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ABSTRACT

The “Cluster HEritage project with XMM-Newton: Mass Assembly and Thermodynamics at the End point of structure formation” (CHEX-MATE)
is a multi-year heritage program to obtain homogeneous XMM-Newton observations of a representative sample of 118 galaxy clusters. The ob-
servations are tuned to reconstruct the distribution of the main thermodynamic quantities of the intra-cluster medium up to R500 and to obtain
individual mass measurements, via the hydrostatic-equilibrium equation, with a precision of 15−20%. Temperature profiles are a necessary ingre-
dient for the scientific goals of the project and it is thus crucial to derive the best possible temperature measurements from our data. This is why we
have built a new pipeline for spectral extraction and analysis of XMM-Newton data, based on a new physically motivated background model and
on a Bayesian approach with Markov chain Monte Carlo methods, which we present in this paper for the first time. We applied this new method
to a subset of 30 galaxy clusters representative of the CHEX-MATE sample and show that we can obtain reliable temperature measurements
up to regions where the source intensity is as low as 20% of the background, keeping systematic errors below 10%. We compare the median
profile of our sample and the best-fit slope at large radii with literature results and we find a good agreement with other measurements based on
XMM-Newton data. Conversely, when we exclude the most contaminated regions, where the source intensity is below 20% of the background, we
find significantly flatter profiles, in agreement with predictions from numerical simulations and independent measurements with a combination of
Sunyaev–Zeldovich and X-ray imaging data.
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1. Introduction

Galaxy clusters represent the end point of structure formation
in the Universe: they are the most massive virialized struc-
tures to have formed thus far and are located at the nodes of
the cosmic web, continuously accreting matter from the fila-
ments. The intra-cluster medium (ICM) constitutes their main
baryonic component and is heated to X-ray-emitting tempera-
tures (107−108 K) during the formation and accretion processes
driven by dark matter. As such, the ICM carries important infor-
mation on the physical processes of structure formation and
on the global cluster properties: ICM thermodynamic proper-
ties correlate well with the total gravitational mass and prop-
erly scaled radial profiles of thermodynamic quantities are nearly
universal, reflecting the properties of the underlying dark mat-
ter structure (Kaiser 1986). Deviations from these relations do
exist and are a clear indication of important effects such as
cooling, nongravitational feedback from active galactive nuclei
(AGN), or supernovae, bulk motions, and turbulence induced by
accretion processes (see Lovisari & Maughan 2022 for a recent
review, Gaspari et al. 2014; Bulbul et al. 2019; Sereno et al.
2020; Poon et al. 2023).

? Full Table C.1 is available at the CDS via anonymous ftp
to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/686/A68

The ICM temperature is one of the key observable quanti-
ties that can be derived from X-ray observations of galaxy clus-
ters, along with density and metal abundance. It is derived from
the analysis of X-ray spectra, mainly through the position of the
Bremsstrahlung exponential cutoff. In the last 30 years, the pre-
vious and present generation of X-ray satellites have allowed for
spatially resolved spectral measurements, mapping the distribu-
tion of ICM temperatures from the cores to the external regions.
Temperature profiles in radial annuli are a necessary ingredient
to derive the radial distributions of thermodynamic quantities,
such as pressure and entropy, and to reconstruct the total mass
through the hydrostatic equilibrium equation. Early temperature
profiles with ASCA and BeppoSAX (e.g., Fabian et al. 1994;
De Grandi & Molendi 2002) unambiguously demonstrated that
some clusters do show a temperature decline in their inner
regions, consistent with a short cooling time of the high-density
central regions and the prediction of the cooling flow model
(Fabian et al. 1984; Fabian 1994). When high resolution spec-
tra with XMM-Newton RGS showed that the gas does not cool
below a critical value (e.g., Peterson et al. 2001, 2003), causing
the fall of the cooling flow model, these systems were dubbed
cool cores (CCs, Molendi & Pizzolato 2001) and were shown
to be typically associated with clusters in a relaxed dynamical
state. Conversely, in the external regions, ASCA and BeppoSAX
observations, lead to controversial results on the presence of a
temperature gradient (e.g., Markevitch et al. 1998; Irwin et al.
1999; White 2000; De Grandi & Molendi 2002). This is due to
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technical challenges in measuring temperature profiles in the
external regions of galaxy clusters, where the intensity of the
source is low with respect to contamination from other brighter
cluster regions because of the large point spread function (PSF)
and several background components (see Ettori & Molendi 2011
for a review). The former issue has been resolved with the advent
of the current generation of X-ray telescopes XMM-Newton and
Chandra, which unambiguously showed a declining trend in the
temperature profiles with radius in the external regions (e.g.,
Vikhlinin et al. 2006; Pratt et al. 2007; Snowden et al. 2008;
Leccardi & Molendi 2008). However, the low intensity of the
cluster emission with respect to the instrumental and celestial
background and foreground is still a major challenge, hamper-
ing reliable temperature measurements up to the virial radius of
galaxy clusters and thus leaving a large fraction of the cluster
volume poorly explored. In the last decade, the Suzaku satel-
lite, benefiting from a low-earth orbit and thus a lower particle
background with respect to XMM-Newton and Chandra, allowed
us to extend temperature measurements up to the virial radius
for a limited sample of a dozen clusters. The steep decrease in
the temperature profile and flattening in the entropy at the virial
radius observed in some clusters is still under debate (see the
review by Walker et al. 2019 and references therein).

