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Results of 3D numerical simulations. We first find the
system ground state by solving the GPE by imaginary time
evolution and in the presence of n barriers. We then instan-
taneously imprint a current of winding w0 by multiplying the
ground state wavefunction by the phase factor exp(−i2πw0θ),
where θ is the azimuthal angle. We finally study the system
dynamics by solving the time-dependent GPE. For a particle
number N = 6.8×103 (corresponding to the experimental con-
densate number), we obtain µ = 1.09 kHz leading to a value
of the healing length ξ = 0.59 µm. Equation (11) (Methods)
is solved numerically by the Fourier split-step method on a
Cartesian grid of {Nx,Ny,Nz} = {256, 256, 80} points divid-
ing a grid size of length −34.846 µm ≤ r ≤ 34.846 µm and
−11.0 µm ≤ z ≤ 11.0 µm in the radial plane and axial direc-
tion, respectively. The time step is set to∆t = 1×10−5 ω−1

⊥ . We
characterise the condensate dynamics by studying the winding
number, w(t) calculated at at z = 0 and averaged over closed
circle paths ranging from the inner to the outer radius.

Stable configuration. As discussed in the main text, for a
fixed initial circulation w0 we find the transition from unsta-
ble (decaying w(t)) to stable current (time-independent evolu-
tion of the winding) when the number of barriers n exceeds
a critical value nc(w0), see Fig. 1(a). In the stable configura-
tion, 3D simulations reproduce the typical finding of the 1D
case, namely that both the maximum of the superfluid speed
and the phase gain at each junction decrease with n as shown
in Fig. 1(b)-(c). In particular, figure 1(b) shows the absolute
value of the superfluid velocity, |υ(r, t)|, computed at the mean
radius and for z = 0, as a function of the azimuthal angle
θ. Figure 1(c) instead shows the time-averaged phase gain
across each junction, δϕ, as a function of n (symbols), together
with a 1/n fit (dashed lines). Finally, in Fig. 1(d), we plot the
time-averaged δϕ as a function of the time-averaged current
(symbols). The dotted lines are the 1D current-phase relation
obtained for the same number of junctions and rescaled to be
consistent with the data. We see that the 3D results are con-
sistent with the trend of an increasing critical current with n
found in 1D.

Unstable configuration. If n < nc(w0), we find that both w
and the current decay in time via vortex emission. In Fig. 2
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SUPP. FIG. 1. Results of the 3D GPE numerical simulations. (a)
Winding number as a function of time for fixed w0 = 4 and at differ-
ent values of n (see legend). For the parameters considered in these
simulations nc(w0) = 8. (b) Absolute value of the superfluid velocity
extracted at the mean radius R = 15 µm for z = 0, as a function of the
azimuthal angle θ. Black (red) lines as obtained for n = 4 (n = 12),
an initial winding number w0 = 2 and at time t = 5 ms. (c) Time
averaged phase gain across each junctions as a function of the num-
ber of barriers n and for different values of w0. The dashed line is the
fit function that goes as 1/n. (d) Time-averaged phase-current values
extracted from the 3D time-dependent GPE simulations for n = 4
(green squares) and n = 12 (blue). The dashed lines are the corre-
sponding phase-current curves, obtained with 1D simulations [as in
the inset Fig. 2(a)].

we show the numerical densities illustrating the microscopic
mechanism of the vortex emission process. Vortices are emit-
ted symmetrically from each barrier: they enter the ring from
the central part, propagate along the transverse direction close
to the barrier position until they enter the bulk and travel at the
outer edge of the ring. Each vortex entering the bulk through
the barrier causes a global decrease of the winding number by
one. In particular, for the considered case of n = 4, the wind-
ing at t = 5.7 ms is equal to zero. We note that the detailed
vortex emission process depends on the value of the barrier
height considered.
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SUPP. FIG. 2. Density profiles obtained for an unstable configuration
of the system (w0 = 4, n = 4 and barrier height V0/µ = 1.4) from
3D GPE numerical simulations. Each panel represents the superfluid
density integrated along the z-direction. The figure clearly shows
the simultaneous nucleation of n vortices, each vortex being emitted
from the junction edge.

