
Citation: Pietropolli, G.; Manzoni, L.;

Cossarini, G. Multivariate

Relationship in Big Data Collection

of Ocean Observing System. Appl.

Sci. 2023, 13, 5634. https://doi.org/

10.3390/app13095634

Academic Editor: Luis Javier Garcia

Villalba

Received: 13 March 2023

Revised: 26 April 2023

Accepted: 27 April 2023

Published: 3 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multivariate Relationship in Big Data Collection of Ocean
Observing System
Gloria Pietropolli 1,2,* , Luca Manzoni 1,2,* and Gianpiero Cossarini 2

1 Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, H2bis Building,
Via Alfonso Valerio 12/1, 34127 Trieste, Italy

2 The National Institute of Oceanography and Experimental Geophysics, Borgo Grotta Gigante 42/c,
34010 Sgonico, Italy

* Correspondence: gloria.pietropolli@phd.units.it (G.P.); lmanzoni@units.it (L.M.)

Abstract: Observing the ocean provides us with essential information necessary to study and un-
derstand marine ecosystem dynamics, its evolution and the impact of human activities. However,
observations are sparse, limited in time and space coverage, and unevenly collected among vari-
ables. Our work aims to develop an improved deep-learning technique for predicting relationships
between high-frequency and low-frequency sampled variables. Specifically, we use a larger dataset,
EMODnet, and train our model for predicting nutrient concentrations and carbonate system variables
(low-frequency sampled variables) starting from information such as sampling time and geolocation,
temperature, salinity and oxygen (high-frequency sampled variables). Novel elements of our applica-
tion include (i) the calculation of a confidence interval for prediction based on deep ensembles of
neural networks, and (ii) a two-step analysis for the quality check of the input data. The proposed
method proves capable of predicting the desired variables with relatively small errors, outperforming
the results obtained by the current state-of-the-art models.

Keywords: deep learning; Mediterranean sea; ocean observing system; quality-check procedure;
confidence interval

1. Introduction

Observing and modeling the ocean provides us with essential information necessary
for preserving marine ecosystems and for the sustainable use of their resources (census
UN SDG14). Marine ecosystem health is impacted by human activity; in fact, over the
last few decades, the ocean has been increasingly affected by global changes caused by
the exponential augmentation of human assets [1]. Observations give us fundamental
information for understanding marine ecosystem dynamics, its evolution and the impact
of human activities (such as ocean warming [2], sea level-rise [3], ocean deoxygenation [4],
and acidification [5]). However, observations are sparse, limited in time and space coverage,
and unevenly collected among variables [6].

Historically, the measurements of the marine variable were performed by specific
cruises that gathered water samples and subsequently analyzed them in the laboratory.
This remains, also today, the most accurate and reliable technique to collect marine data.
Nevertheless, there are significant limits: the cost that this marine shipping entails together
with the space and temporal under-sampling of these observations [7]. This issue signifi-
cantly limits our ability to quantitatively describe key processes in the oceanic cycles of
carbon, nitrogen, and oxygen as well as overall ecosystem changes.

During the last twenty years, new oceanographic instruments have been introduced to
gather subsurface measurements as part of the Global Ocean Observing System (GOOS) [8].
Among these new technologies are floats [9], namely two-meter-long robotic devices that
collect marine variable data by diving in the ocean and varying their depth through
buoyancy change. The main strong point of such instruments is that they do not need
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human operation and provide profiles until the batteries are discharged (usually after 4
or 5 years). However, these measurements are less precise than the ones collected by the
cruises, also because sensors may decay after some years, making the relative acquired data
inaccurate or indeed incorrect. Experience has shown that about 80% of the raw profile
data transmitted from the floats respect fixed accuracy standards, and the remaining 20% is
usually corrected within quality control procedures [10]. Standard float sensors measure
temperature, salinity, and pressure. Additionally, floats can be equipped with BCG sensors
(that measure chlorophyll, oxygen, nitrate, pH, and optical variables, such as bbp700),
but their cost rises drastically. Thus, even if floats can improve our capacity to observe
the ocean, the undersampling problem remains since many sea parameters are measured
less frequently.