An independent method that avoids the issues of X-ray
spectroscopy for deriving temperature profiles is the com-
bination of the spatially resolved Sunyaev–Zeldovich (SZ,
Sunyaev & Zeldovich 1972) signal, which is proportional to
the integral of the ICM pressure along the line of sight, with
the gas density, which can be derived from X-ray images and
is less dependent on the background treatment than the tem-
perature. This approach has been attempted for a few clus-
ters (e.g., Basu et al. 2010; Eckert et al. 2013; Tchernin et al.
2016; Pratt et al. 2016; Adam et al. 2017; Sereno et al. 2018;
Ghirardini et al. 2021). In the X-COP project, Ghirardini et al.
(2019) compared the temperature profiles obtained with the
combination of Planck and XMM-Newton data with those
obtained with the purely spectroscopic XMM analysis and found
them to be consistent in the radial range where the two meth-
ods overlap, that is within R500. While this approach proved
very successful for measuring temperatures in the outskirts of
galaxy clusters, thus far it has been limited to clusters with a high
enough SZ signal and extension in the sky matching the capa-
bilities of the SZ instruments (nearby extended objects for low
resolution instruments such as Planck or compact systems for
high resolution instruments such as NIKA2 and ALMA). More-
over, the spatial resolution of spectroscopic X-ray temperature
profiles is still superior to that obtained with the joint SZ-X-ray
analysis.

The use of radial profiles for studying the temperature struc-
ture of the ICM is of course an approximation: several authors
have shown two-dimensional maps of the ICM temperatures,
with significant non-radial variations (e.g., Bourdin & Mazzotta
2008; Frank et al. 2013; Laganá et al. 2019). Nonetheless, the
spherical symmetry approximation is necessary for reconstruct-
ing the total mass with the hydrostatic equilibrium equation
and in conditions of limited statistics, such as in faint and dis-
tant clusters or in the external regions. Recently, Lovisari et al.
(2024) quantified the impact of temperature inhomogeneities
on the reconstructed radial profiles to be below 5% on aver-
age, reaching larger values (10−20%) in external and peculiar
regions.

The Cluster HEritage project with XMM-Newton: Mass
Assembly and Thermodynamics at the End point of structure
formation (CHEX-MATE, CHEX-MATE Collaboration 2021) is

