
Vol.:(0123456789)

Artificial Intelligence Review (2023) 56:11773–11823
https://doi.org/10.1007/s10462-023-10443-1

1 3

Bayesian learning for neural networks: an algorithmic survey

Martin Magris1 · Alexandros Iosifidis1

Published online: 15 March 2023
© The Author(s) 2023

Abstract
The last decade witnessed a growing interest in Bayesian learning. Yet, the technicality
of the topic and the multitude of ingredients involved therein, besides the complexity of
turning theory into practical implementations, limit the use of the Bayesian learning para-
digm, preventing its widespread adoption across different fields and applications. This
self-contained survey engages and introduces readers to the principles and algorithms of
Bayesian Learning for Neural Networks. It provides an introduction to the topic from an
accessible, practical-algorithmic perspective. Upon providing a general introduction to
Bayesian Neural Networks, we discuss and present both standard and recent approaches
for Bayesian inference, with an emphasis on solutions relying on Variational Inference and
the use of Natural gradients. We also discuss the use of manifold optimization as a state-of-
the-art approach to Bayesian learning. We examine the characteristic properties of all the
discussed methods, and provide pseudo-codes for their implementation, paying attention to
practical aspects, such as the computation of the gradients.

Keywords  Bayesian learning · Bayesian neural networks · Bayesian inference

1  Introduction

Machine Learning (ML) techniques have been proven to be successful in many predic-
tion and classification tasks across natural language processing (Young et al. 2018),
computer vision (Krizhevsky et al. 2012), time-series (Längkvist et al. 2014) and
finance applications (Dixon et al. 2020), among the several others. The widespread of
ML methods in diverse domains is found due to their ability to scale and adapt to data,
and their flexibility in addressing a variety of problems while retaining high predic-
tive ability. Recently, Bayesian methods have gained considerable interest in ML as
an attractive alternative to the classical methods providing point estimations for their
inputs. Despite the numerous advantages that traditional ML methods offer, they are,

 *	 Martin Magris
	 magris@ece.au.dk

	 Alexandros Iosifidis
	 ai@ece.au.dk

1	 DIGIT, Department of Electrical and Computer Engineering, Aarhus University, Finlandsgade 22,
8200 Århus, Denmark

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-023-10443-1&domain=pdf

11774	 M. Magris, A. Iosifidis

1 3

broadly speaking, prone to overfitting, dimming their generalization capabilities and
performance on unseen data. Furthermore, an implicit consequence of the classical
point estimation and modeling setup is that it delivers models that are generally inca-
pable of addressing uncertainties. This inability is twofold, as it includes both the esti-
mation and prediction aspects. Indeed, as opposed to the typical practice of statistical
modeling and, e.g., econometrics methods, ML methods do not directly tackle aspects
related to the significance and uncertainties associated with the estimated parameters.
At the same time, predictions correspond to simple point estimates without reference to
the confidence levels that such estimates have. Whereas some models have been devel-
oped to, e.g., provide confidence intervals over the forecasts (e.g. Gal and Ghahramani
2016), it has been observed that such models are generally overconfident. To estimate
uncertainties implicitly embedded in ML models, Bayesian inference provides an imme-
diate remedy and stands out as the main approach.

Bayesian methods have gained considerable interest as an attractive alternative to point
estimation, especially for their ability to address uncertainty via posterior distribution, gen-
eralize while reducing overfitting (Hoeting et al. 1999), and for enabling sequential learn-
ing (Freitas et al. 2000) while retaining prior and past knowledge. Although Bayesian prin-
ciples have been proposed in ML decades ago (e.g. Mackay 1992, 1995; Lampinen and
Vehtari 2001), it has been only recently that fast and feasible methods boosted a growing
use of Bayesian methods in complex models, such as deep neural networks (Osawa et al.
2019; Khan et al. 2018a; Khan and Nielsen 2018).

The most challenging task in following the Bayesian paradigm is the computation of
the posterior. In the typical ML setting characterized by a high number of parameters and a
considerable size of data, traditional sampling methods are prohibitive, and alternative esti-
mation approaches such as Variational Inference (VI) have been shown to be suitable and
successful (Saul et al. 1996; Wainwright and Jordan 2008; Hoffman et al. 2013; Blei et al.
2017). Furthermore, recent research advocates the use of natural gradients for boosting the
optimum search and the training (Wierstra et al. 2014), enabling fast and accurate Bayesian
learning algorithms that are scalable and versatile.

Recent years witnessed enormous growth in the interest related to Bayesian ML meth-
odologies and several contributions in the field. This survey aims at summarizing the major
methodologies nowadays available, presenting them from an algorithmic, empirically-ori-
ented perspective. With this rationale, this paper aims to provide the reader with the basic
tools and concepts to understand the theory behind Bayesian Deep Learning (DL) and walk
through the implementation of the several Bayesian estimation methodologies available.
We should note that the focus of this paper is purely on Bayesian methods. Indeed there
are a number of network architectures that can resemble a Bayesian framework by, e.g.,
creating a distribution for the outputs, e.g., Deep Ensembles (Osband et al. 2018), Batch
Ensembles (Wen et al. 2020), Layer Ensembles (Oleksiienko and Iosifidis 2022), or Vari-
ational Neural Networks (Oleksiienko et al. 2022). These solutions, based on particular
network designs, are, however, not implicitly Bayesian and out of scope in our context.
Other surveys and tutorials do exist on the general topic (e.g. Jospin et al. 2022; Hecker-
man 2008, along with several lecture notes available online), yet the focus of this paper is
on algorithms and mainly devoted to VI methods. In fact, despite the wide number of VI
and non-VI methods published in the last decade, a comprehensive survey embracing and
discussing all of them (or perhaps the major ones) is missing, and non-experts will easily
find themselves lost in their pursuit to comprehend and different notions and processing
steps in different methodologies. By filling this gap, we aim to promote applications and
research in this area.

11775Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

1.1 � The Bayesian paradigm

The Bayesian paradigm in statistics is often opposed to the pure frequentist paradigm, a
major area of distinction being in hypothesis testing (Etz et al. 2018). The Bayesian para-
digm is based on two simple ideas. The first is that probability is a measure of belief in the
occurrence of events, rather than just some limit in the frequency of occurrence when the
number of samples goes toward infinity. The second is that prior beliefs influence posterior
beliefs (Jospin et al. 2022). The above two are summarized in the Bayes theorem, which we
now review. Let D denote the data and p(D|�) the likelihood of the data based on a postu-
lated model with � ∈ Θ a k-dimensional vector of model parameters. Let p(�) be the prior
distribution on � . The goal of Bayesian inference is the estimation of the posterior distribu-
tion (e.g., Gelman et al. 1995)

where p(D) is referred to as evidence or marginal likelihood, since
p(D) = ∫

Θ
p(�)p(D|�)d� . p(D) acts as a normalization constant for retrieving an actual

probability distribution for p(�|D) . In this light, as opposed to the frequentist approach,
it becomes clear that the unknown parameter � is treated as a random variable. The prior
probability p(�) , which intuitively expresses in probabilistic terms any knowledge about
the parameter before the data has been collected, is updated in the posterior probability
p(�|D) , mixturing prior knowledge and evidence supported by the data through the mod-
el’s likelihood. Bayesian inference is generally difficult due to the fact that the marginal
likelihood is often intractable and of unknown form. Indeed, only for a limited class of
models, where the prior is so-called conjugate to the likelihood, the calculation of the pos-
terior is analytically tractable. Standard examples are Normal likelihoods and prior (result-
ing in Normal posteriors) or Poisson likelihoods with Gamma priors (resulting in Nega-
tive Binomial posteriors). Yet, already for the simple linear regression example, Bayesian
derivation is rather tedious, and already for the logistic regression, closed-form solutions
are not generally available. It is clear that in complex models, such as deep neural networks
typically used in ML applications, Bayesian inference can be tackled neither analytically
nor numerically (consider that the integral in the marginal likelihood is multivariate, over
as many dimensions as the number of parameters).

Monte Carlo (MC) methods for sampling the posterior are certainly a possibility that
has been early explored and adopted. While it still remains a valid and appropriate method
for performing Bayesian inference in retractable settings, especially in high-dimensional
applications, the MC approach is challenging and may become infeasible, mainly because
of the need for an implicit high-dimensional sampling scheme, which is generally time-
consuming and computationally demanding. As an alternative approach, VI gained much
attention in recent years. VI turns the integration Bayesian problem in Eq. (1) into an opti-
mization problem. The idea behind VI is that of targeting an approximate form of the pos-
terior distribution, perhaps chosen within a family of well-behaved distributions, and find-
ing the corresponding parameter that optimizes a specific objective, i.e., that is optimal
under some criterion.

In the following subsection, we review the standard non-Bayesian approach for neu-
ral network parameter estimation (Sect. 1.2.1), we introduce Bayesian Neural Networks
(BNNs) (Sect. 1.4), and we provide some motivation for their use, also recalling some
literature about their applications (Sect. 1.3). After providing the reader an introduction

(1)p(�|D) =
p(D,�)

p(D)
=

p(�)p(D|�)
p(D)

,

11776	 M. Magris, A. Iosifidis

1 3

to standard and Bayesian neural networks, we introduce VI in Sect. 1.5, we describe the
standard framework used in Bayesian learning, and we discuss how the standard Stochas-
tic Gradient Descent (SGD) approach can be used for solving the optimization problem
therein (Sect. 1.5.1).

1.2 � Standard and Bayesian Neural Networks

A Bayesian Neural Network (BNN) is an Artificial Neural Network (ANN) trained with
Bayesian Inference (Jospin et al. 2022). In the following, we provide a quick overview
of ANNs and their typical estimation based on Backpropagation (Sect. 1.2.1). We then
describe what a Bayesian Neural Network (BNN) is (Sect. 1.4), provide motivations on
why to use a BNN, over a standard ANN (Sect. 1.3), and lastly introduce VI (Sect. 1.5).

1.2.1 � Artificial Neural Networks

For completeness, we review the general ingredients, principles, ideas, and standard termi-
nology behind ANN. A comprehensive and more detailed introduction to the topic is here
out of scope; the interested reader can e.g., consult the accessible book (Haykin 1998).

Neurons are elementary building blocks which can be thought of as processing units
that, when combined, constitute a neural network. Each neuron processes the information
presented to its input by applying a transformation to it. When affine neurons are used, the
transformation corresponds to computing the weighted sum of the inputs to the neuron
(received from the neurons that are connected to it or corresponding to the inputs to the
neural network) and generates a value, which is further introduced to a (usually nonlinear)
activation function to produce the neuron’s output (input to other neurons or the neural
network output). In order to account for the need of a shift to the value needed to produce
an activation response, a bias is also added as an input to the activation function, which is
commonly included in the weighted sum by augmenting the input to the neuron with an
additional input with a constant value of 1, associated with the corresponding bias term.
While activation functions squeezing their outputs to a pre-determined range of values,
like the sigmoid (with outputs in [0, 1]) or the tanh (with outputs in [−1, 1] ) functions, have
been widely used in the past, piece-wise linear functions, like the Rectified Linear Unit
(ReLU) or the parametric ReLU functions (He et al. 2015), are nowadays widely adopted
in building the hidden layers of neural networks. Linear and softmax activation functions
are commonly used in the output layer for regression and classification problems, respec-
tively. A common characteristic of activation functions used in neural networks is that they
are differentiable with respect to their parameters over the range of their inputs. The trans-
formation performed by an affine neuron is illustrated in Fig. 1.

Whenever the information flow between neurons has no feedback (i.e., neurons do not
process information resulting from their outputs), in the sense that information flows from
the input through the neurons producing the output of the network, the network is referred
to as feedforward. Neurons are arranged in layers, and a network formed by neurons in one
layer is called single layer network. When more than one layer forms a neural network,
layers are generally called hidden layers since they stand between the input and the output,
i.e., the “tangible” information, which consists of the input samples and their classification
targets/outputs. A feedforward neural network receiving as input a d-dimensional vector
and producing a 3-dimensional output is shown in Fig. 2.

11777Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

The most relevant feature of a neural network is its capacity of learning. This cor-
responds to the ability to improve its outputs (performance in classification) by tuning
the parameters (weights and biases) of its neurons. Learning algorithms of neural net-
works use a set of training data to iteratively update the parameters of a neural network
such that some error measure is decreased or some performance measure is increased
(see, e.g., Goodfellow et al. 2016). The data D consists of vectors Di = {yi, xi} , with
xi representing an input and yi the corresponding target for i = 1,… ,N . Let ŷi denote
the output of the network corresponding to the sample xi , that is ŷi = NN�

(
xi
)
 , with

NN�

(
xi
)
 denoting a Neural Network parametrized over � and evaluated at xi . An error

function E(D,�) is defined at a particular parameter � , which is used to guide the learn-
ing process. Several error functions have been used to this end, the most widely adopted
ones being the mean-squared error (suitable for regression problems) and the cross-
entropy (suitable for classification problems). The gradient of the error between the net-
work’s outputs ŷi and the targets yi over the entire data set (full-batch) or a subset of the
data (mini-batch) is commonly used to update the network parameter values through an
iterative optimization process, commonly a variant of the Backpropagation algorithm
(Rumelhart et al. 1986). Widely used iterative optimization methods are the Stochastic

Fig. 1   Representation of the operations within the jth neuron at layer is l. Connections between this neuron
and neurons in layer l − 1 are represented by lines corresponding to weights �l

⋅j
 . The inputs to the neuron

ol−1
⋅

 interact with the weights �l
⋅j
 , computing the weighted sum al

j
 . The so-called activation function g(⋅) is

applied to al
j
 leading to the output ol

j
 , which is sent to nodes at layer l + 1

Fig. 2   A feedforward network with multiple layers. Dots represent neurons across different layers (colors).
The d-dimensional input vector xi = [x1

i
,… , xd

i
]T is sequentially parsed to the output, from left to right, fol-

lowing the connections represented in grey which correspond to the weights of the network’s layers. (Color
figure online)

11778	 M. Magris, A. Iosifidis

1 3

Gradient Descent (SGD) (Robbins and Monro 1951), Root Mean Squared Propagation
(RMSProp) (Tieleman and Hinton 2012) and Adaptive Moment Estimation (ADAM)
(Kingma and Ba 2014).

While feedforward neural networks with affine neurons have been briefly described
above, a large variety of neural networks have been proposed and used for modeling dif-
ferent input–output data relationships. Such networks follow the main principles as those
described above (i.e., they are formed by layers of neurons, which perform transforma-
tions followed by differentiable activation functions), but they are realized by using dif-
ferent types of neurons and/or transformations. Examples include the Radial Basis Func-
tion (RBF) networks (Broomhead and Lowe 1988), which replace affine transformations
with distance-based transformations, Convolutional Neural Networks (Homma et al. 1987),
which receive a tensor input and use neurons performing convolution, Recurrent Neural
Networks (e.g., Long-Short Term Memory, LSTM Hochreiter and Schmidhuber 1997 and
Gated Recurrent Unit, GRU Cho et al. 2014 networks), which model sequences of their
inputs by using recurrent units, and specialized types of neural networks, such as the Tem-
poral-Augmented Bilinear Layer (TABL) network (Tran et al. 2019) based on bilinear map-
ping, and the Neural Bag-of-Features network (Passalis et al. 2020), extending the classical
Bag-of-Features model with a differentiable processing suitable to be used in combination
with other types of neural network layers.

1.3 � Motivation for adopting Bayesian Neural Networks

Bayesian neural networks are interesting tools under three perspectives: (i) theoretical, (ii)
methodological, and (iii) practical. In the following, we shall briefly discuss what we mean
by the above three interconnected perspectives.

From a theoretical perspective, BNNs allow for differentiating and quantifying two dif-
ferent sources of uncertainty, namely epistemic uncertainty, and aleatoric uncertainty (see,
e.g. Der Kiureghian and Ditlevsen 2009, from a ML perspective). Epistemic uncertainty
is the one referring to the lack of knowledge, and it is captured by p(�|D) . In light of the
Bayes theorem, epistemic uncertainty can be reduced with the use of additional data so
that the lack of knowledge is addressed as more data are collected. After the data is col-
lected, this results in the update of the prior belief (before the experiment is conducted)
to the posterior. Thus, the Bayesian perspective allows the mixing of expert knowledge
with experimental evidence. This is quite relevant in small-sample applications where the
amount of collected data is inappropriate for classical statistical tools and results to apply
(e.g., inference based on asymptotic theory), yet it nevertheless allows the update of the a
priori belief on the parameters, p(�) , into the posterior. On the other hand, the likelihood
term captures the aleatoric uncertainty, that is the intrinsic uncertainty naturally embedded
in the data, i.e., p(y|�) , in the Bayesian framework is clearly distinguished and separated
from the aleatoric one.

