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Abstract
We show that if a polyhedron in the three-dimensional
affine space with triangular faces is flexible, that is,
can be continuously deformed preserving the shape of
its faces, then there is a cycle of edges whose lengths
sum up to zero once suitably weighted by 1 and −1.
We do this via elementary combinatorial considerations,
made possible by a well-known compactification of the
three-dimensional affine space as a quadric in the four-
dimensional projective space. The compactification is
related to the Euclidean metric, and allows us to use a
simple degeneration technique that reduces the problem
to its one-dimensional analog, which is trivial to solve.

MSC ( 2020 )
52B10, 52C25, 70B15 (primary)

INTRODUCTION

Flexibility of polyhedra — namely, the existence of a continuous deformation preserving the
shapes of all faces — is a well-studied topic, a limit case of the theory of rigidity of surfaces
(investigated by, among others, Cohen-Vossen, Nirenberg, Alexandrov, and Gluck, see [11] for
an overview) that allows for combinatorial and topological or algebro-geometric techniques.
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F IGURE 1 Flexible octahedra and the cycles indicated by colors in which the signed lengths of edges sum
up to zero. The one on the left is a so-called Type I flexible octahedron, which is symmetric with respect to a line,
while the one on the right is a so-called Type III flexible octahedron, which admits two flat positions, one of
which is depicted here

Although flexible polyhedra have been studied for long,most of their aspects aremysterious.With
the notable exception of Bricard octahedra (see [4]), very few families are known and classified,
and even natural questions like the existence of not self-intersecting flexible polyhedra are non-
trivial to answer (see [7, 14]). Therefore, providing necessary conditions for flexibility of polyhedra
seems a relevant step toward a better understanding of these objects.
The starting point of the theory of rigidity and flexibility of polyhedra can be considered to be the

work by Cauchy [5], in which he proved that convex polyhedra are rigid. Gluck [13] then showed
that “almost all” simply connected polyhedra are rigid as well. The research then focused on find-
ing necessary and sufficient conditions for the flexibility of polyhedra, and it is still an active
research field, as witnessed by, among others, recent works by Gaifullin [8] and Alexandrov [2, 3].
In the latter, Alexandrov proved that the edge lengths of a flexible (orientable) polyhedron with
triangular faces must satisfy a ℚ-linear relation.
The goal of this paper is to prove that for every flexible polyhedron in the three-dimensional

affine space with triangular faces, there is a cycle of edges and a sign assignment such that the
sum of the signed edge lengths is zero. Notice that we do not ask the polyhedron to be homeomor-
phic to a sphere, neither to be embedded nor immersed. This is a generalization of the analogous
statement that holds for suspensions, that is, simplicial complexes that have the combinatorics of
a double pyramid; see [1, 6, 16]. The first statement of this kind appeared, to our knowledge, in [15]
concerning flexible octahedra (see Figure 1). In a previous work [9] we re-prove this statement in
the case of flexible octahedra by means of symbolic computation. There, however, our method
provides a finer control on which edges take the positive sign, and which the negative sign. Here,
instead, our result is more general, but gives no information about which edges are counted as
positive and which as negative.
This is the main result of our paper (Theorem 2.2).

Theorem. Consider a polyhedron with triangular faces that admits a flex, that is, a continuous
deformation preserving the shapes of all faces. Let {𝒘1,𝒘2} be an edge, and let 𝒔 and 𝒏 be the two ver-
tices adjacent to both𝒘1 and𝒘2. If the dihedral angle between the faces {𝒘1,𝒘2, 𝒔} and {𝒘1,𝒘2, 𝒏}

is not constant along the flex, then there is an induced cycle of edges containing {𝒘1,𝒘2} but neither
the vertex 𝒔 nor 𝒏 and there is a sign assignment such that the signed sum of lengths of the edges in
the cycle is zero.
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To understand the core argument of the proof, consider a one-dimensional analog of the situa-
tion in the theorem: we are given a cycle with verticesmapped toℝ, namely, a sequence 𝑥1, … , 𝑥𝑘,
𝑥𝑘+1 = 𝑥1 of real numbers. The lengths of the edges of this cycle are given by |𝑥𝑖 − 𝑥𝑖+1| for
𝑖 ∈ {1, … , 𝑘}. If we multiply each edge length by sign(𝑥𝑖 − 𝑥𝑖+1), we get 𝑥𝑖 − 𝑥𝑖+1. Therefore, if
we sum the edge lengths, each multiplied by sign(𝑥𝑖 − 𝑥𝑖+1), we get a telescoping sum, which
yields 0. What we do is to reduce the main result of the paper to this simple statement, and this
gives the proof of the theorem. Thewaywe perform this reduction is by considering “limits” of the
flex of the polyhedron: the key point is that these “limits” are taken in a suitable compactification
of ℝ3; moreover, they are given by points whose coordinates are complex numbers. The compact-
ification, which is a quadric hypersurface in the four-dimensional projective space, is chosen in
such a way that the usual Euclidean distance of ℝ3 extends to these points “at infinity.” A “limit”
of the flex then determines a coloring of the vertices of the polyhedron. Combinatorial properties
of this coloring are obtained from the algebro-geometric features of the compactification of ℝ3.
These combinatorial properties yield the existence of the cycle passing through the edge {𝒘1,𝒘2}

in the statement, such that all its vertices lie, in the “limit” situation, on the same tangent space to
the quadric hypersurface. A direct computation shows that on such tangent space the extension
of the Euclidean distance behaves similarly to a one-dimensional distance, and the argument at
the beginning of the paragraph concludes the proof.
The paper is structured as follows. Section 1 introduces the compactification of the three-

dimensional affine space we are going to use, and proves the basic relations between the com-
pactification and the standard Euclideanmetric. Section 2 formalizes the notion of flexibility, sets
up the combinatorial constructions that are needed for the main result, and proves it.