Critical circulation. The stability phase diagram can be ei-
ther characterized by the critical number of barriers nc(w0)
for fixed w0, as discussed above, or by the critical circulation
wc(n). For a given n, the critical circulation is the largest value
of w0 for which we find a stable dynamics. In Fig. 3 we plot
wc(n) as a function of n and for different values of V0/µ. In-
terestingly, all the curves are parallel to each other and thus
collapse on the same curve upon rescaling by wc. In partic-
ular, by increasing V0/µ the value of the critical circulation
is shifted downwards. This is in agreement with the results
in Ref. [1] for a single defect, which found that wc becomes
smaller at larger values of V0/µ. The dashed white line in
Fig. 4(b) of the main text is obtained by using V0/µ as fitting
parameter. We obtain that experimental data are well repro-
duced by V0/µ = 1.80 ± 0.05. This value is larger than the
experimental estimation of V0/µ = 1.3, even after taking into
account a decrease by 15% of the chemical potential due to
particle losses. The reason behind this discrepancy is investi-
gated in the following paragraph.

We finally notice that the increase of wc(n) with n shows no
qualitative change when the barrier height becomes lower than
the chemical potential (weak link regime). However, clearly
observing the transition from unstable to stable current states
as a function of n for V0 < µ would require the preparation of
initial states with circulations much larger than those consid-
ered in this work.

Effect of non-identical barriers on the current’s stability.
Due to the finite resolution of the DMD-created optical po-
tentials, the experimental barriers creating the JJN are not
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SUPP. FIG. 3. Effect of the barrier heights on the critical circulation.
(a) Critical circulation wc(n) as a function of n and for different values
of the barrier height V0/µ. (b) By substracting from wc(n) the critical
value for n = 2, the various curves collapse onto a single curve and
we obtain a curve independent of V0/µ.
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SUPP. FIG. 4. Winding number as a function of time for eight dif-
ferent simulations run with different barrier configurations (symbols
with guides to the eye) and their average value (grey line). In each
run, each barrier height and width is chosen randomly in the range
V0/µ0 = [1.2, 1.6] and σ = [0.68, 0.92] µm, respectively. The black
dashed line show the stable winding number in the absence of noise,
i.e. for identical barriers of height V0/µ0 = 1.4 and width σ = 0.8
µm. The data are produced from 3D numerical simulations in the
case of n = 4 barriers and at fixed w0 = 3.

identical, but their height and size is distributed around the
mean values mentioned in the main. To check whether non-
identical barriers could affect the current stability in the JJN,
we study this case with 3D numerical simulations. In partic-
ular, in Fig. 4 we report the time evolution of the winding for
n = 4 barriers and w0 = 3, which is stable for identical barri-
ers, when each barrier height and width are randomly selected
from Gaussian distributions of mean values V0/µ0 = 1.4
and σ = 0.8 µm and standard deviation ∆V0/µ0 = 0.2 and
∆σ = 0.12 µm, respectively. The mean and standard devi-
ation values correspond to the ones measured from the ex-
perimental characterization of the barriers. In the figure, we
show the winding number as a function of time for 8 differ-
ent runs (symbols), corresponding to different configurations
of the barriers. We also plot the statistical mean value (solid
line). These simulations reproduce qualitatively the experi-
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SUPP. FIG. 5. Statistically-averaged winding number as a function of time and for different n (symbols). The different panels refer to different
values of w0: w0 = 1 (a), w0 = 3 (b) and w0 = 4 (c). Dashed lines represent the exponential fit of each dataset, using the same fitting function
as in Fig. 4(a). The inset of panel (a) reports the averaged winding number at t = 250 ms as a function of n for w0 = 1.
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SUPP. FIG. 6. Measured ratio w f /w0 (colormap) as a function of w0

and n. The white dashed line is the same as in Fig. 4(b).

mental findings: for some barrier configurations, the wind-
ing number remains constant in time, for some others it de-
cays, eventually also reaching negative values. Correspond-
ingly, also the average winding number (solid line) decays in
time. To summarize, having non-identical barriers is observed
to reduce the stability of currents in the JJN for the same w0,
explaining the discrepancy in V0/µ found between the experi-
mental and numerical phase diagram.