Methodologically, is remarkable the ability of Bayesian methods to learn from small data
and eventually converge to, e.g., non-Bayesian maximum likelihood estimates or, more gen-
erally, to agree with alternative frequentist methods. When the amount of the collected data
overwhelms the role of the prior in the likelihood-prior mixture, Bayesian methods can be
clearly seen as generalizations of standard non-Bayesian approaches. Within the Bayesian
methods family, certain research areas such as PAC-Bayes (Alquier 2021), Empirical Bayes
(Casella 1985) and Approximate Bayes Computations (Csilléry et al. 2010) deal with such
connections very tightly. In this regard, there are many examples in the statistics literature; we

11779Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

focus on the ML perspective. For instance, regularization, ensemble, meta-learning, Monte
Carlo dropout, etc., can all be understood as Bayesian methods, and, e.g., Variational Bayes
can be seen as standard linear regression (Salimans and Knowles 2013). More in general,
many ML methods can be seen as approximate Bayesian methods, whose approximate nature
makes them simpler and of practical use. Furthermore, as the learned posterior can be reused
and re-updated once new data become available, Bayesian learning methods are well-suited
for online learning (Opper and Winther 1999). In this regard, also the explicit use of the prior
in Bayesian formulations is aligned with the No-Free-Lunch Theorem (Wolpert 1996) whose
philosophical interpretation, among the others, is that any supervised algorithm implicitly
embeds and encodes some form of prior, establishing a tight connection with Bayesian theory
(Serafino 2013; Guedj and Pujol 2021).

From a practical perspective, the Bayesian approach implicitly allows for dealing with
uncertainties, both in the estimated parameters and in the predictions. For a practitioner,
this is by far the most relevant aspect in shifting from a standard ANN approach to BNNs.
Thus, with little surprise, Bayesian methods have been well-received in high-risk application
domains where quantifying uncertainties is of high importance. Examples can be found across
different fields, such as industrial applications (Vehtari and Lampinen 1999), medical applica-
tions (e.g. Chakraborty and Ghosh 2012; Kwon et al. 2020; Lisboa et al. 2003), finance (e.g.
Jang and Lee 2017; Sariev and Germano 2020; Magris et al. 2022a, b), fraud detection (e.g.
Viaene et al. 2005), engineering (e.g. Cai et al. 2018; Du et al. 2020; Goh et al. 2005), and
genetics (e.g. Ma and Wang 1999; Liang and Kelemen 2004; Waldmann 2018).

As widely recognized, the estimation of BNN is not a simple task due to the generally
non-conjugacy between the prior and the likelihood and the non-trivial computation of the
integral involved in the marginal likelihood. For this reason, application of BNNs is relatively
infrequent, and their use is not widespread across the different domains. As of now, apply-
ing Bayesian principles in a plug-and-play fashion is challenging for the general practitioner.
On top of that, several estimation approaches have been developed, and navigating through
them can indeed be confusing. In this survey, we collect and present parameter estimation and
inference methods for Bayesian DL at an accessible level to promote the use of the Bayesian
framework.

1.4 � Bayesian Neural Networks

From the description in Sect. 1.2.1, it can be seen that the goal of approximating a function
relating the input to the output in classical ANNs is treated under an entirely deterministic per-
spective. Switching towards a Bayesian perspective in mathematical terms is rather straight-
forward. In place of estimating the parameter vector � , BNNs target the estimation of the pos-
terior distribution p

(
�|Dx,Dy

)
 , that is (Jospin et al. 2022):

which stands as a simple application of the Bayes theorem. Here we assume, as it is usu-
ally the case, that the data D is composed of an input set Dx and the corresponding set of
outputs Dy . In general, Dx is a matrix of regressors, and Dy is either the vector or matrix
(depending on whether the nature of the output is univariate or not) of the variables that the
networks aim at modeling based on Dx . Alternatively but analogously, D can be thought as
the collection of all input–output pairs D = {yi, xi}

N
i=1

 , where N denotes the sample size,

(2)p
(
�|Dx,Dy

)
=

p
(
Dy|Dx,�

)
p(�)

∫
Θ
p
(
Dy|Dx,�

�
)
p
(
��
)
d��

,

11780	 M. Magris, A. Iosifidis

1 3

and xi and yi are the input and output vectors of observations for the ith sample, respec-
tively. Using this notation, Dx = {xi}

N
i=1

 and Dy = {yi}
N
i=1

.
While Eq. (2) provides a theoretical prescription for obtaining the posterior distri-

bution, in practice solving for the form of the posterior distribution and retrieving its
parameters is a very challenging task. The estimation of a BNN with MC techniques
and VI is discussed in the remainder of the review, here we continue the discussion
towards different aspects.

Equation (2) involves all the ingredients required for performing Bayesian infer-
ence on ML models, and specifically neural networks. In the first place, Eq. (2) involves
a likelihood function for the data Dy conditional on the observed sample Dx and the
parameter vector � . The forward pass parses the input into predictions via some parame-
ter values, such outputs (conditional on the data and the parameters) follow a prescribed
likelihood function. Intuitive examples are the Gaussian likelihood (for regression) and
the Binomial one (for classification). An underlying neural network is implicit in the
likelihood term p

(
Dy|Dx,�

)
 , that links the inputs to the outputs. In other words, as is

the case for ANNs, the first step in designing a BNN is that of identifying a suitable
neural network architecture (e.g., how many layers and of which kind and size) followed
by a reasonable assumption for the likelihood function.

A major difference between ANNs and BNNs is that the latter requires the introduc-
tion of the prior distribution over the model parameters. After all, a prior must be in
place for Bayesian inference to be performed; thus, priors are required in the BNN setup
(Jospin et al. 2022). This means that the practitioner needs to decide on the parametric
form of the prior over the parameters.

Example 1  Consider a BNN to model the variables Dy = {yi}
N
i=1

 where yi ∈ {0, 1} , based
on the matrix of covariates Dx . The likelihood is of a certain form and parametrized over a
neural network whose weights are denoted by � , i.e., NN�(⋅).

We can approach the above problem as a 2-class classification with yi ∈ [0, 1] , and
derive the likelihood from the Bernoulli distribution

where p̂i = NN�

(
xi
)
 denotes the output of the network for the ith sample, that is the prob-

ability that sample i belongs to class 1. The prior (on the network parameters) can be a
diagonal Gaussian p(�) = N(�|0, �I) , where 𝜏 > 0 is a scalar and I the identity matrix.

We can also approach the above problem as a regression to yi ∈ ℝ
d and derive the like-

lihood from the Multivariate Normal distribution

where ŷi = NN�

(
xi
)
 . Assuming that the covariance matrix Σ−1 is known, the prior on �

could be as well a diagonal Gaussian. If Σ is unknown, the prior could be the product of the
above Gaussian prior with, e.g., an Inverse Wishart prior distribution on Σ . In this case, the
goal of the Bayesian inference is that of estimating the joint posterior of (�,Σ).

(3)p
(
Dy|Dx,�

)
=

N∏
i=1

p̂
yi
i

(
1 − p̂i

)1−yi ,

(4)

p
(
Dy|Dx,�

)
=(2𝜋)−Nk∕2|det(Σ)|−N∕2

× exp

(
−
1

2

N∑
i=1

(
yi − ŷi

)⊤
Σ−1

(
yi − ŷi

))
,

11781Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

The inference goal is the posterior distribution. (i) If the problem has a form for which
the posterior can be solved analytically, we find p

(
�|DxDy

)
 to be of a known paramet-

ric form and identify the parameters characterizing it [standard Bayesian setting, so-called
conjugacy between the prior and the likelihood, (e.g., Gelman et al. 1995)]. (ii) In gen-
eral, we may proceed via MC sampling, in which case the estimation leads to a sample, of
arbitrary size, approximating the true posterior. The true posterior remains unknown in its
exact form, yet MC enables sampling from it and thus estimating an approximate represen-
tation (e.g., Gamerman and Lopes 2006), see Sect. 3. (iii) Alternatively, following VI, one
sets a certain chosen parametric form for the posterior and optimizes its parameters for a
certain objective function (e.g., Nakajima et al. 2019), see Sect. 1.5. While the actual pos-
terior remains unknown, in VI one seeks an approximation that is optimal in some sense of
optimization of a certain objective on the provided data.

Figure 3 provides an analogous representation of Fig. 2, now for a BNN. Opposed to
traditional ANNs, weights in BNNs are stochastic and represented with distributions. A
probability distribution over the weights is learned by updating the prior with the evidence
supported by the data. Even though Fig. 3 might give the opposite impression, the poste-
rior over the weights is, in general, a truly multivariate distribution where independence
among its dimensions generally does not hold.

While the above clarifies that the estimation goal is a distribution whose, e.g., variance
can be indicative of the level of confidence in the estimated parameters, the uncertainty
associated with the outputs and the generation of the model outputs themselves remains
unaddressed. The predictive distribution is defined as (e.g., Gelman et al. 1995)

As the posterior [Eq. (2)] is solved, the predictive distribution can also be recovered. Yet, in
practice, it is indirectly sampled. Indeed, an intuitive MC-related approach for approximat-
ing the predictive distribution is that of sampling Ns values from the posterior to create Ns
realizations of the neural network, each based on a different parameter sample, which are
used to provide predictions. This results in a collection of predictions that approximate the

(5)p
(
yi|xi,D

)
= ∫Θ

p
(
yi|xi,�

)
p(�|D)d�.

Fig. 3   A BNN with multiple layers. Connections correspond to random variables, and outputs here corre-
spond to a tri-variate distribution, whose marginals are represented in the rightmost boxes

11782	 M. Magris, A. Iosifidis

1 3

actual predictive distribution. In this way, it is relatively simple to recover (approximations
of) the predictive distribution from which, e.g., confidence intervals can be constructed. A
way to reduce the sample forecast to single values conveying relevant information is by,
e.g., using common (sampling) moment estimators (e.g., Casella and Berger 2021, Chap.
7.2.1). One may evaluate

to approximate the posterior mean through model averaging (across the different realiza-
tions �j, j = 1,… ,Ns and thus different outputs) or compute

with

to approximate the covariance matrix, which is indicative of the uncertainty associated
with the prediction. Ns corresponds to the number of samples generated from the posterior
and used to generate the prediction of the network NN�j

(⋅) receiving as input xi . In classifi-
cation, one may analogously approximate predictive densities for the joint probability of
the different classes and average such probabilities to summarize the average probabilities
of each class and implicitly the uncertainties associated with a certain class decision, which
is typically determined by the predicted class of maximum probability (e.g., Osawa et al.
2019; Magris et al. 2022a):

with C being the total number of classes and p̂i,c the predicted probability of class c for the
sample i.

1.5 � Variational Inference (VI)

Let D denote the data and p(D|�) the likelihood of the data based on a postulated model
with � ∈ Θ a k-dimensional vector of model parameters. Let p(�) be the prior distribution
on � . The goal of Bayesian inference is the posterior distribution

where p(D) is referred to as evidence or marginal likelihood, since p(D) = ∫
Θ
(D|�)p(�)d� .

p(�) acts as a normalization constant for retrieving an actual probability distribution for
p(�|D) . Bayesian inference is generally difficult due to the fact that the evidence is often
intractable and of unknown form. In high-dimensional applications, Monte Carlo meth-
ods for sampling the posterior turn challenging and infeasible, and VI is an attractive
alternative.

VI consists in an approximate method where the posterior distribution is approximated
by the so-called variational distribution (e.g., Blei et al. 2017; Nakajima et al. 2019;

(6)ŷi =
1

Ns

Ns∑
j=1

NN�j

(
xi
)
,

(7)Σ̂yi
=

1

Ns − 1

Ns∑
j=1

�j,i�
⊤
j,i
,

(8)�j,i = NN�j

(
xi
)
− ŷi,

(9)ŷi = argmaxc∈Cp̂i,c,

(10)p(�|D) =
p(D,�)

p(D)
=

p(D|�)p(�)
p(D)

,

11783Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

Tran et al. 2021b). The variational distribution is a probability density q(�) , belonging to
some tractable class of distributions Q such as, e.g., the Exponential family. VI thus turns
the Bayesian inference problem in Eq. (10) into that of finding the best approximation
q⋆(�) ∈ Q to p(�|D) by minimizing the Kullback–Leibler (KL) divergence from q(�) to
p(�|D) (Kullback and Leibler 1951),

By simple manipulations of the KL divergence definition, it can be shown that

Since log p(D) is a constant not depending on the model parameters, the KL minimization
problem is equivalent to the maximization problem of the so-called Lower Bound (LB) on
log p(D) (e.g., Nakajima et al. 2019),

For any random vector � and a function g(�) we denote by �f [g(�)] the expectation of g(�)
where � follows a probability distribution with density f, i.e. �f [g(�)] = ��∼f [g(�)] . To
make explicit the dependence of the LB on some vector of parameters � parametrizing the
variational posterior we write L(�) = L

(
q�
)
= �q�

[
log p(�) − log q� (�) + p(D|�)] . We

operate within the Fixed-Form Variational Inference (FFVI) framework, where the para-
metric form of the variational posterior is set (e.g., Tran et al. 2021b). That is, FFVI seeks
at finding the best q ≡ q� in the class Q of distributions indexed by a vector parameter �
that minimizes the LB L(�) . In this context, � is called variational parameter. A common
choice for Q is the Exponential family, and � is the corresponding natural parameter.

1.5.1 � Estimation with Stochastic Gradient Descent (SGD)

A straightforward approach to maximize L(�) is that of using a gradient-based method such
as Stochastic Gradient Descent (SGD), Adaptive Moment Estimation (ADAM) (Kingma
and Ba 2014), or Root Mean Squared Propagation (RMSProp) (Tieleman and Hinton
2012). The form of the basic SGD update is

where t denotes the iteration, �t a (possibly adaptive) step size, and ∇̂�L(�) a stochastic
estimate of ∇�L(�) . The derivative, considered with respect to � , is evaluated at � = � t.

Under a pure Gaussian variational assumption, it is instinctive to optimize the LB for
the mean vector �1 = � and variance-covariance matrix �2 = Σ . In the wider FFVI set-
ting with Q being the Exponential family, the LB is often optimized in terms of the natural
parameter � (Wainwright and Jordan 2008). The application of the SGD update based on
the standard gradient is problematic because it ignores the information geometry of the
distribution q� (Amari 1998), as it implicitly relies on the Euclidean distance to capture the
dissimilarity between two distributions in terms of the Euclidean norm ||� t − �||2 , which
can be a quite poor and misleading measure of dissimilarity (Khan and Nielsen 2018). By

(11)q⋆ = argminq∈Q KL(q||p(�|D)) = argminq∈Q ∫ q(�) log
q(�)

p(�|D)
d�.

(12)KL(q||p(�|D)) = −∫ q(�) log
p(D|�)p(�)

q(�)
d� + log p(D).

(13)L(q)∶=∫ q(�) log
p(D|�)p(�)

q(�)
d� = �q

[
log

p(D|�)p(�)
q(�)

]
.

(14)� t+1 = � t + 𝛽t
[
∇̂�L(�)

]|||�=� t ,

11784	 M. Magris, A. Iosifidis

1 3

replacing the Euclidean norm with the KL divergence, the SGD update results in the fol-
lowing natural gradient update:

The natural gradient update results in better step directions toward the optimum when opti-
mizing the distribution parameter. The natural gradient of L(�) is obtained by rescaling the
gradient ∇

�
L(�) by the inverse of the Fisher Information Matrix (FIM) I

�
,

where subscript in I−1
�

 remarks that the FIM is expressed in terms of the natural parameter
� . By replacing in the above ∇

�
L(�) with a stochastic estimate ∇̂

�
L(�) one obtains a sto-

chastic natural gradient update.

Example 2  Consider a BNN to model the targets yi , based on the covariates xi . The
likelihood, of a certain form, is parametrized over a neural network, whose weights are
denoted by � . The prior could be a Gaussian distribution with, e.g., zero-mean, diagonal
p(�) = N(�|0, I∕�) or not p(�) = N

(
�|0,Σ0

)
 . Q is the set of multivariate Gaussian distri-

butions, specified, e.g., in terms of the natural parameter �.
The objective is that of finding the corresponding variational parameter such that the LB

�q�

[
log p(�) − log q

�(�) + p(D|�)] is maximized. The update of the variational parameter
� follows a gradient-based method with natural gradients. The training terminates after the
LB L(�) does not improve for a certain number of iterations: the terminal � provides the
natural parameter of the variational posterior approximation minimizing the KL divergence
to the true posterior p(�|D).

2 � Sampling methods

2.1 � Monte Carlo Markov Chain (MCMC)

MCMC is a set of methods for sampling from a probability distribution. MCMCs have
numerous applications, and especially in Bayesian statistics are a fundamental tool.
The foundation of MCMC methods are Markov Chains, stochastic models describing a
sequence of events in which the probability of each event depends only on the state of the
previous one (Gagniuc 2017). By constructing a Markov Chain that has the desired dis-
tribution as its stationary distribution, towards which the sequence eventually converges,
one can obtain samples from it, i.e., one can sample any generic probability distribution,
including, e.g., a complex, perhaps multi-modal, Bayesian posterior. Early samples may
be autocorrelated and not representative of the target distribution, so that MCMC methods
generally require a burnout period before attaining the so-called stationary distribution. In
fact, while the construction of a Markov Chain converging to the desired distribution is
relatively simple, determining the number of steps to achieve such convergence with an
acceptable error is much more challenging and strongly dependent on the initial setup and
starting values. With burnout, the large collection of samples is practically subsampled by
discarding an initial fraction of draws (e.g., 20%) to obtain a collection of approximately
independent samples from the desired distribution. An accessible introduction to Markov

(15)�t+1 = �t + 𝛽t
[
∇̃

�
L(�)

]
.

