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S1 Appendix. Additional analysis and results.

Appendix
Common corruption categorization
Fourier analysis is performed for the perturbations induced by common corruptions in the CIFAR10-C dataset (at severity 5).
All 15 corruptions are divided loosely into three categories based on their dominant frequencies (Tab. A)

category corruptions
low snow, frost, fog, brightness, contrast

medium
motion_blur, zoom_blur, defocus_blur, glass_blur,

elastic_transform, jpeg_compression, pixelate
high gaussian_noise, shot_noise, impulse_noise

Table A. Categorization of common corruptions. 15 types of corruptions1 are divided into 3 categories based on the average
frequency estimated from the Fourier spectrum of the perturbations (Fig. A).

Figure A. Corruption spectrum for the CIFAR10-C dataset. Fourier power spectra are plotted for all different common
corruptions. Color maps are shared across panels.

Hybrid image experiment for monkey regularized model
Frequency bias is compared between a monkey-response-regularized VGG model and a baseline model through the experiment
using hybrid images created from Tiny-ImageNet dataset. Though a weaker effect compared with the mouse-regularization
result, we found the reversing frequency for ‘neural’ model is smaller than that of ‘base’ model, suggesting a low frequency
bias induced by neural regularization.

Details of robust models
Details of models trained for CIFAR10, including six baseline models, seven models trained for adversarial robustness, two
models trained for common corruption robustness and two models using preprocessing are shown in Tab. B. The minimal
perturbation size needed to change prediction are listed for each model, with mean and standard deviation computed from 1000
images.

Details of models trained for ImageNet, including one baseline model, two models trained for adversarial robustness and
six models trained for common corruption robustness are shown in Tab. C.

Analysis on neural similarity matrix
Previous work23 demonstrated that models regularized with neural similarity matrix are more robust against multiple types of
pixel noise as well as adversarial attacks. To understand why this type of neural regularization works, we analyzed the neural
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Figure B. Probing frequency sensitivity of the monkey regularized model using hybrid images. Results are presented similar
to Fig. 3b in main text.

Type Model name Architecture Test accuracy on CIFAR10 ε (L∞)

baseline

Base-WideRes2 WideResNet-28-10 94.78% 1.17 (0.02)
Base-Res3, 4 ResNet-56 94.37% 1.03 (0.02)
Base-VGG4, 5 VGG-19 93.91% 1.75 (0.02)
Base-MobNet4, 6 MobileNetV2-x1-4 94.22% 1.03 (0.02)
Base-ShufNet4, 7 ShuffleNetV2-x2-0 93.81% 1.52 (0.02)
Base-RepVGG4, 8 RepVGG-a2 94.98% 1.50 (0.02)

adversarial

Rebuff219 WideResNet-70-16 92.23% 16.88 (0.21)
Gowal2010 WideResNet-70-16 91.10% 17.86 (0.23)
Wu2011 WideResNet-28-10 88.25% 18.45 (0.26)
Zhang2012 WideResNet-28-10 89.36% 16.89 (0.23)
Carmon1913 WideResNet-28-10 89.69% 16.80 (0.23)
Sehwag2014 WideResNet-28-10 88.98% 16.70 (0.24)
Cui2015 WideResNet-34-20 88.70% 15.33 (0.22)

corruption Hendrycks2016 ResNeXt29-32x4d 95.83% 1.52 (0.02)
Kireev2117 PreActResNet-18 94.77% 3.53 (0.05)

preprocess Blur (σ = 1.5) ResNet-18 90.66% 2.30 (0.04)
PCA (K = 512) ResNet-18 89.85% 2.69 (0.04)

Table B. Models trained for CIFAR10. Six baseline models, seven models trained for adversarial robustness, two models
trained for common corruption robustness, and two models with simple preprocessing are compared in this study.

similarity matrix that characterizes the geometry of mouse V1 representation. We obtain neural responses of natural images
through a well trained predictive model24, and denote the population response to image i as ri. The dimension of vector ri is the
number of neurons. Neural similarity matrix Sneural is defined as the cosine similarity of mean-corrected responses r1, . . . ,rN
for N images,

Sneural
i j =

r̃i · r̃ j

∥r̃i∥∥r̃ j∥
, (1)

in which r̃i = ri − r̄ is the population response to image i subtracted by mean response.
A first thing to notice is that the neural similarity matrix is low rank. For example, the one shown in Fig. C is a 5000×5000

matrix from 5000 images, but a rank-204 approximation can explain more than 90% of its variance. To account for 99% of the
variance, a matrix of rank 1452 is sufficient. The result is not due to a small number of neurons. In fact, the neural response
vector ri used in this example is a union over 8 different scans, containing more than 40,000 recorded units. The low rank nature
of Sneural shows that the vision system is encoding a small number of features through a highly correlated neuron population.

The next question is, how do these neural features look? Performing eigenvalue decomposition on Sneural, we can calculate
its eigenvalues λ1,λ2, . . . ,λN (λ1 > λ2 > .. . > λN) and the corresponding eigenvectors v1,v2, . . . ,vN (∥vi∥= 1). The i-th neural
feature is defined as f i =

√
λivi. The rank-204 approximation in Fig. C is generated using the first 204 neural features, i.e.

Ŝ = ∑
204
i=1 f i fTi .

