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Abstract. Hurwitz numbers enumerate branched genus g covers of the Rie-
mann sphere with fixed ramification data or equivalently certain factorisations
of permutations. Double Hurwitz numbers are an important class of Hurwitz
numbers, obtained by considering ramification data with a specific structure.
They exhibit many fascinating properties, such as a beautiful piecewise polyno-
mial structure, which has been well-studied in the last 15 years. In particular,
using methods from tropical geometry, it was possible to derive wall-crossing
formulae for double Hurwitz numbers in arbitrary genus. Further, double
Hurwitz numbers satisfy an explicit recursive formula. In recent years several
related enumerations have appeared in the literature. In this work, we focus
on two of those invariants, so-called monotone and strictly monotone double
Hurwitz numbers. Monotone double Hurwitz numbers originate from random
matrix theory, as they appear as the coefficients in the asymptotic expansion
of the famous Harish-Chandra–Itzykson–Zuber integral. Strictly monotone
double Hurwitz numbers are known to be equivalent to an enumeration of
Grothendieck dessins d’enfants. These new invariants share many structural
properties with double Hurwitz numbers, such as piecewise polynomiality. In
this work, we enlarge upon this study and derive new explicit wall-crossing
and recursive formulae for monotone and strictly monotone double Hurwitz
numbers. The key ingredient is a new interpretation of monotone and strictly
monotone double Hurwitz numbers in terms of tropical covers, which was
recently derived by the authors. An interesting observation is the fact that
monotone and strictly monotone double Hurwitz numbers satisfy wall-crossing
formulae, which are almost identical to the classical double Hurwitz numbers.

1. Introduction

Hurwitz numbers [36] count branched genus g coverings of the projective line
with fixed ramification data. These objects connect several areas of mathematics,
such as algebraic geometry, representation theory, mathematical physics, and many
more. In particular, they admit several equivalent definitions, among which is an
interpretation due to Hurwitz in terms of factorisations in the symmetric group
[37]. From this interpretation many variants of Hurwitz numbers arise by imposing
additional conditions on the factorisations. In this paper, we focus on two such
variants, namely monotone and strictly monotone Hurwitz numbers. Monotone
Hurwitz numbers were introduced in [30] in the context of random matrix theory as
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they were proved to be the coefficients in the asymptotic expansion of the Harish-
Chandra–Itzykson–Zuber integral, while strictly monotone Hurwitz numbers are
equivalent to counting certain Grothendieck dessins d’enfants [2].

In studying Hurwitz numbers, one often restricts oneself to ramification with a
certain structure. An important case is the one of single Hurwitz numbers, where
one allows arbitrary ramification over ∞ but only simple ramification (i.e., ramifica-
tion profile (2, 1, . . . , 1)) over b other points, where b is determined by the Riemann–
Hurwitz formula. These numbers admit a stunning connection to Gromov–Witten
theory: the celebrated ELSV formula expresses single Hurwitz numbers in terms
of intersection numbers on the moduli space of stable curves with marked points
Mg,n [24]. As a direct consequence single Hurwitz numbers are polynomial in the
ramification profile over ∞ up to a combinatorial factor.

From the study of single Hurwitz numbers, it is natural to consider arbitrary
ramification over two points and simple ramification else. More precisely, one allows
fixed but arbitrary ramification profile µ (resp., ν) over 0 (resp., ∞) and simple
ramification over b other points, where b is again determined by the Riemann–
Hurwitz formula. In particular, µ and ν are partitions of the same size, i.e., |µ| = |ν|.
The numbers one obtains this way are called double Hurwitz numbers and were first
studied by Okounkov in [43]. It is an important open question and an active topic
of research in Hurwitz theory whether double Hurwitz numbers satisfy an ELSV-
type formula, i.e., an expression in terms of intersection numbers on some moduli
space. In the literature there are two promising approaches.

ELSV-type formula via piecewise polynomiality. One approach towards de-
riving an ELSV-type formula for double Hurwitz numbers was introduced by
Goulden, Jackson, and Vakil in [28]. Namely, one studies double Hurwitz numbers
with a view towards polynomial behaviour–which in the single Hurwitz numbers
case was a consequence of the inherent structure of the ELSV formula. This may
give an indication for the shape of the desired ELSV-type formula. In their work
Goulden, Jackson, and Vakil observe that double Hurwitz numbers are piecewise
polynomial in the entries of the two arbitrary ramification profiles and determine
the chambers of polynomiality. More precisely, considering the configuration space
of pairs of partitions µ, ν of the same size, Goulden, Jackson, and Vakil proved that
this space may be subdivided by a hyperplane arrangement W , such that double
Hurwitz numbers are polynomial in each connected component of the complement
of W . We note that this polynomiality is not up to a combinatorial factor. This
leads them to a concrete conjecture for the shape of the ELSV-type formulae with
the condition that all covers are fully ramified over ∞ which they prove for genus
0 and genus 1.

This piecewise polynomial behaviour was further examined in work of Shadrin,
Shapiro, and Vainshtein. More precisely, the wall-crossing function was studied,
i.e., the difference of the polynomials in two adjacent chambers. It was proved by
Shadrin, Shapiro, and Vainshstein that in genus 0 the wall-crossing function may be
expressed in terms of Hurwitz numbers with smaller input data [46]. This is called
a wall-crossing formula. A succesful approach in arbitrary genus has been enabled
by fruitful interactions between Hurwitz theory and tropical geometry [6, 12, 15].
Using an elegant description of double Hurwitz numbers in terms of tropical covers,
wall-crossing formulae for g ≥ 0 were derived by Cavalieri, Johnson, and Markwig
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in [13]. A different approach towards the wall-crossing function was carried out by
Johnson in [38] using the fermionic Fock space formalism.

ELSV-type formula via CEO topological recursion. The second approach
is via the so-called Chekhov–Eynard–Orantin (CEO) topological recursion [16, 27],
which is a powerful formalism originating from mathematical physics, that asso-
ciates a family of multidifferentials on a Riemann surface to a spectral curve. It
turns out for several enumerative problems one can find a spectral curve, such that
the coefficients of the Taylor expansion of the associated multidifferentials yield
the desired enumerative invariants. One says that such an enumerative problem
satisfies CEO topological recursion. It was proved in [20, 25] that any enumerative
problem, which satisfies CEO topological recursion, also satisfies an ELSV-type
formula although its explicit shape may be difficult to derive. Recently, there have
been many fruitful interactions between Hurwitz theory and CEO topological re-
cursion. For example, the now proved Bouchard-Mariño conjecture [7, 8, 26] states
that single Hurwitz numbers in fact satisfy CEO topological recursion, which gives a
new proof of the ELSV formula [21]. This result was the first instance of a problem
in Hurwitz theory to be accessible by this formalism and has since been extended
to other cases. It is an important open problem whether double Hurwitz numbers
satisfy CEO topological recursion as well. In particular, a positive answer would
imply an ELSV-type formula for double Hurwitz numbers.

1.1. (Strictly) monotone double Hurwitz numbers. As mentioned above,
there are several variants of Hurwitz numbers, which are defined by counting simi-
lar factorisations of permutations in the symmetric group. The study of monotone
and strictly monotone Hurwitz numbers has been an active field of research in
recent years. It was shown in several instances that (strictly) monotone Hurwitz
numbers share many features with their classical counterparts. For example, sin-
gle monotone Hurwitz numbers satisfy CEO topological recursion [17] and thus an
ELSV-type formula, which was derived in [2]. Morover, strictly monotone Hurwitz
numbers satisfy CEO topological recursion for several cases of ramification data
[19, 20, 23, 40, 42].

Similarly, many results translate to the (strictly) monotone double Hurwitz num-
bers case, e.g., it was proved in [31] that monotone double Hurwitz numbers are
piecewise polynomial with the same chamber structure as in the classical case.
This result was extended to strictly monotone double Hurwitz numbers in [32,33].
Moreover, it was proved in [18, 32] that (strictly) monotone double Hurwitz num-
bers are related to tropical geometry. More precisely, there is an expression in terms
of combinatorial covers which are graphs related to tropical covers but decorated
with extra combinatorial data.