(16)∇̃
�
L(�) = I−1

�
∇L

�(�),

11785Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

Chains can be found in Gagniuc (2017), for a dedicated monograph on MCMC methods
oriented toward Bayesian statistics and applications see, e.g., Gamerman and Lopes (2006).

Within the class of MCMC methods, some popular ones are not effective in large Bayes-
ian problems such as BNNs. For example, the plain Gibbs sampler (Geman and Geman
1984), despite its simplicity and desirable properties (Casella and George 1992), suffers
from residual autocorrelation between successive samples and becomes increasingly dif-
ficult as the dimensionality increases in multivariate distributions (e.g. Lynch 2007,
Chap. 4). We review the most widespread MC approaches in the context of performing
Bayesian learning for Neural Networks.

2.2 � Metropolis–Hastings (MH)

The MH algorithm (Metropolis et al. 1953; Hastings 1970) is particularly helpful in Bayes-
ian inference as it allows drawing samples from any probability distribution p, given that
a function f proportional up to a constant to p can be computed. This is particularly con-
venient as it allows to sample a Bayesian posterior by only evaluating f (�) = p(�|y)p(�) ,
completely excluding the normalization factor from the computations. The values of the
Markov Chain are sampled iteratively, with each value depending solely on the preceding
one: at each iteration, based on the current value, the algorithm picks a candidate value
� (proposed value), which is either accepted or rejected randomly with a probability that
depends on the current and earlier values. Upon acceptance, the proposed value is used for
the next iteration, otherwise is discarded, and the current value is used in the next iteration.
As the algorithm proceeds and more sample values are generated, the sampled-value distri-
bution more and more closely approximates the target distribution p.

A key ingredient in MH is the proposal density determining the drawing of the proposed
value at each iteration. This is formalized by an arbitrary probability density g

(
�⋆|⋅) ,

upon which depends the probability of drawing �⋆ given the previous value � . g is usually
assumed symmetric, and a common choice is provided by a Gaussian distribution centered
on � . Algorithm 1 summarizes the above steps.

The acceptance ratio � is representative of the likelihood of the proposed sample �⋆ over the
current one �t according to p. Indeed, 𝛼 = f

(
�⋆

)
∕f
(
�t

)
= p

(
�⋆

)
∕p

(
�t

)
 as f is proportional to

11786	 M. Magris, A. Iosifidis

1 3

p. A proposed sample value �⋆ that is more probable than �t ( 𝛼 > 1 ) is always accepted; oth-
erwise, it may be rejected with probability � . The algorithm thus moves around the sample
space, tending to stay in regions where p is of high density and, seldomly, in regions of low
density. The final collection of samples follows the distribution p. As the Markov chain even-
tually converges to the target distribution p, initial samples may be quite incompatible with
p, especially if the algorithm is initialized at a low-density region. Thus, it is customary to
discard a number B of samples and retain only the subsample

{
�t

}N

t=B
 . Note that by construc-

tion, successive samples of the Markov chain are correlated. Even though the chain eventually
converges to p nearby samples are correlated, causing a reduction of the effective sample size
(e.g., for ��∼p�

[�] the central limit theorem applies but, e.g., the limiting variance is inflated by
the non-zero autocorrelation in the chain).

An important feature of the MH algorithm is that it is applicable to high dimensions as
it does not suffer from the course of dimensionality problem, causing an increasing rejec-
tion rate as the number of dimensions increases. This makes MH suitable for large Bayes-
ian inference problems such as training BNNs.

2.3 � Hamiltonian Monte Carlo (HMC)

HMC generates efficient transitions by using the derivatives of the density function being
sampled by using approximate Hamiltonian dynamics, later corrected for performing an
MH-like acceptance step (Neal 2011).

HMC augments the target probability density p(�) by introducing an auxiliary momen-
tum variable � and generating draws from

Typically the auxiliary density is taken as a multivariate Gaussian distribution, independ-
ent of �:

Σ can be conveniently set to the identity matrix, restricted to a diagonal matrix, or esti-
mated from warm-up draws. The Hamiltonian is defined upon the joint density p(�,�):

The term T(�|�) = − log p(�|�) is usually called kinetic energy and V(�) = − log p(�) is
called potential energy. To generate transitions to a new state, first, a value for the momen-
tum is drawn independently from the current � ; then, Hamilton’s equations are adopted to
describe the evolution of the joint system (�,�) , i.e.:

(17)p(�,�) = p(�|�)p(�).

(18)� ∼ N(0,Σ).

(19)H(�,�) = − log p(�,�) = − log p(�|�) − log p(�)

(20)= T(�|�) + V(�).

(21)
d�

dt
= +

�H

��
= +

�T

��
,

(22)
d�

dt
= −

�H

��
= −

�T

��
−

�V

��
.

11787Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

By having the momentum density being independent of the target density, p(�|�) = p(�) ,
�T∕�� = 0 , the transitions are governed by the derivatives

Note that −�V∕�� is simply the gradient of the negative loglikelihood, which can be com-
puted using automatic differentiation. The main difficulty is the simulation of the Ham-
iltonian dynamics, for which there is a variety of approaches (see, e.g. Leimkuhler and
Reich 2005; Berry et al. 2015; Hoffman and Gelman 2014,). Yet, to solve the above sys-
tem of differential equations, a leapfrog integrator is generally used due to its simplicity
and volume-preservation and reversibility properties (Neal 2011). The leapfrog integrator
is a numerically stable integration algorithm specific to Hamiltonian systems. It discretizes
time using a step size � and alternates half-step momentum updates and full-step parameter
updates:

By repeating the above steps L times, a total of L� time is simulated, and the resulting state
is
(
𝜌⋆,�⋆

)
 . Note that both L and � are hyperparameters, and their tuning is often difficult

in practice. In this regard, see the Generalized HMC approach of Horowitz (1991) and
developments aimed at resolving the tuning of the leapfrog iterator (Fichtner et al. 2020;
Hoffman and Sountsov 2022).

Instead of generating a random momentum vector right away and sampling a new state (
𝜌⋆,�⋆

)
 , to account for numerical errors in the leapfrog integrator (an analysis in this regard

is found in Leimkuhler and Reich 2005), a M–H step is used. The probability of accepting the
proposal

(
𝜌⋆,�⋆

)
 by transitioning from (�,�) is

If the proposal
(
𝜌⋆,�⋆

)
 is accepted, the leapfrog integrator is initialized with a new

momentum draw and �⋆ ; otherwise, the same (�,�) parameters are returned to start the
next iteration. The HMC procedure is summarized in Algorithm 2. Besides the difficulty of
calibrating the hyperparameters L and � , HMC suffers from multimodality, yet the Hamil-
tonian boosts the local exploration for unimodal targets.

(23)
d�

dt
=

�H

��
,

(24)
d�

dt
= −

�V

��
.

(25)� = � −
�

2

�V

��
,

(26)� = −� + �Σ−1�,

(27)� = � −
�

2

�V

��
.

(28)min
(
1, e−H(𝜌,�)+H(𝜌⋆,�⋆)

)
.

11788	 M. Magris, A. Iosifidis

1 3

3 � Monte Carlo Dropout (MCD)

MCD is an indirect method for Bayesian inference. Dropout has been earlier proposed as a
regularization method for avoiding overfitting and improving neural networks’ predictive per-
formance (Srivastava et al. 2014). This is achieved by applying a multiplicative Bernoulli noise
on the neurons constituting the layers of the network. This corresponds to randomly switching
off some neurons at each training step. The dropout rate sets the probability pi of a neuron i
being switched off. Though Bernoulli noise is the most common choice, note that other types
of noise can be as well adopted (e.g. Shen et al. 2018). Neurons are randomly switched off
only in the training phase, and the very same network configuration in terms of the activated
and disabled neurons is used during backpropagation for computing gradients for weights’ cal-
ibration. On the other hand, all the neurons are left activated for predictions. Though it is intui-
tive that the above procedure implicitly connects to model averaging across different randomly
pruned architectures obtained from a certain DL network, the exact connection between MC
dropout and Bayesian inference follows a quite elaborated theory.

Gal and Ghahramani (2016) shows that a neural network of arbitrary depth and non-linearity
with dropout applied before every single layer is mathematically equivalent to an approximation
to the probabilistic deep Gaussian Process (GP) model (Damianou and Lawrence 2013), and
(Jakkala 2021) for a recent survey. That is, the dropout objective minimizes the KL divergence
between a certain approximate variational model and the deep GP. A treatment limited to multi-
layer perceptron networks is provided in Gal and Ghahramani (2015).

With ŷ being the output of a Neural Network with L layers whose loss function is E, for
each layer i = 1,… , L let Wi denote the corresponding weight matrix of dimension Ki × Ki−1 ,
and bi the bias vector of dimension Ki . Be yn the target for the input xn for n = 1,… ,N and
denote the input and output sets respectively with Dx and Dy . A typical optimization objective
includes a regularization term weighted by some decay parameter λ , that is

11789Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

Now consider a deep Gaussian process for modeling distributions over functions corre-
sponding to different network architectures. Assume its covariance is of the form

where �(⋅) is an element-wise non-linearity, and p(w) , p(b) distributions. Now let Wi be a
random matrix of size Ki × Ki−1 for each layer i, be � = {Wi}

L
i=1

 . The predictive distribu-
tion of the deep GP model can be expressed as

where p
(
�||Dx,Dy

)
 is the posterior distribution. p

(
yn|xn,�

)
 is determined by the likeli-

hood, while ŷn is a function of xn and �:

mi are vectors of size Ki for each GP layer. For the intractable posterior p
(
�|Dx,Dy

)
 , Gal

and Ghahramani (2016) uses the variational approximation q(�) defined as

where the collection of probabilities pi and matrices Mi , i = 1,… , L constitute the vari-
ational parameter. Thus, q stands as a distribution over (non-random) matrices whose col-
umns are randomly set to zero, and zi,j = 0 implies that the unit j in layer i − 1 is dropped as
an input to layer i. For minimizing the KL divergence form q to p

(
�|Dx,Dy

)
 , the objective

corresponds to

By use of Monte Carlo integration and some further approximations (see Gal and Ghah-
ramani 2016, for details), the objective reads

(29)Ldropout =
1

N

N∑
n=1

E
(
yn, ŷn

)
+ λ

L∑
i=1

(||Wi||22 + ||bi||22
)
.

(30)K(x, y) = ∫ p(w)p(b)𝜎
(
w⊤x + b

)
𝜎
(
w⊤y + b

)
dw db,

(31)p
(
yn|xn,Dx,Dy

)
= ∫ p

(
yn|xn,�

)
p
(
�|Dx,Dy

)
d�,

(32)p
(
yn|xn,�

)
= N

(
yn;ŷn, I∕𝜏

)
,

(33)ŷ ≡ ŷ
(
xn,�

)
=

√
1

KL

WL𝜎

(
…

√
1

K1

W2𝜎
(
W1xn +m1

)
…

)
.

(34)� =
{
Wi

}L

i=1
,

(35)Wi = Mi diag
([
zi,j

]Ki

j=1

)
,

(36)
zi,j ∼ Bernoulli

(
pi
)
,

for i = 1,… , L, j = 1,… ,Ki−1,

(37)−∫ q(�) log p
(
Dy|Dx,�

)
+ KL(q(�)||p(�)).

(38)L ∝
1

𝜏N

N∑
n=1

− log p
(
yn|xn, �̂n

)
+

L∑
i=1

(
pil

2

2𝜏N
||Mi||22 + l2

2𝜏N
||mi||22

)

11790	 M. Magris, A. Iosifidis

1 3

which, up to the constant 1

�N
 , is a feasible and unbiased MC estimator of Eq. (37)

where �̂ denotes a single MC draw from the posterior �̂n ∼ q(�) . By taking
E
(
yn, ŷn

)
= − log p

(
yn|xn, �̂n

)
∕𝜏 Eqs. (38) and (29) are equivalent for an appropri-

ate choice of the hyperparameters � and l. This shows that the minimization of the
loss in Eq. (29) with dropout is equivalent to minimizing the KL divergence from q to
p
(
�|Dx,Dy

)
 , thus performing VI on the deep Gaussian process.

With an SGD approach, one can maximize the above LB and estimate the variational
parameters from which one can simply obtain samples from the predictive distribution
q
(
y⋆|x⋆) , and approximate its mean by the naive MC estimator:

x⋆ denotes a new observation, not in Dx , for which the corresponding prediction is ŷ⋆ .
That is, the predictive mean is obtained by performing Ns forward passes through the net-
work with Bernoulli realizations {zs

1
,… , zs

L
}
Ns

s=1
 with zs

i
= [zs

i,j
]
Ki

j=1
 for s = 1,… ,Ns , giving

{Ws
1
,… ,Ws

L
}
Ns

s=1
 . Such average predictions are generally referred to as MC dropout esti-

mates. Similarly, by simple moment-matching, one can estimate the predictive variance
and higher-order statistics synthesizing the properties of q

(
y⋆|x⋆).

The predictive distribution is, in general, a multi-modal distribution resulting from superpos-
ing bi-modal distributions on each weight matrix column. This constitutes a drawback of MCD,
as well the implicit VI on a GP. Furthermore, the VI approximation in Eqs. (34)–(36) may be
adequate or not. It is clear that even though MCD is a possibility for VI in deep-learning models,
it is constrained by the very specific form in Eq. (34) of the variational posterior that implicitly
corresponds to performing VI on a deep GP. Furthermore, there is evidence that MCD does not
fully capture uncertainty associated with model predictions (Chan et al. 2020), and there are issues
related to the use of improper priors and singularity of the approximate posterior. The latter ones
are addressed and explored in Hron et al. (2018), suggesting the use of the so-called Quasi-KL
divergence as a remedy. Clearly, high dropout rates drive the convergence rate slow, expand the
network training time, and can cause important training data to be missed or given little relative
importance. However, compared to the traditional approach for neural networks, applying dropout
places no additional effort and is often of faster training than other VI methods. Furthermore, if
a network has been trained with dropout, only by including an additional form of regularization
acting as a prior turns the ANN into a BNN, without requiring re-estimation (Jospin et al. 2022).

4 � Bayes‑By‑Backprop (BBB)

A common approach for estimating the variational posterior over the networks’ weights is
the BBB method of Blundell et al. (2015), perhaps a breakthrough in probabilistic deep-
learning as a practical solution for Bayesian inference.

The key argument in Blundell et al. (2015) is the use of the local reparametrization
trick under which the derivative of an expectation can be expressed as the expectation
of a derivative. It introduces a random variable � having a probability density given by
q(�) and a deterministic transform t(�, �) such that w = t(�, �) . The main idea is that the
random variable � is a source of noise that does not depend on the variational distribu-
tion, and the weights w are sampled indirectly as a deterministic transformation of � ,
leading to a training algorithm that is analogous to that used in training regular net-
works. Indeed, by writing w as w = t(�, �) , in place of evaluating

(39)�q(y⋆|x⋆)
(
y⋆
)
≈

1

Ns

Ns∑
s=1

ŷ⋆
(
x⋆,�s =

{
Ws

1
,… ,Ws

L

})
.

11791Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

which can be complex and rather tedious, under the assumption q(�)d� = q(w|�)dw , Blun-
dell et al. (2015) prove that

With f (w,�) = log q(w|�) − log p(w)p(y|w) , the right side of Eqs. (41) and (42) provide
an alternative approach for the estimation of the gradients of the cost function with respect
to the model parameters.

In fact, upon sampling � and obtaining w , log q(w|�) − log p(w)p(y|w)
is a stochastic approximation of the VI objective
KL

[
q(w|�)||p(w|D)

]
= �q(w|�)

[
log q(w|�) − log p(w)p(D|w)] to be minimized.

The sampled value � ∼ q(�) , resampled at each iteration, is independent of the variational
parameters, while w is not directly sampled but here it is a deterministic function of � . Given
� , all the quantities in the square bracket of Eq. (42) are non-stochastic, enabling the use of
backpropagation. A single draw for � approximates the right side of Eq. (41), and suffices
for providing an unbiased stochastic gradient estimation of the relevant gradient on the left
side. Equation (41) makes explicit the possibility of using automatic differentiation to com-
pute the gradient of f with respect to the parameter � . By using a single sampled draw � for
approximating the expectation on the right side of Eq. (41), the only parameter in the loss
is � , and the use of backpropagation for evaluating the gradients is straightforward. Equa-
tion (42) instead employs backpropagation in the “usual” sense, involving gradients of the
cost with respect to the network parameters w , further rescaled by �w∕�� and shifted by
�f (w,�)∕�� . Equation (42) concerns the usual backpropagation computations in terms of the
network’s weights, the specific form of the partial derivative with respect to � that the choice
of t implies, while the last term depends on the chosen form of the variational posterior only
[ w is here not seen as a function of � , as the form of Eq. (42) results from applying the multi-
variable chain rule]. This results in a general framework for learning the posterior distribution
over the network’s weights. The following Algorithm 3 summarizes the BBB approach.