1 THEMÖBIUSMODEL

We introduce a particular compactification of ℝ3, which we call the conformal compactification
(Definition 1.1). This means that we consider ℝ3 as a subset of a compact space (in our case, a
projective variety) and so we add to ℝ3 some “points at infinity,” similarly as it is done in the con-
struction of the projective space. The nice feature of this compactification is that it behaves well
with the standard Euclidean distance, in a way that allows extending this distance in a coherent
way also to some of these points at infinity (Proposition 1.3). To really use these points at infinity,
we need to extend our setting to the complex numbers. This section then includes a series of small
results regarding various properties of this extension of the Euclidean distance, which constitute
the algebro-geometric backbone of the main result of the paper.

Definition 1.1. We embed ℝ3 into ℙ4 by the map

(𝑥, 𝑦, 𝑧) ↦ (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑥2 + 𝑦2 + 𝑧2 ∶ 1) ,

which we call the conformal, orMöbius, embedding. Every point (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑟 ∶ ℎ) in the image
of ℝ3 under the conformal embedding lies on the hypersurface𝑀 ⊂ ℙ4 of the equation

𝑥2 + 𝑦2 + 𝑧2 − 𝑟ℎ = 0 ,

which is a projective model for conformal geometry, and this is where the name of the embedding
comes from. More precisely, each and every real point on 𝑀 with ℎ ≠ 0 corresponds to a unique
point in ℝ3, and vice versa.
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Here we make precise the connection between𝑀 and the Euclidean distance.

Definition 1.2. The symmetric bilinear form on ℝ5 × ℝ5 associated to the equation of 𝑀 is
denoted by ⟨⋅, ⋅⟩𝑀 , and is given by

⟨(𝑥1, 𝑦1, 𝑧1, 𝑟1, ℎ1), (𝑥2, 𝑦2, 𝑧2, 𝑟2, ℎ2)⟩𝑀 = 𝑥1 𝑥2 + 𝑦1 𝑦2 + 𝑧1 𝑧2 −
1

2
(𝑟1 ℎ2 + 𝑟2 ℎ1) .

In the following, we apply this bilinear form to points inℙ4: by this wemean that we choose vector
representatives of the points for the computation. Whenever needed, we specify explicitly which
representative we choose: if 𝑝 ∈ ℙ4, by a slight abuse of notation whenever we write 𝑝 = (𝑥 ∶ 𝑦 ∶

𝑧 ∶ 𝑟 ∶ ℎ) we take the vector (𝑥, 𝑦, 𝑧, 𝑟, ℎ) as representative of 𝑝.

Proposition 1.3. Let 𝑢1, 𝑢2 ∈ ℝ3 and let 𝑝1, 𝑝2 be the corresponding points in𝑀 under the confor-
mal embedding, with 𝑝𝑖 = (𝑥𝑖 ∶ 𝑦𝑖 ∶ 𝑧𝑖 ∶ 𝑟𝑖 ∶ 1). Then

−
1

2
‖‖𝑢1 − 𝑢2

‖‖2
= ⟨𝑝1, 𝑝2⟩𝑀 ,

where ‖ ⋅ ‖ is the Euclidean norm in ℝ3.

Proof. By construction, we have that 𝑢𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). Then expanding both left- and right-hand
side using the definitions yields the same expression. □

We now start the exploration of the “points at infinity” of𝑀.

Definition 1.4. The points (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑟 ∶ ℎ) in 𝑀 such that ℎ ≠ 0 are called finite. The other
points of 𝑀, namely, the ones on the quadric 𝑀∞ ∶= 𝑀 ∩ {ℎ = 0}, form a cone over the plane
quadric𝐴 ∶= {(𝑥 ∶ 𝑦 ∶ 𝑧) |𝑥2 + 𝑦2 + 𝑧2 = 0}whose vertex is the point 𝜔∞ ∶= (0 ∶ 0 ∶ 0 ∶ 1 ∶ 0).
We call the points in𝑀∞ ⧵ {𝜔∞} simple infinite.

From the description ofDefinition 1.4we get that the only real point of𝑀∞ is𝜔∞. To fully unveil
the information contained in𝑀∞ we then pass to the complex numbers. All the constructions we
made so far are algebraic, and so they make sense also over ℂ. Hence from now on, all the points,
projective spaces and varieties, and quadratic forms — unless otherwise stated — are considered
over the complex numbers.