Using this tropical intepretation, the polynomial behaviour of (strictly) montone
double Hurwitz numbers was further studied by the first author in [32], in terms of
the aforementioned combinatorial covers. Using Ehrhart theory, algorithms were
developed which compute the polynomials for monotone double Hurwitz numbers.
We note that a priori these algorithms compute quasi-polynomials in a chamber
structure much finer than necessary. In other words, the polynomial structure of
(strictly) monotone double Hurwitz numbers is not fully visible from this tropical
viewpoint. However, it was possible to derive wall-crossing formulae in genus 0.
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Motivated by the work in [38], Kramer and the authors studied the piece-
wise polynomial behaviour of (strictly) monotone double Hurwitz numbers in the
fermionic Fock space formalism in [33]. A formal power sum was introduced, whose
coefficients are generating series of (strictly) monotone double Hurwitz numbers. It
was proved that this large formal power sum admits a piecwise polynomial structure
and wall-crossing formulae. These wall-crossing formulae encode as coefficients a
generating series of evaluations of the wall-crossing function. A wall-crossing for-
mula on the level of actual numbers remained an open question.

A common theme in studying (strictly) monotone double Hurwitz numbers is
to consider some refinement of the enumeration and obtain results for this refine-
ment. An important example is the study of recursive behaviour of monotone
Hurwitz numbers. A recursion for single monotone Hurwitz numbers was proved
in [22, 29], while a recursion for (strictly) monotone double Hurwitz numbers re-
mains an important open question. It is one of the main missing ingredients for
CEO topological recursion for these invariants. However, it is possible to express
monotone double Hurwitz numbers as a sum of enumerations for which one may
derive recursions for each summand. This approach was taken in [18] for monotone
orbifold Hurwitz numbers and in [35] for monotone double Hurwitz numbers, where
each summand corresponds to certain decorations on the aforementioned combina-
torial covers. However, this refinement has no natural interpretation in terms of
the representation theory of the symmetric group.

1.2. Results. In this paper, we study the piecewise polynomiality of (strictly)
monotone double Hurwitz numbers and study their recursive structure. The main
tool is a new tropical interpretation derived by the authors in [34], which expresses
(strictly) monotone double Hurwitz numbers in terms of tropical covers weighted
by Gromov–Witten invariants.

1.3. Piecewise polynomiality of (strictly) monotone double Hurwitz num-
bers. Our study of the piecewise polynomiality of (strictly) monotone double Hur-
witz numbers begins with the observation that using this new tropical interpreta-
tion, (strictly) monotone double Hurwitz numbers may naturally be written as a
sum of smaller invariants, which we call λ-invariants. These λ−invariants corre-
spond to (ordered) partitions of the number of intermediate simple branch points
and can be expressed as vacuum expectations of certain operators in the bosonic
Fock space formalism and are thus not just obtained by combinatorial data.

We begin by reformulating the tropical enumeration of this λ−invariant in terms
of a weighted count of flows on abstract tropical curves. We observe that this
enumeration mimicks the summation of a polynomial over the lattice points of an
integral polytope and thus obtain the following result using Ehrhart theory.

Theorem. The λ−invariants are piecewise polynomial with the same chamber
structure as classical double Hurwitz numbers.

Therefore, as monotone Hurwitz numbers are a finite sum of λ−invariants, we
obtain a new proof of the following as an immediate corollary.

Corollary ([31, Theorem 4],[33, Theorem 4.1]). Monotone and strictly monotone
double Hurwitz numbers are piecewise polynomial with the same chamber structure
as their classical counterpart.
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As a next step, we revisit the methods developed in [13] for deriving wall-crossing
formulae for classical double Hurwitz numbers in arbitrary genus which starts from
a tropical interpretation. While the work in [13] was focused on the case of 3−valent
abstract tropical curves counted with a specific multiplicity, we show that the meth-
ods may be generalised to our case of abstract tropical curves of arbitrary valency
and multiplicity given by Gromov–Witten invariants. In particular, we derive wall-
crossing formulae for the λ−invariants. In particular, we prove the following sur-
prising theorem.

Theorem. Up to a combinatorial pre-factor, the λ−invariants satisfy the same
wall-crossing formulae as classical double Hurwitz numbers.

As the wall-crossing function of (strictly) monotone double Hurwitz numbers is
the finite sum of wall-crossing functions of λ−invariants, this completely determines
the wall-crossing structure of (strictly) monotone double Hurwitz numbers on the
level of actual numbers.

1.3.1. Comparison to previous approaches. We see that in comparison to [32], the
piecewise polynomial structure of (strictly) montone double Hurwitz numbers is
completely visible in this new tropical picture. Moreover, the tropical combina-
torics, which are strongly related to vacuum expectations in the bosonic Fock space,
enable a complete description of the wall-crossing behaviour of these invariants on
the level of actual numbers.

Moreover, in a sense, we take an opposite approach to [33]. As elaborated
above, the generating series computing (strictly) monotone double Hurwitz numbers
was enlarged [33] and wall-crossing formulae were derived for this enlarged series.
In this paper, we observe that using this new tropical interpretation, (strictly)
monotone double Hurwitz numbers may naturally be written as a finite sum of
smaller invariants.

1.4. A new recursion. The derivation of a recursion for (strictly) monotone dou-
ble Hurwitz numbers is an important open problem in Hurwitz theory and an active
area of research (see, e.g., [18, 22, 35]). We propose a recursion for the previously
defined λ−invariants as a substitute. As we have already observed that this enu-
merations are related to Gromov-Witten theory and admit a piecewise polynomial
structure similar to classical double Hurwitz numbers, they may be candidates for
an ELSV-type formula (which would imply an ELSV-type formula for (strictly)
monotone double Hurwitz numbers). In the flavour of the CEO topological recur-
sion approach towards ELSV-type formulae, we provide one of the main ingredients:
An explicit recursive formula for λ−invariants. The combinatorial factors in this
formula are given by geometric data, namely Gromov-Witten invariants.

1.5. Structure of this paper. In Section 2, we recall some of the basic facts
around Hurwitz theory and tropical geometry. In Section 3, we introduce the nec-
essary notation to state two of our main results. Mainly, we state a piecewise
polynomiality result in Theorem 3.4 and wall-crossing formulae for the aforemen-
tioned λ−invariants. In Section 4, we prove those theorems. Finally, we derive a
recursion for λ−invariants in Section 5.
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2. Preliminaries

In this section, we recall the basic background needed for this work. In partic-
ular, we introduce several variants of Hurwitz numbers in subsection 2.1, review
some basics of Gromov-Witten theory in subsection 2.2, and recall the tropical
correspondence theorems expressing these variants in terms of tropical covers in
subsection 2.3. We further fix the notation ζ(z) = 2sinh(z/2) = ez/2 − e−z/2 and

S(z) = ζ(z)
z .

2.1. Hurwitz numbers. For a permutation σ ∈ Sd, we denote the partition cor-
responding to its conjugacy class by C(σ).

Definition 2.1. Let g be a non-negative integer, x ∈ (Z\{0})n with
∑

xi = 0.
Let x+ (resp., x−) be the tuple of positive entries of x (resp., −x) and denote
d = |x+| = |x−|. Further, we set b = 2g − 2 + n. Then we define a factorisation of
type (g, x) to be a tuple (σ1, τ1, . . . , τb,σ2), such that

(1) σi, τj ∈ Sd;
(2) C(σ1) = x+, C(σ2) = x−, C(τi) = (2, 1, . . . , 1);
(3) σ2 = τb · · · τ1σ1.

Further, we denote τi = (ri si) with ri < si. We call (σ1, τ1, . . . , τb,σ2) a monotone
factorisation if si ≤ si+1 and a strictly monotone factorisation if si < si+1. We then
define the monotone double Hurwitz number h≤,•

g;x to be the number of monotone
factorisations times 1

d! . Analogously, we define the strictly monotone double Hurwitz
number by h<,•

g;x to be the number of strictly monotone factorisations times 1
d! .

Furthermore, we call a factorisation of type (g, x) transitive if

(4) 〈σ1,σ2, τ1, . . . , τb〉 is a transitive subgroup of Sd.

Then we define the connected monotone double Hurwitz number h≤,◦
g;x and the con-

nected strictly monotone double Hurwitz number h<,◦
g;x as before as the numbers of

transitive (strictly) monotone factorisations of type (g, x) times 1
d! .

Remark 2.2. By dropping the monotonicity condition on the transpositions in Defi-
nition 2.1, we obtain so-called double Hurwitz numbers. These numbers are equiva-
lent to the enumeration of branched degree d morphisms C → P1

C with ramification
profile x+ (x−) over 0 (resp., ∞) and simple ramification over b fixed points of P1

C.

2.2. Gromov-Witten invariants with target P1. We now recall some of the
notions of Gromov-Witten theory. A more detailed introduction in the context of
tropical covers can be found in [14]. For a more general introduction to the topic,
we recommend [48].

