
Supplemental Document

High-speed processing of X-ray wavefront
marking data with the Unified Modulated Pattern
Analysis (UMPA) model: supplement
FABIO DE MARCO,1,2,∗ SARA SAVATOVIĆ,1,2 RONAN SMITH,3

VITTORIO DI TRAPANI,1,2 MARCO MARGINI,1,2 GINEVRA
LAUTIZI,1,2 AND PIERRE THIBAULT1,2

1Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
2Elettra-Sincrotrone Trieste, Strada Statale 14 – km 163.5, 34149 Basovizza, Italy
3Department of Physics, University of Southampton, University Road, Southampton SO17 1BJ, UK
∗fabiodomenico.demarco@units.it

This supplement published with Optica Publishing Group on 23 December 2022 by The Authors
under the terms of the Creative Commons Attribution 4.0 License in the format provided by the
authors and unedited. Further distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.21684920

Parent Article DOI: https://doi.org/10.1364/OE.474794

High-speed processing of X-ray
wavefront marking data with the
Unified Modulated Pattern Analysis
(UMPA) model: supplemental
document

1. PARTIAL OPTIMIZATION OF THE UMPA COST FUNCTION

This section contains the mathematical details for minimizing the two versions of the UMPA cost
function (with and without dark-field) with respect to T, and both T and D, respectively. This is
an intermediate step in the procedure of global cost function minimization.

A. Partial optimization for the model without dark-field
When setting D = 1 in Eq. (1), the cost function in Eq. (2) (in the main text) can be rewritten as

L(T) = T2 · l3 − 2T · l5 + l1, (S1)

where

l1 = ∑
m,w

Γ(w)I2
m(r + w − Sm),

l3 = ∑
m,w

Γ(w)I2
0,m(r + w − Sm − u),

l5 = ∑
m,w

Γ(w)I0,m(r + w − Sm − u)Im(r + w − Sm).

(S2)

Since, for a local minimum, ∂LT/∂T = 2T · l3 − 2l5 = 0,

T̂ = l5/l3. (S3)

Reinserting Eq. (S3) into Eq. (S1), this yields

L̂(T) = l1 − l2
5/l3. (S4)

Thus, for each estimate of u, the terms l1, l3, and l5 are calculated, and from these, the cost and the
transmittance estimates are calculated according to Eq. (S3), Eq. (S4). An equivalent calculation
can be performed for the model including dark-field, as shown below.

B. Partial optimization for the model with dark-field
Here we show the equivalent of the calculation in subsection A for the model including dark-
field. We substitute the fit variables T, D by the quantities α = TD, β = T(1 − D) and different

summation terms by l1, . . . , l6.

L(T,D)(r; u, T, D) = l1 + β2l2 + α2l3 − 2βl4 − 2αl5 + 2αβl6,

where l1 = ∑
m,w

Γ(w)I2
m(r + w − Sm),

l2 = ∑
m,w

Γ(w)⟨I0,m⟩2(r + w − Sm − u),

l3 = ∑
m,w

Γ(w)I2
0,m(r + w − Sm − u),

l4 = ∑
m,w

Γ(w)⟨I0,m⟩(r + w − Sm − u)Im(r + w − Sm),

l5 = ∑
m,w

Γ(w)I0,m(r + w − Sm − u)Im(r + w − Sm),

l6 = ∑
m,w

Γ(w)⟨I0,m⟩(r + w − Sm − u)I0,m(r + w − Sm − u).

(S5)

The terms li depend on r, as well as on u. Note that l1, l3 and l5 are identical to the ones used
by the model without dark-field. These six terms are thus calculated for each new estimate of
shift u. As before, we know that for a local minimum of L(T,D), its first derivative with respect to
T and D, and thus also with respect to α and β, is zero:

∂L(T,D)

∂α

∣∣∣∣∣α=α̂,
β=β̂

= 2α̂l3 − 2l5 + 2β̂l6 = 0,
∂L(T,D)

∂β

∣∣∣∣∣α=α̂,
β=β̂

= 2β̂l2 − 2l4 + 2α̂l6 = 0. (S6)

This can be expressed as a matrix multiplication, which also reveals the solution:l3 l6

l6 l2

α̂

β̂

 =

l5

l4

 ⇒

α̂

β̂

 =

l3 l6

l6 l2

−1 l5

l4

 =
1

l3l2 − l2
6

l2l5 − l4l6

l3l4 − l5l6

 . (S7)

Finally, we can retrieve T and D from α and β via:

T̂ = α̂ + β̂, D̂ = α̂/(α̂ + β̂). (S8)

Inserting these values for T and D in Eq. (S5) yields the cost function value as a function of only
the differential shifts:

L̂(T,D)(r; u) = L(T,D)(r; u, T̂, D̂). (S9)