Remark 1.5. In particular, using the same argument as in Proposition 1.3, for any 𝑝1, 𝑝2 ∈ 𝑀 with
𝑝𝑖 = (𝑥𝑖 ∶ 𝑦1 ∶ 𝑧𝑖 ∶ 𝑟𝑖 ∶ 1)— even with complex coordinates — we have

−
1

2

[
(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2 + (𝑧1 − 𝑧2)

2
]
= ⟨𝑝1, 𝑝2⟩𝑀 .

Due to Proposition 1.3, we can extend the (squared) distance in ℝ3 to a rational function
𝑑∶ ℙ4 × ℙ4 ⤏ ℙ1, defined by

𝑑(𝑝1, 𝑝2) ∶= (⟨𝑝1, 𝑝2⟩𝑀 ∶ ℎ1ℎ2) ,
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where 𝑝𝑖 = (𝑥𝑖 ∶ 𝑦𝑖 ∶ 𝑧𝑖 ∶ 𝑟𝑖 ∶ ℎ𝑖) for 𝑖 ∈ {1, 2}. Notice that, however, the value of 𝑑(𝑝1, 𝑝2) does
not depend on the choice of the representatives. If 𝑑(𝑝1, 𝑝2) = (1 ∶ 0), we write 𝑑(𝑝1, 𝑝2) = ∞.
From the definition, one derives that 𝑑(𝑝1, 𝑝2) is not defined if and only if(

𝑝1 ∈ 𝑀∞ and 𝑝2 ∈ 𝕋𝑝1
𝑀
)

or
(
𝑝2 ∈ 𝑀∞ and 𝑝1 ∈ 𝕋𝑝2

𝑀
)
,

where 𝕋𝑝𝑀 is the embedded tangent space of𝑀 at 𝑝, namely, if 𝑝 = (𝑥′ ∶ 𝑦′ ∶ 𝑧′ ∶ 𝑟′ ∶ ℎ′), then

𝕋𝑝𝑀 = {(𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑟 ∶ ℎ) ∈ ℙ4 | 2(𝑥𝑥′ + 𝑦𝑦′ + 𝑧𝑧′) − (𝑟ℎ′ + ℎ𝑟′) = 0} .

In fact, an immediate computation shows that

⟨𝑝1, 𝑝2⟩𝑀 = 0 ⟺ 𝑝2 ∈ 𝕋𝑝1
𝑀 ⟺ 𝑝1 ∈ 𝕋𝑝2

𝑀 .

Here we provide a few results on the behavior of the map 𝑑, in particular when it is applied to
points in𝑀∞.
A direct computation shows the first result.

Lemma 1.6. If 𝑝 ∈ 𝑀 is finite, then 𝑑(𝑝, 𝜔∞) = ∞.

Definition 1.7. For simple infinite points, we define a map

Ψ∶ 𝑀∞ ⧵ {𝜔∞} ⟶ 𝐴, (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑟 ∶ 0) ↦ (𝑥 ∶ 𝑦 ∶ 𝑧) .

Lemma 1.8. If 𝑝1, 𝑝2 ∈ 𝑀 are simple infinite and Ψ(𝑝1) ≠ Ψ(𝑝2), then 𝑑(𝑝1, 𝑝2) = ∞.

Proof. Since 𝑝1, 𝑝2 ∈ 𝑀∞, either 𝑑(𝑝1, 𝑝2) is undefined, or 𝑑(𝑝1, 𝑝2) = ∞, and the latter happens
precisely when ⟨𝑝1, 𝑝2⟩𝑀 ≠ 0. Write 𝑝𝑖 = (𝑥𝑖 ∶ 𝑦𝑖 ∶ 𝑧𝑖 ∶ 1 ∶ 0). Let 𝐵𝑖 ∶= {(𝑥, 𝑦, 𝑧) ∈ ℂ3 |𝑥𝑖 𝑥 +

𝑦𝑖 𝑦 + 𝑧𝑖 𝑧 = 0}. From𝑝𝑖 ∈ 𝑀we get 𝑥2
𝑖
+ 𝑦2

𝑖
+ 𝑧2

𝑖
= 0, namely, (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) ∈ 𝐵𝑖 . On the other hand,

since Ψ(𝑝1) ≠ Ψ(𝑝2), we have that (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) are linearly independent. Therefore
the intersection 𝐵1 ∩ 𝐵2 is one-dimensional and it cannot happen that (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2)

are both in𝐵1 ∩ 𝐵2, because otherwise theywould be linearly dependent.However, the statements
(𝑥2, 𝑦2, 𝑧2) ∉ 𝐵1 and (𝑥1, 𝑦1, 𝑧1) ∉ 𝐵2 are equivalent, so none of the two points belong to 𝐵1 ∩ 𝐵2.
Hence,

⟨𝑝1, 𝑝2⟩𝑀 = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 ≠ 0 .

This proves the statement. □

Lemma 1.9. Let 𝑞1 and 𝑞2 be simple infinite points such thatΨ(𝑞1) = Ψ(𝑞2). If 𝑝 is finite, and both
𝑑(𝑞1, 𝑝) and 𝑑(𝑞2, 𝑝) are not∞, then 𝑞1 = 𝑞2 and 𝑑(𝑞𝑖, 𝑝) is undefined.