Rate of thermally- and quantum-activated decay processes.
The energy barrier separating the w = 0 from the w = ±1
states can be estimated as twice the Josephson energy (see
e.g. [2]), linearly dependent to the critical current. Follow-
ing Refs. [3, 4], we estimate a thermally-activated decay rate
νth ≃ 0.54 Hz for the experimental temperature T = 60 nK
(at which the condensate fraction is 80%), i.e., a phase slip-
page time of 1.84 s. We have checked numerically – by solv-
ing the collisionless Zaremba-Nikuni-Griffin model [5, 6] at
the experimental temperature – that finite-temperature dissi-

pation does not affect the critical winding number (w0 = wc)
for at least 150 ms and marginally affects the decay time. Fur-
thermore, by following Ref. [3], we estimate a typical quan-
tum tunnelling-induced decay time of the order of hundreds of
seconds. Note that both thermal and quantum phase slippage
times further increase with the critical current and therefore
with the number of junctions.

Experimental phase profile in the JJN. As already com-
mented in the main text, the interferograms associated with
stable realizations, namely in which w = w0, show interfer-
ence fringes with a clear polygonal structure (e.g. squared
for n = 4), which are a manifestation of the phase jump at
each Josephson junction. Thanks to the high resolution of the
imaging setup, we can extract the local relative phase between
the ring and the reference central disc, ϕ, as a function of the
azimuthal angle θ, as reported in Fig. 7. The interferograms in
polar coordinates [(a)] display a characteristic step-like shape
of the fringes, closely resembling the predicted behavior of
the JJN phase by the analytical model and from the numer-
ical simulations (see the inset of Fig. 2(a) for comparison).
We then quantitatively extract the value of ϕ(θ) as the phase
shift in the sinusoidal fit of a slice of the polar interferogram
at constant θ. As shown in Fig. 7 (b), the ϕ(θ) trend clearly
deviates from the linear behavior expected in a clean ring [7],
but it rather exhibits a number of jumps in correspondence of
the barriers in the JJN.

Experimental stability phase diagram. In Fig. 5 we pro-
vide additional experimental data regarding the statistically-
averaged winding number as a function of time and for differ-
ent n and w0. In the case w0 = 1, ⟨w⟩ is found to be constant
in time up to 250 ms for any n. In particular, in Fig. 5(a) we
plot the case n = 16, averaged over about 20 realizations. The
inset of Fig. 5(a) shows ⟨w⟩ at time t = 250 ms and for n
ranging from 1 to 16. Only in the case n = 12, we found a
single experimental realization (out of 18 independent runs)
with w = 0. In Fig. 5(b) and (c) we plot the cases w0 = 3 and
w0 = 4 [the case w0 = 2 is shown in Fig. 4(a)].

In Fig. 6 we report the analogue of the stability phase dia-
gram of Fig. 4(a) here plotting w f /w0, where w f is the average
circulation at long time, as obtained from a fit (see main text).
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SUPP. FIG. 7. Extraction of the azimuthal profile of the JJN phase
from the experimental interferograms. The upper panel shows the
interferogram image unwrapped into polar coordinates. A sinu-
soidal fit of each azimuthal slice is performed by using the function
A cos(αr + ϕ). To enhance the fringe contrast, for each value of θ
we consider a radial slice of the polar interferogram averaged over
∆θ = 0.47 rad. The image is obtained by averaging 5 similar ex-
perimental spiral patterns and unwrapping the resulting image. The
lower panel is the fitted azimuthal trend of ϕ, showing a phase jump
in correspondence of each barrier. The unwrapped phase here is aver-
aged over the profiles of all experimental images for (w0 = 2, n = 4)
where w(t) = w0 at times t > 10 ms.

This shows the experimental deterministic realization of sta-
ble circulation states for w = 1 and w = 2 in a toroidal trap
with up to n = 16 junctions.