In this work, we present an improved neural network technique for the prediction of
relationships between high-frequency sampled variables and low-frequency ones, trained
by exploiting a large in situ data collection of marine data from cruise campaigns. The re-
sults of the neural network thus allow computing the pseudo-observations of less-sampled
variables based on the most commonly sampled variables increasing the effectiveness
of the current observing system infrastructures. Specifically, the model predicts nutrient
concentrations and carbonate system variables (low-frequency sampled variables) starting
from information such as sampling time and geolocation, temperature, salinity, and oxygen
(high-frequency sampled variables).

The use of large amounts of data provided by sensor instruments to discover knowl-
edge and process information is not limited to oceanography but is also relevant in a wide
variety of different fields [11–13].

The idea of approximating the nutrient concentration and the carbonate system using
neural networks was put forward for the first time in [14], where the authors proposed
a deterministic network trained on a global ocean data collection. Subsequently, an im-
provement of this technique, the canyon-b, was proposed by [10]. In the aforementioned
model, a Bayesian approach was introduced, and experimental results confirmed that this
method resulted in a better generalization of the output results. Finally, this methodology
is circumscribed to the Mediterranean Sea (with the canyon-med [15]), which is currently the
state of the art in this area as it leads to a lower error in the predictions. Previous results
confirmed that restricting the geographical area of application leads to an improvement
in predictive performance. In fact, even if the amount of data for the training decreases, it
allows for a better representation of variable relationships that characterize the peculiar
biogeochemical and physical features of confined areas, such as the Mediterranean Sea.
The Mediterranean is characterized by high salinity, oligotrophy, and relevant spatial gra-
dients [16]. Indeed, the Mediterranean Sea is considered an ocean in miniature, as it is
distinguished by peculiar biogeochemical characteristics, especially in the eastern basin,
caused by the difference in nutrient sources in terms of quantity and quality [17].

The technique proposed in this paper has significant differences to the previous studies
cited. First of all, our approach is based on a regional dataset, as with [15] and unlike [10,14].
In addition, it should be noted that our network does not follow a Bayesian approach,
in contrast to the works by [10,15]. The decision to adopt a deterministic architecture was
made following a preliminary investigation, which revealed that employing a Bayesian
approach did not result in performance gains, but rather increased the computational
demands for training. Leveraging from the previous deep learning applications, we aim to
introduce and test novel elements such as the use of a larger in situ dataset (EMODnet) for
training and validation [18], which is richer with respect to the datasets exploited in previ-
ous applications both in terms of the quantity of samples and contained variable. Another
contribution that we wish to provide with our paper is the definition and application of a
novel two-step training procedure used for the quality check of the data. We propose this
routine for the removal of the incorrect data by relying again on a deep learning framework
to perform such tasks. This technique represents the first approach to semi-automatize the
quality of a dataset, as these operations are usually performed by hand by experts in the
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oceanographic field. We consider as necessary the introduction of a quality check proce-
dure since EMODnet consists of an ensembling of multiple datasets created by different
providers. Even if quality check procedures for data collection exist [18], the process of
merging multiple sources is not free from generating inconsistencies among data due to
different measurement techniques and standards, transcriptions, and communication. The
deep learning model used together with the two-step quality check routine introduced
lead to a wide reduction of both fitness measures used to test the validity of the model.
Finally, a confidence interval for the predictions is introduced, exploiting the concept of
deep ensembles of neural networks [19], and its validity is checked through practical results.
Quantifying the uncertainty related to a prediction becomes essential when dealing with
values collected over large and not-homogeneous areas. The goal of this paper, in fact, is
not only to provide a more accurate tool for the prediction of low-sampled variables, but
also a comprehensive study of the performances of the proposed model, providing informa-
tion such as the confidence interval, the quality of the prediction at different geolocations,
at different depths and so on.