Proof. Write 𝑞1 = (𝑥1 ∶ 𝑦1 ∶ 𝑧1 ∶ 𝑟1 ∶ 0). Then 𝑞2 = (𝑥2 ∶ 𝑦2 ∶ 𝑧2 ∶ 𝑟2 ∶ 0) = (𝛼𝑥1 ∶ 𝛼𝑦1 ∶ 𝛼𝑧1 ∶

𝑟2 ∶ 0) for some 𝛼 ∈ ℂ ⧵ {0} by the assumptionΨ(𝑞1) = Ψ(𝑞2). We want to show that 𝑟2 = 𝛼𝑟1. Let
𝑝 = (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑟 ∶ 1). Then

𝑑(𝑝, 𝑞𝑖) = (⟨𝑝, 𝑞𝑖⟩𝑀 ∶ 0) = (𝑥𝑖𝑥 + 𝑦𝑖𝑦 + 𝑧𝑖𝑧 −
1

2
𝑟𝑖 ∶ 0) .
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Since both the values 𝑑(𝑝, 𝑞𝑖) are not ∞ by assumption, they are both undefined. Hence, 𝑟𝑖 =

2(𝑥𝑖𝑥 + 𝑦𝑖𝑦 + 𝑧𝑖𝑧) and we get

𝑟2 = 2(𝑥2𝑥 + 𝑦2𝑦 + 𝑧2𝑧) = 2𝛼(𝑥1𝑥 + 𝑦1𝑦 + 𝑧1𝑧) = 𝛼𝑟1 ,

which shows that 𝑞1 = 𝑞2. □

We conclude this section with a key technical result, showing that the function 𝑑, once
restricted to particular linear subsets, behaves like a 1-dimensional distance function.

Definition 1.10. If 𝑝 is simple infinite, we define Fin𝑝 to be the set of all finite points 𝑝′ such
that 𝑑(𝑝, 𝑝′) ≠ ∞, namely, 𝑑(𝑝, 𝑝′) is undefined. Hence Fin𝑝 = 𝑀 ∩ 𝕋𝑝𝑀 ∩ {ℎ ≠ 0}.

Lemma 1.11. Let 𝑝 be a simple infinite point. There exists a function 𝜋∶ Fin𝑝 ⟶ ℂ such that for
all 𝑞1, 𝑞2 ∈ Fin𝑝, we have

𝑑(𝑞1, 𝑞2) =
((

𝜋(𝑞1) − 𝜋(𝑞2)
)2

∶ 1
)

.

Proof. Write 𝑝 = (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ �̃� ∶ 0). By possibly re-labeling the coordinates, we can suppose that
𝑥 ≠ 0, since 𝑝 is different from 𝜔∞ = (0 ∶ 0 ∶ 0 ∶ 1 ∶ 0). The embedded tangent space 𝕋𝑝𝑀 has
equation

2𝑥 𝑥 + 2𝑦 𝑦 + 2𝑧 𝑧 − �̃� ℎ = 0 .

Therefore for any 𝑞1, 𝑞2 ∈ Fin𝑝 we get, once we write 𝑞𝑖 = (𝑥𝑖 ∶ 𝑦𝑖 ∶ 𝑧𝑖 ∶ 𝑟𝑖 ∶ 1)

�̃� = 2𝑥 𝑥1 + 2𝑦 𝑦1 + 2𝑧 𝑧1 = 2𝑥 𝑥2 + 2𝑦 𝑦2 + 2𝑧 𝑧2 .

Since we suppose that 𝑥 ≠ 0, we can write

𝑥𝑖 =
�̃�

2𝑥
−

𝑦

𝑥
𝑦𝑖 −

𝑧

𝑥
𝑧𝑖 .

Remark 1.5 shows that

−2⟨𝑞1, 𝑞2⟩𝑀 = (𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 + (𝑧1 − 𝑧2)
2

=

(
−

𝑦

𝑥
𝑦1 −

𝑧

𝑥
𝑧1 +

𝑦

𝑥
𝑦2 +

𝑧

𝑥
𝑧2

)2

+ (𝑦1 − 𝑦2)
2 + (𝑧1 − 𝑧2)

2

=
1

𝑥2

[(
𝑦(𝑦2 − 𝑦1) + 𝑧(𝑧2 − 𝑧1)

)2
+ 𝑥2(𝑦1 − 𝑦2)

2 + 𝑥2(𝑧1 − 𝑧2)
2
]

=
1

𝑥2

[
2𝑦𝑧(𝑦2 − 𝑦1)(𝑧2 − 𝑧1) + (𝑥2 + 𝑦2)(𝑦1 − 𝑦2)

2 + (𝑥2 + 𝑧2)(𝑧1 − 𝑧2)
2
]

= −
1

𝑥2
[𝑧(𝑦1 − 𝑦2) − 𝑦(𝑧1 − 𝑧2)]

2,
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where in the last step we use that 𝑥2 + 𝑦2 + 𝑧2 = 0. Define the function 𝜋∶ Fin𝑝 ⟶ ℂ by

(𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑟 ∶ 1) ↦
1√
2𝑥

(𝑧𝑦 − 𝑦𝑧) .

