON update with momentum and recovers a variational version of an RMSProp update, 
to obtain the following updates

where 𝛽t = 𝛽
1−𝛾1

1−𝛾 t
1

 , 𝛾̄t = 𝛾1
(
1 − 𝛾 t−1

1

)(
1 − 𝛾 t

1

)
 and �,�1 are learning rates. Note that in the 

above updates the Hessian is estimated as a squared gradient: details are provided in 
Sect. 7.5. These updates can be implemented and used in their actual form, yet they corre-
spond to an ADAM-like update. Indeed the above update has the same form of an adaptive 
version of Polyak’s heavy ball method. Wilson et al. (2017) establishes a relation between 
the form of Eq. (87) and the ADAM update, and in particular that the ADAM update can 
be written as an adaptive version of the Polyak’s heavy ball method. Upon introducing the 
typical bias correction terms of ADAM, Khan et  al. (2018b) expresses Eq. (87) as an 
ADAM update. With respect to a true ADAM update, the model weights are stochastically 
sampled from the posterior, resulting in a Variational version of ADAM (VADAM). For 
the full derivation, which is quite elaborate and extensive, refer to Khan and Nielsen 

(84)ĝ
(
�t

)
=

1

M

∑
i∈M

∇�

[
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(2018). Algorithm 9 summarizes the VADAM approach for a Gaussian variational poste-
rior with diagonal covariance.

7.5 � Variational Online Gauss–Newton (VOGN)

In the diagonal VON update, the Hessian drives the update for the scaling vector 
s which determines the covariance matrix diag

(
�2
)
 . The Hessian can be negative, 

a situation that could turn �2 negative, which is meaningless. Instead of indirectly 
tackling the issue by using a constrained optimization approach (which could be 
difficult to implement), such as a controlled adaptive learning rate, or model repara-
metrization, Khan et al. (2018b) proposes the use of the Generalized Gauss–Newton 
approximation for the Hessian:

This enables a minor but important difference with respect to VON: with an initial posi-
tive value for �2 , the above approximation will remain positive leading to valid covariance 
updates. This provides an algorithmic advantage over VON as constraints on �2 are implic-
itly satisfied. The above implementation of the Hessian estimation, within VON, consists in 
the Variational Online Gauss–Newton (VOGN) approach (Khan et al. 2018b; Osawa et al. 
2019). The implementation of the above approximation is not immediate as it requires per-
sample gradients. The approximation averages squared gradients evaluated on a sample-
per-sample basis, as opposed to batch-gradient computation which directly computes the 
sum of the gradients over mini-batches (Osawa et al. 2019), which can be seen by compar-
ing Eq. (89) with Eq. (90)

The gradient-magnitude approximation that makes use of the mini-batch squared gra-
dient as an approximation for the Hessian,

(89)∇2
�j�h

f (�) ≈
1

M

∑
i∈M

[
∇�jfi(�)

]2
∶= ĥj(�).

(90)∇2
�j�h

f (�) ≈

[
1

M

∑
i∈M

∇�jfi(�)

]2

=
[
ĝj(�)

]2
,
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introduces a bias in the Hessian estimation. In fact, increasing the mini-batch size is 
not advisable as it introduces more bias. Based on the above approximation, Khan et al. 
(2018b) advances an RMSProp version of the VON update.

The practical implementation of VOGN is extensively discussed in Osawa et  al. 
(2019), where the efficient implementation of the per-sample gradient computation for 
certain network layers is discussed: the additional computations needed to access indi-
vidual gradients bring the run-time within 2–5 times of that of ADAM. Algorithm 10 
summarizes the implementation of the VOGN optimizer.

The form of Algorithm 10 slightly differs from that of VOGN/ADAM. The sampling 
of the random weights is analogous to that of Algorithm 9 and Algorithm 8, yet here 
posterior samples are built over standard-normal random numbers rather than directly 
sampling from the multivariate diagonal posterior by the use of the reparametrization 
trick. Note the index i referring to the individual samples in the mini-batch M . While 
VOGN uses a single sample for evaluating the stochastic gradients, here Ns draws are 
averaged to reduce the approximation variance. In particular, the nested for loop com-
putes the single-observation gradient used for the Hessian approximation, each com-
puted in the sampled weight vector �s . Draw-specific gradients and Hessian ĝs and ĥs 
are thus averaged across samples (leading to ĝ and ĥ ) and used in the implementation 
of the ADAM-like update based on momentum (thus the hyperparameters �1 , �2 ). The 
pseudo-code in Osawa et  al. (2019) involves an additional tempering parameter and 
data-augmentation factor along with details for the VOGN parallel implementation, to 
which we refer for further insights.