Let Mg,n(P1, d) denote the moduli stack of stable maps of degree d with a
genus g curve with n marked points to P1. This stack is equipped with a virtual
fundamental class of degree 2g − 2 + 2d + n and Gromov-Witten invariants are
defined by integrating evaluation and descendant classes against the virtual class
as recalled in the following. Let us first fix some notation.

• Let (X, x1, . . . , xn, f) denote an element of Mg,n(P1, d), that is, X is a
connected projective curve of genus g with at worst nodal singularities,
x1, . . . , xn are non-singular points on X, and f : X → P1 is a map with
f∗([X]) = d[P1]. The ith evaluation morphism is the map evi : Mg,n(P1, d)
→ P1 obtained by mapping the tuple (X, x1, . . . , xn, f) to xi.
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• The ith cotangent line bundle Li → Mg,n(P1, d) is obtained by identifying
the fiber of each point with the cotangent space T∗

xi
(X). The first Chern

class of ith cotangent line bundle is called a psi class which we denote by
ψi = c1(Li).

Definition 2.3. Fix g, n, d and let k1, . . . , kn be non-negative integers such that
k1 + · · · + kn = 2g + 2d− 2. The stationary Gromov-Witten invariant is defined by

〈τk1(pt) · · · τkn(pt)〉P1

g,n =

∫

[Mg,n(P1)]vir

∏
ev∗i (pt)ψki

i ,

where pt denotes the class of a point on P1.

Similarly, we consider the moduli space of relative stable maps Mg,n(P1, ν, µ, d)
relative to two partitions µ, ν of d and define the relative Gromov-Witten invariants
by

〈ν | τk1(pt) · · · τkn(pt) | µ〉P1

g,n =

∫

[Mg,n(P1,ν,µ,d)]vir

∏
ev∗i (pt)ψki

i .

We note that in the following, we add subscripts “◦” and “•” which correspond
to connected or not necessarily connected (for simplicity also called disconnected)
Gromov-Witten invariants which in turn correspond to considering connected or
disconnected stable maps.

2.3. Tropical correspondence theorem. We begin by defining abstract tropical
curves, where we note that we use the notion introduced in [10, Section 1.2], [9,
Definition 3.1.3], and [47, Definition 2.1]. This notion in turn originates from [41,
Section 3.3]. See also [1,11] for the relation between abstract algebraic and abstract
tropical curves.

Definition 2.4. An abstract tropical curve is a connected metric graph Γ with
unbounded edges called ends, together with a function associating a genus g(v) to
each vertex v. Let V (Γ) be the set of its vertices. Let E(Γ) and E′(Γ) be the
set of its internal (or bounded) edges and its set of all edges, respectively. The
set of ends is therefore E′(Γ) \ E(Γ), and all ends are considered to have infinite
length. The genus of an abstract tropical curve Γ is g(Γ) := h1(Γ) +

∑
v∈V (Γ) g(v),

where h1(Γ) is the first Betti number of the underlying graph. An isomorphism of
a tropical curve is an automorphism of the underlying graph that respects edges’
lengths and vertices’ genera. The combinatorial type of a tropical curve is obtained
by disregarding its metric structure.

As a next step, we consider maps between abstract tropical curves which in a
sense–up to contraction of edges–mirrors the situation of covers between Riemann
surfaces (for more details, see, e.g., [6]). These maps are called tropical covers or
harmonic morphisms. The notion of harmonic morphisms between graphs were
first introduced in [5, Section 2.1] and generalised to harmonic morphisms between
weighted graphs in [10]. We use the notion of harmonic morphisms defined in
[3, Section 2.9].

Definition 2.5. A tropical cover is a surjective harmonic map π : Γ1 → Γ2 between
abstract tropical curves as in [3, Section 2.9], i.e.:

i). Let V (Γi) denote the vertex set of Γi; then we require π(V (Γ1)) ⊂ V (Γ2).
ii). Let E′(Γi) denote the edge set of Γi; then we require π−1(E′(Γ2)) ⊂ E′(Γ1).
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iii). For each edge e ∈ E′(Γi), denote by l(e) its length. We interpret e ∈
E′(Γ1),π(e) ∈ E′(Γ2) as intervals [0, l(e)] and [0, l(π(e))]; then we require
π restricted to e to be a linear map of slope ω(e) ∈ Z≥0, that is, π :
[0, l(e)] → [0, l(π(e))] is given by π(t) = ω(e) · t. We call ω(e) the weight of
e. If π(e) is a vertex, we have ω(e) = 0.

iv). For a vertex v ∈ Γ1, let v′ = π(v). We choose an edge e′ adjacent to v′.
We define the local degree at v as

dv =
∑

e∈Γ1

π(e)=e′

ωe.

We require dv to be independent of the choice of edge e′ adjacent to v′. We
call this fact the balancing or harmonicity condition.

We furthermore introduce the following notions:

i). The degree of a tropical cover π is the sum over all local degrees of pre-
images of any point in Γ2. Due to the harmonicity condition, this number
is independent of the point in Γ2 [10, Lemma 2.4].

ii). For any end e, we define a partion µe as the partition of weights of the ends
of Γ1 mapping to e. We call µe the ramification profile above e.

The following theorem expresses monotone and strictly monotone double Hur-
witz numbers in terms of tropical covers weighted by Gromov-Witten invariants.
Since one of the key ingredients for the proof of the following theorem is the clas-
sical Jucys Correspondence [39], we also call the covers involved in this theorem
tropical Jucys covers.

Theorem 2.6 ([34, Theorem 4.1]). Let g be a non-negative integer, and x ∈
(Z\{0})n with |x+| = |x−| = d. Then

h≤,•
g;x =

∑

λ(b

∑

π∈Γ(P1
trop,g;x,λ)

1

|Aut(π)|
1

)(λ)!

∏

v∈V (Γ)

mv

∏

e∈E(Γ)

ωe,

h<,•
g;x =

∑

λ(b

∑

π∈Γ(P1
trop,g;x,λ)

1

|Aut(π)|
1

)(λ)!

∏

v∈V (Γ)

(−1)1+val(v)mv

∏

e∈E(Γ)

ωe,

where Γ(P1
trop, g; x,λ) is the set of tropical covers π : Γ −→ P1

trop = R with b =
2g − 2 + n points p1, . . . , pb fixed on the codomain P1

trop and λ an ordered partition
of b, such that

i). The unbounded left (resp., right) pointing ends of Γ have weights given by
the partition x+ (resp., x−).

ii). The graph Γ has l := )(λ) ≤ b vertices. Let V (Γ) = {v1, . . . , vl} be the set
of its vertices. Then we have π(vi) = pi for i = 1, . . . , l. Moreover, let
wi = val(vi) be the corresponding valencies.

iii). We assign an integer g(vi) as the genus to vi and the following condition
holds true:

h1(Γ) +
l∑

i=1

g(vi) = g.

iv). We have λi = val(vi) + 2g(vi) − 2.
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v). For each vertex vi, let y+ (resp., y−) be the tuple of weights of those edges
adjacent to vi which map to the right-hand (resp., left-hand) of pi. The
multiplicity mvi of vi is defined to be

mvi =(λi − 1)!|Aut(y+)||Aut(y−)|

×
∑

gi
1+gi

2=g(vi)

〈
τ2gi

2−2(ω)

〉P1,◦

gi
2

〈
y+, τ2gi

1−2+n(ω), y−
〉P1,◦

gi
1

.

Furthermore, we obtain h≤,◦
g;x and h<,◦

g;x by considering only connected source curves.

Remark 2.7. It is well known that

〈τ2l−2(ω)〉P
1

l,1 = [z2l−1]
1

ζ(z)
= −22l−1 − 1

22l−1

B2l

(2l)!
,

where B2l is the 2lth Bernoulli number. Furthermore, it was proved in [45, Theo-
rem 2] that

〈
y+, τ2g−2+%(y+)+%(y−), y

−〉P1,◦
g

=
1

| Aut(y+)|| Aut(y−)| [z
2g]

∏
y+

i
S(yiz)

∏
x−

i
S(xiz)

S(z)
.

3. Piecewise polynomiality and wall-crossings

We begin by defining a refinement of monotone and strictly monotone double
Hurwitz numbers.

Definition 3.1. Let g be a non-negative integer x ∈ Zn, such that |x+| = |x−|.
Furthermore, let λ′ be an ordered partition of 2g − 2 + n. Then we define

*h≤,◦
g;x,λ′ =

∑

π∈Γ(P1
trop,g;x,λ′)

1

|Aut(π)|
1

)(λ)!