Notice that 𝜋 does not depend on the chosen representative of 𝑝. The statement then follows,
since

𝑑(𝑞1, 𝑞2) =
(⟨𝑞1, 𝑞2⟩𝑀 ∶ 1

)
=
((

𝜋(𝑞1) − 𝜋(𝑞2)
)2

∶ 1
)

. □

2 COLORINGS AND ZERO-SUM CYCLES

This section is devoted to the proof of the main result of the paper (Theorem 2.2). Let us first
formalize the notion of flexibility. Recall that a triangular polyhedron is a finite two-dimensional
abstract simplicial complex such that every edge belongs to exactly two faces. The 1-skeleton of
a triangular polyhedron is the graph defined by the vertices and edges of the polyhedron. We
consider only polyhedra whose 1-skeleton is connected.

Definition 2.1. A realization of a triangular polyhedron whose 1-skeleton is 𝐺 = (𝑉, 𝐸) is a map
𝜌∶ 𝑉 ⟶ ℝ3 such that 𝜌(𝑢) ≠ 𝜌(𝑣) for every {𝑢, 𝑣} ∈ 𝐸. The realization 𝜌 induces edge lengths
𝜆 = (𝜆𝑒)𝑒∈𝐸 where 𝜆{𝑢,𝑣} ∶= ‖𝜌(𝑢) − 𝜌(𝑣)‖ ∈ ℝ>0 for {𝑢, 𝑣} ∈ 𝐸. Here ‖ ⋅ ‖ is the standard
Euclidean norm. Two realizations 𝜌1 and 𝜌2 are called congruent if there exists an isometry 𝜎

of ℝ3 such that 𝜌1 = 𝜎◦𝜌2.
A flex of the graph 𝐺 with a realization 𝜌 is a continuous map 𝑓∶ [0, 1) ⟶ (ℝ3)𝑉 such that

∙ 𝑓(0) is the given realization 𝜌;
∙ for any 𝑡 ∈ [0, 1), the realizations 𝑓(𝑡) and 𝑓(0) induce the same edge lengths;
∙ for any two distinct 𝑡1, 𝑡2 ∈ [0, 1), the realizations 𝑓(𝑡1) and 𝑓(𝑡2) are not congruent.

To prove the main result, the first step is to convert the information on the existence of a flex
for a triangular polyhedron into a combinatorial object, namely, a coloring of the vertices of the
polyhedron (Definition 2.6). This is done by considering special “limits” of the images of realiza-
tions in the flex under the conformal embedding, which exist due to the fact that 𝑀 is compact
(Definition 2.4). These limits are not realizations, because some of the vertices are sent to points
in 𝑀 that do not correspond to points in ℝ3; these points are, actually, not even given by real
coordinates. The properties of this coloring follow from the results of Section 1. Then, by arguing
purely combinatorially we derive the existence of a monochromatic cycle in the 1-skeleton of the
polyhedron that passes through the edge whose dihedral angle is supposed to change along the
flex (Lemma 2.11). At this point, we notice that the vertices in this cycle satisfy the hypotheses of
Lemma 1.11 (Lemma 2.10). Then the function 𝑑 behaves like a 1-dimensional distance function,
for which the main result is thus trivial.
We start by precisely stating our main result.

Theorem 2.2. Let 𝐺 be the 1-skeleton of a triangular polyhedron with a realization that admits a
flex. Let 𝜆 be the edge lengths induced by the realizations in the flex. Let {𝒘1,𝒘2} be an edge of 𝐺 and
let 𝒔 and 𝒏 be the two opposite vertices of the two triangles containing {𝒘1,𝒘2}. If the dihedral angle
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between the faces {𝒘1,𝒘2, 𝒔} and {𝒘1,𝒘2, 𝒏} is not constant along the flex, then there is an induced†

cycle in 𝐺 containing {𝒘1,𝒘2} but neither the vertex 𝒔 nor 𝒏 and there is a sign assignment such that
the signed sum of the edge lengths 𝜆𝑒 over the edges 𝑒 in the cycle is zero.

Let us start laying the foundation of the proof. For the rest of this section, we fix the skeleton
𝐺 = (𝑉, 𝐸), the flex, the edge {𝒘1,𝒘2}, the edge lengths 𝜆, and the two vertices 𝒔 and 𝒏 satisfy-
ing the assumptions of Theorem 2.2. Notice that the realizations in the flex of the two triangles
{𝒘1,𝒘2, 𝒔} and {𝒘1,𝒘2, 𝒏} are non-degenerate — that is, the vertices are not collinear — because
otherwise their dihedral angle is not defined.
The Zariski closure in (ℂ3)𝑉 of the set of real realizations inducing 𝜆 is an algebraic set and we

denote it by 𝑊. By construction, 𝑊 is the set of maps 𝜌∶ 𝑉 ⟶ ℂ3 such that for all {𝑣1, 𝑣2} ∈ 𝐸

with 𝜌(𝑣𝑖) = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) we have

(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 + (𝑧1 − 𝑧2)
2 = 𝜆2

{𝑣1,𝑣2}
. (*)

Notice that, as soon as a real realization 𝜌 belongs to 𝑊, then all real realizations congruent to 𝜌

belong to𝑊. To effectively use the hypothesis of having a flex, we need to get rid of this abundance
of “copies” of a single realization. To do so, we take a “slice” of𝑊, which has the effect to kill the
action of the group of isometries by fixing a triangle. Let 𝜌0 be the realization of the flex at time 0.
Consider the subset

𝑍 ∶=
{
𝜌 ∈ 𝑊 | 𝜌(𝒘1) = 𝜌0(𝒘1), 𝜌(𝒘2) = 𝜌0(𝒘2), 𝜌(𝒏) = 𝜌0(𝒏)

}
.