The paper is organized as follows: Section 2 introduces and describes in detail the
characteristics of the model and the relative experimental settings. The experimental results
are then presented and discussed in Section 3. Finally, Section 4 provides the conclusions
and proposes some directions for future works.

2. Materials and Method

Firstly, the characteristics of the new dataset used for training and testing the model
are described in Section 2.1. Thereafter, the deep learning architecture (Section 2.2) and
the relative implementation details (Section 2.3) are reported. Successively, a two-step
quality check routine for the identification and removal of cruises with anomalous data is
introduced in Section 2.4. Finally, a method for estimating the uncertainty related to the
prediction is discussed in Section 2.5.

2.1. The EMODnet Dataset

The EMODnet (European Marine Observation and Data Network) [20] is a long-
term marine data initiative begun by DG MARE in 2009, created with the aim of making
marine data easily accessible, interoperable, and free from restrictions on use [21]. The
EMODnet Chemistry portal describes marine data until 2018, acquired from research cruises
and monitoring activities in Europe’s marine waters and global oceans. Each cruise (or
monitoring activity) represents a subset of marine measurements for specific locations
or temporal periods, possibly gathered with their own specific sampling and analytical
methodologies. Standard Quality Check procedures are applied to harmonize and validate
the dataset [18]. The Mediterranean Sea EMODnet dataset consists of a collection of
101.526 samples, originating from 74 data providers distributed among 18 countries. The
collected data range in longitude from −5.92 W to 36.19 E and in latitude from 31.19 N to
45.77 N, guaranteeing a good coverage of the whole Mediterranean area. The parameters
included in each sampling include the date, geolocation, temperature, salinity, and oxygen.
Moreover, when available, these samples can contain macronutrients such as nitrates (NO−3 ),
phosphates (PO3−

4 ) silicates (SiOH4); carbonate system variables such as the total alkalinity
(AT), and also chlorophyll-a.

2.2. The Deep Learning Architecture

The model architecture chosen consists of a Multilayer Perceptron (MLP), a Feed-
Forward Artificial Neural Network composed of a fixed number of layers, which contains
nodes (called neurons) connected to each other as in a direct graph between the input and
the output layer [22].

Once given a training pair (x, y), where x represents the input and y the output that
we aim to model, the goal of a Feed-Forward Neural Network is to infer a function f (x)
such that f (x) approximates y as precisely as possible, for each training pair provided.
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The function f is defined through a set of parameters Θ = {W l , bl}L
l=1, where: L is the

total number of layers; W l denotes the weight for the connection from the neurons of the
l − 1 layer to the neurons of the l layer; and bl represents the biases of the l layer. Moreover,
to introduce non-linearity into the network, also a non-linear activation function φ must
be introduced.

Hence, the function f (x), at layer l, can be represented as:

fl(x) = Wl φ( fl−1(x)) + bl (1)

Specifically, in this paper, we will consider a two-hidden layer MLP with tanh(x) as
a nonlinear function. Moreover, after the output layer, we add a Scaled Exponential Linear
Unit function (SELU):

SELU(x) = λ

{
x x > 0
αex − α x ≤ 0

where α and γ are two fixed constants. The introduction of the SELU non-linear function
improved the performance significantly, as it automatically regularizes network param-
eters and makes learning robust due to its normalizing properties [23]. For the training,
the backpropagation algorithm is utilized and the weights and biases of the model are
updated during every epoch [24]. We also aim to provide a confidence interval together
with the model’s prediction, specifically by exploiting deep ensemble network properties [19].
Thus, ten different topologies (i.e., different numbers of neurons distributed among layers)
of MLP are introduced and trained. The final output of the model consists of the average of
the ten results, while the uncertainty is computed on the basis of the difference between
these predictions. Further details will be provided in Section 2.5.

2.3. Experimental Setting

As stated above, in order to train and validate the model, measurements from the
EMODnet dataset are used. The inputs chosen are:

• Date (year, month, day);
• Geolocation (latitude, longitude, depth);
• Temperature;
• Salinity;
• Oxygen.