∏

v∈V (Γ)

mv

∏

e∈E(Γ)

ωe.

Furthermore, let λ′′ be an unordered partition of 2g − 2 + n. Then we define

h≤,◦
g;x,λ′′ =

∑

λ

*h≤,◦
g;x,λ ,

where the first sum is over all ordered partitions λ which are obtained by some
ordering of λ′′. Similarly, we define *h<,◦

g;x,λ′ and h<,◦
g;x,λ′ . We further define their

disconnected counterparts by considering disconnected tropical covers and decorate
them with •.

Remark 3.2. We observe that by definition

(1) h≤,◦
g;x =

∑

λ′

*h≤,◦
g;x,λ′ =

∑

λ′′

h≤,◦
g;x,λ′′ ,

where the first sum is taken over all ordered partition λ′ of 2g − 2 + n and the
second sum is taken over all unordered partitions λ′′ of 2g − 2 + n.

We note that these numbers naturally appear as weighted sums of vacuum ex-
pectations of products of the Gl operators in the notation of [34, Lemma 3.4 and
Section 3.4].
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x1

x2

x1 + x2 = 0

x1 = 0

x2 = 0

x1,x2>0;
x3<0

x2>0;
x1,x3<0

x1>0;
x2,x3<0

x1,x3>0;
x2<0

x3>0;
x1,x2<0

x2,x3>0;
x1<0

Figure 1. The resonance arrangement for n = 3, after projection
onto the first two coordinates.

3.1. Results. In this section, we collect our results about the piecewise polynomial
behaviour of h≤,◦

g;x,λ and h<,◦
g;x,λ. We first define the resonance arrangement which is

the hyperplane arrangement in Rn given by

WI =

{
x ∈ Zn |

∑

i∈I

xi = 0

}

for all I ⊂ {1, . . . , n}. The connected components of the complement of the reso-
nance arrangements are called chambers. We also refer to them by H−chambers.

Example 3.3. We illustrate the resonance arrangement for n = 3. The resonance
arrangement lives in the hyperplane W in R3 given by x1 + x2 + x3 = 0. There
are 3 hyperplanes in R3 given by (xi = −xj)i<j dividing the surrounding space

into 6 H−chambers. We consider the isomorphism R2 → W given by (x1, x2) ,→
(x1, x2,−x1 − x2). Note, that with x1 + x2 + x3 = 0, the hyperplanes yield

(1) x1 = −x2 = x1 + x3, which is equivalent to x3 = 0,
(2) x1 = −x3 = x1 + x2, which is equivalent to x2 = 0,
(3) x2 = −x3 = x1 + x2, which is equivalent to x1 = 0.

Thus, the hyperplane arrangement in Figure 1 is the resonance arrangement for
n = 3. In each top-dimensional chamber, the inequalities (xi > −xj)i<j are deter-
mined.

The following is our first main theorem.

Theorem 3.4. Let g be a non-negative integer, fix the length n of x, and let λ be
an unordered partition of 2g−2+n. The functions h≤,◦

g;x,λ and h<,◦
g;x,λ are polynomials

of degree at most 4g − 3 + n in each chamber of the resonance arrangement.

Combining Theorem 3.4 and equation (1), we therefore obtain a new proof of
the following result.

10



Corollary 3.5 ([31, Theorem 4], [33, Theorem 4.1]). For a non-negative integer
g and a fixed length n of x, the functions h≤,◦

g;x and h<,◦
g;x are polynomial of degree

4g − 3 + n in each chamber of the resonance arrangement.

This motivates the following definition.

Definition 3.6. Let c1, c2 be two H−chambers adjacent along the wall WI , with c1
being the chamber with xI =

∑
i∈I xi < 0. Let Pλ

i (x) be the polynomial expressing
hg;x,λ in ci. We define the wall-crossing function by

WCλ
I (x) = Pλ

2 (x) − Pλ
1 (x).

We derive the following expression of the wall-crossing function.

Theorem 3.7. Let g be a non-negative integer, let n be the fixed length of x, and
let λ be an unordered partition of b = 2g − 2 + n. Then we have

WCλ
I (x)

=
∑

|y|=|z|=|xI |

∑

λiunordered
λ1∪λ2∪λ3=λ

(
(−1)%(λ

2)

∏
yi

)(y)!

∏
zi

)(z)!
h≤,◦

g1;(xI ,−y),λ1h
≤,•
g2;(y,−z),λ2h

≤,◦
g3;(z,xIc ),λ3

)
,

where y (resp. z) is an ordered tuple of length )(y) (resp., )(z)) of positive inte-
gers with sum |y| (resp., |z|) and g1 is given by |λ1| = 2g1 − 2 + )((xI ,−y)) (and
analogously for g2, g3)).

4. Proofs of chamber polynomiality and of wall-crossing formulae

In this section, we prove Theorems 3.4 and 3.7. We focus on the case of monotone
Hurwitz numbers as the case of strictly monotone Hurwitz numbers is completely
parallel. To begin with, we introduce a formal set-up for the proofs of both theorems
in subsection 4.1. We continue in subsection 4.2 where we prove Theorem 3.4.
Finally, we prove Theorem 3.7 in subsection 4.3. We follow the strategy of [13]
which focuses on the case of trivalent graphs, however all results we cite hold for
the graphs with higher valency considered in this paper with the same proofs. We
also provide a running example for this case of higher valency throughout the proof,
which is analogous to example 2.5 in [13] for the trivalent case.

4.1. Formal set-up. Instead of tropical covers, we work with combinatorial covers,
where the information given by the cover is encoded as an orientation given on the
graph.

Definition 4.1 (Combinatorial cover). For fixed g, x = (x1, . . . , xn) ∈ (Z\{0})n,
λ - 2g − 2 + n unordered, a graph Γ is a combinatorial cover of type (g, x,λ), if

(1) Γ is a connected graph with at most 2g − 2 + 2n vertices.
(2) Γ has n many 1−valent vertices called leaves ; the adjacent edges are called

ends and are labeled by the weights x1, . . . , xn; further, all ends are oriented
inwards. If xi > 0, we say it is an in-end, otherwise it is an out-end.

(3) We denote the set of edges which are not edges by Ein(Γ).
(4) There are )(λ) inner vertices.
(5) We denote the inner vertices by v1, . . . , v%(λ) and assign a non-negative

integer g(vi) to vi which we call the genus of vi; we further have λi =
val(vi) + 2g(vi) − 2.

11



(6) After reversing the orientation of the out-ends, Γ does not have sinks or
sources.

(7) The internal vertices are ordered compatibly with the partial ordering in-
duced by the directions of the edges.

(8) We have g = b1(Γ) +
∑

g(vi), where b1(Γ) is the first Betti number of Γ.
(9) Every internal edge e of the graph is equipped with a weight ω(e) ∈ N. The

weights satisfy the balancing condition at each inner vertex: the sum of all
weights of incoming edges equals the sum of the weights of outgoing edges.

The notation Γ(x,λ, d, o) indicates that graph comes with directed edges (d) and
with a compatible vertex ordering (o).

This definition encodes the data of the covers involved in Theorem 2.6 in graph
theoretic language. More precisely, starting with a tropical cover π∈Γ(P1

trop, g; x,λ),
one obtains a combinatorial cover in the following way:

(1) let π : Γ′ → P1
trop be the tropical cover; then we obtain the connected graph

Γ of the combinatorial cover by placing vertices at the unbounded ends of
Γ′;

(2) the unbounded ends of Γ are labeled by x = (x1, . . . , xn);
(3) let v, w be adjacent inner vertices in Γ with π(v) = pi,π(w) = pj , and i < j;

then the edge is oriented from v to w and all ends are directed inwards–this
yields d;

(4) the directed edges induce a partial ordering o on the vertices;
(5) the rest of the data, such as weight of the edges, genus of the vertices, the

partition λ translate immediately.