Osawa et al. (2019) furthermore discusses practical implementation aspects typical 
in ML such as batch normalization, data augmentation, momentum, and distributed 
computing. The feasibility of the VOGN update for large-scale experiments with big-
data sizes and deep network architectures on standard datasets promotes VOGN as a 
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state-of-the-art method for Bayesian DL. As a remark, among its limitations, note that 
VOGN applies to Gaussian variational posteriors with a diagonal covariance matrix 
only.

7.6 � Quasi Black‑Box Variational Inference (QBVI)

The BBVI framework of Ranganath et al. (2014) can benefit from the use of the natural gra-
dients. In fact, in Trusheim et al. (2018) natural gradients are estimated via MC sampling. On 
the other hand Eq. (60) provides an exact framework for computing natural gradients without 
relying on sampling methods, applicable for the wide class of variational posteriors within the 
Exponential family, yet model-specific derivations, i.e. the computation of the gradients and 
Hessian, are involved. The QBVI approach (Magris et  al. 2022c) merges the BBVI setting 
with the exact natural gradient computation. QBVI uses Eq. (60) to turn the computation of 
the natural gradients into Euclidean gradients of the LB, which are computed by the use of 
the score estimation, resembling the BBVI framework. On a general level, the QBVI update 
estimates the gradient of the LB with respect to the natural parameters as

which along with a plain SGD lead to the update rule

Here the exact computation of the natural gradient is carried out in terms of Eq. (60), so 
that the QBVI update for a generic variational distribution and prior (both within the expo-
nential family) reads, for the natural parameters, as:

Similarly to Khan and Nielsen (2018), Eq. (92) uses the properties of the Exponential fam-
ily distribution for the prior p, with natural parameter � , and q to simplify the first term on 
the right-side of Eq. (91). This results in the natural-parameter difference � − � , avoiding 
on the first instance a sampling framework for evaluating the corresponding expectation, 
i.e. reducing the variance of the estimate for ∇̃L(�) , regardless of the estimator used for 
�q�

[
log p(D|�)].

Magris et al. (2022c) focuses on the Gaussian variational case, building the QBVI update 
on the NGVI update, but without using the model’s gradient and Hessian as for VON. Indeed, 
using Eqs. (61) and (62), Magris et al. (2022c) recovers, for a full-covariance posterior, the 
following updates:
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[
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where vt = Σ−1
(
� − �t

)
 and �0,Σ0 denote the mean vector and covariance matrix of the 

prior distribution on the model parameter � , respectively. The following naive MC estima-
tor provides a simple approach for tacking the above expectations

with �s ∼ q
�
 , s = 1,… ,Ns . Algorithm  12 provides the pseudo-code for the QBVI 

implementation.

8 � Variational Inference on manifolds

In this section, we review a class of methods that pursue a theoretically different approach, 
i.e., manifold optimization. The major challenge in VI optimization is that of guaranteeing 
constraints on the variational parameter. In a Gaussian, or e.g. an Inverse Wishart, setting, 
this corresponds to guaranteeing updates under which the covariance matrix is Symmetric and 
Positive Definite (SPD).

We first introduce in general terms the concept and practice of Riemann optimization. 
Therefore, we provide an introduction to Riemann manifolds, the concepts of tangent vec-
tors, tangent spaces, and Riemann gradient to finally provide a more rigorous discussion of 
the specific problem of performing valid covariance updated for Bayesian Inference under a 
Gaussian variational FFVI setting. This section addresses the most crucial aspects concern-
ing the purpose of introducing the Manifold Gaussian Variational Bayes and Exact Manifold 
Gaussian Variational Bayes optimizers. As the topic is itself broad and quite technical, we 
intentionally provide a descriptive illustration suitable for a general audience, referring to the 
specialized literature for additional details and a rigorous mathematical treatment at the end of 
the following section.

(97)�q
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[(
Σ−1
t

− vtv
⊤
t

)
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8.1 � Introduction to manifold optimization

Riemann optimization is an alternative to standard SGD that well fits problems of the kind

where L is a real-valued function of some parameter � , defined on a Riemannian manifold 
(M, g) . A manifold is a topological space that locally resembles Euclidean space near each 
point, in more detail, is a set that can locally be mapped one-to-one to ℝk , where k is the 
dimension of the manifold. g stands for a metric the manifold is equipped with.

The optimization problem aims at minimizing L by finding the parameter � ∈ M that 
lies on the “smooth surface” of the Riemannian manifold (M, g) resembling a constrained 
optimization problem requiring the optimum �∗ to lie on the Riemannian manifold, such 
as a sphere or the SPD set. As with SGD in Euclidean vector spaces, Riemann optimiza-
tion is generally tackled with gradient descent on the surface of the manifold, based on 
the gradients of L . Yet, because of the manifold constraint, there are important differences 
compared to the standard SGD approach.