By construction, no two different elements of 𝑍 coming from real realizations may be congruent
by a direct isometry; they may be congruent by the reflection along the plane of the triangle with
vertices 𝜌0(𝒘1), 𝜌0(𝒘2), and 𝜌0(𝒏), but this does not influence our argument. Now, the realizations
in the flex may not be elements of 𝑍, but for each realization in the flex there is a congruent
realization in 𝑍. The image of 𝑍 via the product of conformal embeddings ℂ3 ↪ 𝑀 is a subset
of𝑀𝑉 .

Definition 2.3. Let 𝑌 be the Zariski closure in 𝑀𝑉 of the image of 𝑍 under the product of con-
formal embeddings ℂ3 ↪ 𝑀.

Notice that the elements of 𝑌 are maps 𝜌∶ 𝑉 ⟶ 𝑀 which need not to correspond to realiza-
tions, since the image of some vertices may lie on 𝑀∞ or may have complex coordinates. Con-
sider the projection 𝑌𝒔 of 𝑌 on the copy of 𝑀 indexed by the vertex 𝒔. By the assumption that
the dihedral angle at {𝒘1,𝒘2} changes during the flex, we get that 𝑌𝒔 contains infinitely many
points. Hence 𝑌𝒔 must intersect the hyperplane section {ℎ = 0} ∩ 𝑀 = 𝑀∞, since it is a positive-
dimensional projective subvariety of𝑀.

Definition 2.4. From the previous discussion we know that we can pick an element 𝜌∞ in 𝑌

such that 𝜌∞(𝒔) ∈ 𝑀∞. We fix such an element for the rest of the section.

†Given a subset 𝑉′ of the vertices 𝑉 of a graph 𝐺, the induced subgraph determined by 𝑉′ is the subgraph of 𝐺 with ver-
tices𝑉′ and all edges of𝐺 having both vertices in𝑉′. A subgraph is called induced if it is the induced subgraph determined
by a subset of vertices.
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Notice that, by construction of 𝑍, all three points 𝜌∞(𝒘1), 𝜌∞(𝒘2), and 𝜌∞(𝒏) are finite. The
latter property is crucial for our argument; if we just wanted to achieve 𝜌∞(𝒔) ∈ 𝑀∞, we could
have used the set𝑊 without the need of introducing 𝑍 but this would not be enough to prove the
main result of the paper.

Lemma 2.5. If 𝑣 and 𝑤 are adjacent vertices in 𝐺, then 𝑑
(
𝜌∞(𝑣), 𝜌∞(𝑤)

)
is either finite or unde-

fined.

Proof. Themap𝑑
(
⋅(𝑣), ⋅(𝑤)

)
∶ 𝑌 ⤏ ℙ1 is a rationalmap that is constant on the dense subset of𝑌 of

finite real points. In fact, these points are indeed realizations and since 𝑣 and𝑤 are adjacent their
distance in ℝ3 is constant, which implies, due to Proposition 1.3, that 𝑑 is constant on them. The
constant equals (−1

2
𝜆2

{𝑣,𝑤}
∶ 1). Since 𝑑(⋅(𝑣), ⋅(𝑤)) is a rational map, it is constant on 𝑌 wherever

it is defined, and as we showed, this constant is different from∞. □

From Lemma 2.5 we obtain that 𝜌∞(𝒔) cannot be 𝜔∞, because otherwise we would have
𝑑(𝜌∞(𝒔), 𝜌∞(𝒘1)) = ∞ due to Lemma 1.6.

Definition 2.6. We color the vertices of 𝐺 with three colors:

a vertex 𝑣 ∈ 𝑉 is
⎧⎪⎨⎪⎩
red if 𝜌∞(𝑣) is finite,
blue if 𝜌∞(𝑣) is simple infinite and Ψ

(
𝜌∞(𝑣)

)
= Ψ

(
𝜌∞(𝒔)

)
,

gold otherwise.

Lemma 2.7. A gold vertex cannot be adjacent to a blue and a red vertex simultaneously. In partic-
ular, there is no triangle with three colors.

Proof. For a contradiction, let {𝑢, 𝑤} and {𝑣, 𝑤} be edges such that 𝑢 is red, 𝑣 is blue, and𝑤 is gold.
There are two cases:

∙ 𝜌∞(𝑤) = 𝜔∞: since 𝜌∞(𝑢) is finite and 𝑢 is adjacent to 𝑤, by Lemma 2.5 and Lemma 1.6 we get
a contradiction.