This process is invertible. Therefore Theorem 2.6 translates to

h≤,◦
g;x =

∑

λ(b

∑

Γ

1

|Aut(Γ)|
1

)(λ)!
ϕΓ,

where the second sum is over all combinatorial covers Γ of type (g, x,λ) and we
have

ϕΓ =

%(λ)∏

i=1

mvi

∏

e∈Ein(Γ)

ω(e)

with

mvi = (λi − 1)!|Aut(y+)||Aut(y−)|

×
∑

gi
1+gi

2=g(vi)

〈
τ2gi

2−2(ω)

〉P1,◦

gi
2

〈
y+, τ2gi

1−2+%(y+)+%(y−)(ω), y−
〉P1,◦

gi
1

,

where y+ is the tuple of weights of incoming edges and y− the tuple of weights of
outgoing edges at vi. Analogously, one obtains h≤,◦

g;x,λ, *h≤,◦
g;x,λ and their disconnected

counterparts.
Moreover, for an unordered partition λ, we have

h≤,◦
g;x,λ =

∑

Γ

1

|Aut(Γ)|
1

)(λ)!
ϕΓ,

where the second sum is over all combinatorial covers Γ of type (g, x,λ).
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Definition 4.2. Given g and x, an x−graph Γ(x) (or simply Γ when there is no
risk of confusion) is a connected, genus g combinatorial cover, where we forget the
direction of the edges and the vertex ordering, such that the n ends are labeled
x1, . . . , xn.

4.1.1. Hyperplane arrangements. We view an x−graph Γ as a one-dimensional cell
complex. The differential d : REΓ → RVΓ, sending a directed edge to the difference
of its head and tail vertices, yields the following short exact sequence:

0 → ker(d) → REΓ → im(d) → 0.

We decompose REΓ = Rn
⊕

R|Ein(Γ)| into ends and internal vertices. Then we
have a vector of the form (x, 0) ∈ im(d) when

∑
xi = 0.

Definition 4.3. We define the space of flows to be

FΓ(x) = d−1(x, 0).

Inside the space of flows, we define a hyperplane arrangement

AΓ(x)

given by the restriction of the coordinate hyperplanes corresponding to the internal
edges in REΓ. The defining polynomial for this hyperplane arrangement is

ϕA =
∏

ei,

where ei are the coordinate functions on REΓ restricted to FΓ(x).

We note that often it is useful to fix a reference orientation on a given x−graph.
The following lemma shows that this corresponds to fixing a bounded chamber in
the hyperplane arrangement.

Lemma 4.4 ([13, Lemma 2.13, Corollary 2.14]). The bounded chambers of AΓ(x)
correspond to orientations of Γ with no directed cycles. Moreover, given an (x,λ)−
graph Γ, the bounded chambers of AΓ(x) are in bijection with directed (x,λ)−graphs
projecting to Γ after forgetting the orientations of the edges that come from a com-
binatorial cover (defined in Definition 4.1). !

The following remark indicates an interesting structural result regarding the
vertex contributions.

Remark 4.5. Recall that the contribution of each vertex is given by

mvi = (λi − 1)!|Aut(y+)||Aut(y−)|

×
∑

gi
1+gi

2=g(vi)

〈
τ2gi

2−2(ω)

〉P1,◦

gi
2

〈
y+, τ2gi

1−2+%(y+)+%(y−)(ω), y−
〉P1,◦

gi
1

,

where y+ are the incoming and y− are the outgoing edge weights. Moreover, by
[44, Theorem 2] the following identity holds:

〈
y+, τ2gi

1−2+%(y+)+%(y−)(ω), y−
〉P1,◦

gi
1

=
1

|Aut(y+)|
1

|Aut(y−)| [w
gi
1 ]

∏
y+ S(y+

i w)
∏

y− S(y−
i w)

S(w)
.
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Thus we obtain

mvi = (λi − 1)!
∑

gi
1+gi

2=g(vi)

〈
τ2gi

2−2(ω)

〉P1,◦

gi
2

[wgi
1 ]

∏
y+ S(y+

i w)
∏

y− S(y−
i w)

S(w)
.

We recall that S(w) = 1 + z2

24 + z4

1920 + O(z6) and 1
S(w) = 1− z2

24 + 7z4

5760 + O(z6) are
even power series. Therefore mvi is a polynomial in the adjacent edge weights and
all appearing monomials are of even degree. We denote this polynomial by M(vi).
This polynomial is independent of the flow of the respective branching graph.

Definition 4.6. Let Γ be an x−graph. We denote by SΓ(x) the contribution
to hg;x,λ of all combinatorial covers having underlying (x)−graph Γ, where λ is
obtained by

λi = val(vi) + 2g(vi) − 2,

where vi runs over all inner vertices, i.e., λ = (λ1, . . . ,λ%(λ)).
For a given (x)−graph Γ, we call F−chambers the chambers of AΓ(x) in the flow

space FΓ(x). Recall that all points in the same F -chamber A have the direction.
Therefore, the edge weights all have the same sign with respect to the reference
orientation. We start with two adjacent F−chambers A and B, which share the
wall ei = 0. Let A, such that ei > 0 and B, such that ei < 0. We start from a
point in A, i.e., a weight distribution and orientation of edges on Γ. Note, that ei

represents the weight of some edge of Γ. Moving along the vector −ei the weight
of the ith edge in Γ decreases. After passing through the wall defined by ei = 0, we
have for all j .= i, that the weights ej still have the same sign as in the chamber A.
However, we also have ei < 0 in chamber B. Each point in B therefore corresponds
to an oriented graph in which the edge corresponding to ei has opposite orientation
with respect to the one in chamber A.

For an F−chamber A, let ΓA denote the directed (x,λ)-graph with the edge
directions corresponding to the chamber A. We use m(A) (or m(ΓA)), to denote
the number of all possible orderings of the vertices of ΓA from left to right (recall
that the branch points are fixed over the base).

Lemma 4.7 ([13]). For an F -chamber A, we have that m(A) is zero if and only if
A is unbounded.

Roughly speaking, the reason for the above statement is that a chamber A can
be unbounded if and only if the graphs contain an oriented loop which makes it
impossible to order the vertices over the base. As m(A) will appear as multiplic-
ity in our formula, we can immediately discard all unbounded chambers, as their
contribution vanishes completely.

We use Ch(AΓ(x)) to denote the set of F -chambers of AΓ(x). Clearly, the sign
of

ϕA =

n+|E(Γ)|∏

i=1

ei

alternates on adjacent F−chambers (since we swap the direction of one edge, as
explained above): we indicate with sign(A) = (−1)N(A) the sign of ϕA on the
chamber A, where N(A) is the number of negative coordinates ei in the chamber A.

For integer values of x, the space of flows FΓ(x) has an affine lattice, coming
from the integral structure of ZEΓ. We denote this lattice by

Λ = FΓ(x) ∩ ZEΓ.
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This notation allows a convenient interpretation of SΓ(x) in terms of the hyperplane
arrangement AΓ(x). Choices of the weights of the edges–i.e., the choice of a flow f
on Γ–correspond to lattice points in Λ. We have that

SΓ(x) =
1

|Aut(Γ)|
∑

A∈Ch(AΓ(x))

m(A)
∑

f∈A∩Λ




∏

e∈E′(Γ)

w(e)
∏

i

M(vi)





=
1

|Aut(Γ)|
∑

A∈Ch(AΓ(x))

sign(A) m(A)
∑

f∈A∩Λ

(
ϕA(f)

∏

i

M(vi)

)
,

where
∏

i M(vi) is an even polynomial in the edge weights by Remark 4.5, and to
pass from the first to the second line use that the product of all the edge weights of
a flow f is the absolute value of ϕA computed at f = (ei)i which if f ∈ A is simply
sign(A)ϕA(f).

Example 4.8. We illustrate the introduced notions for the combinatorial cover
Γ(x,λ, d, o) in the top of Figure 2, where o is indicated in the left picture, d is
indicated by the directed edges, λ = (1, 1, 1, 1, 5, 2), and x = (x1, . . . , x5).

In the middle of Figure 2, two flow spaces for Γ are given. On the left, we have
−(x4+x5) > x2 and x1+x3 > 0. On the right, we have crossed the wall x1+x3 = 0.

We further have M(vi) = 1 for i .= 5 and

M(v5) =
3a4 + 10a2(b2 + c2) + 3b4 + 10b2c2 + 3c4

5760

for a = i, b = −j − (x4 + x5), c = −i − j − (x4 + x5).

4.2. Polynomials and walls. We begin with the proof of Theorem 3.4. We fix an
(x)−graph Γ with reference orientation given by the flow f . We first observe that

1

|Aut(Γ)|

(
ϕA(f)

∏

i

M(vi)

)

is a polynomial of degree |E(Γ)|+2
∑

gi, as ϕA(f) is a polynomial of degree |E(Γ)|
and M(vi) is a polynomial of degree 2gi. Considering the Euler characteristic of Γ
we obtain

|E(Γ)| = )(λ) + b1(Γ) − 1 = )(λ) + g −
∑

gi − 1

and therefore

|E(Γ)| + 2
∑

gi = )(λ) + g +
∑

gi − 1.