The outputs we aim to predict consist of:

• Nitrate (NO−3 );
• Phosphate (PO3−

4 );
• Silicate (Si(OH)4);
• Total alkalinity (AT);
• Chlorophyll-a;
• Ammonium (NH+

4 ).

Before training, data are randomly mixed, then the dataset is split into a training set,
used to optimize the weights, and a test set used to test the performance of the proposed
model: this partition is obtained based on a proportion of 80% and 20%.

To improve the performance of the network, a phase of preprocessing of the data is
undertaken. The operations selected to be applied during this stage consist of the most
effective among the ones introduced by [10,14,15]. Firstly the latitude input is divided by
90: as latitude values vary over the range [−90, 90], this operation ensures they fall in the
range [−1, 1]. Additionally, the longitude input is modified in order to take account of the
periodicity of the variable, as follows: |1−mod(lon− 110.360)/180| and |1−mod(lon−
20.360)/180|, where lon indicates the original longitude. The depth input is transformed,
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combining a linear and a non-linear function, to limit the degrees of freedom of the network
in deep waters, as shown in Equation (2):

Dnew =
D

20, 000
+

1
(1 + exp(− D

300 )
3)

(2)

where D is the original depth and Dnew is the new preprocessed input depth. The input
and the output data are then normalized in order to make training faster and to reduce
the chances of becoming stuck in local optima, subtracting from the original variable x the
mean x̄ and dividing the result for the standard deviation σ as follows:

xn =
γ(x− x̄)

σ
(3)

where both x̄ and σ are computed over the data contained in the training set, while γ is a
constant introduced with the aim of increasing the number of data included in the range
[−1, 1].

The hyperparameters that govern the Adam algorithm [25] (that is the gradient-based
optimizer used for minimizing the loss function) have been tuned independently for each
variable. The optimal values have been selected after a preliminary study where different
combinations have been tested, and the best values are reported in Table 1.

The metrics utilized to evaluate the performance of the models are the Mean Absolute
Error (MAE), defined as:

MAE =
1
n

n

∑
i=1
‖YPi −YSi‖ =

1
n

n

∑
i=1
‖ei‖

and the Root Mean Square Error (RMSE), defined as:

RMSE =

√
1
n

n

∑
i=1

(YPi −YSi )
2 =

√
1
n

n

∑
i=1

e2
i

where n is the dimension of the dataset; YSi is the set of in situ values of the considered
output, and YPi the corresponding set of predictions.

Table 1. Epoch and learning rate used for the training phase.

NO−
3 PO3−

4 Si(OH)4 AT Chl-a NH4
+

Epochs 50.000 50.000 50.000 50.000 25.000 50.000

lr 0.005 0.005 0.005 0.001 0.005 0.005

2.4. The Two-Steps Quality Check Routine

As Emodnet is the result of a large data collection task, the presence of incorrect,
noisy, or unreliable samples cannot be excluded. Indeed, the application of the model to
the original dataset produced some outlier outputs, for which our model was drastically
deficient. The number of these anomalous values was significantly smaller than the number
of good-quality predictions (about 4.6%); however, it caused a significant rise in the total
error among the test set. The analysis of this preliminary study (not shown) suggested
that the model did not fail these predictions because of some intrinsic problems in the
training, but because of the presence of the aforementioned anomalous data contained
in the EMODnet dataset. Even if the number of outlines was small, the possibility that
they introduce a bias on the prediction’s capability of the model cannot be excluded (e.g.,
learning information originating from anomalous measurements could potentially have
drastically incised the relations inferred from all the valid measurements).
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To overcome the potential issue represented by anomalous data, we propose a two-
step quality check routine for the removal of incorrect data, which is summarized through
the flowchart in Figure 1. First, the model is trained on the whole dataset. Thereafter, the
subsets with anomalous data are identified and removed, both from the training and testing
set by looking at values that fell inside the 0.1% of the highest error prediction and checking
whether they belong to any specific and circumscribable subset (e.g., same sampling cruise,
date or provider). The last criterion was applied only if at least the 25% of the samples of
the subset were classified as outliers. Subsequently, the model is trained among the cleaned
dataset and the process is repeated until no more predictions are cataloged as unreliable.