2. UMPA CODE EXAMPLE

Below is a use example for the new UMPA implementation, followed by an explanation of
individual steps:

1 import numpy as np
2 import UMPA as u
3 sample = np.load("/path/to/sample.npy")
4 ref = np.load("/path/to/ref.npy")
5 grid = np.load("/path/to/grid.npy")
6 mask = np.load("/path/to/mask.npy")
7 roi = np.s_[50: -50:2 ,50: -50:2]
8 m = u.model.UMPAModelDF(sample , ref , pos_list=grid , mask_list=mask ,
9 window_size =4, max_shift=5, ROI=roi)

10 m.assign_coordinates = "sam"
11 res = m.match(num_threads =16)
12 mb = u.model.UMPAModelDF(ref , ref , pos_list=grid , mask_list=mask ,
13 window_size =4, max_shift=5, ROI=roi)
14 mb.assign_coordinates = "sam"
15 resb = mb.match(num_threads =16)
16 ux, uy = res["dx"] - resb["dx"], res["dy"] - resb["dy"]

The variable sample holds a stack of images (NumPy arrays) with diffuser and sample, while
ref holds the image stack with only the diffuser in the beam. These image volumes should be
contiguous in memory and in the double-precision floating-point (numpy.float64) data type so
that they are correctly interpreted by the C++ routines. However, the module can also easily be

2

compiled to use the single-precision floating point (numpy.float32) data type instead. The grid
variable (used below for the parameter pos_list) is only required for sample-stepping measure-
ments, where the sample is moved laterally instead of the diffuser (introduced in subsection 4.1
in the main text), and contains the (x, y) positions of the sample motor stage, in multiples of the
effective pixel size. The mask variable (used as parameter mask_list) can optionally be used to
selectively exclude data (e.g., bad pixels) for use with UMPA. It must be a NumPy array of the
same shape as sample and ref. If it holds non-binary values, it is instead used as an additional
per-pixel weighting factor for the UMPA cost function. The ROI parameter is also optional and
can be used to restrict the range of processed pixel values. While the mask_list parameter is
applied relative to detector coordinates, ROI is applied relative to sample coordinates, which is
an important distinction when the sample-stepping mode is used. These two parameters are
discussed in greater detail in subsection 4.5 in the main text.

Lines 8–9 create a model object which holds references to the image data, as well as processing
parameters. Two models are available: UMPAModelDF includes dark-field, and UMPAModelNoDF
does not. The parameter window_size represents the variable N from sections 2 and 3 from the
main text, while max_shift is an upper threshold for the absolute value of the shifts (ux, uy)
before the discrete minimization is interrupted.

Line 10 sets the value of the assign_coordinates parameter, which determines the position
to which a determined match between sample and reference analysis window is assigned: For
assign_coordinates="ref", it is assigned to the center of the reference analysis window, while
for assign_coordinates="sam", it is assigned to the center of the sample analysis window. This
is discussed in more detail in subsection 4.4 in the main text.

Finally, the actual minimization procedure is executed in line 11, with the number of threads
being controlled by the num_threads parameter. Upon completion, the res variable holds a
Python dictionary containing the four image modalities (attenuation T, horizontal and vertical
analysis window shifts (ux, uy) in pixels, and dark-field D), as well as the minimized cost function
value [L̂(T,D)(r; u) or L̂(T)(r; u)] for each pixel.

Lines 12–15 are essentially a repetition of lines 8–11, except that the reference image stack is
now compared with itself. This step is beneficial for estimating a bias in the calculation of the
shifts ux=ûx, uy=ûy (line 16). This step is explained in more detail in subsection 4.3 in the main
text.

3. DERIVATION OF THE INTERPOLATION KERNEL B ⋆ B

It can be shown that all cost function terms can be expressed as sums of cross-correlations of two
images.

CDE(r; u) =
M

∑
m=1

N

∑
wx=−N

N

∑
wy=−N

Γ(w)Dm(r + w)︸ ︷︷ ︸
=D̃(r)

m (r+w)

Em(r + w + u)

=
M

∑
m=1

∞

∑
wx=−∞

∞

∑
wy=−∞

D̃(r)
m (r + w)Em(r + w + u) =

M

∑
m=1

[
D̃(r)

m ⋆ Em

]
(u).

(S10)

The summation range can be formally extended to infinity because Γ(w), and thus D̃(r)
m (x, y),

is zero outside of the original summation range. To reproduce the cost function terms l1, . . . , l6,
Dm and Em are set equal to either I0,m, Im, or ⟨I0,m⟩.