Each neural feature f i is a vector of the same length as the number of images, and can be treated as a scalar function of
images. The first order approximation of f i is a linear model with respect to the pixel values as input. The linear weight can be
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Type Model name Architecture Top-1 test accuracy on ImageNet ε (L∞)

baseline Baseline18 ResNet-50 76.13% 0.45 (0.01)

adversarial L∞ (ε = 4/255)18 ResNet-50 62.42% 10.82 (0.11)
L2 (ε = 3)18 ResNet-50 57.90% 10.52 (0.10)

corruption

ANT19 ResNet-50 76.07% 0.66 (0.01)
SIN20 ResNet-50 74.59% 0.52 (0.01)
AugMix16 ResNet-50 77.54% 0.58 (0.01)
DeepAugment21 ResNet-50 74.59% 0.72 (0.01)
DeepAug+AugMix21 ResNet-50 75.82% 0.90 (0.01)
Assemble22 Assemble-ResNet-50 80.81% 0.23 (0.00)

preprocess Blur (σ = 3) ResNet-50 71.87% 2.11 (0.03)

Table C. Models trained for ImageNet. One baseline model, two models trained for adversarial robustness, six models trained
for common corruption robustness and one model trained with blurring preprocessing are compared.

similar pair

dissimilar pair

Figure C. The neural similarity matrix and its low rank approximation. Neural responses of 5000 grayscale images are
provided by a well trained brain model24. The cosine similarities between all pairs of responses are then calculated after
subtracting the mean responses. An eigenvalue decomposition of the matrix shows that the first 204 principal components
account for more than 90% of the variance. Therefore, a low rank approximation can be constructed based on these
components.

easily calculated by solving the regression problem,

wi = argmin
wi

(∥∥ f i −wT
i X

∥∥2
+α∥wi∥2

)
. (2)

Each column of X is a flattened image, and the dimension of wi vector is the number of pixels. α∥wi∥2 is a regularization term.
The first 16 linear weights wi are visualized as as spatial maps in Fig. D.

We further analyzed two properties of the linear approximation of neural features. Treating wis as spatial maps, we can
calculate its dominant spatial frequency via Fourier analysis. The results show that the dominant Fourier component of wi
associated with strong neural features are relatively low frequency (Fig. E). Though wi show certain spatial structure (Fig. D),
neural features f i are nonlinear in general. We quantified the linearity of f i by how good the linear approximation is, and found
that correlation coefficient between f i and the best linear prediction is high only for the neural features with high eigenvalues
(Fig. E).

Variance of model instances with the same architecture
While we majorly investigated the frequency preference of different individual models, one might wonder how big is the
variance among models of the same architecture. We therefore computed the half power frequency f0.5 (Fig. 4 in main text) and
the reverse frequency frev (Fig. 5 in main text) for a set of models of the same architecture but trained with different random
seeds. For simplicity, we only trained 5 ‘blur’ models with ResNet18 backbone on CIFAR10, using the blurring parameter
σ = 1.5. Mean value and standard deviation over 5 random seeds of the half power frequency is f0.5 = 0.181±0.0047, and the
reverse frequency is frev = 0.241±0.0057 (Fig. F). In addition, both metrics correlate strongly with each other, suggesting
either one is suitable for characterizing model frequency preference.
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Figure D. Linear approximation of neural features. Neural features are the eigenvectors vi of the neural similarity matrix
properly scaled by corresponding eigenvalues λi. Each neural feature is approximated by a linear function on image pixel
values, and the linear weight wi is displayed as a spatial map.

Figure E. Overview of neural features. Properties of the first 204 neural features are visualized with colors indicating the
eigenvalue corresponding to each. Each neural feature is approximated by a linear model. The ordinate is the correlation
coefficient of linear approximation and the neural features on a hold-out set of images, characterizing how linear the feature is.
The abscissa is the dominant frequency of the linear weights when viewed as spatial maps (Fig. D). The results show that
neural features, with high eigenvalues, are more linear, and contains lower spatial frequencies.

Model prediction on hybrid images
We reported the probability difference plow − phigh in Fig. 3 in the main text, here we also show plow and phigh respectively for
the baseline model on grayscale CIFAR10. When the mixing frequency is in medium range, neither plow or phigh is big, and the
model classify the image as neither the low-frequency category nor high-frequency one with approximately 50% probability.
We also looked at the model confidence, i.e. the probability of reported category ppred, and found it is lowest at ambiguous
mixing frequency region.

Breakdown robustness to different common corruptions
For simplicity we use the model performance averaged over all common corruption types at all severity levels as the robustness
against common corruptions in the main text. However, we already observe that model robustness depends on the Fourier
spectrum of different corruptions and we should expect to see some different behavior since models’ spatial frequency preference
are different. Here we report the breakdown version of the relationship between robustness and frequency preference for
CIFAR10-C dataset, i.e. Fig. 5 for individual severity level and corruption type. All five severity levels (Fig. H) and five
randomly picked corruption types (Fig. I) are shown.

When comparing the results conditioned on different corruption types, we found though the exact pattern of robustness
against frequency preference are different, overall the consistency between public models and the ‘blur’ models holds for all
conditions, suggesting that a simple view of filtering out Fourier components explains the robustness in various models for
CIFAR10 dataset.
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Figure F. Variance of frequency preference index over different random seeds of the same model architecture. Five ResNet18
models (green dots) with blurring preprocessing are trained on CIFAR10, the half power frequency f0.5 and reverse frequency
frev are computed for each of them. All values are close to the one reported in Fig. 4c and Fig. 5b in the main text, showing the
variance caused by random seeds are smaller than that between different architecture.

Figure G. Baseline model (in Fig. 3) predictions on hybrid images. Both plow and phigh are reported for different mixing
frequencies, as well as the model confidence ppred.

Figure H. Performance on CIFAR10-C against frequency preferences of models at different severity levels. Classification
accuracy is marginalized over different corruption types conditioned on each severity level.

Figure I. Performance on CIFAR10-C against frequency preferences of models against different corruption type.
Classification accuracy is marginalized over all severity levels conditioned on each corruption type.
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