Figure 1. Flow chart illustrating the two-step quality check routine.

The final dimensions of the training datasets are reported in Table 2.

Table 2. Dimension of the training set for each variable, after the removal of noisy and unreliable data.

NO−
3 PO3−

4 Si(OH)4 AT Chl-a NH4
+

20.686 25.335 16.187 1.292 6.040 9.900

2.5. Prediction Confidence Interval

Besides providing a prediction, it would be useful to quantify the correspondent
uncertainty. This kind of information proves important as we are dealing with values
collected over large and not homogeneous areas.

Let us consider, for this task, the so-called confidence interval [26], a quantity widely
used in the statistic field, which quantifies the uncertainty of a prediction.

Neural network ensembles, usually referred to as deep ensembles, in addition to being a
widely used and successful technique for the improvement of predictive performance, is
also a practical and, most importantly, scalable method for predictive uncertainty estima-
tion [27]. See [28] for a more in-depth introduction.

The uncertainty of the model prediction is calculated by providing ten outputs for
a given input by changes in the network topologies, such as the number of neurons in
each layer. The confidence interval is given by the difference between the third quartile
and the first quartile computed over the set containing the 10 different predictions. In fact,
the range comprised between these two quantities has been demonstrated to be a solid
indicator of the reliability of ensemble deep learning predictions [28].

3. Results

Individual training and testing fitness (both MAE and RMSE) are computed for each of
the six variables. Only testing fitness is reported in Table 3, together with a comparison with



Appl. Sci. 2023, 13, 5634 7 of 14

results achieved by [15], which represents the current state of the art for the Mediterranean
Sea application. The results show a general decrease in both fitness metrics. The largest
decreases in the skill metrics (30–45%) are in NO−3 , PO3−

4 and Si(OH)4, while alkalinity
showed the lowest improvements (15%).

Table 3. Comparison of the fitness values (MAE and RMSE) between the current state of the art,
Canyon-Med [15], and our method.

NO−
3 PO3−

4 Si(OH)4 AT Chl-a NH4
+

MAE Canyon-Med 0.47 0.026 0.40 6.5

MAE Our method 0.26 0.019 0.31 5.6 0.09 0.13

RMSE Canyon-Med 0.73 0.045 0.70 11.1

RMSE Our method 0.50 0.031 0.58 8.2 0.017 0.21

Figure 2 compares, via scatter-plot, the real value of the in situ measurements (on the
x-axis) with the corresponding prediction of the model (on the y-axis). The nearer a point is
to the diagonal, the more the prediction has been performed correctly. The plots confirm
that, among the variables, the NO−3 , PO3−

4 and Si(OH)4 points are fairly well distributed
along the diagonal. Chlorophyll-a and NH+

4 points are more scattered. The number of data
of AT are lower than the other variables, and this might represent a limit in the robustness
of the results.

(a) (b) (c)

(d) (e) (f)

Figure 2. Scatter-plot comparing the in situ measurements and the model’s output for all the
considered variables: (a) nitrate (NO−3 ), (b) phosphate (PO3−

4 ), (c) silicate (Si(OH)4), (d) alkalinity
(AT), (e) chlorophyll-a, and (f) ammonium (NH+

4 ). The color denotes the depth of the samples,
from green (shallow) to blue (deep).

Figure 3 shows, via scatter-plots, the relation between the error obtained by our model
(on the x-axis) and the range between the third quantile and first quantile (on the y-axis),
which represents the confidence interval. These scatter plots show that a small quantile
difference corresponds to small errors in the prediction, confirming the reliability of this
metric for computing the confidence interval. The fact that the dispersion of the ensemble
predictions is generally low when the errors are low also highlights that predictions are less
sensitive to the topology of the network. A few points lie on the bottom-right of the plot,
showing low dispersion for poor predictions, which may indicate the presence of outliers
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not identified by our two-step analysis. Among the variables, NO−3 , PO3−
4 , and Si(OH)4 are

those with a larger number of poor predictions with low dispersion.