The Euclidean vector space ℝn can be interpreted as a Riemannian manifold (ℝn, g) , 
with g the common Euclidean metric, where the usual SGD iteratively updates the param-
eter � as

where

It is clear that applying the above to a generic non-Euclidean manifold M is not trivial as 
there is no guarantee that � t+1 is a valid update, i.e. that � t+1 lies in M . Consider an opti-
mization problem where the parameter � = (x, y, z) is required to lie on a 2-dimensional 
spherical manifold of radius 1, embedded in a 3-dimensional ambient space. The Riemann-
ian manifold is M =

{
� ∈ ℝ

3 ∶ ||�||2 = 1
}
 , with g being the Euclidean metric, and L 

corresponding to a custom loss function for an arbitrary point � on the sphere M . Though 
partial derivatives ∇�L are straightforward to compute or evaluate, e.g. with backpropaga-
tion, at the current parameter value � t , there is no guarantee that the update rule for the 
Euclidean space � t+1 = � t + �∇�L� t would result in an updated parameter lying on sphere 
M . Intuitively, on the “curved” surfaces of Riemannian manifolds the updates should fol-
low the “curved” geodesics instead of straight lines as on familiar ℝn Euclidean spaces. To 
this end, Riemann Stochastic Gradient Descent (RSGD) constitutes a manifold generaliza-
tion of the SGD.

8.1.1 � Elements of Riemannian manifolds

In ℝk , a steepest-ascent approach updates the current iterate � in the direction where the 
first-order increase of the objective function L is most positive. Formally, the update direc-
tion is chosen to be the unit norm vector � that minimizes the directional derivative

(100)argmin�∈ML(�),

(101)� t+1 = � t + �∇�L
(
� t
)
,

(102)∇�L
(
� t
)
=

�

��
L(�)

||||�=� t
.

(103)DL(�)[�] = lim
t→0

L(� + t�) − L(�)

t
.
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With the domain of L being the manifold M , the argument � + t� does not make 
much sense in general as M is not necessarily a vector space. This leads to the notion 
of a tangent vector. A possibility for generalizing the directional derivative is to replace 
t ↦ � + t� by a smooth curve � on M passing through � , i.e. �(0) = � . A smooth map-
ping � ∶ ℝ → M ∶ t ↦ �(t) is termed as curve in M . Defining a derivative � �(t) as 
� �(t) ∶= limt→0

�(�+t)−�(�)

t
 fails on a general manifold as it requires a vector space structure 

to compute the difference �(� + t) − �(�) , however for a smooth function L on M the func-
tion L◦� ∶ t ↦ L(�(t)) is a smooth and well-defined function from ℝ to ℝ with a well-
defined classical derivative. To sum up, let � be a point on M , � a curve such that �(0) = � 
and F� (M) is the set of smooth real-valued functions defined in a neighborhood of � in M . 
The mapping 𝛾̇(0) from F� (M) to ℝ defined by

is called the tangent vector to the curve � at t = 0 . Note that the above definition defines 
𝛾̇(0) as a mapping and not as a (e.g. time) derivative as in Eq. (103), which would be gen-
eral meaningless. We can now formally define the notion of a tangent vector.

A tangent vector �� to a manifold M at a point � is a mapping from F� (M) to ℝ such that 
there exists a curve � on M with �(0) = � satisfying

Such a curve � is said to realize the tangent vector �� . The tangent space to M at � is the set 
of all tangent vectors to M at � and is denoted by T�M . Importantly, it can be shown that 
T�M admits a vector space structure, i.e. T�M is a vector space: it provides a local vector 
space approximation of the manifold. This property is useful in defining retractions used 
to locally transform an optimization problem on M into an optimization problem on the 
more friendly vector space T�M . To characterize which direction of motion from � pro-
duces the steepest increase in L , to enable a notion of length that applies to tangent vectors, 
we endow the tangent space T�M with an inner product ⟨⋅, ⋅⟩ , inducing the norm ||�� || on 
T�M , from which the direction of the steepest ascent is given by

that is, by the unit-norm vector �∗
�
 for which directional derivative D of L in � in the direc-

tion �∗
�
 is maximized.

A manifold whose tangent spaces are endowed with a smoothly varying inner product 
is called a Riemannian manifold, and the smoothly varying inner product is called the Rie-
mann metric. With g being such a Riemann metric on M , the Riemannian manifold is, strictly 
speaking, the couple (M, g) . The Euclidean space is the particular Riemannian manifold con-
sisting of a vector space endowed with an inner product.

The gradient of L defined on a Riemannian manifold M at � is denoted by the unique ele-
ment in T�M that satisfies

(104)𝛾̇(0)L ∶=
d

dt
L(𝛾(t))

||||t=0, L ∈ F� (M)

��L ∶= 𝛾̇(0)L ∶=
d

dt
L(𝛾(t))

||||t=0, L ∈ F� (M).