Recalling λi = val(vi) + 2g(vi) − 2 and the fact that val(vi) ≥ 2, it is easily seen
that the right-hand side maximizes for λ = (1, . . . , 1). Thus, we have

|E(Γ)| + 2
∑

gi ≤ 3g − 3 + n.

Similar to [13, Remark 2.11], we have that FΓ(x) is b1(Γ)−dimensional.
Moreover, it is well known that summing a polynomial of degree d over the lattice

points in a b1(Γ)−dimensional integral polytope of fixed topology is a polynomial
of degree d+ b1(Γ) in the numbers defining the boundary of the polytope (see, e.g.,
[4, Theorem 4.2]. We further observe that each vertex is given by an integer vector
because the incidence matrix of a directed graph is totally unimodular.
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1
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6
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g = 2 i

j

j− x2 − j− (x4 + x5)

i + j− x2 −i − j− (x4 + x5)

g = 2

j

i

j

i

B

DC

A
F
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H
G

x2

−(x4 + x5)

−(x4 + x5)

x2

g = 2 g = 2 g = 2 g = 2

g = 2 g = 2 g = 2 g = 2

A B C D

E F G H

Figure 2. A combinatorial cover, its flow space in two adjacent
chambers, and the corresponding orientations.

Combining these facts, it follows that SΓ(x) is a polynomial in x of degree )(λ)+
g +

∑
gi − 1 + b1(Γ) as long as varying x does not change the topology of AΓ(x)

which is maximal for )(λ) = b and gi = 0.
Thus hg;x,λ is piecewise polynomial of maximal degree 4g − 3 + n. We now

determine the regions in which hg;x,λ is polynomial. More precisely, we prove that
hg;x,λ is polynomial in each top-dimensional component in the complement of a
hyperplane arrangement. We further compute those hyperplanes.
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We note that the hyperplane arrangement given by AΓ(x) is not always given by
hyperplanes which only intersect transversally. Morally, the shape of the polynomial
expressing hg;x,λ should only change when the topology of AΓ(x) changes. When
translating generic hyperplane arrangements the topology may change when one
passes through a non-transversality. However, in our situation, there can be non-
transversalities which appear for each value of x. Nonetheless, it is still true that the
topology may change once one passes through additional non-transversalities. We
call those non-transversalities which appear for any value x good transversalities.
The following definition is a classification of these.

Definition 4.9. Suppose a set of k hyperplanes (equivalently, edges in Γ) in AΓ(x)
intersect in codimension k − l. We call this intersection good if there is a set L of l
vertices in Γ so that I is precisely the set of edges incident to vertices in L.

Furthermore, we define the discriminant locus D ⊂ Rn the set of values of x so
that for some directed (x)− graph Γ the hyperplane arrangement AΓ(x) has a non-
transverse intersection that is not good. The discriminant is a union of hyperplanes
which we call the discriminant arrangement. We call these hyperplanes walls and
the chambers defined by the arrangement H−chambers.

The H−chambers are the chambers of polynomiality of hg;x,λ. Now, we establish
that the walls correspond to the resonance arrangements

∑

i∈I

xi = 0

for I ⊂ {1, . . . , n}. We begin with the following definition.

Definition 4.10. A simple cut of a graph Γ is a minimal set C of edges that
disconnects the ends of Γ: There are two ends of Γ such that every path between
them contains an edge of C and this is true of no proper subset of C.

For an (x,λ)−graph, a flow in FΓ(x) is disconnected if for some simple cut C
the flow on each edge of C is zero.

This yields the following lemma.

Lemma 4.11 ([13, Lemma 3.8]). The discriminant arrangement D is given by the
set of x ∈ Rn such that for some x−graph Γ, the space FΓ(x) admits a disconnected
flow.

Now, let Γ admit a disconnected flow and let C be the corresponding simple
cut. Then it follows by the balancing condition that the sum

∑
i∈I xi of weights

of ends belonging to a connected component of Γ\C is 0. Thus, the walls of the
discriminant arrangement are a subset of the hyperplanes in the resonance arrange-
ment. The arrangements are equal since it is easy to construct a graph Γ, with
some edge e, such that Γ\e has two components, one containing the ends of I and
the other containing the ends of Ic. Thus hg;x,λ is polynomial in each chamber of
the resonance arrangement.

4.3. Wall-crossing. In this section, we prove Theorem 3.7. We first discuss the
combinatorics of cutting an x−graph Γ into several smaller graphs.

Definition 4.12. Let Γ a directed graph and let E be a subset of the edges of
Γ. We consider the graph whose edges are the connected components of Γ\Ec and
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whose vertices are EC . We call this graph the contraction of Γ with respect to E
and denote it by Γ!E.

We fix a directed x−graph ΓA and let I ⊂ {1, . . . , n} be some subset. Then the
set CutsI(ΓA) of I−cuts of ΓA consists of those subsets C of the edges of Γ, such
that C = ∅ or

(1) ΓA\C is disconnected;
(2) the ends of ΓA lie on exactly two components of ΓA\C, one containing all

ends indexed by I, the other containing all ends indexed by Ic;
(3) the directed graph Γ!Cc is acyclic and has the component containing I as

the initial vertex and the component containing Ic as the final vertex.

Let v(ΓA\C) be the number of components of ΓA\C. Then we define the rank of
C by

rk(C) = v(ΓA\C) − 1.

By the discussion in [13, Section 6], we have
(2)

WC(x2)=
∑

Γ

∑

A∈BCΓ(x2)

∑

C∈CutI(ΓA)

(−1)rk(C)−1

(
)(λ)

s, t1, . . . , tN , u

)(∑

Λ∩A

ϕA

∏

i

M(vi)

)
,

where N = rk(C) − 1 and t1, . . . , tN are the numbers of inner vertices of the N
inner components of ΓA\C.

Definition 4.13. Let Γ be an x−graph and C ∈ CutsI(ΓA). We call C a thin cut
if all edges in C are either adjacent to the inital component containing I or the
component containg Ic. Furthermore, for a thin cut T , we denote by P (T ) the set
of all cuts C ∈ CutsI(ΓA) which contain T .

By [13, Lemma 8.2], we have

(3) (−1)t

(
)(λ)

s, t, u

)
=

∑

C∈P(T )

(−1)rk(C)−1

(
)(λ)

s, t1, . . . , tN , u

)
.

Remark 4.14. We note that there is a sign mistake in the formulation of [13,
Lemma 8.2] which occurs in the proof of [13, Lemma 8.4].

Combining equations (2) and (3), we obtain

WC(x2) =
∑

Γ

∑

A∈BCΓ(x2)

∑

T∈CutI(ΓA)
thin

(−1)t

(
)(λ)

s, t, u

)(
∑

Λ∩A

ϕA
∏

i

M(vi)

)
.

We now observe that each thin cut divides ΓA into three parts: the initial com-
ponent Γ1

A, an intermediate part Γ2
A, and a final component Γ3

A. Moreover, the
intermediate part may be disconnected. Thus, we observe that Γ1

A contributes to

h≤
g1;(xI ,−y),λ1

, Γ2
A to h≤,•

g2;(y,−z),λ2
and Γ3

A to h≤,◦
g3;(z,xIc ), λ1 ∪λ2 ∪λ3 = λ and y, z are

some partitions with |y| = |xI |, |z| = |xIc |. Finally, we observe that

(4) φΓA =
)(λ1)!)(λ2)!))(λ3)!

)(λ)!

∏
yi

)(y)!

∏
zi

)(z)!
φΓ1

A
φΓ2

A
φΓ3

A

and (
)(λ)

s, t, u

)
=

(
)(λ)

)(λ1), )(λ2), )(λ3)

)
=

)(λ)!

)(λ1)!)(λ2)!)(λ3)!
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which cancels with the factor in equation (4). This completes the proof of Theo-
rem 3.7.

5. A refined recursion for (strictly) monotone double
Hurwitz numbers

In this section, we derive recursive formulae for *h≤
g;x,λ and *h<

g;x,λ. We then gener-
alise these results for mixed usual/monotone/strictly monotone Hurwitz numbers.