(a) (b) (c)

(d) (e) (f)

Figure 3. Comparison between the prediction’s error and the corresponding interquartile range (i.e.,
the difference between the third and the first quartile) for all the considered variables: (a) nitrate
(NO−3 ), (b) phosphate (PO3−

4 ), (c) silicate (Si(OH)4), (d) alkalinity (AT), (e) chlorophyll-a, and (f) am-
monium (NH+

4 ). The color denotes the depth of the samples, from green (shallow) to blue (deep).

Figure 4 displays a series of histograms collecting the distribution of the test data as
a function of their latitude, longitude, and depth. For each distribution bin, the number
of predictions with the 25% (25%HE) and 10% (25%HE) highest errors is reported in the
darker colors. The figure allows investigation of the presence of inhomogeneity between
data distribution and error distribution.

Firstly, histograms of NO−3 , PO3−
4 , Si(OH)4, and chlorophyll-a show good and fairly

homogeneous coverage in terms of latitude, while the latitude distribution is biased by
the presence of the three major basins in the Mediterranean Sea (western, Adriatic and
Levenative basins). Alkalinity shows a biased distribution, with the largest number of
observations being gathered in the Northern Adriatic Sea. NH+

4 shows a biased coverage
with observations mainly sampled in the Adriatic Sea.

The distribution of 10%HE in the predictions is uniform along the horizontal dimen-
sion (both latitude and longitude) for all the variables, except for PO3−

4 and Si(OH)4. These
two variables present a higher frequency of 10%HE for latitudes ranging between 41–42 N.
In particular, the percentage of 10%HE prediction in this area are 30% and 20% for PO3−

4
and Si(OH)4, respectively. On the other hand, the distribution of 10%HE on the depths
dimension (third column of the plots) shows that the predictions are more accurate on
the surface for all variables and that the percentage of samples characterized by 10%HE
increases along the depth. Specifically, the ratio between 10%HE samples and total samples
available is about (always above)20% for depths over 100 m.

These plots can be exploited as further indicators for the reliability of a prediction,
e.g., if our model is applied to samples that belong to a geographical area that the model
has proven to predict with higher precision, the corresponding result can be labeled as
reliable with higher confidence. Conversely, geographical areas showing the presence of
25%HE or 10%HE cases higher than usual should be more carefully investigated given the
presence of peculiarities diverging from the mean model.

The diagnostic metrics of Figures 2–4 provide an overall picture to assess the level of
goodness of the reconstruction for each of the six variables.
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Regarding the nitrate, Figure 2a shows that the prediction satisfactorily approximates
the observations.

Figure 4. Histograms displaying the testing distribution for all the considered variables: NO−3 , PO3−
4 , Si(OH)4,

AT , chlorophyll-a, and NH+
4 . Histograms in the first, second, and third columns represent the distribution of

the results according to, respectively, their latitude, their longitude, and their depth. Both 25% (25% HE) and
10% (10% HE) of the predictions leading to a higher error are highlighted in different colors. The lighter color
represent the total number of samples.

For the phosphate variable (Figure 2b), a similar behavior with respect to the nitrate
emerges: the model skillfully predicts both the lower and higher ranges of values.

The prediction of silicate is the one that leads to more satisfactory results, as shown in
Figure 2c.
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Positive results are also obtained for alkalinity (Figure 2d), even if the bias distribution
of the observations (Figure 4) may prevent us from drawing adequate conclusions on error
distribution in these zones.

As regards chlorophyll-a (Figure 2e), a clear difference emerges in the quality of
prediction for different ranges of values: lower values are predicted more accurately than
higher ones. The underlying reason is the gap between the quantity of high- and low-value
samples available in the training set.