Algorithm 3 is initialized by preliminary setting the initial values of the variational param-
eter � and, of course, by specifying the form of the prior and the posterior along with the form

(40)
�

��
�q(w|�)

[
f (w,�)

]
=

�

�� ∫ q(�|w)f (w,�)dw,

(41)
�

��
�q(w|�)

[
f (w,�)

]
= �q(�)

[
�

��
f (t(�, �),�)

]

(42)= �q(�)

[
�f (w,�)

�w

�w

��
+

�f (w,�)

��

]
.

11792	 M. Magris, A. Iosifidis

1 3

of the likelihood involving the outputs of the forward pass obtained from the specified underly-
ing network structure. The update is very similar to the one employed in standard non-Bayes-
ian settings, where standard optimizers such as ADAM are applicable. It is the applicability
of standard optimization algorithms and the use of classic backpropagation that constitute the
major breakthrough element in BBB, making it a feasible approach for Bayesian learning.

To make the description more explicit and aligned with the following sections, we pre-
sent the case where the variational posterior is a diagonal Gaussian with mean � and covar-
iance matrix �2I . In this case, the transform t takes the simple and convenient form

As � is required to be always non-negative, Blundell et al. (2015) adopts the reparametriza-
tion � = log (1 + exp (�)) and the variational posterior parameter � = (�, �) . In this case,
Algorithm 4 summarizes the BBB approach.

As for Algorithm 4, one may backpropagate the gradients of f w.r.t. � and � directly.
Alternatively, as for Algorithm 3, one may use backpropagation for computing the gradi-
ents �f (w,�)∕�w , which are furthermore shared across the updates for � and � , or, if pre-
ferred, adopt a general automatic differentiation setup, if, e.g., the form of the variational
likelihood does not allow for a simple analytic form of the gradient.

5 � Exponential family and natural gradients

Assume q
�(�) belongs to an exponential family distribution. Its probability density func-

tion is parametrized as

where � ∈ Ω is the natural parameter, �(�) the sufficient statistic.

A(�) = log∫ h(�) exp(�(�)⊤�)d� log∫ h(�) exp(�(�)⊤�)d� is the log-partition function, deter-
mined upon the measure � , � and the function h. The natural parameter space is defined as
Ω = {� ∈ ℝ

d ∶ A(�) < +∞} . When Ω is a non-empty open set, the exponential family is
referred to as regular. Furthermore, if there are no linear constraints among the components

(43)w = t(�,w) = � + ��.

(44)q
�(�) = h(�) exp

(
𝜙(�)⊤� − A(�)

)
,

11793Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

of � and �(�) , the exponential family in Eq. (44) is said of minimal representation. Non-
minimal families can always be reduced to minimal families through a suitable transforma-
tion and reparametrization, leading to a unique parameter vector � associated with each
distribution (Wainwright and Jordan 2008). The mean (or expectation) parameter m ∈ M
is defined as a function of � , m(�) = �q�

[�(�)] = ∇
�
A(�) . Moreover, for the Fisher Infor-

mation Matrix I
�
= −�q�

[
∇2

�
log q

�(�)
]
 it holds that I

�
= ∇2

�
A(�) = ∇

�
m. Under minimal

representation, A(�) is convex, thus the mapping ∇
�
A = m ∶ Ω → M is one-to-one, and I

�

is positive definite and invertible (Nielsen and Garcia 2009). M denotes the set of realiz-
able mean parameters. Therefore, under minimal representation we can express � in terms
of m and thus L(�) in terms of L(m) and vice versa (Khan and Nielsen 2018).

Example 3  (The Gaussian distribution as an exponential-family member) The multivariate
Gaussian distribution N(�,Σ) with k-dimensional mean vector � and covariance matrix Σ
can be seen as a member of the exponential family [Eq. (44)]. Its density reads

where

and A(�) = −
1

4
�
⊤

1
�
−1
2
�1 −

1

2
log

(
−2�2

)
 . On the other hand, � =

[
�⊤
1
, �⊤

2

]⊤ with
�1 = � = m1 and �2 = Σ = m2 − ��⊤ , constitutes the common parametrization of the mul-
tivariate Gaussian distribution in terms of its mean and variance–covariance matrix.

By applying the chain rule, ∇
�
L = ∇

�
m∇mL = ∇

�

(
∇

�
A
)
L = ∇2

�
A(�)L = I

�
∇mL ,

from which

The quantity ∇̃
�
L is referred to as the natural gradient of L with respect to λ and it is

obtained by pre-multiplying the Euclidean gradient by the inverse of the FIM (parametrized
in terms of � ). In general, L can be a generic function whose derivative with respect to a
parameter � (not necessarily the natural parameter) exists. The standard reference for natu-
ral gradients computation is the seminal work of Amari (1998). Within a SGD context,
the application of simple Euclidean gradients is problematic as it ignores the information
geometry of the distribution q

�
 . Euclidean gradients implicitly rely on the Euclidean norm

to capture the dissimilarity between two distributions which can be a quite poor dissimilar-
ity measure (Khan and Nielsen 2018). In fact, the SGD update can be obtained by writing

and setting to zero its derivative. Although the above implies that � moves in the direction
of the gradient, it remains close to the previous �t in terms of Euclidean distance. As � is a
parameter of a distribution, the adoption of the Euclidean measure is misleading. An Expo-
nential family distribution induces a Riemannian manifold with a metric defined by the FIM
(Khan and Nielsen 2018). By replacing the Euclidean metric with the Riemannian one,

(45)q
�(�) = (2𝜋)k∕2 exp

{
𝜙(�)⊤� −

1

2
�⊤Σ−1� −

1

2
log |Σ|

}
,

(46)𝜙(�) =

[
𝜃

𝜃𝜃⊤

]
, � =

[
�1

�2

]
=

[
Σ−1�

−
1

2
Σ−1

]
, m =

[
m1

m2

]
=

[
�

Σ + ��⊤

]
,

(47)∇̃
�
L = I−1

�
∇

�
L = ∇mL.

(48)�t+1 = argmin
�
�
⊤
[
∇

�
L
(
�t

)]
−

1

2𝛽
||� − �t||2

11794	 M. Magris, A. Iosifidis

1 3

the resulting update is indeed expressed in terms of the natural parameter:

generally referred to as natural gradient update. More in general, one could replace the
Euclidean distance with a proximity function such as the Bregman divergence and obtain
richer classes of SGD-like updates, like mirror descent (which can be interpreted as natu-
ral gradient descent), see, e.g., Nielsen (2020). A very interesting point on the limitations
of plain gradient search is made in Wierstra et al. (2014) concerning the impossibility of
locating, even in a one-dimensional case, a quadratic optimum. The example provided
therein involves the Gaussian distribution, pivotal in VI. For an one-dimensional Gauss-
ian distribution with mean � and standard deviation � , the gradient of L with respect to the
parameters � and � lead to the following SGD updates:

For the updates to converge and the optimum to be precisely located, � must decrease (i.e.,
the distribution shrinks around � ). The fact that � appears in the denominator of both the
updates is problematic: as it decreases, the variance of the updates increases as Δ� ∝

1

�
 and

Δ� ∝
1

�
 . The updates become increasingly unstable, and a large overshooting update makes

the search start all over again rather than converging. Increased population size and small
learning rates cannot avoid the problem. The choice of the starting value is problematic,
too: starting with 𝜎 ≫ 1 makes the updates minuscule; conversely, 𝜎 ≪ 1 makes them huge
and unstable. Wierstra et al. (2014) discusses how the use of natural gradients fixes this
issue that, e.g., may arise with BBVI.

Algorithm 5 summarizes the generic scheme upon the implementation of a natural
gradient update. In Algorithm 5, � denotes a generic variational parameter, e.g., the natu-
ral parameter or not, while methods for evaluating ∇�L , I  , and efficiently computing its
inverse I−1 are discussed in the following sections.

6 � Black‑Box methods

A major issue in VI is that it heavily relies upon model-specific computations, on which a gen-
eralized, ready-to-use, and plug-and-play optimizer is difficult to design. Black-Box methods
aim at providing solutions that can be immediately applied to a wide class of models with little

(49)�t+1 = argmin
�
�
⊤
[
∇

�
L
(
�t

)]
−

1

2𝛽

(
� − �t

)⊤
I
�

(
� − �t

)

(50)�t+1 = �t + �I−1
�
∇

�
L
(
�t

)
,

(51)� = � + �∇�L = � + �
z − �

�2
,

(52)� = � + �∇�L =
(z − �)2 − �2

�3
.

11795Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

effort. In the first instance, the ubiquitous use of model’s gradients that traditional ML and
VI approaches rely upon struggles with this principle. As Ranganath et al. (2014) describes,
for a specific class of models, where conditional distributions have a convenient form and a
suitable variational family exists, VI optimization can be carried out using closed-form coordi-
nate ascent methods (Ghahramani and Beal 2000). In general, there is no close-form solution
resulting in model-specific algorithms (Jaakkola and Jordan 1997; Blei and Lafferty 2007;
Braun and McAuliffe 2010) or generic algorithms that involve model-specific computations
(Knowles and Minka 2011; Paisley et al. 2012). As a consequence model assumptions and
model-specific functional forms play a central role, making VI practical. The general idea
of Black-Box VI is that of rewriting the gradient of the LB objective as the expectation of
an easy-to-compute function of the latent and observed variables. The expectation is taken
with respect to the variational distribution, and the gradient is estimated by using stochastic
samples from it in a MC fashion. Such stochastic gradients are used to update the variational
parameters following an SGD optimization approach. Within this framework, the end-user is
required to develop functions only for evaluating the model log-likelihood, while the remain-
ing calculations are easily implemented in libraries of general use applicable to several classes
of models. Black-Box VI falls within stochastic optimization where the optimization objec-
tive is the maximization of the LB using noisy, unbiased, estimates of its gradient. As such,
variance reduction methods have a major impact on stability and convergence, among them
control variates are the most effective and of immediate implementation.

6.1 � Black‑Box Variational Inference (BBVI)

BBVI optimizes the LB with stochastic optimization, through an unbiased estimator of its gra-
dients obtained from samples from the variational posterior (Ranganath et al. 2014). By using
the LB definition and the log-derivative trick on the gradient of the LB with respect to the
variational parameter, ∇�L can be expressed as

where � denotes the parameter of the variational distribution q� . The above expression
rewrites the gradient as an expectation of a quantity that does not involve the model’s gra-
dients but only those of log q(w|�) . A naive noisy unbiased estimate of the gradient of the
LB is immediate to obtain with Ns samples obtained from the variational distribution,

where �s ∼ q(�|�) . The above MC estimator enables the immediate and feasible com-
putation of the LB gradients as, given a sample �s , log q

(
�s|�

)
 is a quantity that solely

depends on the form of the variational posterior and can be of simple form. On the
other hand, log p(D,�) − log q(�|�) is immediate to compute as it only requires evalu-
ating the logarithm of the joint p

(
D,�s

)
 and the density of the variational distribu-

tion in �s . This process is summarized in Algorithm 6. If sensible, one may assume that
log p(D,�) = log p(D|�)p(�) but this is not explicitly required as of Ranganath et al.
(2014): there are no assumptions on the form of the model; the approach only requires the
gradient of the variational likelihood with respect to the variational parameters to be feasi-
ble to compute.

(53)∇�L = �q

[
∇� log q(�|�)(log p(D,�) − log q(�|�))],

(54)∇�L =
1

Ns

Ns∑
s=1

∇� log q
(
�s|�

)[
log p

(
D,�s

)
− log q

(
�s|�

)]
,

11796	 M. Magris, A. Iosifidis

1 3

In Ranganath et al. (2014), the authors employ an adaptive learning rate satisfying the
Robbins Monroe conditions

∑
t �t = ∞ and

∑
t 𝛽

2
t
< ∞ , and for controlling the variance of

the stochastic gradient estimator adopt Rao–Blackwellization (Rao 1945; Blackwell 1947;
Robert and Roberts 2021) and use the of control variates (e.g. Lemieux 2014; Robert et al.
1999, Chap. 3) within Algorithm 6.

6.2 � Natural‑Gradient Black‑Box Variational Inference (NG‑BBVI)

We shall review the approach of Trusheim et al. (2018) boosting BBVI with natural gra-
dients, referred to as Natural-Gradient Black-Box Variational Inference (NG-BBVI) . The
FIM corresponds to the outer product of the score function with itself (see Sect. 5) and is
furthermore equal to the second derivative of the KL divergence to the approximate poste-
rior q(x|�):

For the practical implementation, Trusheim et al. (2018) uses a mean-field restriction on
the variational model, i.e. the joint is factorized into the product of K independent terms,
where each term is in general a multivariate distribution:

The above restriction is also suggested by Ranganath et al. (2014) in order to allow for
Rao–Blackwellization (Robert and Roberts 2021) as a tool to be used in conjunction with
control variates (e.g. Lemieux 2014, Chap. 3) for reducing the variance of the stochastic
gradient estimator. Under the above assumption, the FIM simplifies to:

which significantly simplifies the general form q� (�) while implicitly enabling Rao–Black-
wellization with the variable-wise local expectations and thus reducing the variance of the
FIM, estimated via a Monte Carlo approach. In fact, besides a few variational models it is
difficult to compute the above expectations analytically so Trusheim et al. (2018) adopts
the following naive MC estimator:

(55)F(�) =
d2KL

[
q� (�)||q�̂ (�)

]

(d�)2

|||||�̂=�
= �q�

[
∇� log q� (�)∇� log q� (�)

⊤
]
.

(56)q� (�) =

K∏
k=1

q�k

(
�k

)
.

(57)I� =

{
�qi(�|�)

[
∇� i

log q� i

(
�i

)
∇� i

log q� i

(
�i

)
∇⊤

� i

]
, i = j,

0, i ≠ j,

11797Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

with �(s)

i
∼ q� i

(
�i

)
 denoting a sample from the ith factor of the posterior mean-field

approximation. Note that the above does not introduce additional computations as the score
of the samples �(s)

i
 is anyway required in the computation of the LB gradient. Furthermore,

instead of using a plain SGD-like update, Trusheim et al. (2018) adopts an ADAM-like
version, boosted with natural gradient computations. Algorithm 7 summarizes the NG-
BBVI approach.

The NG-BBVI implementation is slightly more complex than the original BBVI, see
Algorithm 7. The MC computation involves both the black-box stochastic gradient estima-
tion and the estimation of the optimal control variate coefficient a⋆ . Thus the posterior
samples are split into two subsets. The first one X aimed at estimating a⋆ , and the second
one Y at implementing the MC estimators, independently from X, and with the control vari-
ate correction term a⋆ earlier computed. The computation of the FIM follows immediately

(58)Î� =

⎧
⎪⎨⎪⎩

1

Ns

∑Ns

s=1

�
∇� i

log q� i

�
�
(s)

i

�
∇� i

log q� i

�
�
(s)

i

�⊤
�
, i = j,

0, i ≠ j,

11798	 M. Magris, A. Iosifidis

1 3

from Eq. (55), and the computation of ∇�k
L is analogous to BBVI. The last four lines

of Algorithm 7 correspond to the implementation of the ADAM update, operators are
intended to be applied element-wise, �1 , �2 (exponential decay rates) are typical ADAM
hyperparameters, 𝜀 > 0 is a small offset preventing divisions by zero.

Trusheim et al. (2018) differs from BBVI by the use of natural gradients (and the adop-
tion of the ADAM-like update, though applicable to BBVI as well). On the other hand, the
use of control variates and Rao–Blackwellization for variance reduction is found in both
BBVI and NG-BBVI. As the natural gradient approach is preferable for the reasons dis-
cussed in Sect. 5, NG-BBVI is favored over BBVI.

The use of the black-box framework for computing the gradients of the LB along the MC
estimator for the FIM renders NG-BBVI of general applicability and not constrained to a
certain form of the variational posterior. Yet the MC-computations of the FIM are implicitly
approximate, whereas for certain distributions the FIM computation can be carried out ana-
lytically and in an exact form. NG-BBVI furthermore requires the inversion of the FIM, which
is a computational bottleneck. The following VON (Khan and Nielsen 2018), VADAM (Khan
et al. 2018a) and VOGN (Khan et al. 2018a; Osawa et al. 2019) methods indeed fix this issue:
assuming a variational posterior within the exponential distribution family, natural gradients
are enabled without the direct computation of the FIM and its inverse.

7 � Natural gradient methods for Exponential‑family variational
distributions

In the following subsections, we review methods based on Natural gradients and Exponential-
family variational approximations. The following techniques are built on natural parameter
updates in the natural parameter space and rely on simplified but exact FIM computations
based on the natural/expectation parameter duality [Eq. (47)].

7.1 � Exact gradient computations for the exponential family

The computation of the FIM required in the natural gradient computation is, in general,
not trivial. In a generic perspective, not bound to a specific variational form, the sampling
approach for the FIM estimation of Trusheim et al. (2018) is feasible. Yet for certain distribu-
tions, namely for those in the Exponential family class, natural gradients can be computed in
an exact form with an analytical solution which furthermore does not involve the computation
of the FIM.