∙ 𝜌∞(𝑤) is simple infinite and Ψ
(
𝜌∞(𝑤)

)
≠ Ψ

(
𝜌∞(𝒔)

)
: however by assumption we have

Ψ
(
𝜌∞(𝒔)

)
= Ψ

(
𝜌∞(𝑣)

)
, so Ψ

(
𝜌∞(𝑤)

)
≠ Ψ

(
𝜌∞(𝑣)

)
, and this contradicts Lemma 2.5 and

Lemma 1.8, since 𝑣 and 𝑤 are adjacent. □

Let 𝑇 be the set of triangles of 𝐺 such that the vertices are only red and blue, and both colors
occur. Note that the triangle {𝒘1,𝒘2, 𝒔} belongs to 𝑇 since 𝒘1,𝒘2 are red and 𝒔 is blue by con-
struction; instead, the triangle {𝒘1,𝒘2, 𝒏} does not belong to 𝑇, since all its vertices are red by
construction. We define a graph 𝐺𝑇 with vertex set 𝑇, and two triangles are adjacent if they share
an edge whose vertices have different colors (see Figure 2). By Lemma 2.7 and the fact that every
edge is in exactly two triangles, all vertices of𝐺𝑇 have degree two. Hence, the graph𝐺𝑇 is a disjoint
union of cycles.
Let  be the cycle in 𝐺𝑇 containing the triangle {𝒘1,𝒘2, 𝒔}. Let 𝑇 be the vertices of  (that is,

triangles) and let 𝑉′ ∶=
⋃

𝑡∈𝑇
𝑡 be the set of vertices of 𝐺 appearing in the triangles of . The

subgraph of 𝐺 induced by the red vertices in 𝑉′ defines a closed walk† in 𝐺, namely, a triangle

†Awalk is a finite sequence of vertices such that consecutive vertices are adjacent (that is, edges or vertices might repeat).
Closedmeans that the first and last vertex are the same. 9



F IGURE 2 On the left, a portion of a triangular polyhedron, where we highlight the colors of the vertices
and we label the triangles in 𝑇. In the center, the graph 𝐺𝑇 . On the right, the red and blue walks. We do not claim
that these situations do indeed come from flexible polyhedra: this example serves solely to illustrate the concepts

in  contributes to the walk by an edge if it has two red vertices, and just by a vertex otherwise.
The edge {𝒘1,𝒘2} is contained in the walk.

Definition 2.8. The walk above is called the red walk (in 𝐺 obtained via 𝜌∞). Similarly, the walk
obtained using blue vertices is called the blue walk. Figure 2 portraits the situation.

Lemma 2.9. For all vertices 𝑣 in the blue walk, we have 𝜌∞(𝑣) = 𝜌∞(𝒔).

Proof. Let 𝑣1 and 𝑣2 be two adjacent vertices of the blue walk. Let 𝑟 be the third vertex of
the triangle in 𝑇 containing 𝑣1 and 𝑣2. The vertex 𝑟 must be red; therefore, 𝜌∞(𝑟) is finite.
For 𝑖 ∈ {1, 2}, the value 𝑑

(
𝜌∞(𝑣𝑖), 𝜌∞(𝑟)

)
cannot be ∞ by Lemma 2.5. Since 𝑣1 and 𝑣2 are blue,

Ψ
(
𝜌∞(𝑣1)

)
= Ψ

(
𝜌∞(𝑣2)

)
. Hence, 𝜌∞(𝑣1) = 𝜌∞(𝑣2) by Lemma 1.9. The claim follows since the

blue walk is connected and contains 𝒔. □

Lemma 2.10. For all vertices 𝑣 in the red walk, 𝜌∞(𝑣) is contained in Fin𝜌∞(𝒔).

Proof. There exists an adjacent vertex𝑤 of 𝑣 in the blue walk. By Lemma 2.9, 𝜌∞(𝑤) = 𝜌∞(𝒔). The
value 𝑑

(
𝜌∞(𝑣), 𝜌∞(𝑤)

)
is not infinity by Lemma 2.5 and 𝜌∞(𝑣) is finite; therefore, the point 𝜌∞(𝑣)

is in Fin𝜌∞(𝒔) by Definition 1.10. □

Lemma 2.11. There is a cycle such that it contains the edge {𝒘1,𝒘2}, its vertices are in the red walk
and it is an induced subgraph of 𝐺.

Proof. If the red walk, which is closed, contained the edge {𝒘1,𝒘2} twice, then both triangles
containing {𝒘1,𝒘2}would belong to the cycle . But this is not possible since {𝒘1,𝒘2, 𝒏} is not an
element of 𝑇 because all its vertices are red. Hence, there is a cycle in 𝐺 containing {𝒘1,𝒘2} such
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that all its vertices are in the red walk. Among all such cycles, we take one with the minimum
number of edges. This guarantees that the cycle is an induced subgraph. □

Now we are ready to prove the main result.

Proof of Theorem 2.2. We have to show the existence of a cycle passing through the edge {𝒘1,𝒘2}

and of a sign assignment for its edges such that the signed sum of the lengths of the edges in the
cycle is zero. For that, we employ the constructions introduced so far, namely:

(a) choosing 𝜌∞ to be the special element of 𝑌 such that 𝜌∞(𝒔) ∈ 𝑀∞ from Definition 2.4,
(b) using 𝜌∞ to color the vertices of the polyhedron (Definition 2.6),
(c) constructing the red walk for all of whose vertices 𝑣 we have 𝜌∞(𝑣) ∈ Fin𝜌∞(𝒔) (Lemma 2.10),

and
(d) constructing an induced cycle  containing {𝒘1,𝒘2} and whose vertices are in the red walk

(Lemma 2.11).