a multi-year heritage program with XMM-Newton awarded in
2017. It consists of a homogeneous set of observations of a rep-
resentative sample of 118 galaxy clusters, extracted from the
Planck SZ catalog (PSZ2, Planck Collaboration XXVII 2016).
It aims to derive the total masses, through the hydrostatic equi-
librium equation, and characterize the thermodynamic proper-
ties of the full sample (see CHEX-MATE Collaboration 2021,
for more details). The observations are tailored to reach a pre-
cision of 15−20% on the hydrostatic masses within R500. In
this context, the temperature profile is a fundamental ingredient
of the CHEX-MATE analysis and the desired precision on the
mass translates to a 15% precision on the temperature measure-
ment at R500, that is, the radius within which the mean density is
500 times the critical density of the Universe at the cluster’s red-
shift. Any issue affecting the temperature profiles will inevitably
be propagated into the final CHEX-MATE results, and it is thus
crucial for our project to obtain the most accurate temperature
profiles from our data and assess the impact of our choices and
of possible systematics on the temperature measurements. This
is why we developed a new pipeline for spectral extraction and
analysis (Sect. 3), with a special focus on the background model
(Sect. 4), which we present in this paper for the first time. We
applied this method to a sample of 30 objects (Sect. 2), which
we used to test it and evaluate the impact of our analysis on the
temperature measurements (Sect. 5). We present the first results
on the temperature profiles for this sample in Sect. 6 and we dis-
cuss our findings in Sect. 7.

In our paper, we assume a flat ΛCDM cosmology with H0 =
70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7. Errors are given at a
68% confidence level, unless otherwise stated. Whenever we use
the notation M500 in this paper, we are referring to the masses
derived from the Planck SZ signal with the method described in
Planck Collaboration XXVII (2016), using the MMF3 algorithm
(Melin et al. 2006), as discussed in CHEX-MATE Collaboration
(2021).

2. The sample

We built our sample to fulfill two different requirements: (i)
being a “technical” sample, allowing us to test our pipeline and
new methods with a limited number of objects under differ-
ent analysis conditions (source angular extension, background
levels, etc.); (ii) being representative of the full CHEX-MATE
sample, in terms of its selection quantities (mass, redshift, and
Planck S/N). We dubbed it “Data Release 1” (DR1 hereafter)
because it is the first sample for which results have been inter-
nally released to the CHEX-MATE collaboration. To build the
sample, we selected clusters in the M−z plane (Fig. 1), looking
also at the distribution of other physical parameters, such as the
extension in the sky as measured by R500 (ranging from 2.9 to
13.5 arcmin) and Galactic absorption (NH spanning one order of
magnitude from 1.03 × 1020 cm−2 to 1.02 × 1021 cm−2) with dif-
ferent levels of molecular contribution (Bourdin et al. 2023). We
also looked at the distribution of the quality assessment indica-
tors that we computed for each observation (see Sect. 3.1), mak-
ing sure that the selected observations encompass different levels
of cosmic-ray induced particle background (Sect. 4.1), follow-
ing the solar cycle (Marelli et al. 2021; Gastaldello et al. 2022),
and of the residual focused component (Sect. 4.2, Salvetti et al.
2017). We also checked that the clean exposure time of the
selected observations allows us to meet the feasibility require-
ments of the CHEX-MATE project.

We confirm our sample definition by checking that the
DR1 sample is representative of the original CHEX-MATE
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Table 1. Clusters of the DR1 sample.

PSZ2 name Redshift M500 R500 Tier XMM obsid
(1014 M�) (arcmin) center/offset

PSZ2 G008.31–64.74 0.312 7.42 4.51 2 0827010901
PSZ2 G041.45+29.10 0.178 5.41 6.48 1 0601080101
PSZ2 G042.81+56.61 0.072 4.22 13.50 1 0202080201/0827361101
PSZ2 G046.88+56.48 0.115 5.10 9.40 1 0827010601
PSZ2 G050.40+31.17 0.164 4.22 6.40 1 0827040101
PSZ2 G056.77+36.32 0.095 4.34 10.53 1 0740900101
PSZ2 G056.93–55.08 0.447 9.49 3.70 2 0503490201
PSZ2 G057.78+52.32 0.065 2.32 12.15 1 0827040301/0827041801
PSZ2 G057.92+27.64 0.076 2.66 11.08 1 0827030301
PSZ2 G066.41+27.03 0.575 7.69 2.88 2 0827320601
PSZ2 G072.62+41.46 0.228 11.43 6.73 2 0605000501
PSZ2 G077.90–26.63 0.147 4.99 7.46 1 0827020101
PSZ2 G083.86+85.09 0.183 4.74 6.04 1 0827030701
PSZ2 G113.29–29.69 0.107 3.57 8.86 1 0827021201
PSZ2 G113.91–37.01 0.371 7.58 3.96 2 0827021001
PSZ2 G114.79–33.71 0.094 3.79 10.20 1 0827320401
PSZ2 G149.39–36.84 0.170 5.35 6.71 1 0827030601
PSZ2 G195.75–24.32 0.203 7.80 6.53 2 0201510101
PSZ2 G207.88+81.31 0.353 7.44 4.09 2 0827020301
PSZ2 G224.00+69.33 0.190 5.11 5.99 1 0827020901
PSZ2 G238.69+63.26 0.169 4.17 6.21 1 0500760101
PSZ2 G243.15–73.84 0.410 8.09 3.75 2 0827011301
PSZ2 G243.64+67.74 0.083 3.62 11.23 1 0827010801
PSZ2 G277.76–51.74 0.438 8.65 3.65 2 0674380301
PSZ2 G287.46+81.12 0.073 2.56 11.33 1 0149900301
PSZ2 G313.33+61.13 0.183 8.77 7.42 2 0093030101
PSZ2 G313.88–17.11 0.153 7.86 8.37 2 0692932001
PSZ2 G324.04+48.79 0.452 10.58 3.81 2 0112960101
PSZ2 G340.94+35.07 0.236 7.80 5.76 2 0827311201
PSZ2 G349.46–59.95 0.347 11.36 4.77 2 0504630101