Theorem 5.1. Let µ and ν be partitions of some positive integer d. Moroever, let g
be a non-negative integer. Furthermore, we fix an ordered partition λ = (λ1, . . . ,λk)
with |λ| = 2g − 2 + )(µ) + )(ν) and denote λ′ = (λ1, . . . ,λk−1). Then we have

*h≤,◦
g;(µ,−ν),λ =

1

k

∑

I,n,µi,
νi,λi,γi,gi

ν′

n∏

i=1

*h≤,◦
gi;(µi,(−νi,−γi)),λi

1

|Aut(νI)|
·




n∏

j=1

%(γj)∏

l=1

(γj)l





×
∑

gk
1+gk

2=
λk+2−|I|+"(γ)

2

〈
τ2gk

2−2

〉P1,◦

gk
2

〈
(γ1, . . . , γn), τ2gk

1−2+
∑

%(γi)+%(ν′), ν
′
〉P1,◦

gk
1

,

and

*h<,◦
g;(µ,−ν),λ

=
1

k

∑

I,n,µi,
νi,λi,γi,gi

ν′

n∏

i=1

*h<,◦
gi;(µi,(−νi,−γi)),λi · 1

|Aut(νI)|
·




n∏

i=1

%(γi)∏

j=1

(γi)j



 (−1)
∑

%(γj)+%(ν′)

×
∑

gk
1+gk

2=
λk+2−|I|+"(γ)

2

〈
τ2gk

2−2

〉P1,◦

gk
2

〈
(γ1, . . . , γn), τ2gk

1−2+
∑

%(γi)+%(ν′), ν
′
〉P1,◦

gk
1

,

where in both formulas, the first sum is over all

(1) subsets I ⊂ {1, . . . , )(ν)},
(2) positive integers n,
(3) decompositions of µ, ν, and λ into n partitions µ1 ∪ · · ·∪µn = µ, ν1 ∪ · · ·∪

νn ∪ ν′ = ν and λ1 ∪ · · · ∪ λn = λ′, where the µi must be non-empty,
(4) partitions γi of |µi| − |νi|, where γi must be non-empty,
(5) non-negative integers gi with

∑
gi = g − 1 + λk+2−n

2 + 3
2

∑
γi

up to order.

Proof. This result is a consequence of Theorem 2.6. We focus on the case of mono-
tone Hurwitz numbers, as the argument for strictly monotone Hurwitz numbers is
the same up to a sign. The idea is to consider all covers contributing to *h≤

g;(µ,−ν),λ

and removing the last inner vertex which we denote by w. Let π : Γ → P1
trop

be such a cover. When we remove the last inner vertex (and thus the adjacent
ends which are indexed by I), the cover decomposes in possibly many disconnected
components. Let n be their number. Each such component yields again a tropical
cover πi : Γi → P1

trop mapping to some subset Si ⊂ {p1, . . . , pb}. Each cover πi is
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contained in Γ(P1
trop, gi; (µi,−δi),λi) some non-negative integer gi, a subpartition

µi of µ, a partition δi of |µi|, and a subpartition λi of λ. We note that δi can be
decomposed into a subpartition of ν which we denote by νi and some partition γi

given by the weights of the edges adjacent to the removed vertex and contained in
the ith component, i.e., we have δi = (νi, γi). This data satisfies conditions (1)–(5)
stated in the theorem. The first four conditions are immediate. In order to observe
the fifth condition, we consider the Euler characteristics of the graphs Γ and Γi.
The Euler characteristic of Γ is given by

(5) |V (Γ)| − |E(Γ)| = 1 − b1(Γ) = 1 − g +
∑

v∈V in(Γ)

g(v)

and the Euler charcteristic of Γi is given by

(6) |V (Γi)| − |E(Γi)| = 1 − b1(Γi) = 1 − g +
∑

v∈V in(Γi)

g(v).

However, we see that

(7)
(
|V (Γ)| − 1 − |I| +

∑
)(γi)

)
− (|E(Γ) − |I|) =

∑

i

|V (Γi)| −
∑

|E(Γi)|,

since we remove a single vertex and |I| many ends and leaves attached to it, i.e., |I|
vertices and |I| edges. Moreover, all incoming edges of the removed vertices obtain
an additional vertex which yields

∑
i )(γ

i) many vertices. By combining equations
(5), (6), and (7), we obtain

1 − g +
∑

v∈V in(Γ)

g(v) +
∑

)(γi) =
n∑

i=1



1 − gi +
∑

v∈V in(Γi)

g(v)



 .

We observe that
∑

i

∑
v∈V in(Γi)

g(v) =
∑

v∈V (Γ) g(v) − g(w) and therefore obtain

1 − g + g(w) +
∑

)(γi) = n −
∑

gi.

However, we know that val(w) = n +
∑

)(γi) and thus g(w) = λk+2−n+
∑

%(γi)
2 .

Thus, we obtain

∑
gi = g − 1 +

λk + 2 − n

2
+

3

2

∑
)(γi),

which is the last condition.
On the other hand, starting with data I, n, µi, νi,λi, γi, gi, ν′ satisfying these

conditions, one can consider n tropical covers πi : Γi → P1
trop, where

πi ∈ Γ(P1
trop, gi, (µ

i, (−νi, γi),λi)).

We can then glue the πis to a cover

π : Γ → P1
trop
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contributing to Γ(P1
trop, g, (µ,−ν),λ): first, we choose subsets Si of {p1, . . . , pk−1}

with |Si|=)(λi). There are
( %(λ)−1
%(λ1),...,%(λn)

)
such choices. Then the vertices of πi map

to the points in Si, while maintaining the order of the images of the vertices in πi.
We then join the edges with weights corresponding to the partitions γi to a single
vertex w, such that these edges are incoming edges and w maps to pk. Moreover,
we attach )(ν′) outgoing edges to w which are ends with weights in bijection to
the entries of )(ν′). This way, we obtain a cover π ∈ Γ(P1

trop, g, (µ,−ν),λ). Let
ω(Γ),ω(Γi) be the weight of the graphs Γ and Γi. Then we observe that

ω(Γ) =

∏
)(λi)!

)(λ)!
· 1

|Aut(νI)|
·
∏

ω(Γi) ·




n∏

i=1

%(γi)∏

j=1

(γi)j





×
∑

gk
1+gk

2=
λk+2−|I|+"(γ)

2

〈
τ2gk

2−2

〉P1,◦

gk
2

〈
(γi, . . . , γn), τ2gk

1−2++
∑

%(γi)+%(ν′), ν
′
〉P1,◦

gk
1

where we note that 1
|Aut(νI)| contributes to 1

|Aut(Γ)| . This completes the proof. !

We now want to generalise the statement above to mixed Hurwitz numbers. The
following definition expresses mixed p-strictly monotone/ q-monotone/ (b−(p+q))-
usual double Hurwitz numbers in terms of tropical covers weighted by Gromov-
Witten invariants.

Definition 5.2. Let g be a non-negative integer, and x ∈ (Z\{0})n with |x+| =
|x−| = d, b = 2g−2+n, let p and q be two integers such that p+q ≤ b. Let λ(1) be

a partition of p and let λ(2) be a partition of q, set λ̃i := 1 for i = 1, . . . , b− (p+ q),

and finally set λ := λ(1) ∪ λ(2) ∪ λ̃. We are ready to define the λ-slice of the mixed
p-strictly monotone/ q-monotone/ (b − (p + q))-usual double Hurwitz numbers

h×,<,≤,•
g;x,p,q,λ =

∑

π∈Γ(P1
trop,g;x,λ)

1

|Aut(π)|
1

)(λ)!

p∏

i=1

(−1)1+val(vi)mvi

×
p+q∏

j=p+1

mvj

b∏

k=p+q+1

mvk

∏

e∈E(Γ)

ωe,

where Γ(P1
trop, g; x,λ) is the set of tropical covers π : Γ −→ P1

trop = R with b =
2g− 2 + n points p1, . . . , pb fixed on the codomain P1

trop and λ an ordered partition
of b, such that

i). The unbounded left (resp., right) pointing ends of Γ have weights given by
the partition x+ (resp., x−).

ii). The graph Γ has l := )(λ) ≤ b vertices. Let V (Γ) = {v1, . . . , vl} be the
set of its vertices. Then we have π(vi) = pi for i = 1, . . . , l. Moreover, let
wi = val(vi) be the corresponding valencies.
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iii). We assign an integer g(vi) as the genus to vi and the following condition
holds true:

h1(Γ) +
l∑

i=1

g(vi) = g.

iv). We have λi = val(vi) + 2g(vi) − 2.
v). For each vertex vi, let y+ (resp., y−) be the tuple of weights of those edges

adjacent to vi which map to the right-hand (resp., left-hand) of pi. The
multiplicity mvi of vi is defined to be

mvi = (λi − 1)!|Aut(y+)||Aut(y−)|

×
∑

gi
1+gi

2=g(vi)

〈
τ2gi

2−2(ω)

〉P1,◦

gi
2

〈
y+, τ2gi

1−2+n(ω), y−
〉P1,◦

gi
1

.