(105)argmax��∈T�M∶ ||�� ||=1DL(�)
[
��
]
,

(106)⟨gradL(�), ��⟩ = DL(�)
�
��
�
, ∀�� ∈ T�M.
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As in correspondence with usual Euclidean gradients, and important in the light of optimi-
zation, it can be shown that the direction of gradL(�) is the steepest ascent direction of L 
at �

and that the norm of gradL(�) gives the steepest slope of L at �.
If a manifold Me is endowed with a Riemann metric, one would expect that manifolds 

generated from Me inherit its Riemann metric. Let M be a manifold embedded in Me (the 
subscript e stands for “embedding)”. Since every tangent space T�M can be regarded as a 
subspace of T�Me , the Riemann metric ge of Me induces a Riemann metric g on M turn-
ing M into a Riemannian manifold. Endowed with this metric, M is called a Riemannian 
submanifold of Me . As it will appear clear in the next section, the submanifold idea is 
simple yet powerful as any element �� in T�M can be decomposed into an element of T�M 
and its corresponding orthogonal element 

(
T�M

)⟂ in T�Me:

where Proj� denotes the orthogonal projection onto T�M , and Proj⟂
�
 denotes the orthogo-

nal projection onto 
(
T�M

)⟂ . In this light, by properly defining the embedding ambient 
space Me , one may simplify the computation of the Riemannian gradient, and by projec-
tion determine the Riemannian gradient in the tangent space T�M of the manifold M of 
interest:

with Le being an extended version of the differentiable function L defined on Me such that 
its restriction on M actually coincides with L.

Perhaps the most simple tool to tackle Riemann optimization is the Riemann Stochastic 
Gradient Descent (RSGD), first proposed in (Bonnabel 2013). RSGD typically involves 
three steps: (i) evaluate the gradient of Le in T�Me with respect to � at the current value � t , 
Fig. 4 (left panel), (ii) project the gradient onto the tangent space of the manifold M at � t , 
and (iii) update the parameter by performing a gradient step on the surface following the 
direction of gradL(�) , Fig. 4 (central panel).

The last step moves the point � t ∈ M in the direction of the gradient along a geodesic, 
onto � t+1 , lying on the manifold. This is achieved by the so-called exponential map, map-
ping elements from the tangent space to M . The computation of the exponential map is 
however a cumber-stone in practice: often a first-order approximation is used. Such first-
order approximation is called retraction R�

(
��
)
 , �� ∈ T�M . Intuitively, rather than per-

forming an exact update following the curved geodesics of the manifold, retraction first 
follows a straight line in the tangent space and then orthogonally projects the point in the 
tangent space on the manifold. Closed-form formulae for retraction on the most common 
manifold are available in the literature, see e.g. Absil et al. (2009) and Hu et al. (2020), and 
e.g. Hosseini and Sra (2015) for the SPD manifold.

The main sources we have used in writing this section are the exhaustive book of Absil 
et al. (2009), and the articles (Hu et al. 2020) and (Tran et al. 2021a). Classical specialized 
books on differential geometry are those of Kobayashi and Nomizu (1963), Do Carmo and 
Flaherty Francis (1992) and Boothby and Boothby (2003), while well-suited references for 
readers without a background in abstract topology are e.g. Tu (2011) and Do Carmo (2016) 

(107)
gradL(�)

||gradL(�)|| = argmax��∈T�M∶ ||�� ||=1DL(�)
[
��
]
,

(108)�� = Proj��� + Proj⟂
�
�� ,

(109)gradL(�) = Proj�gradLe(�),
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and furthermore at an introductory level e.g. Brickell and Clark (1970) and Abraham et al. 
(2012). We suggest referring to the literature involved in the above references for further 
bibliographical details, e.g. the bibliographical notes in Chapter 3 of Absil et al. (2009). 
An exhaustive overview of the different applications in manifold optimization in different 
areas can be found e.g. in Hu et al. (2020). For the first developments on SGD on Riemann-
ian manifolds, we refer to Bonnabel (2013), further developments towards an RMSprop-
like adaptive version of RSGD can be found in Kasai et al. (2019), while Riemann opti-
mization on the lines of the popular Adam and Ada-grad are discussed in Bécigneul and 
Ganea (2018). Relevant for the SPD matrix manifold optimization are the results on vector 
transport and retraction in e.g. Jeuris et al. (2012) and Sra and Hosseini (2015), of remark-
able utility for applications. In this regard, we point to Boumal et al. (2014) for a manifold 
optimization package available in multiple languages.