Notes. We quote: the PSZ2 name, the redshift, the nominal integrated mass from Planck MMF3 data, the cluster size R500 in arcminutes, as derived
from the mass with Eq. (9) in Planck Collaboration XX (2014), the Tier to which each cluster belongs (see CHEX-MATE Collaboration 2021 for
details) and the XMM-Newton observations used in the analysis.

selection (CHEX-MATE Collaboration 2021), by performing
Kolmogorov–Smirnov (KS) tests on the distribution of mass,
redshift, or Planck S/N. Since we excluded from our selection
double clusters that would require an ad hoc strategy in the def-
inition of regions for the radial profile (Sect. 3.2), we further
checked that we did not preferentially select relaxed clusters, by
performing a KS test on the distribution of the M morpholog-
ical parameter, which combines the information from the light
concentration and centroid shift parameters and from the sec-
ond and third order power ratios (see Campitiello et al. 2022 for
details). The test returns a very high probability (>99%) that
DR1 is representative of the morphological distribution of the
original CHEX-MATE sample.

The final DR1 sample is composed of 30 clusters, listed
in Table 1, along with their main physical properties and the
XMM-Newton observations that we used in our analysis. We
show their distribution in the mass-redshift plane along with the
parent CHEX-MATE sample in Fig. 1. We recall that masses
here are estimated from the Planck SZ data as described in
Planck Collaboration XXVII (2016) using the YSZ−M500 scaling
relation calibrated with XMM-Newton data and are not corrected
for any hydrostatic bias.

We show the images of all clusters in our sample in
Appendix C.

3. The CHEX-MATE pipeline for spectral results

In this section and in Sect. 4, we present in details the pipeline
that we developed to extract and fit spectra in radial profiles
for the CHEX-MATE project. We tested it with other pipelines
available in the collaboration and used for other CHEX-MATE
projects (Bourdin et al. 2023; Lovisari et al. 2024; De Luca
et al., in prep.). In the internal regions of galaxy clusters (R <
0.5 R500) the temperatures estimated with different analysis are
consistent within 1−2%. Differences raise to about 10% at R500,
where the details of the background modeling have a large
impact on the temperature measurements.

3.1. Data reduction

We performed data reduction and carried out our analysis mak-
ing use of the XMM-Newton Science Analysis System (SAS),
version 16.1 and the Extended Source Analysis Software (ESAS,
Snowden et al. 2008; Kuntz & Snowden 2008) embedded within
SAS. We keep the calibration database (CalDB) updated to
ensure that we apply the latest calibration files to our data, when
we reprocess them starting from the raw ODF files retrieved
from the archive. We tested more recent SAS versions (19.1 and
20.0), but the tasks are either much slower than with SAS 16.1,
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Fig. 1. Distribution of the CHEX-MATE (black circles) and DR1
(orange open squares) objects in the mass-redshift plane, showing that
our subsample is representative of the original selection.