The following calculation assumes that the function being interpolated is a summation of such
terms. However, this is not the case for the cost functions already minimised for T (see Eq. S4), or
T and D (Eq. S7, S8 inserted in Eq. S5). Since these equations are non-linear combinations of the
cost function terms, convolution with the found kernel is not strictly equivalent to a cost function
calculation of bi-linearly interpolated images. Furthermore, the following implies that not D and
E are being interpolated, but D̃ = ΓD and E. This is not quite equivalent to the “natural” way
of calculating cross-correlations of interpolated data, i.e., interpolating Γ, D, and E separately,
and calculating the cost function terms from these. However, we have not been able to find an
equivalent expression of this that uses only a single convolution.

CDE is only defined for integer values of ux and uy, but a continuous form of this which is
defined for non-integer shifts can be derived by bilinear interpolation. If we assume D and E to

3

be defined on R2, e.g. as a grid of Dirac impulses:

D(r) = ∑
i,j

Dijδ(r − [i, j]T), (S11)

we can express bilinear interpolation as a convolution of D with the bilinear interpolation kernel
B:

D̂(r) = (D ⊗ B)(r) =
∫∫

d2r′D(r′)B(r − r′). (S12)

By extension, the cross-correlation function of the two interpolated functions D̂, Ê then is

(D̂ ⋆ Ê)(r) = [(D ⊗ B) ⋆ (E ⊗ B)](r) = (D ⊗ B)(−r)⊗ (E ⊗ B)(r) =
D(−r)⊗ B(−r)⊗ E(r)⊗ B(r) = D(−r)⊗ E(r)⊗ B(−r)⊗ B(r) =

[D ⋆ E](r)⊗ [B ⋆ B](r).

(S13)

The above calculation uses the fact that (f ⋆ g)(r) = f (−r)⊗ g(r) (for real-valued f), that
(f ⊗ g)(−r) = f (−r)⊗ g(−r), and that f ⊗ g = g ⊗ f . In short, the cross-correlation of the
bilinear-interpolated versions of D and E can be derived from their discrete-domain cross-
correlation by convolution with the kernel B ⋆ B (i.e., the autocorrelation of B). Since

B(r) = Λ(rx)Λ(ry), Λ(x) =


1 + x, −1 ≤ x ≤ 0,
1 − x, 0 ≤ x ≤ 1,
0 else.

(S14)

it follows that

(B ⋆ B)(r) = (Λ ⋆ Λ)(rx) · (Λ ⋆ Λ)(ry). (S15)

It is thus sufficient to solve the one-dimensional cross-correlation problem:

(Λ ⋆ Λ)(x) =
∫ ∞

−∞
dx′Λ(x′)Λ(x′ + x). (S16)

It is evident from Eq. (S14) that (Λ ⋆ Λ)(x) = 0 for |x| > 2, and that, since Λ is symmetric, Λ ⋆ Λ
is symmetric as well. For the remaining cases, Eq. (S16) can be solved by splitting it into intervals
according to the cases in Eq. (S14). For 0 ≤ x ≤ 1, these intervals are [x − 1, 0], [0, x], and [x, 1]:

(Λ ⋆ Λ)(x) =
∫ 0

x−1
(1 + x′)(1 + x′ − x)dx′ +

∫ x

0
(1 − x′)(1 + x′ − x)dx′

+
∫ 1

x
(1 − x′)(1 − x′ + x)dx′

=
1
6

(
3x3 − 6x2 + 4

)
.

(S17)

For 1 ≤ x ≤ 2, the only nonzero part of the integral is

(Λ ⋆ Λ)(x) =
∫ 1

x−1
(1 − x′)(1 + x′ − x) =

1
6

(
−x3 + 6x2 − 12x + 8

)
(S18)

The cases −2 ≤ x ≤ −1 and −1 ≤ x ≤ 0 are easily derived using the symmetry of the problem,
i.e. knowing that (Λ ⋆ Λ)(−x) = (Λ ⋆ Λ)(x), we can substitute x → −x, yielding the final result
of

(Λ ⋆ Λ)(x) =



1
6 (x + 2)3, −2 ≤ x ≤ −1,
1
6 (−3x3 − 6x2 + 4), −1 ≤ x ≤ 0,
1
6 (3x3 − 6x2 + 4), 0 ≤ x ≤ 1,
− 1

6 (x − 2)3, 1 ≤ x ≤ 2,
0 else.

(S19)

The shape of this curve is illustrated in Fig. S1.

4

2 1 0 1 2

0.0

0.2

0.4

0.6

()(x)

x

Fig. S1. Curve shape of (Λ ⋆ Λ)(x), the autocorrelation function of the linear inter-
polation kernel Λ(x). For the calculation of the continuous “cost landscape”, the grid
of cost function values for discrete-valued shifts u is convolved with the function
(B ⋆ B)(r) = (Λ ⋆ Λ)(rx) · (Λ ⋆ Λ)(ry).

5