8.2 � Variational Bayes on Riemannian manifolds with natural gradients

Variational Bayes on manifolds aims at maximizing the LB L under a fixed-form Gaussian 
variational posterior guaranteeing a positive-definite form of the covariance matrix Σ . Thus 
the variational parameter � lies on the Riemannian manifold of Symmetric and Positive 
Definite (SPD) matrices M =

{
Σ ∈ ℝ

k×k ∶ Σ = Σ⊤,Σ ≻ 0
}
 . The optimization problem of 

concern is thus the Riemann optimization problem

To implement the RSGD update the manifold M of SPD matrices is viewed as embedded 
in the Riemannian manifold Me . Let T�Me be the tangent space to M at � ∈ Me . Aligned 
with the discussion in Sect. 5, we wish to perform natural gradient updates. To this end, we 
equip Me with the Fisher–Rao metric, defined by the Fisher information matrix I� . With 
such a metric, the inner product between two tangent vectors �� , �� ∈ T�Me is defined as

generalizing the usual Euclidean metric ⟨�� , ��⟩ = �⊤
�
�� . Let Le be a differentiable func-

tion defined on Me such that its restriction on M corresponds to the LB L . It can be shown 
that the steepest ascent direction at � ∈ Me for maximizing the objective Le is the natural 
gradient

(110)argmax�∈ML(�).

(111)⟨�� , ��⟩ = �⊤
�
I��� ,

(112)∇̃Le(�) = I−1
�
∇�Le(�), � ∈ Me.

Fig. 4   Left: Tangent space and projection of Riemannian gradient. Center: retraction map. Right: vector 
transport
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Note that ∇�Le(�) is the usual Euclidean gradient vector of Le(�) , and that, importantly, 
for � ∈ M,

That is, the natural gradient of the extended LB Le in Me corresponds to the natural gradi-
ent of the LB on the relevant manifold M . A framework for formally associating the natu-
ral gradient with the Riemannian gradient is provided by the lemma below, see Tran et al. 
(2021a) for more details.

Lemma 1  The natural gradient of the function Le on the Riemannian manifold Me with the 
Fisher–Rao metric is the Riemannian gradient of Le . In particular, the natural gradient at 
� belongs to the tangent space to Le at �.

This means that with respect to the embedding space Me , ∇̃�Le(𝜁 ) is the actual Rie-
mannian gradient, lying on the tangent space T�Me of Le at � . Yet we need to associ-
ate the Riemannian gradient in Me to the LB L in M , the actual objective of RSGD 
optimization.

To this end, we naturally equip the submanifold M with the same Riemann metric 
inherited from Me . For �� , �� now both in T�Me,

and we obtain the Riemannian gradient of L in M as the projection of gradLe on T�M

In a Gaussian manifold, T�M ≅ T�Me , thus the projection is the identity matrix I and 
gradLe = gradL . Indeed in Gaussian manifolds, M corresponds to the manifold of SPD 
matrices whereas Me = ℝ

k×k : T�M and T�Me differ by the fact that the first is the tangent 
space to a certain SPD matrix while the second is the tangent space of a generic k × k symmet-
ric matrix. In terms of projection, the difference is irrelevant, thus Proj�gradLe = IgradLe . 
Mind that, however, on a general level Proj� (⋅) can be rather difficult to compute. The above 
relationship between the Riemannian gradient in Me and the LB L in M , is established by 
treating M as a submanifold of Me . Alternatively one can derive the Riemannian gradient of 
L requiring M to be a so-called quotient manifold induced from a Riemannian ambient mani-
fold. In this regard, see Tran et al. (2021a) and the references therein.

RSGD requires a proper retraction R� ∶ T�M ↦ M that locally maps T�M onto the mani-
fold M while preserving the first-order information of the tangent space in � . This means that a 
step of size zero stays at the same point � and the differential of the retraction at this origin is the 
identity mapping (Jeuris et al. 2012). From the geodesics between two matrices in M , Jeuris et al. 
(2012) develops the popular and convenient retraction method (actually a second-order approxi-
mation of the exponential map) for the SPD matrices manifold M . This is given by

where

(113)∇̃�Le(𝜁 ) = I−1
�
∇�Le(𝜁 ) = I−1

�
∇�L(𝜁 ) = ∇̃�L(𝜁 ).

(114)⟨�� , ��⟩ = �⊤
�
I��� ,

(115)gradL(� ) = Proj� gradLe(�).