The theoretic foundation of such a viable approach is provided in Khan and Nielsen (2018)
and traces back to Eq. (47). For an Exponential family of minimal representation, the natural
gradient with respect to the natural parameter � is equal to the gradient with respect to the
expectation parameter m . This is a powerful result that allows the computation of the natural
gradient as an Euclidean gradient, avoiding the computation of the FIM and its inversion.

This section presents some baseline methods using the above duality for the natural gra-
dient computation. Differently from BBB, BBVI, and NG-BBVI the following approaches
explicitly deal with variational distributions members of the Exponential family with a focus
on updating their natural parameter:

(59)�t+1 = �t + 𝛽∇̃
�
L
(
�t

)

11799Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

From the above updates on natural parameters, update rules for alternative and perhaps a
more usual parametrization can often be obtained, see e.g. Sect. 7.2.

7.2 � Natural‑Gradient Variational Inference (NGVI)

NGVI constitutes a baseline methodology for natural gradient computation under a Gauss-
ian variational distribution, upon which several other approaches have been developed.

The natural gradients in the natural parameter space can be computed under the
expectation parametrization as Euclidean gradients. Khan and Nielsen (2018) shows
that such gradients are of simple form and correspond to

By using the definition of natural gradients in terms of � and Σ , the update in Eq. (60) for
the natural parameter �1 = � , �2 = −

1

2
Σ−1 rewrites as

The above two constitute the NGVI update rules for updating the mean � and covariance
matrix Σ of the variational posterior with a natural gradient update, that however does not
involve the computation of the FIM as it relies on Euclidean gradients.

For a diagonal covariance matrix Σ = diag
(
�2
)
 , the corresponding NGVI updates

read

With respect to the NGVI update two points are important to stress out. First, at each itera-
tion, the update for � implicitly requires Σt+1 . This means that the update for � follows that
for Σ−1 and that � readily uses the one-step ahead updated information on Σ . Though it
may appear counter-intuitive, Lyu and Tsang (2021) and Magris et al. (2022b) show that
this update is not optimal (in the terms therein discussed), while an update of the form
�t+1 = �t + �Σt

[
∇�L

]
 would be. Also, note that the update for � involves Σt+1 and not Σ−1

t+1
 ,

(60)= �t + �I−1
�t
∇

�t
L
(
�t

)
= �t + �∇mL

(
mt

)
.

(61)∇̃
�1
L = ∇m1

L = ∇�L − 2
[
∇ΣL

]
�,

(62)∇̃
�2
L = ∇m2

L = ∇ΣL.

(63)Σ−1
t+1

= Σ−1
t
∇�L − 2�

[
∇ΣL

]
�,

(64)�t+1 = Σt+1

[
Σ−1
t
� + �

(
∇�L − 2

[
∇ΣL

]
�
)]

(65)= Σt+1

[(
Σ−1
t

− 2�
[
∇ΣL

]
�
)
+ �∇�L

]

(66)= Σt+1

[
Σ−1
t+1

�t + �∇�L
]

(67)= �t + �Σt+1

[
∇�L

]
.

(68)�−2
t+1

= �−2
t

− 2�
[
∇�2Lt

]
,

(69)�t+1 = �t + 𝛽𝜎2
t+1

⊙
[
∇�Lt

]
.

11800	 M. Magris, A. Iosifidis

1 3

meaning that in the NGVI an online inversion of Σ−1 is implicitly required at each iteration.
Clearly, for the diagonal case, this is trivial and effortless to obtain. Second, in the full-
covariance case, there is no guarantee that the updates guarantee Σ to be a positive-definite
covariance matrix. This issue is tackled in Sect. 8. For the diagonal case, the constraint on
Σ results in guaranteeing the positivity of the entries in the diagonal. This can be achieved
via a proper reparametrization, e.g. BBVI updates � where � = log (1 + exp (�)) , or (e.g.
Tan 2021) updates the Cholesky factor. Alternatively, the learning rate can be adapted to
guarantee that the step size does not drive the updates �−2 negative (e.g., Khan and Nielsen
2018; Magris et al. 2022c).

7.3 � Variational Online Newton (VON)

A computational burden in NGVI is that the gradients of the LB are still required: VON
develops on NGVI but does not require the gradients of the variational objective. Further-
more, it only involves the gradient and Hessian of the model log-likelihood which can be
computed with usual backpropagation.

Khan et al. (2018b) express the lower bound as

where N is the sample size, and f (�) = −
1

N

∑N

i=1
log p

�
Di��

�
 is negative log-likelihood of

the model, i.e. standard MLE objective, where Di denotes a data example, i.e. Di =
(
yi, xi

)
 .

VON uses the theoretical results of Opper and Archambeau (2009) and Rezende et al.
(2014) to express the gradients of the LB objective in terms of gradient and Hessian of
f (�) . By linearity of the expectation, the gradients of the L consist of the sum of the gradi-
ents of three expectation terms, in particular:

where g = ∇�f (�) and H(�) = ∇2
��
f (�) denote the gradient and Hessian of the MLE objec-

tive, respectively. With these relations the gradients of the LB objective write

and

By using these gradients in the NGVI update, one obtains

(70)L = �q�

[
−Nf (�) + log p(�) − log q(�)

]
,

(71)∇��q

[
f (�)

]
= �q

[
∇�f (�)

]
= �q

[
g(�)

]
,

(72)∇Σ�1

[
f (�)

]
=

1

2
�q

[
∇2

��
f (�)

]
=

1

2
�q[H(�)],

(73)∇�L = ∇��q

[
−Nf (�) + log p(�) − log q(�)

]

(74)= −
(
�q

[
N∇�f (�)

]
+ 0 + ��

)

(75)= −
(
�q

[
Ng(�)

]
+ ��

)

∇ΣL =
1

2
�q

[
−N∇2

��
f (�)

]
+ 0 −

1

2
�I +

1

2
Σ−1

=
1

2
�q[−NH(�)] −

1

2
�I +

1

2
Σ−1.

11801Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

where the expectations can be again evaluated via MC sampling. By using a single draw
�t ∼ N

(
�|�t,Σt

)
 , the feasible update reads

To obtain a form for the update that resembles Newton’s method where the scaling matrix
is estimated online, Khan et al. (2018b) defines St =

(
Σ−1
t

− �I
)
∕N and conversely

Σt =
(
N
(
St + �I∕N

))−1 , and write the final form of the VON update

Similarly, for a diagonal covariance matrix (thus under a mean-field assumption), with
𝜎2
t
=
[
N
(
st +

�

N

)]−1
=
[
N
(
st + �̃

)]−1 and �t ∼ N
(
�|�t, diag

(
�2
t

))

where the division is intended to be element-wise. Algorithm 8 summarizes the main ele-
ments of VON implementation.

In a mini-batch setting for estimating the stochastic gradient, with M denoting a mini-batch
containing M samples, the stochastic estimates

(76)�t+1 = �t − �Σt+1

[
�q

[
Ng(�)

]
+ ��

]
,

(77)Σ−1
t+1

= (1 − �)Σ−1
t

+ �
(
�q[NH(�)] + �I

)
,

(78)�t+1 = �t − �Σt+1

[
Ng

(
�t

)
+ ��

]
,

(79)Σ−1
t+1

= (1 − �)Σ−1
t

+ �
(
NH

(
�t

)
+ �I

)
.

(80)�t+1 = �t − �

(
St+1 +

�

N
I
)−1(

g
(
�t

)
+

�

N
�t

)
,

(81)St+1 = (1 − �)St + �H
(
�t

)
.

(82)�t+1 = �t − �

(
g
(
�t

)
+

�

N
�t

)
∕
(
st+1 +

�

N

)
,

(83)st+1 = (1 − �)st + � diag
(
H
(
�t

))
,

11802	 M. Magris, A. Iosifidis

1 3

enable the practical implementation of the VON update by replacing g and H. To make
this statement clear, think of f (�) as the typical negative log-likelihood of a sample (as it
is an average across samples), then g is the typical gradient for a sample in � and, analo-
gously, H is interpreted as the typical (average) value of the Hessian evaluated in � , result-
ing when using a single data point. Stochastic gradient estimation estimates g by using
a single observation Di picked at random as an unbiased estimate of the actual gradient
of f (�) = −

1

N

∑N

i=1
log p

�
Di��

�
 , g =

1

N

∑n

i=1
∇�

�
− log p

�
Di��

��
 , which would require the

parsing of the entire sample. Analogously, one constructs a stochastic estimate of the Hes-
sian with one or M observations (the higher M the lower the variance of the estimator,
which is in any case unbiased).

7.4 � Variational ADAM (VADAM)

The principle of Variational ADAM (VADAM) is that of augmenting the natural gradient
update by incorporating a momentum factor, i.e.,

which slightly extends the form of the update in Eq. (59).
Under a Gaussian variational q, Khan et al. (2018b) expresses the momentum update as

a VON update with momentum and recovers a variational version of an RMSProp update,
to obtain the following updates

where 𝛽t = 𝛽
1−𝛾1

1−𝛾 t
1

 , 𝛾̄t = 𝛾1
(
1 − 𝛾 t−1

1

)(
1 − 𝛾 t

1

)
 and �,�1 are learning rates. Note that in the

above updates the Hessian is estimated as a squared gradient: details are provided in
Sect. 7.5. These updates can be implemented and used in their actual form, yet they corre-
spond to an ADAM-like update. Indeed the above update has the same form of an adaptive
version of Polyak’s heavy ball method. Wilson et al. (2017) establishes a relation between
the form of Eq. (87) and the ADAM update, and in particular that the ADAM update can
be written as an adaptive version of the Polyak’s heavy ball method. Upon introducing the
typical bias correction terms of ADAM, Khan et al. (2018b) expresses Eq. (87) as an
ADAM update. With respect to a true ADAM update, the model weights are stochastically
sampled from the posterior, resulting in a Variational version of ADAM (VADAM). For
the full derivation, which is quite elaborate and extensive, refer to Khan and Nielsen

(84)ĝ
(
�t

)
=

1

M

∑
i∈M

∇�

[
− log p

(
Di|�t

)]
,

(85)Ĥ
(
�t

)
=

1

M

∑
i∈M

∇2
��

[
− log p

(
Di|�t

)]
,

(86)�t+1 = �t + 𝛽∇̃
�
L + 𝛾

(
�t − �t−1

)

(87)�t+1 = �t − 𝛽t

�
1√

st+1 + �̃

��
g(�) + �̃�t

�
+

𝛽t

1 − 𝛽t

�
st + �̃

st+1 + �̃

��
�t − �t−1

�
,

(88)st+1 =
(
1 − 𝛽t

)
st + 𝛽t(g(�))

2,

11803Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

(2018). Algorithm 9 summarizes the VADAM approach for a Gaussian variational poste-
rior with diagonal covariance.

7.5 � Variational Online Gauss–Newton (VOGN)

In the diagonal VON update, the Hessian drives the update for the scaling vector
s which determines the covariance matrix diag

(
�2
)
 . The Hessian can be negative,

a situation that could turn �2 negative, which is meaningless. Instead of indirectly
tackling the issue by using a constrained optimization approach (which could be
difficult to implement), such as a controlled adaptive learning rate, or model repara-
metrization, Khan et al. (2018b) proposes the use of the Generalized Gauss–Newton
approximation for the Hessian:

This enables a minor but important difference with respect to VON: with an initial posi-
tive value for �2 , the above approximation will remain positive leading to valid covariance
updates. This provides an algorithmic advantage over VON as constraints on �2 are implic-
itly satisfied. The above implementation of the Hessian estimation, within VON, consists in
the Variational Online Gauss–Newton (VOGN) approach (Khan et al. 2018b; Osawa et al.
2019). The implementation of the above approximation is not immediate as it requires per-
sample gradients. The approximation averages squared gradients evaluated on a sample-
per-sample basis, as opposed to batch-gradient computation which directly computes the
sum of the gradients over mini-batches (Osawa et al. 2019), which can be seen by compar-
ing Eq. (89) with Eq. (90)

The gradient-magnitude approximation that makes use of the mini-batch squared gra-
dient as an approximation for the Hessian,

(89)∇2
�j�h

f (�) ≈
1

M

∑
i∈M

[
∇�jfi(�)

]2
∶= ĥj(�).

(90)∇2
�j�h

f (�) ≈

[
1

M

∑
i∈M

∇�jfi(�)

]2

=
[
ĝj(�)

]2
,

11804	 M. Magris, A. Iosifidis

1 3

introduces a bias in the Hessian estimation. In fact, increasing the mini-batch size is
not advisable as it introduces more bias. Based on the above approximation, Khan et al.
(2018b) advances an RMSProp version of the VON update.

The practical implementation of VOGN is extensively discussed in Osawa et al.
(2019), where the efficient implementation of the per-sample gradient computation for
certain network layers is discussed: the additional computations needed to access indi-
vidual gradients bring the run-time within 2–5 times of that of ADAM. Algorithm 10
summarizes the implementation of the VOGN optimizer.

The form of Algorithm 10 slightly differs from that of VOGN/ADAM. The sampling
of the random weights is analogous to that of Algorithm 9 and Algorithm 8, yet here
posterior samples are built over standard-normal random numbers rather than directly
sampling from the multivariate diagonal posterior by the use of the reparametrization
trick. Note the index i referring to the individual samples in the mini-batch M . While
VOGN uses a single sample for evaluating the stochastic gradients, here Ns draws are
averaged to reduce the approximation variance. In particular, the nested for loop com-
putes the single-observation gradient used for the Hessian approximation, each com-
puted in the sampled weight vector �s . Draw-specific gradients and Hessian ĝs and ĥs
are thus averaged across samples (leading to ĝ and ĥ ) and used in the implementation
of the ADAM-like update based on momentum (thus the hyperparameters �1 , �2 ). The
pseudo-code in Osawa et al. (2019) involves an additional tempering parameter and
data-augmentation factor along with details for the VOGN parallel implementation, to
which we refer for further insights.

Osawa et al. (2019) furthermore discusses practical implementation aspects typical
in ML such as batch normalization, data augmentation, momentum, and distributed
computing. The feasibility of the VOGN update for large-scale experiments with big-
data sizes and deep network architectures on standard datasets promotes VOGN as a

11805Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

state-of-the-art method for Bayesian DL. As a remark, among its limitations, note that
VOGN applies to Gaussian variational posteriors with a diagonal covariance matrix
only.

7.6 � Quasi Black‑Box Variational Inference (QBVI)

The BBVI framework of Ranganath et al. (2014) can benefit from the use of the natural gra-
dients. In fact, in Trusheim et al. (2018) natural gradients are estimated via MC sampling. On
the other hand Eq. (60) provides an exact framework for computing natural gradients without
relying on sampling methods, applicable for the wide class of variational posteriors within the
Exponential family, yet model-specific derivations, i.e. the computation of the gradients and
Hessian, are involved. The QBVI approach (Magris et al. 2022c) merges the BBVI setting
with the exact natural gradient computation. QBVI uses Eq. (60) to turn the computation of
the natural gradients into Euclidean gradients of the LB, which are computed by the use of
the score estimation, resembling the BBVI framework. On a general level, the QBVI update
estimates the gradient of the LB with respect to the natural parameters as

which along with a plain SGD lead to the update rule

Here the exact computation of the natural gradient is carried out in terms of Eq. (60), so
that the QBVI update for a generic variational distribution and prior (both within the expo-
nential family) reads, for the natural parameters, as:

Similarly to Khan and Nielsen (2018), Eq. (92) uses the properties of the Exponential fam-
ily distribution for the prior p, with natural parameter � , and q to simplify the first term on
the right-side of Eq. (91). This results in the natural-parameter difference � − � , avoiding
on the first instance a sampling framework for evaluating the corresponding expectation,
i.e. reducing the variance of the estimate for ∇̃L(�) , regardless of the estimator used for
�q�

[
log p(D|�)].

Magris et al. (2022c) focuses on the Gaussian variational case, building the QBVI update
on the NGVI update, but without using the model’s gradient and Hessian as for VON. Indeed,
using Eqs. (61) and (62), Magris et al. (2022c) recovers, for a full-covariance posterior, the
following updates:

(91)∇̃L
�(�) = ∇̃

�
�q�

[
log

p�(�)

q
�(�)

]
+ ∇̃

�
�q�

[
log p(D|�)]

(92)= � − � + ∇̃
�
�q�

[
log p(D|�)],

(93)�t+1 = (1 − 𝛽)�t + 𝛽
(
� + ∇̃

�
�q�

[
log p(D|�)]).

(94)�t+1 = (1 − �)�t + �
(
� + �q�

[
∇m

[
log q

�(�)
]
log p(D|�)]).

(95)Σ−1
t+1

= (1 − 𝛽)Σ−1
t

+ 𝛽
(
Σ−1
0

+ �q�

[(
Σ−1
t

− vtv
⊤
t

)
log p(D|�)]),

(96)�t+1 = �t + �Σt+1

(
Σ−1
0

(
�0 − �t

)
+ �q

�

[
vt log p(D|�)]),

11806	 M. Magris, A. Iosifidis

1 3

where vt = Σ−1
(
� − �t

)
 and �0,Σ0 denote the mean vector and covariance matrix of the

prior distribution on the model parameter � , respectively. The following naive MC estima-
tor provides a simple approach for tacking the above expectations

with �s ∼ q
�
 , s = 1,… ,Ns . Algorithm 12 provides the pseudo-code for the QBVI

implementation.