thus requiring a too long computing time for a large data-set as
CHEX-MATE, either show unresolved bugs. We are supported
in our choice by the EPIC calibration status document1, showing
that no major change has been applied in the meantime, with the
only exception of the optional cross-calibration with NUSTAR2

that we are not using in our pipeline.
We refer to Bartalucci et al. (2023) for details on the first

steps of the data reduction, including calibration, standard pat-
tern cleaning, removal of noisy CCDs in the MOS cameras
and light-curve filtering. We emphasize that for our analysis
we used the same selection of contaminating sources as in
Bartalucci et al. (2023), and thus we mask both point sources
and extended substructures. The latter include known merging
substructures, such as in PSZ 2G046.88+56.48, a.k.a. A2069,
where the northern subcluster A2069B (e.g., Owers et al. 2009)
has been masked in our analysis, and PSZ 2G195.75−24.32,
a.k.a. A520, where we masked the merging subcluster, dubbed
as “the foot” in Wang et al. (2016) and leading to the formation
of a shock front (Markevitch et al. 2005), and other extended
features whose origin is still unclear (in PSZ 2G056.77+36.32,
PSZ 2G057.78+52.31, PSZ 2G057.92+27.64). Masked sources
and regions for all clusters are shown in Appendix C.

While reducing each observation, we also compute two indi-
cators that allow us to estimate the level of instrumental back-
ground affecting them. The first one is the count-rate in the
region of the MOS2 detector not exposed to the sky (i.e., outside
the Field Of View, outFOV), which has been shown to be a good
proxy of the background due to the interaction of high-energy
(>10 MeV) cosmic ray particles, modulated by the solar cycle
(Sect. 4.1, see Gastaldello et al. 2022). We calculate this parame-
ter following the prescriptions (detector, energy band and region
definition) provided in Marelli et al. (2017). The second indi-
cator (inFOV–outFOV) is the difference between the count-rate
in the region exposed to X-ray photons of the MOS2 detector

1 https://xmmweb.esac.esa.int/docs/documents/
CAL-TN-0018.pdf
2 https://xmmweb.esac.esa.int/docs/documents/
CAL-SRN-0388-1-4.pdf

(inFOV) and the outFOV value, both computed in a hard band3

to minimize the celestial contribution. This allows us to esti-
mate the excess background in the FOV with respect to the back-
ground level predicted by the outFOV value (e.g., Salvetti et al.
2017). We refer to this component as the residual focused com-
ponent, as it is at least partly due to contamination from quies-
cent soft protons not filtered in the light curve cleaning but may
also have a different origin (see Salvetti et al. 2017). To compute
the inFOV–outFOV indicator we could not use the count rate in
the full MOS2 FOV as in Marelli et al. (2017) and Salvetti et al.
(2017) because of the presence of the cluster emission in our
observation. We thus used an external annulus between 12 and
14 arcmin from the aimpoint which, in combination with the
hard energy band, minimizes the contribution of the cluster emis-
sion. These indicators have been very useful to assess the quality
of our observations. We subsequently discuss in Sect. 4 how we
used them to build our background model.

3.2. Spectral extraction in annuli

We define regions for the spectral extraction as concentric annuli
centered on the peak of the X-ray image. We automatically
define the position of the peak as the brightest pixel in the
soft band image (0.7−1.2 keV), after correcting for the exposure
map, masking the point sources, and smoothing with a Gaus-
sian function with σ = 5 pixels (see Bartalucci et al. 2023 for
more details). We compute the width of each annulus with an
adaptive binning method to reach a constant signal to noise ratio
(S/N = 50 in the 0.3−2 keV energy range) in each spectral bin
(e.g., Pratt et al. 2010; Chen et al. 2023).

For each region, we extract spectra, redistribution matrix
files (RMF), and ancillary response files (ARF) with the ESAS
tools mos-spectra and pn-spectra. Following the ESAS pro-
cedure (Kuntz & Snowden 2008; Snowden et al. 2008), these
tools also compute the count rate in the unexposed corners
(outFOV) and select the most similar (in terms of magnitude
and hardness ratio, see Kuntz & Snowden 2008 for details)
filter-wheel-closed observations in the XMM-Newton calibra-
tion database. A spectrum for the cosmic-ray induced particle
background (CRPB) is then produced for each region with the
mos-back and pn-back tools. We use these ESAS products to
build our background model as shown in Sect. 4.1.