We write ∶= (𝑣1, … , 𝑣𝑘, 𝑣𝑘+1 = 𝑣1). Since for all vertices 𝑣𝑗 in the point 𝜌∞(𝑣𝑗) is in Fin𝜌∞(𝒔),
we know from Lemma 1.11 that there exists a map 𝜋∶ Fin𝜌∞(𝑠) ⟶ ℂ such that for all 𝑗 ∈

{1, … , 𝑘}

𝑑
(
𝜌∞(𝑣𝑗), 𝜌∞(𝑣𝑗+1)

)
=
((

𝜋(𝜌∞(𝑣𝑗)) − 𝜋(𝜌∞(𝑣𝑗+1))
)2

∶ 1
)

.

By construction of the set𝑊, see Equation (*), and taking into account Remark 1.5, for all elements
𝜌 ∈ 𝑌 we have

𝜆2
{𝑣𝑗,𝑣𝑗+1}

= −2⟨𝜌(𝑣𝑗), 𝜌(𝑣𝑗+1)⟩𝑀 ,

where we take the representatives for 𝜌(𝑣𝑗) and 𝜌(𝑣𝑗+1) with ℎ-coordinate equal to 1. Hence in
particular

𝜆2
{𝑣𝑗,𝑣𝑗+1}

= −2⟨𝜌∞(𝑣𝑗), 𝜌∞(𝑣𝑗+1)⟩𝑀 = −2
(
𝜋(𝜌∞(𝑣𝑗)) − 𝜋(𝜌∞(𝑣𝑗+1))

)2
.

We conclude that

𝜆{𝑣𝑗,𝑣𝑗+1}
= ± 𝚤

√
2
(
𝜋
(
𝜌∞(𝑣𝑗)

)
− 𝜋

(
𝜌∞(𝑣𝑗+1)

))
,

where 𝚤 is the imaginary unit. Therefore we can choose integers 𝜂𝑗 ∈ {1, −1} such that

𝑘∑
𝑗=1

𝜂𝑗 𝜆{𝑣𝑗,𝑣𝑗+1}

is a telescoping sum, which yields 0.
Clearly, the cycle  does not contain the vertex 𝒔 as it is blue. If the vertex 𝒏 was in , then

the construction in Lemma 2.11 would imply that = (𝒘1,𝒘2, 𝒏,𝒘1). But then the condition on
the edge lengths of  would imply that the three vertices 𝒘1,𝒘2, 𝒏 are collinear throughout the
flex. This would contradict the assumption that the dihedral angle at {𝒘1,𝒘2} changes. Thus the
statement follows. □
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F IGURE 3 A butterfly motion of an octahedron. Notice the collinear realizations of vertices of a separating
cycle, highlighted in red

F IGURE 4 Instances, in a symmetric and a non-symmetric layout, of butterfly motions of a more
complicated polyhedron (on the left). Notice the collinear realizations of vertices of a separating cycle,
highlighted in red

Notice that in our previous works in which we study flexible realizations of graphs in the plane
[12] and on the sphere [10], a flex implies the existence of a combinatorial object — namely, a
special edge coloring — called a NAC, respectively, NAP-coloring. On the other hand, the exis-
tence of a NAC, respectively, NAP-coloring, for a graph provides a construction of a flex of the
graph in the plane, respectively, on the sphere, though the obtained flexible realizations might be
rather degenerate. Exploiting the idea of so-called butterflymotions (see Figures 3 and 4) described,
among other sources, in [12, Section 6], we obtain analogous results also for flexible polyhedra.
The combinatorial structure in this case is a separating cycle with a sign assignment to its edges.

Proposition 2.12. Let 𝐺 be the 1-skeleton of a triangular polyhedron. Let 𝑆 be a cycle in 𝐺 that
separates the graph, namely, removing edges and vertices of 𝑆 from 𝐺 yields a disconnected graph.
For any sign assignment to the edges of 𝑆, not all having the same sign, the polyhedron admits a
realizations with a flex such that the signed sum of the edge lengths induced by the realization in the
cycle 𝑆 is zero and the dihedral angles at all edges of 𝑆 vary along the flex.

Proof. Write 𝑆 = (𝑣1, … , 𝑣𝑘, 𝑣𝑘+1 = 𝑣1). We construct a realization 𝜌 of the polyhedron as fol-
lows: set 𝜌(𝑣𝑗) = (𝑥𝑗, 0, 0), where 𝑥𝑗 < 𝑥𝑗+1 if {𝑣𝑗, 𝑣𝑗+1} has the positive sign and 𝑥𝑗 > 𝑥𝑗+1 oth-
erwise. The assumption that not all signs on the edges of 𝑆 are the same guarantees that we
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can choose numbers {𝑥𝑗}
𝑘
𝑗=1

satisfying the previous requirements. The rest of the vertices of the
graph is mapped to arbitrary points. The realization 𝜌 has a flex since the vertices of different
connected components of 𝐺 ⧵ 𝑆 can rotate independently around the 𝑥-axis. Hence, the state-
ment follows. □

We remark that if a polyhedron is not homeomorphic to a sphere, then a cycle is not necessarily
separating. On the other hand, if the polyhedron is homeomorphic to a sphere, then any induced
cycle with at least four edges separates the graph.
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