8 � Variational Inference on manifolds

In this section, we review a class of methods that pursue a theoretically different approach,
i.e., manifold optimization. The major challenge in VI optimization is that of guaranteeing
constraints on the variational parameter. In a Gaussian, or e.g. an Inverse Wishart, setting,
this corresponds to guaranteeing updates under which the covariance matrix is Symmetric and
Positive Definite (SPD).

We first introduce in general terms the concept and practice of Riemann optimization.
Therefore, we provide an introduction to Riemann manifolds, the concepts of tangent vec-
tors, tangent spaces, and Riemann gradient to finally provide a more rigorous discussion of
the specific problem of performing valid covariance updated for Bayesian Inference under a
Gaussian variational FFVI setting. This section addresses the most crucial aspects concern-
ing the purpose of introducing the Manifold Gaussian Variational Bayes and Exact Manifold
Gaussian Variational Bayes optimizers. As the topic is itself broad and quite technical, we
intentionally provide a descriptive illustration suitable for a general audience, referring to the
specialized literature for additional details and a rigorous mathematical treatment at the end of
the following section.

(97)�q
�

[(
Σ−1
t

− vtv
⊤
t

)
log p(y|�)]

(98)≈
1

Ns

Ns∑
s=1

[
(Σ−1

t
− Σ−1

t

(
�s − �t

)(
�s − �t

)⊤
Σ−1
t
) log p

(
D|�s

)]
,

(99)�q
�

[
vt log p(D|�)] ≈ 1

Ns

Ns∑
s=1

[
Σ−1
t

(
�s − �t

)
log p

(
D|�s

)]
,

11807Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

8.1 � Introduction to manifold optimization

Riemann optimization is an alternative to standard SGD that well fits problems of the kind

where L is a real-valued function of some parameter � , defined on a Riemannian manifold
(M, g) . A manifold is a topological space that locally resembles Euclidean space near each
point, in more detail, is a set that can locally be mapped one-to-one to ℝk , where k is the
dimension of the manifold. g stands for a metric the manifold is equipped with.

The optimization problem aims at minimizing L by finding the parameter � ∈ M that
lies on the “smooth surface” of the Riemannian manifold (M, g) resembling a constrained
optimization problem requiring the optimum �∗ to lie on the Riemannian manifold, such
as a sphere or the SPD set. As with SGD in Euclidean vector spaces, Riemann optimiza-
tion is generally tackled with gradient descent on the surface of the manifold, based on
the gradients of L . Yet, because of the manifold constraint, there are important differences
compared to the standard SGD approach.

The Euclidean vector space ℝn can be interpreted as a Riemannian manifold (ℝn, g) ,
with g the common Euclidean metric, where the usual SGD iteratively updates the param-
eter � as

where

It is clear that applying the above to a generic non-Euclidean manifold M is not trivial as
there is no guarantee that � t+1 is a valid update, i.e. that � t+1 lies in M . Consider an opti-
mization problem where the parameter � = (x, y, z) is required to lie on a 2-dimensional
spherical manifold of radius 1, embedded in a 3-dimensional ambient space. The Riemann-
ian manifold is M =

{
� ∈ ℝ

3 ∶ ||�||2 = 1
}
 , with g being the Euclidean metric, and L

corresponding to a custom loss function for an arbitrary point � on the sphere M . Though
partial derivatives ∇�L are straightforward to compute or evaluate, e.g. with backpropaga-
tion, at the current parameter value � t , there is no guarantee that the update rule for the
Euclidean space � t+1 = � t + �∇�L� t would result in an updated parameter lying on sphere
M . Intuitively, on the “curved” surfaces of Riemannian manifolds the updates should fol-
low the “curved” geodesics instead of straight lines as on familiar ℝn Euclidean spaces. To
this end, Riemann Stochastic Gradient Descent (RSGD) constitutes a manifold generaliza-
tion of the SGD.

8.1.1 � Elements of Riemannian manifolds

In ℝk , a steepest-ascent approach updates the current iterate � in the direction where the
first-order increase of the objective function L is most positive. Formally, the update direc-
tion is chosen to be the unit norm vector � that minimizes the directional derivative

(100)argmin�∈ML(�),

(101)� t+1 = � t + �∇�L
(
� t
)
,

(102)∇�L
(
� t
)
=

�

��
L(�)

||||�=� t
.

(103)DL(�)[�] = lim
t→0

L(� + t�) − L(�)

t
.

11808	 M. Magris, A. Iosifidis

1 3

With the domain of L being the manifold M , the argument � + t� does not make
much sense in general as M is not necessarily a vector space. This leads to the notion
of a tangent vector. A possibility for generalizing the directional derivative is to replace
t ↦ � + t� by a smooth curve � on M passing through � , i.e. �(0) = � . A smooth map-
ping � ∶ ℝ → M ∶ t ↦ �(t) is termed as curve in M . Defining a derivative � �(t) as
� �(t) ∶= limt→0

�(�+t)−�(�)

t
 fails on a general manifold as it requires a vector space structure

to compute the difference �(� + t) − �(�) , however for a smooth function L on M the func-
tion L◦� ∶ t ↦ L(�(t)) is a smooth and well-defined function from ℝ to ℝ with a well-
defined classical derivative. To sum up, let � be a point on M , � a curve such that �(0) = �
and F� (M) is the set of smooth real-valued functions defined in a neighborhood of � in M .
The mapping 𝛾̇(0) from F� (M) to ℝ defined by

is called the tangent vector to the curve � at t = 0 . Note that the above definition defines
𝛾̇(0) as a mapping and not as a (e.g. time) derivative as in Eq. (103), which would be gen-
eral meaningless. We can now formally define the notion of a tangent vector.

A tangent vector �� to a manifold M at a point � is a mapping from F� (M) to ℝ such that
there exists a curve � on M with �(0) = � satisfying

Such a curve � is said to realize the tangent vector �� . The tangent space to M at � is the set
of all tangent vectors to M at � and is denoted by T�M . Importantly, it can be shown that
T�M admits a vector space structure, i.e. T�M is a vector space: it provides a local vector
space approximation of the manifold. This property is useful in defining retractions used
to locally transform an optimization problem on M into an optimization problem on the
more friendly vector space T�M . To characterize which direction of motion from � pro-
duces the steepest increase in L , to enable a notion of length that applies to tangent vectors,
we endow the tangent space T�M with an inner product ⟨⋅, ⋅⟩ , inducing the norm ||�� || on
T�M , from which the direction of the steepest ascent is given by

that is, by the unit-norm vector �∗
�
 for which directional derivative D of L in � in the direc-

tion �∗
�
 is maximized.

A manifold whose tangent spaces are endowed with a smoothly varying inner product
is called a Riemannian manifold, and the smoothly varying inner product is called the Rie-
mann metric. With g being such a Riemann metric on M , the Riemannian manifold is, strictly
speaking, the couple (M, g) . The Euclidean space is the particular Riemannian manifold con-
sisting of a vector space endowed with an inner product.

The gradient of L defined on a Riemannian manifold M at � is denoted by the unique ele-
ment in T�M that satisfies

(104)𝛾̇(0)L ∶=
d

dt
L(𝛾(t))

||||t=0, L ∈ F� (M)

��L ∶= 𝛾̇(0)L ∶=
d

dt
L(𝛾(t))

||||t=0, L ∈ F� (M).

(105)argmax��∈T�M∶ ||�� ||=1DL(�)
[
��
]
,

(106)⟨gradL(�), ��⟩ = DL(�)
�
��
�
, ∀�� ∈ T�M.

11809Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

As in correspondence with usual Euclidean gradients, and important in the light of optimi-
zation, it can be shown that the direction of gradL(�) is the steepest ascent direction of L
at �

and that the norm of gradL(�) gives the steepest slope of L at �.
If a manifold Me is endowed with a Riemann metric, one would expect that manifolds

generated from Me inherit its Riemann metric. Let M be a manifold embedded in Me (the
subscript e stands for “embedding)”. Since every tangent space T�M can be regarded as a
subspace of T�Me , the Riemann metric ge of Me induces a Riemann metric g on M turn-
ing M into a Riemannian manifold. Endowed with this metric, M is called a Riemannian
submanifold of Me . As it will appear clear in the next section, the submanifold idea is
simple yet powerful as any element �� in T�M can be decomposed into an element of T�M
and its corresponding orthogonal element

(
T�M

)⟂ in T�Me:

where Proj� denotes the orthogonal projection onto T�M , and Proj⟂
�
 denotes the orthogo-

nal projection onto
(
T�M

)⟂ . In this light, by properly defining the embedding ambient
space Me , one may simplify the computation of the Riemannian gradient, and by projec-
tion determine the Riemannian gradient in the tangent space T�M of the manifold M of
interest:

with Le being an extended version of the differentiable function L defined on Me such that
its restriction on M actually coincides with L.

Perhaps the most simple tool to tackle Riemann optimization is the Riemann Stochastic
Gradient Descent (RSGD), first proposed in (Bonnabel 2013). RSGD typically involves
three steps: (i) evaluate the gradient of Le in T�Me with respect to � at the current value � t ,
Fig. 4 (left panel), (ii) project the gradient onto the tangent space of the manifold M at � t ,
and (iii) update the parameter by performing a gradient step on the surface following the
direction of gradL(�) , Fig. 4 (central panel).

The last step moves the point � t ∈ M in the direction of the gradient along a geodesic,
onto � t+1 , lying on the manifold. This is achieved by the so-called exponential map, map-
ping elements from the tangent space to M . The computation of the exponential map is
however a cumber-stone in practice: often a first-order approximation is used. Such first-
order approximation is called retraction R�

(
��
)
 , �� ∈ T�M . Intuitively, rather than per-

forming an exact update following the curved geodesics of the manifold, retraction first
follows a straight line in the tangent space and then orthogonally projects the point in the
tangent space on the manifold. Closed-form formulae for retraction on the most common
manifold are available in the literature, see e.g. Absil et al. (2009) and Hu et al. (2020), and
e.g. Hosseini and Sra (2015) for the SPD manifold.

The main sources we have used in writing this section are the exhaustive book of Absil
et al. (2009), and the articles (Hu et al. 2020) and (Tran et al. 2021a). Classical specialized
books on differential geometry are those of Kobayashi and Nomizu (1963), Do Carmo and
Flaherty Francis (1992) and Boothby and Boothby (2003), while well-suited references for
readers without a background in abstract topology are e.g. Tu (2011) and Do Carmo (2016)

(107)
gradL(�)

||gradL(�)|| = argmax��∈T�M∶ ||�� ||=1DL(�)
[
��
]
,

(108)�� = Proj��� + Proj⟂
�
�� ,

(109)gradL(�) = Proj�gradLe(�),

11810	 M. Magris, A. Iosifidis

1 3

and furthermore at an introductory level e.g. Brickell and Clark (1970) and Abraham et al.
(2012). We suggest referring to the literature involved in the above references for further
bibliographical details, e.g. the bibliographical notes in Chapter 3 of Absil et al. (2009).
An exhaustive overview of the different applications in manifold optimization in different
areas can be found e.g. in Hu et al. (2020). For the first developments on SGD on Riemann-
ian manifolds, we refer to Bonnabel (2013), further developments towards an RMSprop-
like adaptive version of RSGD can be found in Kasai et al. (2019), while Riemann opti-
mization on the lines of the popular Adam and Ada-grad are discussed in Bécigneul and
Ganea (2018). Relevant for the SPD matrix manifold optimization are the results on vector
transport and retraction in e.g. Jeuris et al. (2012) and Sra and Hosseini (2015), of remark-
able utility for applications. In this regard, we point to Boumal et al. (2014) for a manifold
optimization package available in multiple languages.

8.2 � Variational Bayes on Riemannian manifolds with natural gradients

Variational Bayes on manifolds aims at maximizing the LB L under a fixed-form Gaussian
variational posterior guaranteeing a positive-definite form of the covariance matrix Σ . Thus
the variational parameter � lies on the Riemannian manifold of Symmetric and Positive
Definite (SPD) matrices M =

{
Σ ∈ ℝ

k×k ∶ Σ = Σ⊤,Σ ≻ 0
}
 . The optimization problem of

concern is thus the Riemann optimization problem

To implement the RSGD update the manifold M of SPD matrices is viewed as embedded
in the Riemannian manifold Me . Let T�Me be the tangent space to M at � ∈ Me . Aligned
with the discussion in Sect. 5, we wish to perform natural gradient updates. To this end, we
equip Me with the Fisher–Rao metric, defined by the Fisher information matrix I� . With
such a metric, the inner product between two tangent vectors �� , �� ∈ T�Me is defined as

generalizing the usual Euclidean metric ⟨�� , ��⟩ = �⊤
�
�� . Let Le be a differentiable func-

tion defined on Me such that its restriction on M corresponds to the LB L . It can be shown
that the steepest ascent direction at � ∈ Me for maximizing the objective Le is the natural
gradient

(110)argmax�∈ML(�).

(111)⟨�� , ��⟩ = �⊤
�
I��� ,

(112)∇̃Le(�) = I−1
�
∇�Le(�), � ∈ Me.

Fig. 4   Left: Tangent space and projection of Riemannian gradient. Center: retraction map. Right: vector
transport

11811Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

Note that ∇�Le(�) is the usual Euclidean gradient vector of Le(�) , and that, importantly,
for � ∈ M,

That is, the natural gradient of the extended LB Le in Me corresponds to the natural gradi-
ent of the LB on the relevant manifold M . A framework for formally associating the natu-
ral gradient with the Riemannian gradient is provided by the lemma below, see Tran et al.
(2021a) for more details.

Lemma 1  The natural gradient of the function Le on the Riemannian manifold Me with the
Fisher–Rao metric is the Riemannian gradient of Le . In particular, the natural gradient at
� belongs to the tangent space to Le at �.

This means that with respect to the embedding space Me , ∇̃�Le(𝜁) is the actual Rie-
mannian gradient, lying on the tangent space T�Me of Le at � . Yet we need to associ-
ate the Riemannian gradient in Me to the LB L in M , the actual objective of RSGD
optimization.

To this end, we naturally equip the submanifold M with the same Riemann metric
inherited from Me . For �� , �� now both in T�Me,

and we obtain the Riemannian gradient of L in M as the projection of gradLe on T�M

In a Gaussian manifold, T�M ≅ T�Me , thus the projection is the identity matrix I and
gradLe = gradL . Indeed in Gaussian manifolds, M corresponds to the manifold of SPD
matrices whereas Me = ℝ

k×k : T�M and T�Me differ by the fact that the first is the tangent
space to a certain SPD matrix while the second is the tangent space of a generic k × k symmet-
ric matrix. In terms of projection, the difference is irrelevant, thus Proj�gradLe = IgradLe .
Mind that, however, on a general level Proj� (⋅) can be rather difficult to compute. The above
relationship between the Riemannian gradient in Me and the LB L in M , is established by
treating M as a submanifold of Me . Alternatively one can derive the Riemannian gradient of
L requiring M to be a so-called quotient manifold induced from a Riemannian ambient mani-
fold. In this regard, see Tran et al. (2021a) and the references therein.

RSGD requires a proper retraction R� ∶ T�M ↦ M that locally maps T�M onto the mani-
fold M while preserving the first-order information of the tangent space in � . This means that a
step of size zero stays at the same point � and the differential of the retraction at this origin is the
identity mapping (Jeuris et al. 2012). From the geodesics between two matrices in M , Jeuris et al.
(2012) develops the popular and convenient retraction method (actually a second-order approxi-
mation of the exponential map) for the SPD matrices manifold M . This is given by

where

(113)∇̃�Le(𝜁) = I−1
�
∇�Le(𝜁) = I−1

�
∇�L(𝜁) = ∇̃�L(𝜁).

(114)⟨�� , ��⟩ = �⊤
�
I��� ,

(115)gradL(�) = Proj� gradLe(�).

(116)R� (�) = � + � +
1

2
��−1�,

(117)� ∈ T�M,

11812	 M. Magris, A. Iosifidis

1 3

and updates the current value of � on M by accounting for � on the tangent space T�M.
We now add a practically important element to the discussion, vector transport. In order

to perform, among the others, the conjugate gradient algorithm, or implement the momen-
tum method within the RSGD update, we need to relate a tangent vector at some point
� ∈ M to another point � ∈ M . In differential geometry, this is achieved by a parallel
translation, moving tangent vectors from one tangent space to the other, while preserving
the length and angle of the original tangent vector, Fig. 4 (right panel). As for the exponen-
tial map, the parallel translation is often approximated by the so-called vector transport,
which is easier to compute. For � ∶= �� and � ∶= �� ∈ T�M , an effective vector transform
for the manifold of interest is

with

where T�→�(�) denotes the vector transport of the tangent vector � ∈ T�M to � ∈ T�M .
The above vector transport can be written in a compact and computationally advantageous
form as (see e.g. Sra and Hosseini 2015 for details):

with

We point out that within the above SPD matrix manifold setting relevant in Gaussian VI, � ,
� , � are matrices and the above equations are well-defined: for homogeneity in notation, we
stick with the lower-case bold symbols for indicating elements of a generic space.