Note that the mvk above always simplify to either one (in most of the cases) or two
(only in case the two half-edges directed towards the same end have equal weights).
Furthermore, we define h×,<,≤,◦

g;x,p,q,λ by considering only connected source curves.

Remark 5.3. It is a straightforward generalisation of theorem 2.6 in [34] the fact
that these numbers h×,<,≤,•

g;x,p,q,λ are the λ-slices of mixed usual/monotone/strictly-
monotone Hurwitz numbers, meaning that if we define

h×,<,≤,•
g;x,p,q :=

∑

λ=(λ(1),λ(2),λ̃)(b
λi=1, i=p+q+1,...,b

λ(1)(p, λ(2)(q

h×,<,≤,•
g;x,p,q,λ,

then h×,<,≤,•
g;x,p,q enumerates all weighted ramified covers of degree d = |x+| = |x−| of

the Riemann sphere by genus g compact surfaces where the ramification profiles over
zero and infinity are given by x+ and x−, respectively, and all other ramifications
are simple (and therefore can be represented as transpositions (ai, bi)i=1,...,b with
1 ≤ ai < bi ≤ d), in such a way that the first p simple ramifications satisfy the
strictly monotone condition, the following q satisfy the weakly monotone condition,
and the remaining b−(p+q) are usual simple ramifications (and hence do not satisfy
any additional requirement):

(1) bi < bi+1 for i = 1, . . . , p − 1,
(2) bi ≤ bi+1 for i = p + 1, . . . , p + q − 1.

With the notation above, we are going to generalise Theorem 5.1 by cutting
one vertex of the tropical covers. However, there are now three different types
of vertices, as opposed to one in Theorem 5.1: the strictly monotone vertices,
the weakly monotone vertices, and the usual vertices. We therefore obtain three
different recursions, depending on which type of vertex we are cutting. Note that
the first and the second type of vertex differ just by a sign factor in their weights,
whereas the third type is extremely simple as its genus is zero and its cardinality
must be equal to three. It is, moreover, possible to have the first and second type
of vertices which happen to be usual vertices (this happens if and only if they come
from parts of λ equal to one in the first p+q parts): we still treat them according to
their general nature, as the formula for their weight in that case naturally specialises
to the weight of usual vertices.
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Corollary 5.4. Let µ and ν be partitions of some positive integer d, let g, p, q be
non-negative integers, let λ be a partition λ = λ(1) ∪ λ(2) ∪ λ̃ = (λ1, . . . ,λk) with

|λ| = b = 2g − 2 + )(µ) + )(ν), λ(1) - p, λ(2) - q, p + q ≤ b, λ̃i = 1 for all i, and for
a partition σ denote σ′ = σ \ {σ%(σ)}. Then we have the following three recursions:

i). Cutting along a strictly monotone vertex.

*h×,<,≤,◦
g;(µ,−ν),p,q,λ

=
1

k

∑

I,n,µi,νi,ν′

λi
(1),λ

i
(2),λ̃

i,γi,gi

n∏

i=1

*h<,◦
gi;(µi,(−νi,−γi)),λi ·(−1)

∑
%(γj)+%(ν′) · 1

|Aut(νI)|
·




n∏

i=1

%(γi)∏

j=1

(γi)j





×
∑

gk
1+gk

2=
λk+2−|I|+"(γ)

2

〈
τ2gk

2−2

〉P1,◦

gk
2

〈
(γi, . . . , γn), τ2gk

1−2+
∑

%(γi)+%(ν′), ν
′
〉P1,◦

gk
1

,

ii). Cutting along a weakly monotone vertex.

*h×,<,≤,◦
g;(µ,−ν),p,q,λ =

1

k

∑

I,n,µi,νi,ν′

λi
(1),λ

i
(2),λ̃

i,γi,gi

n∏

i=1

*h<,◦
gi;(µi,(−νi,−γi)),λi · 1

|Aut(νI)|
·




n∏

i=1

%(γi)∏

j=1

(γi)j





×
∑

gk
1+gk

2=
λk+2−|I|+"(γ)

2

〈
τ2gk

2−2

〉P1,◦

gk
2

〈
(γi, . . . , γn), τ2gk

1−2+
∑

%(γi)+%(ν′), ν
′
〉

P1,◦
gk
1

.

iii). Cutting along a usual vertex.

*h×,<,≤,◦
g;(µ,−ν),p,q,λ =

1

k

∑

I,n≤2,µi,νi,ν′

λi
(1),λ

i
(2),λ̃

i,γi,gi

n∏

i=1

*h<,◦
gi;(µi,(−νi,−γi)),λi · 1

|Aut(νI)|
·




n∏

i=1

%(γi)∏

j=1

(γi)j



,

where in all three formulas, the first sum is over all

(1) subsets I ⊂ {1, . . . , )(ν)},
(2) positive integers n (smaller than or equal to 2 in the third recursion),
(3) decompositions of µ, ν, and λ into n partitions µ1 ∪ · · ·∪µn = µ, ν1 ∪ · · ·∪

νn ∪ ν′ = ν, where the µi must be non-empty,
(4) partitions γi of |µi| − |νi|, where γi must be non-empty,
(5) non-negative integers gi with

∑
gi = g − 1 + λk+2−n

2 + 3
2

∑
γi,

(6) in the third case we require |ν′| = 3 −
∑

i )(γ
i),

up to order, and moreover

i). when cutting over a strictly monotone vertex we have

λ1
(1) ∪ · · · ∪ λn

(1) = λ′
(1), λ1

(2) ∪ · · · ∪ λn
(2) = λ(2), λ̃1 ∪ · · · ∪ λ̃n = λ̃;

ii). when cutting over a weakly monotone vertex we have

λ1
(1) ∪ · · · ∪ λn

(1) = λ(1), λ1
(2) ∪ · · · ∪ λn

(2) = λ′
(2); λ̃1 ∪ · · · ∪ λ̃n = λ̃;
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iii). when cutting over a usual vertex we have

λ1
(1) ∪ · · · ∪ λn

(1) = λ(1), λ1
(2) ∪ · · · ∪ λn

(2) = λ(2), λ̃1 ∪ · · · ∪ λ̃n = λ̃′.

Proof. The proof is a straightforward generalisation of the one of Theorem 5.1. The
only difference is that we need to keep track of the partitions of p and q when cutting,
and eliminate the right cut vertex from the summations over λi

(1),λ
i
(2), λ̃

i. Let us
point out explicitly in the three cases what the differences are in the computation.

• When cutting over a strictly monotone vertex, the length of the partition
λ(1) descreases by one as one vertex has been cut, whereas the partitions
corresponding to weakly monotone vertices and usual vertices remain the
same. Let n be the number of connected components: the vertices of the
three types distribute in all possible ways in the n components. This ex-
plains condition i). in the statement. The reasoning is completely analogue
when cutting over weakly monotone vertex or a usual vertex, which gives
conditions ii). and iii).

• The conditions (1)–(5) have exactly the same geometric meaning as in The-
orem 5.1, with the exception of condition (2) when cutting out a usual
vertex: in fact a usual vertex has valency equal to three, and therefore the
graph after the cut can have only either one or two connected components.
Therefore n is bounded by 2. This also explains condition (6).

• The cut vertex in the third recursion has genus zero, therefore the recursion
has trivial residue Gromov-Witten invariant.

• The extra minus signs appear only in the first recursion, as we cut along
a vertex of strict monotone-type, and therefore we need to multiply by the
minus signs in the weight of the cut vertex. The other recursions also carry
these minus signs, but they remain hidden in the definition of the weigths
of the strict monotone vertices throughout the whole recursive procedure.

This concludes the proof of the corollary. !

Acknowledgments

The authors are thankful to Hannah Markwig for many helpful correspondences
and comments on an earlier draft. Further, we are grateful for many helpful com-
ments by two anonymous referees.

References

[1] Dan Abramovich, Lucia Caporaso, and Sam Payne, The tropicalization of the moduli space
of curves (English, with English and French summaries), Ann. Sci. Éc. Norm. Supér. (4) 48
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