(116)R� (�) = � + � +
1

2
��−1�,

(117)� ∈ T�M,
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and updates the current value of � on M by accounting for � on the tangent space T�M.
We now add a practically important element to the discussion, vector transport. In order 

to perform, among the others, the conjugate gradient algorithm, or implement the momen-
tum method within the RSGD update, we need to relate a tangent vector at some point 
� ∈ M to another point � ∈ M . In differential geometry, this is achieved by a parallel 
translation, moving tangent vectors from one tangent space to the other, while preserving 
the length and angle of the original tangent vector, Fig. 4 (right panel). As for the exponen-
tial map, the parallel translation is often approximated by the so-called vector transport, 
which is easier to compute. For � ∶= �� and � ∶= �� ∈ T�M , an effective vector transform 
for the manifold of interest is

with

where T�→�(�) denotes the vector transport of the tangent vector � ∈ T�M to � ∈ T�M . 
The above vector transport can be written in a compact and computationally advantageous 
form as (see e.g. Sra and Hosseini 2015 for details):

with

We point out that within the above SPD matrix manifold setting relevant in Gaussian VI, � , 
� , � are matrices and the above equations are well-defined: for homogeneity in notation, we 
stick with the lower-case bold symbols for indicating elements of a generic space.

The above vector transport is practically relevant and essential in implementing, e.g., a momen-
tum method on the RSGD update, that is by using a moving average of the Riemannian gradient at 
the previous iteration to reduce noise in the estimated gradients and boost convergence:

where � is a momentum-weight hyper-parameter.
Manifold optimization in the context of VI is relatively new, the main reference for this 

paper is Tran et al. (2021a), whose approach is reviewed in Sect. 8.3. Besides this, VI on 
manifolds is also discussed in Zhou et al. (2021) and Magris et al. (2022b) and appears in 
Lin et al. (2020). Other applications, not related to the purposes of this review, are here 
not covered, e.g. manifold optimization for variational autoencoders (Skopek et al. 2019). 
Regarding the specific Bayesian inference problem for Neural Networks, at the time of 
writing, we are not aware of any further works or developments.

(118)T�→�(�) = Q�Q⊤,

(119)Q = �
1

2 exp

(
�
−

1

2 ��
−

1

2

2

)
�
−

1

2 ,

(120)T�→�(�) = E�E⊤

(121)E =
(
��−1

) 1

2 � ∈ T�M.

(122)gradL
(
� t+1

)mom.
∶= �T�→� t+1

(
gradL

(
� t
)mom.)

+ (1 − �)gradL
(
� t+1

)
,
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8.3 � Manifold Gaussian Variational Bayes (MGVB)

We review the (MGVB) method of Tran et  al. (2021a). The variational approxima-
tion q

�
 to the true posterior is provided by a multivariate Gaussian distribution N(�,Σ) , 

� ∈ ℝ
k . The parameter �,Σ are jointly collected in the vector � = (�, vec(Σ)) , denoting 

the variational parameter. There are no restrictions on the structure of the variance–covari-
ance matrix Σ which is a generic member of the manifold M of the SPD matrices, 
M =

{
Σ ∈ ℝ

k×k ∶ Σ = Σ⊤,Σ ≻ 0
}
.

The exact form of the Fisher information matrix for the multivariate normal distribution 
is, e.g., provided in Mardia and Marshall (1984) and reads

with I(Σ) being the k2 × k2 matrix whose generic element is

The MGVB method relies on the approximation I(Σ) ≈ Σ−1 ⊗ Σ−1 , where ⊗ denotes the 
Kronecker product. The corresponding approximate inverse FIM reads

which leads to a convenient approximate form of the natural gradients of the lower bound 
with respect to � and Σ computed as

The last equality follows from the fact that for a vector v ∈ ℝ
k×k , 

(Σ⊗ Σ)v = vec
(
Σvec−1(v)Σ

)
 . In virtue of the natural gradient definition, the first natural 

gradient for � is exact while the second one for Σ is approximate. As pointed out in Lin 
et  al. (2020), the actual natural gradient for the above Gaussian distribution should read 
2Σ∇ΣLΣ , as I(Σ) = 2Σ−1 ⊗ Σ−1 , therefore the MGVB approximation. Thus, Tran et  al. 
(2021a) adopts the following updates for the parameters of the variational posterior:

where RΣ(⋅) denotes a suitable retraction for Σ on the manifold M , and � is the learning 
rate. Momentum gradients can be used in place of natural ones. In particular Tran et al. 
(2021a) uses retraction in Eq. (116) and momentum gradients for the updating Σ . In this 
regard, Tran et  al. (2021a) adopts the parallel transport in Eq.  (118) for granting that at 
each iteration the weighted gradient remains in the tangent space of the manifold M.

The actual computation of the gradients ∇̃�L and ∇̃ΣL boils down to computing ∇�L 
and ∇ΣL , which in MGVB is achieved with the black-box estimator

(123)I =

(
Σ−1 0

0 I(Σ)

)
,

(124)I(Σ)�ij,�kl =
1

2
tr

(
Σ−1 �Σ

��ij
Σ−1 �Σ

��kl

)
.

(125)I−1 =

(
Σ 0

0 Σ⊗ Σ

)
,

(126)∇̃�L = Σ∇�L,

(127)∇̃ΣL ≈ vec−1
(
(Σ⊗ Σ)∇vec(Σ)L

)
= Σ∇ΣLΣ.