The above vector transport is practically relevant and essential in implementing, e.g., a momen-
tum method on the RSGD update, that is by using a moving average of the Riemannian gradient at
the previous iteration to reduce noise in the estimated gradients and boost convergence:

where � is a momentum-weight hyper-parameter.
Manifold optimization in the context of VI is relatively new, the main reference for this

paper is Tran et al. (2021a), whose approach is reviewed in Sect. 8.3. Besides this, VI on
manifolds is also discussed in Zhou et al. (2021) and Magris et al. (2022b) and appears in
Lin et al. (2020). Other applications, not related to the purposes of this review, are here
not covered, e.g. manifold optimization for variational autoencoders (Skopek et al. 2019).
Regarding the specific Bayesian inference problem for Neural Networks, at the time of
writing, we are not aware of any further works or developments.

(118)T�→�(�) = Q�Q⊤,

(119)Q = �
1

2 exp

(
�
−

1

2 ��
−

1

2

2

)
�
−

1

2 ,

(120)T�→�(�) = E�E⊤

(121)E =
(
��−1

) 1

2 � ∈ T�M.

(122)gradL
(
� t+1

)mom.
∶= �T�→� t+1

(
gradL

(
� t
)mom.)

+ (1 − �)gradL
(
� t+1

)
,

11813Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

8.3 � Manifold Gaussian Variational Bayes (MGVB)

We review the (MGVB) method of Tran et al. (2021a). The variational approxima-
tion q

�
 to the true posterior is provided by a multivariate Gaussian distribution N(�,Σ) ,

� ∈ ℝ
k . The parameter �,Σ are jointly collected in the vector � = (�, vec(Σ)) , denoting

the variational parameter. There are no restrictions on the structure of the variance–covari-
ance matrix Σ which is a generic member of the manifold M of the SPD matrices,
M =

{
Σ ∈ ℝ

k×k ∶ Σ = Σ⊤,Σ ≻ 0
}
.

The exact form of the Fisher information matrix for the multivariate normal distribution
is, e.g., provided in Mardia and Marshall (1984) and reads

with I(Σ) being the k2 × k2 matrix whose generic element is

The MGVB method relies on the approximation I(Σ) ≈ Σ−1 ⊗ Σ−1 , where ⊗ denotes the
Kronecker product. The corresponding approximate inverse FIM reads

which leads to a convenient approximate form of the natural gradients of the lower bound
with respect to � and Σ computed as

The last equality follows from the fact that for a vector v ∈ ℝ
k×k ,

(Σ⊗ Σ)v = vec
(
Σvec−1(v)Σ

)
 . In virtue of the natural gradient definition, the first natural

gradient for � is exact while the second one for Σ is approximate. As pointed out in Lin
et al. (2020), the actual natural gradient for the above Gaussian distribution should read
2Σ∇ΣLΣ , as I(Σ) = 2Σ−1 ⊗ Σ−1 , therefore the MGVB approximation. Thus, Tran et al.
(2021a) adopts the following updates for the parameters of the variational posterior:

where RΣ(⋅) denotes a suitable retraction for Σ on the manifold M , and � is the learning
rate. Momentum gradients can be used in place of natural ones. In particular Tran et al.
(2021a) uses retraction in Eq. (116) and momentum gradients for the updating Σ . In this
regard, Tran et al. (2021a) adopts the parallel transport in Eq. (118) for granting that at
each iteration the weighted gradient remains in the tangent space of the manifold M.

The actual computation of the gradients ∇̃�L and ∇̃ΣL boils down to computing ∇�L
and ∇ΣL , which in MGVB is achieved with the black-box estimator

(123)I =

(
Σ−1 0

0 I(Σ)

)
,

(124)I(Σ)�ij,�kl =
1

2
tr

(
Σ−1 �Σ

��ij
Σ−1 �Σ

��kl

)
.

(125)I−1 =

(
Σ 0

0 Σ⊗ Σ

)
,

(126)∇̃�L = Σ∇�L,

(127)∇̃ΣL ≈ vec−1
(
(Σ⊗ Σ)∇vec(Σ)L

)
= Σ∇ΣLΣ.

(128)� = � + 𝛽∇̃�ΣL,

(129)Σ = RΣ

(
𝛽∇̃ΣL

)
,

11814	 M. Magris, A. Iosifidis

1 3

where

with q ∼ N(�,Σ) , � = (�, vec(Σ)) , and L(�) ≡ L(�,Σ) . In particular, the gradient of L
with respect to � is estimated using Ns samples from the variational posterior through the
unbiased estimator

where �s ∼ N
(
�t,Σt

)
 and the h-function is evaluated in the current value of the param-

eters, i.e. in � t =
(
�t, vec

(
Σt

))
 . For a Gaussian distribution q ∼ N(�,Σ) it can be shown

that (e.g. Wierstra et al. 2014; Magris et al. 2022c):

Algorithm 12 summarizes the above process.

8.4 � Exact Manifold Gaussian Variational Bayes (EMGVB)

The covariance matrix Σ is positive definite, its inverse exists and it is as well symmetric and
positive definite. Therefore, Σ−1 lies within the manifold M and can be updated with a suitable
retraction algorithm as for Σ in Sect. 8.3,

Opposed to the EMGVB update, relying on the approximation I−1(Σ) ≈ Σ−1 ⊗ Σ−1 , for
tackling a positive-definite update of Σ , Magris et al. (2022b) targets at updating Σ−1 for

(130)∇�L(�) = �q�

[
∇�

[
log q� (�)

]
h� (�)

]
,

(131)h� (�) = log

[
p(D|�)p(�)

q� (�)

]
,

(132)∇�L
(
� t
)
= ∇�L(�)

|||�=� t ≈
1

Ns

Ns∑
s=1

[
∇�

[
log q�

(
�s

)]
h�
(
�s

)]|||�=� t ,

(133)∇� log q(�) = Σ−1(� − �),

(134)∇Σ log q(�) = −
1

2

(
Σ−1 − Σ−1(� − �)(� − �)⊤Σ−1

)
.

(135)Σ−1 = RΣ−1

(
𝛽∇̃Σ−1L

)
= RΣ−1

(
−2𝛽∇ΣL

)
.

11815Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

which its natural gradient is available in an exact form, by primarily exploiting the duality
between the gradients in the natural and expectation parameter space as for Eq. (47), that
circumvents the computation and the approximate form of the FIM.

In particular Eq. (47) implies that

where �2 = −
1

2
Σ−1 is the second natural parameter of the variational Gaussian posterior q

�
 .

This leads to the EMGVB updates

Despite the approximate MGVB update for Σ , EMGVB updates Σ−1 with exact natural gra-
dient computations. Retraction and momentum gradients are computed as in MGVB but
involve Σ−1 in place of Σ . For retraction,

with � being the rescaled natural gradient 𝛽∇̃Σ−1L = −2𝛽∇ΣL . Instead, vector transport
reads

where the weight 0 < 𝜔 < 1 is a hyper-parameter. As for Eq. (92), by using a Gaussian
prior along with a Gaussian posterior, the natural parameter difference becomes particu-
larly simple. With � = (�,Σ),

evaluating ∇̃�L accounts to practically estimating ∇̃��q�

[
log p(D|�)] only. Whether or not

one uses the results in Eqs. (141) and (142) under a Gaussian prior assumption, or prefers
to use the gradient estimator based on the h-function,
h� (�) = �q�

[
log p(�) + log p(D|�) − log q� (�)

]
 , as in MGVB, a general-form for the gradi-

ents enabling the EMGVB update is provided by

∇̃�L = Σ∇�L,

∇̃Σ−1L = −2∇̃
�2
L = −2∇Σ,

(136)�t+1 = �t + �Σ∇�Lt,

(137)Σ−1
t+1

= RΣ−1
t

(
−2�∇ΣLt

)
.

(138)RΣ−1 (�) = Σ−1 + � +
1

2
�Σ�, where � ∈ TΣ−1M,

(139)∇̃mom.

Σ−1 Lt+1 = 𝜔 TΣ−1
t →Σ−1

t+1

(
∇̃mom.

Σ−1 Lt

)
+ (1 − 𝜔)∇̃Σ−1Lt+1,

(140)∇̃mom.
�

Lt+1 = 𝜔 ∇̃mom.
�

Lt + (1 − 𝜔)∇̃�Lt,

(141)∇Σ�q�

[
log p(�) − log q� (�)

]
=

1

2
Σ−1 −

1

2
Σ−1
0
,

(142)∇��q�

[
log p(�) − log q� (�)

]
= −Σ−1

0

(
� − �0

)
,

(143)∇̃�L
(
� t
)
≈ c�t

+
1

S

S∑
s=1

[(
�s − �t

)
log f

(
�s

)]
,

11816	 M. Magris, A. Iosifidis

1 3

where

Because of the computations of the constants CΣt
 and c�t

 under the Gaussian assumption
for the prior p, the MC estimators in Eqs. (143) and (144) are of reduced variance. Magris
et al. (2022b) also provides analogous simplified updates under the specific assumption
that the covariance matrix of q is either diagonal, block-diagonal, or full under an isotropic
Gaussian prior whose mean vector is zero and prior covariance matrix Σ−1

0
 equal to �I , with

𝜏 > 0 . Algorithm 13 summarizes the updating routine.

The reader will note that the EMGVB approach is mixing elements of the SPD (matrix)
manifold (retraction and parallel transport) with the natural gradient obtained from the
Gaussian manifold. A justification for the validity of the above is discussed in Magris
et al. (2022b). The discrepancy between the natural gradient and the Riemannian gradient
obtained from the SPD manifold, can be absorbed in the learning rate � and the EMGVB
update obtained by manifold-consistent derivations from updating

(
�, 2Σ−1

)
.

(144)∇̃Σ−1L
(
� t
)
≈ CΣt

+
1

S

S∑
s=1

[(
Σ−1
t

− Σ−1
t

(
�s − �t

)(
�s − �t

)⊤
Σ−1
t

)
log f

(
�s

)]
,

(145)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎧
⎪⎨⎪⎩

CΣt
= −Σ−1

t
+ Σ−1

0

c�t
= −ΣtΣ

−1
0

�
�t − �0

�
log f

�
�s

�
= log p

�
D��s

� if prior is Gaussian,

⎧⎪⎨⎪⎩

CΣt
= 0

c�t
= 0

log f
�
�s

�
= h� t

�
�s

� if prior is Gaussian or not.

11817Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

9 � Conclusion

In this survey, we provided an algorithmic overview of standard, as well as, more recently intro-
duced approaches for Bayesian learning for Neural Networks. We structured our description as
an easily-accessible introduction to the basic concepts and related methodologies, focused on the
core elements and their implementation, providing pseudo-codes and update rules to be used as
references for a large number of Bayesian Neural Network implementations.

We provided a foreword introduction to Bayesian Neural Network, their peculiarities,
and motivated their use with respect to standard non-Bayesian Artificial Neural Network.
In the remainder, we focused on popular and feasible approaches for their estimation.
Besides describing some effective Monte Carlo methodologies, and introducing Monte
Carlo Dropout as a Bayesian tool, we presented a variety of methods based on Variational
Inference and natural gradients as the main methodological ingredients in modern Bayes-
ian inference for Neural Networks. We presented the widespread Bayes-By-Backprop opti-
mizer, followed by two common black-box methods, namely Black-Box Variational Infer-
ence and Natural-Gradient Black-Box Variational Inference. Next, we introduced natural
gradients and examined the Natural-Gradient Variational Inference, Variational Online
Newton, Variational Online Gauss–Newton, and Quasi Black-Box Variational Inference
approaches. Lastly, by providing an introduction to manifold optimization, we provided a
discussion on methods that can implicitly deal with the positive-definite constraint over
Gaussian variational specifications, presenting the Manifold Gaussian Variational Bayes
and Exact Manifold Gaussian Variational Bayes solutions.

We hope that our comprehensive algorithmic treatment of the above-described meth-
odologies will contribute to a better understanding of the connections and differences
between the various Bayesian methods for Neural Networks, will support the adoption of
such methods in a wide range of applications, and promote further research in this field.

Appendix: Nomenclature

See Table 1.

11818	 M. Magris, A. Iosifidis

1 3

Author contributions  MM and AI wrote the main manuscript test, MM prepared the figures and pseudo-
codes. Both the authors reviewed the manuscript.

Funding  The research received funding from the European Union’s Horizon 2020 Research and Innovation
Programme under the Marie Skłodowska-Curie Project BNNmetrics (Grant Agreement No. 890690).

Declaration 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Table 1   Nomenclature for the most used mathematical symbols

Symbol Meaning Type Other information

N Sample size Scalar
xi ith input sample Generally a vector
yi ith target Vector or scalar Corresponding to xi
Dx Input Data Generally a matrix Dx = {xi}

n
i=1

Dy Targets Matrix or vector Dy = {yi}
n
i=1

D Data Matrix D = {Dy,Dx} , Di = {yi, xi}

p Depends p.d.f. or likelihood p(�) (prior),
p(�||�) (posterior)
p(D|�) (likelihood)

L Lower Bound Function
q Variational posterior Vector Generally indexed by the parameter
� , � Variational parameter Vector � generic, � natural parameter
m Expectation parameter Vector
� Random variable or variable Vector Random variable of model’s parameter

argument in which e.g. q is evaluated
�s A sample from � Vector
k Dimension of the parameter Scalar Generally the dimension of �
Ns Number of MC samples Scalar
� Learning rate Scalar
�0,Σ0 Prior parameters Vector, matrix for Gaussian priors
t Iteration Scalar
I Fisher Information Matrix Matrix
∇ Euclidean gradient Vector, matrix
∇̃ Natural gradient Vector, matrix
� Element of the tangent space Vector, matrix

http://creativecommons.org/licenses/by/4.0/

11819Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

References

Abraham R, Marsden JE, Ratiu T (2012) Manifolds, tensor analysis, and applications, vol 75. Springer, New
York

Absil PA, Mahony R, Sepulchre R (2009) Optimization algorithms on matrix manifolds. Princeton Univer-
sity Press, Princeton

Alquier P (2021) User-friendly introduction to PAC-Bayes bounds. Preprint. arXiv:​2110.​11216
Amari SI (1998) Natural gradient works efficiently in learning. Neural Comput 10(2):251–276
Bécigneul G, Ganea OE (2018) Riemannian adaptive optimization methods. Preprint. arXiv:​1810.​00760
Berry DW, Childs AM, Cleve R et al (2015) Simulating Hamiltonian dynamics with a truncated Taylor

series. Phys Rev Lett 114(9):090502
Blackwell D (1947) Conditional expectation and unbiased sequential estimation. Ann Math Stat

18(1):105–110
Blei DM, Lafferty JD (2007) A correlated topic model of science. Ann Appl Stat 1(1):17–35
Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians. J Am Stat

Assoc 112(518):859–877
Blundell C, Cornebise J, Kavukcuoglu K et al (2015) Weight uncertainty in neural network. In: International

conference on machine learning, 2015, pp 1613–1622
Bonnabel S (2013) Stochastic gradient descent on Riemannian manifolds. IEEE Trans Autom Control

58(9):2217–2229
Boothby WM, Boothby WM (2003) An introduction to differentiable manifolds and Riemannian geometry,

Revised, vol 120. Gulf Professional Publishing, Houston
Boumal N, Mishra B, Absil PA et al (2014) Manopt, a MATLAB toolbox for optimization on manifolds. J

Mach Learn Res 15(42):1455–1459
Braun M, McAuliffe J (2010) Variational inference for large-scale models of discrete choice. J Am Stat

Assoc 105(489):324–335
Brickell F, Clark RS (1970) Differentiable manifolds: an introduction. Van Nostrand Reinhold, London
Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex

Syst 2:321–355
Cai R, Ren A, Liu N et al (2018) VIBNN: hardware acceleration of Bayesian neural networks. SIGPLAN

Not 53(2):476–488
Casella G (1985) An introduction to empirical Bayes data analysis. Am Stat 39(2):83–87
Casella G, Berger RL (2021) Statistical inference. Cengage Learning, Boston
Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46(3):167–174
Chakraborty S, Ghosh M (2012) Applications of Bayesian neural networks in prostate cancer study. Hand-

book of statistics, vol 28. Elsevier, Amsterdam, pp 241–262
Chan A, Alaa A, Qian Z et al (2020) Unlabelled data improves Bayesian uncertainty calibration under

covariate shift. In: International conference on machine learning, 2020, pp 1392–1402
Cho K, van Merrienboer B, Bahdanau D et al (2014) On the properties of neural machine translation:

encoder–decoder approaches. In: Workshop on syntax, semantics and structure in statistical transla-
tion, 2014

Csilléry K, Blum MG, Gaggiotti OE et al (2010) Approximate Bayesian computation (ABC) in practice.
Trends Ecol Evol 25(7):410–418

Damianou A, Lawrence ND (2013) Deep Gaussian processes. In: International conference on artificial intel-
ligence and statistics, 2013, pp 207–215

Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112
Dixon MF, Halperin I, Bilokon P (2020) Machine learning in finance, vol 1170. Springer, Berlin
Do Carmo MP (2016) Differential geometry of curves and surfaces: revised and updated second edition.