Finally, taking into account ammonium, Figure 2f shows that this marine variable is
the one predicted less accurately. Given that ammonium distribution depends on many
interacting and complex biological and chemical processes [29,30], it is not surprising that
the explicative variables of our models were not sufficient to reconstruct this variable.
Additionally, the biased spatial distribution (e.g., most of the observations gathered in the
Adriatic Sea—43–46 N of latitude and 13–18 W of longitude) might not have helped the
model’s ability to map ammonium variability in the Mediterranean Sea. Indeed, the largest
number of bad predictions accumulated in this marginal sea.

3.1. Prediction of Low Frequency Sampled Variables Starting from Argo Collected Input Data

An important application of the proposed deep learning model is the prediction of
nutrient concentrations and carbonate system variables starting from the input provided
by the BGC-Argo floats mounting temperature, salinity and oxygen sensors (as mentioned
in Section 1), in order to contribute to tackling the undersampling problem between low-
frequency and high-frequency observed variables.

Additionally, besides the potential use of our model to provide reliable estimates
for non-observed variables, it can be used as a powerful quality check for the observed
variables, such as nitrate. In fact, the comparison of our model prediction with BGC-Argo
profiles can spot inconsistencies and biases and provide information, if necessary, to adjust
the raw data. An example of profiles predicted by our model is shown in Figure 5. We
provide as input vectors the time and the geolocation of the BGC-Argo floats together with
the profiles of the temperature, salinity, and oxygen density. The plot shows the comparison
between the nitrate profile predicted by our model and the two different floats selected for
two different areas in the Mediterranean Sea:

• SD6902954 : located at 42.89 N 7.66 E, with samples for the date 13 June 2019.
• SD6903250: located at 41.85 N 17.88 E, with samples to the date 3 December 2019.

As a general comment, the model predictions are fairly good (Figure 5), in the sense that
both the typical shape of nitrate profiles and the typical values of nitrate in the deeper
layers (i.e., 8 mg m−3 and 4 mg m−3 in SD6902954 and SD6903250, respectively) are very
satisfactorily reproduced. A closer inspection of the plots reveals a potential weakness of
our model: the reconstruction profiles are not as smooth as would be expected. This is
probably a consequence of the fact that the model is trained on punctual data, resulting in
unawareness of the typical shape of the profiles of the biogeochemical variables that they
try to infer.

Figure 5. Comparison of the profile measured by the float instrument (in blue) and the profile
predicted by our model (in orange).
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Finally, the skill metrics of the reconstructed BGC-Argo nitrate profiles confirm the
rather good performance of our model. In fact, the MAE and RMSE computed on about
2200 nitrate profiles for the period 2015–2020 are, respectively: 0.75 and 0.87. These values
are similar to the ones computed on test set data, demonstrating the quality of the model
even with an independent and much bigger dataset.

4. Discussion and Conclusions

This paper investigates a deep learning framework for the prediction of low-frequency
sampled variables (such as nutrient concentrations and carbonate systems variables) start-
ing from high-frequency sampled ones (specifically: salinity, and oxygen) and ancillary
information such as time and geolocation of the sampling. The method was already pro-
posed [10–15], and we applied some improvements specifically for the Mediterranean
Sea: a larger training dataset [18], a new two-step quality check routine to improve the
dataset and a confidence interval relative to the prediction, exploiting the concept of deep
ensembles of neural networks. The method was then accurately validated, and the results
show a significant improvement with respect to the state-of-the-art, for all the (fitness)
metrics and for all the variables.

The improvement in results over previous applications [15] is due to several factors.
First, the dataset used is characterized by a larger amount of samples and wider coverage
of the Mediterranean Sea area. Even if this would be not a surprising aspect, it is important
to note that given the nature of marine data (i.e., sparse and spatially biased, noisy and
potentially with inconsistencies), it was not a given result.