The regions for spectral extraction can be very small (width
as small as 3.3′′) in the central regions of galaxy clusters with
a peaked surface brightness profile. In these conditions, we
noticed an error in the arfgen and rmfgen tools called by
mos/pn-spectra producing null ARFs and RMFs. To fix this
issue, we extract RMFs, ARFs in a circular region with radius
30′′ around the peak and we assign them to all regions in the
inner 30′′. Since the statistical quality of the background files in
small regions is very poor, we also use the appropriately rescaled
CRPB spectra in the circular region with R = 30′′ for all cen-
tral regions. Both the effective area and the particle background
intensity do not show significant variations on scales smaller
than 1′.

Finally we extracted a spectrum from an external “back-
ground” region, ideally free of cluster emission, which is needed
to calibrate our model of the sky background components
(Sect. 4.3). The definition of this region is not trivial in a sample
where the extension of the cluster emission in the FOV is very

3 As described in Marelli et al. (2017), we use events with E > 7 keV,
excluding the energy ranges [9.4−10] keV and [11−12] keV, affected by
instrumental lines.

A68, page 4 of 37

https://xmmweb.esac.esa.int/docs/documents/CAL-TN-0018.pdf
https://xmmweb.esac.esa.int/docs/documents/CAL-TN-0018.pdf
https://xmmweb.esac.esa.int/docs/documents/CAL-SRN-0388-1-4.pdf
https://xmmweb.esac.esa.int/docs/documents/CAL-SRN-0388-1-4.pdf


Rossetti, M., et al.: A&A, 686, A68 (2024)

10−4

10−3

0.01

0.1

1

n
o
rm

al
iz

ed
 c

o
u
n
ts

 s
−

1
 k

eV
−

1

0.1 1 10

0.8

1

1.2

ra
ti

o

Energy (keV)

1
0

−
5

1
0

−
4

1
0

−
3

0
.0

1
0
.1

n
o
rm

al
iz

ed
 c

o
u
n
ts

 s
−

1
 k

eV
−

1

1 100.5 2 5

1
1
.5

2

ra
ti

o

Energy (keV)

10−5

10−4

10−3

0.01

0.1

n
o
rm

al
iz

ed
 c

o
u
n
ts

 s
−

1
 k

eV
−

1

1 100.5 2 5

1

1.5

2

ra
ti

o

Energy (keV)

Fig. 2. Examples of our spectral fits for the cluster PSZ2 G349.46−59.95 in different regions: the external region where we fit the sky background
(left), a central region dominated by the cluster emission (middle), and an external background-dominated region with SOU/BKG = 0.4 (right).
In all panels, the black, red, and green crosses mark the MOS1, MOS2, and pn spectra, while the lines represent the corresponding models. With
the same color scheme, the continuous lines mark the total resulting model for each detector, the dotted lines represent the model for particle
background, while the dashed lines the sky background. The dotted cyan line (when visible) mark the contribution of the pn OoT events. In the
middle and right panel, we highlight in blue the cluster component. In the left panel, magenta crosses represent the data from the RASS spectrum,
which is jointly fitted to the EPIC data in our baseline pipeline. In all plots, the bottom panels mark the ratio of the data with respect to the total
model.

different (R500 ranging from 2.9′ to 13.5′). For all the clusters
with R500 ≤ 9′, we define an annulus between R200 = R500/0.7
and the edge of the FOV. This is also possible for the two
objects (PSZ2 G057.78+53.31 and PSZ2 G042.81+56.61) with
R500 > 12′ for which we requested an offset observation for
this purpose (CHEX-MATE Collaboration 2021). Conversely,
for the six clusters with 9′ < R500 < 12′ we define a close
background (closebkg) region as an annulus between 1.1 R500
and the FOV edge. We separate the residual cluster emission
from the celestial background components, making use of ancil-
lary data from the ROSAT All Sky Survey (RASS) diffuse back-
ground map (Snowden et al. 1995, 1997), as described in detail
in Sect. 4.3. We subsequently discuss the impact of this strategy
in Sect. 5.4.1.