(128)� = � + 𝛽∇̃�ΣL,

(129)Σ = RΣ

(
𝛽∇̃ΣL

)
,
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where

with q ∼ N(�,Σ) , � = (�, vec(Σ)) , and L(�) ≡ L(�,Σ) . In particular, the gradient of L 
with respect to � is estimated using Ns samples from the variational posterior through the 
unbiased estimator

where �s ∼ N
(
�t,Σt

)
 and the h-function is evaluated in the current value of the param-

eters, i.e. in � t =
(
�t, vec

(
Σt

))
 . For a Gaussian distribution q ∼ N(�,Σ) it can be shown 

that (e.g. Wierstra et al. 2014; Magris et al. 2022c):

Algorithm 12 summarizes the above process.

8.4 � Exact Manifold Gaussian Variational Bayes (EMGVB)

The covariance matrix Σ is positive definite, its inverse exists and it is as well symmetric and 
positive definite. Therefore, Σ−1 lies within the manifold M and can be updated with a suitable 
retraction algorithm as for Σ in Sect. 8.3,

Opposed to the EMGVB update, relying on the approximation I−1(Σ) ≈ Σ−1 ⊗ Σ−1 , for 
tackling a positive-definite update of Σ , Magris et al. (2022b) targets at updating Σ−1 for 

(130)∇�L(�) = �q�

[
∇�

[
log q� (�)

]
h� (�)

]
,

(131)h� (�) = log

[
p(D|�)p(�)

q� (�)

]
,

(132)∇�L
(
� t
)
= ∇�L(�)

|||�=� t ≈
1

Ns

Ns∑
s=1

[
∇�

[
log q�

(
�s

)]
h�
(
�s

)]|||�=� t ,

(133)∇� log q(�) = Σ−1(� − �),

(134)∇Σ log q(�) = −
1

2

(
Σ−1 − Σ−1(� − �)(� − �)⊤Σ−1

)
.

(135)Σ−1 = RΣ−1

(
𝛽∇̃Σ−1L

)
= RΣ−1

(
−2𝛽∇ΣL

)
.



11815Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

which its natural gradient is available in an exact form, by primarily exploiting the duality 
between the gradients in the natural and expectation parameter space as for Eq. (47), that 
circumvents the computation and the approximate form of the FIM.

In particular Eq. (47) implies that

where �2 = −
1

2
Σ−1 is the second natural parameter of the variational Gaussian posterior q

�
 . 

This leads to the EMGVB updates

Despite the approximate MGVB update for Σ , EMGVB updates Σ−1 with exact natural gra-
dient computations. Retraction and momentum gradients are computed as in MGVB but 
involve Σ−1 in place of Σ . For retraction,

with � being the rescaled natural gradient 𝛽∇̃Σ−1L = −2𝛽∇ΣL . Instead, vector transport 
reads

where the weight 0 < 𝜔 < 1 is a hyper-parameter. As for Eq.  (92), by using a Gaussian 
prior along with a Gaussian posterior, the natural parameter difference becomes particu-
larly simple. With � = (�,Σ),

evaluating ∇̃�L accounts to practically estimating ∇̃��q�

[
log p(D|�)] only. Whether or not 

one uses the results in Eqs. (141) and  (142) under a Gaussian prior assumption, or prefers 
to use the gradient estimator based on the h-function, 
h� (�) = �q�

[
log p(�) + log p(D|�) − log q� (�)

]
 , as in MGVB, a general-form for the gradi-

ents enabling the EMGVB update is provided by

∇̃�L = Σ∇�L,

∇̃Σ−1L = −2∇̃
�2
L = −2∇Σ,

(136)�t+1 = �t + �Σ∇�Lt,

(137)Σ−1
t+1

= RΣ−1
t

(
−2�∇ΣLt

)
.

(138)RΣ−1 (�) = Σ−1 + � +
1

2
�Σ�, where � ∈ TΣ−1M,

(139)∇̃mom.

Σ−1 Lt+1 = 𝜔 TΣ−1
t →Σ−1

t+1

(
∇̃mom.

Σ−1 Lt

)
+ (1 − 𝜔)∇̃Σ−1Lt+1,

(140)∇̃mom.
�

Lt+1 = 𝜔 ∇̃mom.
�

Lt + (1 − 𝜔)∇̃�Lt,

(141)∇Σ�q�

[
log p(�) − log q� (�)

]
=

1

2
Σ−1 −

1

2
Σ−1
0
,

(142)∇��q�

[
log p(�) − log q� (�)

]
= −Σ−1

0

(
� − �0

)
,

(143)∇̃�L
(
� t
)
≈ c�t

+
1

S

S∑
s=1

[(
�s − �t

)
log f

(
�s

)]
,
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where

Because of the computations of the constants CΣt
 and c�t

 under the Gaussian assumption 
for the prior p, the MC estimators in Eqs. (143) and  (144) are of reduced variance. Magris 
et  al. (2022b) also provides analogous simplified updates under the specific assumption 
that the covariance matrix of q is either diagonal, block-diagonal, or full under an isotropic 
Gaussian prior whose mean vector is zero and prior covariance matrix Σ−1

0
 equal to �I , with 

𝜏 > 0 . Algorithm 13 summarizes the updating routine.