Superfluid fraction and the f (w̃, n) function. The super-
fluid fraction for neutral atoms in a ring trap rotating at an
angular velocity Ω (pointing along the axis z perpendicular to
the ring) can be defined as [8, 9]

fs = 1 − lim
Ω−→0

Lz

IclΩ
, (S.1)

where L =
∫

dr m|ψ(r)|2r × υ(r) is the expectation value of
the angular momentum, Icl =

∫
dr mr2|ψ(r)|2 is the classical

moment of inertia, and the superfluid state with w0 = 0 is
considered.

In a 1D ring of radius R, Icl = mR2 and Lz =

mR
∫

dθρ(θ)υ(θ), where ρ(θ) and v(θ) are the density and
the velocity along the ring. Equation (S.1) becomes fs =

−2π limΩ−→0
J
Ω

. Replacing into this equation the expression
for J/ΩR given in Eq. 8 (see Methods), we find fs = f (w̃, n) =
(2π)2(

∫ 2π
0 dθ 1

ρ(θ) )
−1. Restricting the integration to a unit cell

of size d (corresponding to the angular distance between two
junctions) as in Refs. [8, 9], and normalizing ρ(θ) to 1 within
that cell, we recover Leggett’s equation,

fs =
1

1
d2

∫
cell

dθ
ρ(θ)

. (S.2)

Equation (S.2) can be also derived by noticing that the two
bounds in Eq. (6) coincide in 1D. In Fig. 8(a) we plot fs (cir-
cles) and fc [corresponding to f (w̃ = w̃c, n), dots] as a func-
tion of n. Both functions decrease with n until the barriers
start to overlap. In the homogeneous case (n = 0), we have
ρ(θ) = 1/(2π), f (w̃, 0) = 1 and thus fs = 1, while fc is not
definited. In Fig. 8(b) we plot f (w̃, n) as a function of w̃ for
n = 6.

It should be noticed that the variational bounds in Eq. (6)
have been obtained by Leggett [8, 9] by considering a small
phase twist in a narrow ring of relatively large radius. In
our system, the superfluid fraction evaluated according to
Eq. (S.1) may include additional transversal finite-size effects
due to the non-negligible thickness of the ring.
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[1] K. Xhani, G. D. Pace, F. Scazza, and G. Roati, “Decay of per-
sistent currents in annular atomic superfluids,” Atoms 11, 109
(2023).

[2] K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, and G.
K. Campbell, “Driving phase slips in a superfluid atom circuit
with a rotating weak link”, Phys. Rev. Lett. 110, 025302 (2013).

[3] B.I. Halperin, G. Refael and E. Demler, “Resistance in super-
conductors”, International Journal of Modern Physics B 24,
4039 (2010).

[4] A. Kumar, S. Eckel, F. Jendrzejewski, and G. K. Campbell,
“Temperature-induced decay of persistent currents in a super-
fluid ultracold gas”, Phys. Rev. A 95, 021602(R) (2017).



5

[5] A. Griffin, T. Nikuni, and E. Zaremba, Bose-Condensed Gases
at Finite Temperatures (Cambridge University Press, 2009).

[6] K. Xhani and N. P. Proukakis, “Dissipation in a finite-
temperature atomic Josephson junction”, Phys. Rev. Res. 4
033205 (2022).

[7] G. D. Pace, K. Xhani, A. M. Falconi, M. Fedrizzi, N. Grani, D.
H. Rajkov, M. Inguscio, F. Scazza, W. Kwon, and G. Roati,
“Imprinting persistent currents in tunable fermionic rings”,
Phys. Rev. X 12, 041037 (2022).

[8] A. J. Leggett, “Can a solid be ”superfluid”?”, Phys. Rev. Lett.
25, 1543 (1970).

[9] A. J. Leggett, “On the superfluid fraction of an arbitrary many-
body system at T = 0”, J. Stat. Phys. 93, 927 (1998).

[10] W. J. Kwon, G. Del Pace, R. Panza, M. Inguscio, W. Zwerger,
M. Zaccanti, F. Scazza, and G. Roati, “Strongly correlated su-
perfluid order parameters from dc Josephson supercurrents”,
Science 369, 84 (2020).