Courier Dover Publications, Mineola
Do Carmo MP, Flaherty Francis J (1992) Riemannian geometry, vol 6. Springer, Berlin
Du Y, Liu Y, Wang X et al (2020) Predicting weather-related failure risk in distribution systems using

Bayesian neural network. IEEE Trans Smart Grid 12(1):350–360
Etz A, Gronau QF, Dablander F et al (2018) How to become a Bayesian in eight easy steps: an annotated

reading list. Psychon Bull Rev 25(1):219–234
Fichtner A, Gebraad L, Boehm C et al (2020) Auto-tuning Hamiltonian Monte Carlo. In: EGU General

Assembly conference abstracts, p 7735
Freitas JFGd, Niranjan M, Gee AH (2000) Hierarchical Bayesian models for regularization in sequential

learning. Neural Comput 12(4):933–953
Gagniuc PA (2017) Markov chains: from theory to implementation and experimentation. Wiley, Hoboken

http://arxiv.org/abs/2110.11216
http://arxiv.org/abs/1810.00760

11820	 M. Magris, A. Iosifidis

1 3

Gal Y, Ghahramani Z (2015) Dropout as a Bayesian approximation: insights and applications. In: Deep
learning workshop, international conference on machine learning, 2015, p 2

Gal Y, Ghahramani Z (2016) Dropout as a Bayesian approximation: representing model uncertainty in deep
learning. In: International conference on machine learning, 2016, pp 1050–1059

Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference.
CRC Press, Boca Raton

Gelman A, Carlin JB, Stern HS et al (1995) Bayesian data analysis. Chapman and Hall/CRC, New York
Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741
Ghahramani Z, Beal M (2000) Propagation algorithms for variational Bayesian learning. In: Advances in

neural information processing systems, 2000, vol 13
Goh AT, Kulhawy FH, Chua C (2005) Bayesian neural network analysis of undrained side resistance of

drilled shafts. J Geotech Geoenviron Eng 131(1):84–93
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
Guedj B, Pujol L (2021) Still no free lunches: the price to pay for tighter PAC-Bayes bounds. Entropy

23(11):1529
Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biom-

etrika 57(1):97–109
Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall PTR, Hoboken
He K, Zhang X, Ren S et al (2015) Delving deep into rectifiers: surpassing human-level performance on

ImageNet classification. In: International conference on computer vision, 2015, pp 1026–1034
Heckerman D (2008) A tutorial on learning with Bayesian networks. Springer, Berlin, pp 33–82
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
Hoeting JA, Madigan D, Raftery AE et al (1999) Bayesian model averaging: a tutorial. Stat Sci

14(4):382–417
Hoffman MD, Sountsov P (2022) Tuning-free generalized Hamiltonian Monte Carlo. In: International con-

ference on artificial intelligence and statistics, 2022, pp 7799–7813
Hoffman MD, Blei DM, Wang C et al (2013) Stochastic variational inference. J Mach Learn Res

14:1303–1347
Hoffman MD, Gelman A et al (2014) The no-u-turn sampler: adaptively setting path lengths in Hamiltonian

Monte Carlo. J Mach Learn Res 15(1):1593–1623
Homma T, Atlas LE, Marks RJ (1987) An artificial neural network for spatio-temporal bipolar patters:

application to phoneme classification. In: Advances in neural information processing systems, 1987,
pp 31–40

Horowitz AM (1991) A generalized guided Monte Carlo algorithm. Phys Lett B 268(2):247–252
Hosseini R, Sra S (2015) Matrix manifold optimization for Gaussian mixtures. In: Advances in neural infor-

mation processing systems, 2015, vol 28
Hron J, Matthews A, Ghahramani Z (2018) Variational Bayesian dropout: pitfalls and fixes. In: International

conference on machine learning, 2018, pp 2019–2028
Hu J, Liu X, Wen ZW et al (2020) A brief introduction to manifold optimization. J Oper Res Soc China

8(2):199–248
Jaakkola TS, Jordan MI (1997) A variational approach to Bayesian logistic regression models and their

extensions. In: International workshop on artificial intelligence and statistics, 1997, pp 283–294
Jakkala K (2021) Deep Gaussian processes: a survey. Preprint. arXiv:​2106.​12135
Jang H, Lee J (2017) An empirical study on modeling and prediction of bitcoin prices with Bayesian neural

networks based on blockchain information. IEEE Access 6:5427–5437
Jeuris B, Vandebril R, Vandereycken B (2012) A survey and comparison of contemporary algorithms for

computing the matrix geometric mean. Electron Trans Numer Anal 39:379–402
Jospin LV, Laga H, Boussaid F et al (2022) Hands-on Bayesian neural networks—a tutorial for deep learn-

ing users. IEEE Comput Intell Mag 17(2):29–48
Kasai H, Jawanpuria P, Mishra B (2019) Riemannian adaptive stochastic gradient algorithms on matrix

manifolds. In: International conference on machine learning, 2019, pp 3262–3271
Khan ME, Nielsen D (2018) Fast yet simple natural-gradient descent for variational inference in complex

models. In: International symposium on information theory and its applications, 2018, pp 31–35
Khan M, Nielsen D, Tangkaratt V et al (2018a) Fast and scalable Bayesian deep learning by weight-pertur-

bation in ADAM. In: International conference on machine learning, 2018, pp 2611–2620
Khan M, Nielsen D, Tangkaratt V et al (2018b) Fast and scalable Bayesian deep learning by weight-pertur-

bation in ADAM. In: International conference on machine learning, 2018, pp 2611–2620
Kingma DP, Ba J (2014) ADAM: a method for stochastic optimization. arXiv preprint. arXiv:​1412.​6980

http://arxiv.org/abs/2106.12135
http://arxiv.org/abs/1412.6980

11821Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

Knowles D, Minka T (2011) Non-conjugate variational message passing for multinomial and binary regres-
sion. In: Advances in neural information processing systems, 2011, vol 24

Kobayashi S, Nomizu K (1963) Foundations of differential geometry. Wiley, New York
Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural net-

works. In: Advances in neural information processing systems, 2012, vol 25
Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86
Kwon Y, Won JH, Kim BJ et al (2020) Uncertainty quantification using Bayesian neural networks in clas-

sification: application to biomedical image segmentation. Comput Stat Data Anal 142(106):816
Lampinen J, Vehtari A (2001) Bayesian approach for neural networks—review and case studies. Neural

Netw 14(3):257–274
Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for

time-series modeling. Pattern Recognit Lett 42:11–24
Leimkuhler B, Reich S (2005) Simulating Hamiltonian dynamics. Cambridge monographs on applied and

computational mathematics. Cambridge University Press, Cambridge
Lemieux C (2014) Control variates. Statistics Reference Online, Wiley StatsRef, pp 1–8
Liang Y, Kelemen AG (2004) Hierarchical Bayesian neural network for gene expression temporal patterns.

Stat Appl Genet Mol Biol 3(1):20
Lin W, Schmidt M, Khan ME (2020) Handling the positive-definite constraint in the Bayesian learning rule.

In: International conference on machine learning, 2020, pp 6116–6126
Lisboa PJ, Wong H, Harris P et al (2003) A Bayesian neural network approach for modelling censored data

with an application to prognosis after surgery for breast cancer. Artif Intell Med 28(1):1–25
Lynch SM (2007) Introduction to applied Bayesian statistics and estimation for social scientists, vol 1.

Springer, New York
Lyu Y, Tsang IW (2021) Black-box optimizer with stochastic implicit natural gradient. In: Joint European

conference on machine learning and knowledge discovery in databases, 2021. Springer, pp 217–232
Ma Q, Wang JT (1999) Biological data mining using Bayesian neural networks: a case study. Int J Artif

Intell Tools 8(04):433–451
Mackay DJC (1992) Bayesian methods for adaptive models. PhD Thesis, California Institute of Technology
Mackay DJC (1995) Probable networks and plausible predictions—a review of practical Bayesian methods

for supervised neural networks. Netw Comput Neural Syst 6:469–505
Magris M, Shabani M, Iosifidis A (2022a) Bayesian bilinear neural network for predicting the mid-price

dynamics in limit-order book markets. Preprint. arXiv:​2203.​03613
Magris M, Shabani M, Iosifidis A (2022b) Exact manifold Gaussian variational Bayes. Preprint. arXiv:​

2210.​14598
Magris M, Shabani M, Iosifidis A (2022c) Quasi black-box variational inference with natural gradients for

Bayesian learning. Preprint arXiv:​2205.​11568
Mardia KV, Marshall RJ (1984) Maximum likelihood estimation of models for residual covariance in spatial

regression. Biometrika 71(1):135–146
Metropolis N, Rosenbluth AW, Rosenbluth MN et al (1953) Equation of state calculations by fast computing

machines. J Chem Phys 21(6):1087–1092
Nakajima S, Watanabe K, Sugiyama M (2019) Variational Bayesian learning theory. Cambridge University

Press, Cambridge
Neal RM et al (2011) MCMC using Hamiltonian dynamics. Handb Markov Chain Monte Carlo 2(11):2
Nielsen F (2020) A note on the natural gradient and its connections with the Riemannian gradient, the mir-

ror descent, and the ordinary gradient
Nielsen F, Garcia V (2009) Statistical exponential families: a digest with flash cards. Preprint. arXiv:​0911.​

4863
Oleksiienko I, Iosifidis A (2022) Layer ensembles. arXiv preprint. arXiv:​2210.​04882
Oleksiienko I, Tran DT, Iosifidis A (2022) Variational neural networks. arXiv preprint. arXiv:​2207.​01524
Opper M, Archambeau C (2009) The variational Gaussian approximation revisited. Neural Comput

21(3):786–792
Opper M, Winther O (1999) A Bayesian approach to on-line learning. In: On-line learning in neural net-

works. Cambridge University Press, Cambridge, pp 363–378
Osawa K, Swaroop S, Khan MEE et al (2019) Practical deep learning with Bayesian principles. In:

Advances in neural information processing systems, 2019, vol 32
Osband I, Aslanides J, Cassirer A (2018) Randomized prior functions for deep reinforcement learning. In:

Advances in neural information processing systems, 2018, vol 31
Paisley J, Blei DM, Jordan MI (2012) Variational Bayesian inference with stochastic search. In: Interna-

tional conference on international conference on machine learning, 2012, pp 1363–1370

http://arxiv.org/abs/2203.03613
http://arxiv.org/abs/2210.14598
http://arxiv.org/abs/2210.14598
http://arxiv.org/abs/2205.11568
http://arxiv.org/abs/0911.4863
http://arxiv.org/abs/0911.4863
http://arxiv.org/abs/2210.04882
http://arxiv.org/abs/2207.01524

11822	 M. Magris, A. Iosifidis

1 3

Passalis N, Tefas A, Kanniainen J et al (2020) Temporal bag-of-features learning for predicting mid price
movements using high frequency limit order book data. IEEE Trans Emerg Top Comput Intell
4(6):774–785

Ranganath R, Gerrish S, Blei D (2014) Black box variational inference. In: International conference on arti-
ficial intelligence and statistics, 2014, pp 814–822

Rao CR (1945) Information and the accuracy attainable in the estimation of statistical parameters. Bull Cal-
cutta Math Soc 38:81–91

Rezende DJ, Mohamed S, Wierstra D (2014) Stochastic backpropagation and approximate inference in deep
generative models. In: International conference on machine learning, 2014, pp 1278–1286

Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–407
Robert CP, Roberts GO (2021) Rao–Blackwellization in the MCMC era. arXiv preprint. arXiv:​2101.​01011
Robert CP, Casella G, Casella G (1999) Monte Carlo statistical methods, vol 2. Springer, Berlin
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors.

Nature 323:533–536
Salimans T, Knowles DA (2013) Fixed-form variational posterior approximation through stochastic linear

regression. Bayesian Anal 8(4):837–882
Sariev E, Germano G (2020) Bayesian regularized artificial neural networks for the estimation of the prob-

ability of default. Quant Finance 20(2):311–328
Saul LK, Jaakkola T, Jordan MI (1996) Mean field theory for sigmoid belief networks. J Artif Intell Res

4:61–76
Serafino L (2013) No free lunch theorem and Bayesian probability theory: two sides of the same coin. Some

implications for black-box optimization and metaheuristics. Preprint. arXiv:​1311.​6041
Shen X, Tian X, Liu T et al (2018) Continuous dropout. IEEE Trans Neural Netw Learn Syst

29(9):3926–3937
Skopek O, Ganea OE, Bécigneul G (2019) Mixed-curvature variational autoencoders. Preprint. http://arxiv.

org/abs/1911.08411arXiv:1911.08411
Sra S, Hosseini R (2015) Conic geometric optimization on the manifold of positive definite matrices. SIAM

J Optim 25(1):713–739
Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from

overfitting. J Mach Learn Res 15(1):1929–1958
Tan LS (2021) Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation.

Preprint. arXiv:​2109.​00375
Tieleman T, Hinton G (2012) Lecture 6.5-RMSProp, COURSERA: neural networks for machine learning.

University of Toronto, Technical Report 6
Tran DT, Iosifidis A, Kanniainen J et al (2019) Temporal attention-augmented bilinear network for financial

time-series data analysis. IEEE Trans Neural Netw Learn Syst 30(5):1407–1418
Tran MN, Nguyen DH, Nguyen D (2021a) Variational Bayes on manifolds. Stat Comput 31(6):71
Tran MN, Nguyen TN, Dao VH (2021b) A practical tutorial on variational Bayes. arXiv preprint. arXiv:​

2103.​01327
Trusheim F, Condurache A, Mertins A (2018) Boosting black-box variational inference by incorporating the

natural gradient. In: International conference on pattern recognition, 2018, pp 19–24
Tu LW (2011) Manifolds. In: An introduction to manifolds. Springer, Berlin, pp 47–83
Vehtari A, Lampinen J (1999) Bayesian neural networks for industrial applications. In: IEEE Midnight-Sun

workshop on soft computing methods in industrial applications, 1999, pp 63–68
Viaene S, Dedene G, Derrig RA (2005) Auto claim fraud detection using Bayesian learning neural net-

works. Expert Syst Appl 29(3):653–666
Wainwright MJ, Jordan MI (2008) Graphical models, exponential families, and variational inference. Found

Trends Mach Learn 1(1–2):1–305
Waldmann P (2018) Approximate Bayesian neural networks in genomic prediction. Genet Sel Evol

50(1):1–9
Wen Y, Tran D, Ba J (2020) BatchEnsemble: an alternative approach to efficient ensemble and lifelong

learning. In: International conference on learning representations, 2020
Wierstra D, Schaul T, Glasmachers T et al (2014) Natural evolution strategies. J Mach Learn Res

15(1):949–980
Wilson AC, Roelofs R, Stern M et al (2017) The marginal value of adaptive gradient methods in machine

learning. In: Advances in neural information processing systems, 2017, vol 30
Wolpert DH (1996) The lack of a priori distinctions between learning algorithms. Neural Comput

8(7):1341–1390
Young T, Hazarika D, Poria S et al (2018) Recent trends in deep learning based natural language process-

ing. IEEE Comput Intell Mag 13(3):55–75

http://arxiv.org/abs/2101.01011
http://arxiv.org/abs/1311.6041
http://arxiv.org/abs/2109.00375
http://arxiv.org/abs/2103.01327
http://arxiv.org/abs/2103.01327

11823Bayesian learning for neural networks: an algorithmic survey﻿	

1 3

Zhou B, Gao J, Tran MN et al (2021) Manifold optimization-assisted Gaussian variational approximation. J
Comput Graph Stat 30(4):946–957

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Bayesian learning for neural networks: an algorithmic survey
	Abstract
	1 Introduction
	1.1 The Bayesian paradigm
	1.2 Standard and Bayesian Neural Networks
	1.2.1 Artificial Neural Networks

	1.3 Motivation for adopting Bayesian Neural Networks
	1.4 Bayesian Neural Networks
	1.5 Variational Inference (VI)
	1.5.1 Estimation with Stochastic Gradient Descent (SGD)

	2 Sampling methods
	2.1 Monte Carlo Markov Chain (MCMC)
	2.2 Metropolis–Hastings (MH)
	2.3 Hamiltonian Monte Carlo (HMC)

	3 Monte Carlo Dropout (MCD)
	4 Bayes-By-Backprop (BBB)
	5 Exponential family and natural gradients
	6 Black-Box methods
	6.1 Black-Box Variational Inference (BBVI)
	6.2 Natural-Gradient Black-Box Variational Inference (NG-BBVI)

	7 Natural gradient methods for Exponential-family variational distributions
	7.1 Exact gradient computations for the exponential family
	7.2 Natural-Gradient Variational Inference (NGVI)
	7.3 Variational Online Newton (VON)
	7.4 Variational ADAM (VADAM)
	7.5 Variational Online Gauss–Newton (VOGN)
	7.6 Quasi Black-Box Variational Inference (QBVI)

	8 Variational Inference on manifolds
	8.1 Introduction to manifold optimization
	8.1.1 Elements of Riemannian manifolds

	8.2 Variational Bayes on Riemannian manifolds with natural gradients
	8.3 Manifold Gaussian Variational Bayes (MGVB)
	8.4 Exact Manifold Gaussian Variational Bayes (EMGVB)

	9 Conclusion
	Appendix: Nomenclature
	References