The reader will note that the EMGVB approach is mixing elements of the SPD (matrix) 
manifold (retraction and parallel transport) with the natural gradient obtained from the 
Gaussian manifold. A justification for the validity of the above is discussed in Magris 
et al. (2022b). The discrepancy between the natural gradient and the Riemannian gradient 
obtained from the SPD manifold, can be absorbed in the learning rate � and the EMGVB 
update obtained by manifold-consistent derivations from updating 

(
�, 2Σ−1

)
.

(144)∇̃Σ−1L
(
� t
)
≈ CΣt

+
1

S

S∑
s=1

[(
Σ−1
t

− Σ−1
t

(
�s − �t

)(
�s − �t

)⊤
Σ−1
t

)
log f

(
�s

)]
,

(145)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎧
⎪⎨⎪⎩

CΣt
= −Σ−1

t
+ Σ−1

0

c�t
= −ΣtΣ

−1
0

�
�t − �0

�
log f

�
�s

�
= log p

�
D��s

� if prior is Gaussian,

⎧⎪⎨⎪⎩

CΣt
= 0

c�t
= 0

log f
�
�s

�
= h� t

�
�s

� if prior is Gaussian or not.
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9 � Conclusion

In this survey, we provided an algorithmic overview of standard, as well as, more recently intro-
duced approaches for Bayesian learning for Neural Networks. We structured our description as 
an easily-accessible introduction to the basic concepts and related methodologies, focused on the 
core elements and their implementation, providing pseudo-codes and update rules to be used as 
references for a large number of Bayesian Neural Network implementations.

We provided a foreword introduction to Bayesian Neural Network, their peculiarities, 
and motivated their use with respect to standard non-Bayesian Artificial Neural Network. 
In the remainder, we focused on popular and feasible approaches for their estimation. 
Besides describing some effective Monte Carlo methodologies, and introducing Monte 
Carlo Dropout as a Bayesian tool, we presented a variety of methods based on Variational 
Inference and natural gradients as the main methodological ingredients in modern Bayes-
ian inference for Neural Networks. We presented the widespread Bayes-By-Backprop opti-
mizer, followed by two common black-box methods, namely Black-Box Variational Infer-
ence and Natural-Gradient Black-Box Variational Inference. Next, we introduced natural 
gradients and examined the Natural-Gradient Variational Inference, Variational Online 
Newton, Variational Online Gauss–Newton, and Quasi Black-Box Variational Inference 
approaches. Lastly, by providing an introduction to manifold optimization, we provided a 
discussion on methods that can implicitly deal with the positive-definite constraint over 
Gaussian variational specifications, presenting the Manifold Gaussian Variational Bayes 
and Exact Manifold Gaussian Variational Bayes solutions.

We hope that our comprehensive algorithmic treatment of the above-described meth-
odologies will contribute to a better understanding of the connections and differences 
between the various Bayesian methods for Neural Networks, will support the adoption of 
such methods in a wide range of applications, and promote further research in this field.

Appendix: Nomenclature

See Table 1.
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Table 1   Nomenclature for the most used mathematical symbols

Symbol Meaning Type Other information

N Sample size Scalar
xi ith input sample Generally a vector
yi ith target Vector or scalar Corresponding to xi
Dx Input Data Generally a matrix Dx = {xi}

n
i=1

Dy Targets Matrix or vector Dy = {yi}
n
i=1

D Data Matrix D = {Dy,Dx} , Di = {yi, xi}

p Depends p.d.f. or likelihood p(�) (prior),
p(�||� ) (posterior)
p(D|�) (likelihood)

L Lower Bound Function
q Variational posterior Vector Generally indexed by the parameter
� , � Variational parameter Vector � generic, � natural parameter
m Expectation parameter Vector
� Random variable or variable Vector Random variable of model’s parameter

argument in which e.g. q is evaluated
�s A sample from � Vector
k Dimension of the parameter Scalar Generally the dimension of �
Ns Number of MC samples Scalar
� Learning rate Scalar
�0,Σ0 Prior parameters Vector, matrix for Gaussian priors
t Iteration Scalar
I Fisher Information Matrix Matrix
∇ Euclidean gradient Vector, matrix
∇̃ Natural gradient Vector, matrix
� Element of the tangent space Vector, matrix

http://creativecommons.org/licenses/by/4.0/
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