The dataset has been further improved by the two-step quality check routine that leads
to the removal of noisy and unreliable samples. During the whole process, our goal was
to find an equilibrium between the necessity to delete problematic data and, at the same
time, avoid the removal of cruises that lead to important information for the prediction. To
ensure the reliability of our method, we randomly checked some samples extracted from
cruises that our method rejected. Particular attention, during this process, has been paid to
avoid introducing a bias in the spatial distribution of the sample for the different areas of
the Mediterranean Sea. This is achieved by stopping the iteration of the check before a bias
in the spatial distribution appeared. Our quality check procedure can also be applied to
other assembling datasets (or data collection such as Emodnet ones [21]) where multiple
sources are merged and possible standardization, conversion and transcription errors can
go unnoticed.

Furthermore, the deep learning architecture has been modified (e.g., nonlinear func-
tions between layers, the number of neurons per layer, the optimization algorithm for
training, and so on) in order to improve the prediction performance. Finally, thanks to the
information stored in the EMODnet dataset, we tested the prediction of two additional
variables not previously investigated: chlorophyll-a and ammonium (NH+

4 ). Results for
these variables are satisfactory, allowing us to further the potentiality of our application.

We would also like to underline that we obtained a reduction of the fitness with a
faster method, which requires far fewer computational resources compared to the one
introduced in [15], which is based on a Bayesian framework. In fact, we observed that
training our model with a Bayesian architecture (not shown) instead of the non-Bayesian
one did not lead to an improvement in the prediction performance. This is a consequence
of the bigger (and quality-checked) dataset used for the training.

This model can prove useful for several reasons. First, a possible application is to
infer values of carbonate system variables and nutrients starting from samples collected
through BGC-Argo float sensors (when they are equipped with the oxygen sensor). Given
the cost of the other biogeochemical sensors [7], this represents a step towards the further
exploitation of this observing system. Secondly, model predictions can be used for real-
time quality checks of raw variables effectively observed by full-equipped BGC-Argo
floats. At present, the quality check of BGC-Argo variables relies on classic statistical
procedures [31], while our model prediction can provide a further and easy-to-compute
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comparison term to spot inconsistencies and biases in these data. This will allow us to have
a richer and more detailed knowledge of the Mediterranean Sea basin, which is essential
information, especially to understand how the marine environment is changing as a result
of the anthropic impact.

In any case, as pointed out in Section 3.1, MLP reconstructions denote the inability
in the generation of a smooth and regular curve. In fact, marine variables are not only
characterized by specific values of concentration, but also typical shapes of the profiles
that inform about ongoing processes and dynamics [32,33]. Thus, the addition of informa-
tion on the shape of profiles, such as typical patterns in image reconstruction, can be an
important element to be added. So, a possible improvement can be to test an approach
based on convolutional deep learning architecture [34,35] to reconstruct nutrient profiles
from information such as sampling time, geolocation, and profiles of temperature, salinity,
and oxygen. Thus, spatial-aware architecture could overcome such issues and lead to the
generation of smooth predicted profiles.

The Mediterranean Sea is characterized by significant physical and biogeochemical
gradients at different spatial scales [36,37]. The uneven coverage of the data impacted
the capability of the network to predict the large range of variability of the variables.
Indeed, our results (Figure 4) showed the presence of potential biases linked to local
unresolved variability. Therefore, it would be interesting to investigate if introducing a
restriction on the investigated areas can provide more precise results. However, while
the restriction of the area allows having more data over more homogeneous variability,
it can also reduce the number of available data for the training below a safe limit. Our
results confirm the previous evidence of [10,14,15], namely that some biogeochemical
proprieties can be successfully predicted by neural networks using temperature, salinity,
oxygen, and geolocalization. The rationale lies in the fact that the same processes (e.g.,
transport and biogeochemical processes) concurrently shape the spatial patterns of different
variables. The choice of the predictive variables is not the result of an optimization process,
but reflects the fact that those variables are the most common and less expensive sensors
in the Argo platforms [31,38]. It would be interesting to take the idea further and test the
goodness of fit even when only the temperature and salinity are considered. While it is
reasonable to expect that prediction power would decrease, the number of available floats
would increase at least 5-fold.
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