3.3. Spectral fitting

For each region, we joint-fit the spectra of the three detectors
and eventually of multiple observations covering the same region
within XSPEC (version 12.11). We show some examples of our
fits in Fig. 2. We link together the parameters of the models
which are applied to the three instruments and to all observa-
tions, taking into account the different areas by using a constant
factor. Indeed, all the normalization terms in our fits are per unit
area (in arcmin2). Unless otherwise stated, we perform our fits
in the band 0.5−12 keV for the MOS detectors and 0.5−14 keV
for the pn. From these bands, we further exclude the energy
ranges corresponding to the more prominent fluorescent lines,
namely Al and Si in the range 1.2−1.9 keV for the MOS detec-
tors and Al in 1.2−1.7 keV and Cu in 7−9.2 keV for the pn. As
in Leccardi & Molendi (2008) and Ghirardini et al. (2019), we
do not subtract any background component in our fit but we
model them with a physical model described in Sect. 4 that we
apply to the spectra in each region. We estimate the parameters
of the celestial components by fitting the spectra in the external
background region (see Sect. 3.2), with the model described in
Sect. 4.3. Also the pn Out-of-Time (OoT) events are treated as a
further background component: we extract a spectrum from the
OoT event files in each region as described in Sect. 3.2 and we fit
it with a phabs(bapec+powerlaw) model, to mimic the clus-
ter contribution (but with a degraded energy resolution) and the
CXB, and another power law for the particle background. We

then properly rescale the best fit model of the OoT contribution,
taking into account the operating mode (Full Frame or Extended
Full Frame).

The baseline method for our fits makes use of Bayesian
statistics and of the Markov chain Monte Carlo (MCMC) algo-
rithm (Goodman & Weare 2010) within XSPEC. To assess and
test it, we also perform more standard fits with a standard Max-
imum Likelihood approach (ML). In both cases, we use the
Cash statistics (Cash 1979) within XSPEC, as it is more appro-
priate than χ2 for Poissonian data, especially in conditions of
high background and poor statistics (Leccardi & Molendi 2007;
Humphrey et al. 2009; Kaastra 2017). In the ML approach, we
build our “best” model for the background components (Sect. 4)
and we freeze it, leaving as the only free parameters in our fits
those related to the cluster emission (temperature, metal abun-
dance and normalization). In this framework, the best fit parame-
ters are the values minimizing the Cash statistics, and the uncer-
tainties are computed imposing ∆Cstat. = 1. Conversely, in the
Bayesian MCMC we estimate priors for the parameters associ-
ated to the background components (Sect. 4) that are then joint-
fitted with the parameters associated to the cluster emission. This
method allows us to propagate the uncertainties on the back-
ground parameters to the scientific results. In this approach, we
compute the best fit values as the mean of the marginal poste-
rior distribution of each parameter and the 1σ errors by sorting
the chain values and then taking the upper and lower limit of the
central 68% of the values. We run the MCMC fit within XSPEC,
with the chain command, using the Goodman–Weare algorithm
(Goodman & Weare 2010) with 26 walkers (twice the number
of free parameters). We tried different lengths both for the burn-
in and for the fit phase on a few typical cases and we noticed
to have a good convergence and stable results discarding the
first 50 000 steps (burn-in phase) and running the chain for other
50 000 iterations.

Concerning the source component, we model the clus-
ter emission with apec (Astrophysical Plasma Emission Code
Smith et al. 2001) and the Galactic absorption with phabs,
assuming aspl abundance table (Asplund et al. 2009) and vern
photo-electric cross sections (Verner et al. 1996). We discuss in
Appendix B the impact of the abundance table on the parameters
of cluster emission. We fix the redshift at the values provided
in CHEX-MATE Collaboration (2021) and the column density

A68, page 5 of 37



Rossetti, M., et al.: A&A, 686, A68 (2024)

to the value NHtot which includes the contribution of both the
atomic hydrogen (NHI) and the molecular one (see Bourdin et al.
2023 for more details). We explain how we tested the impact of
using the total NH with respect to NHI in Sect. 5.2.

4. A physical model for the background
components

The typical accuracy of temperature profiles in cluster outskirts
is largely determined by a telescope’s background level and
our ability at predicting the normalization and spectral shape of
background components. Here we introduce a physically moti-
vated model for the XMM-Newton background which allows
us to accurately predict its properties. The XMM-Newton back-
ground is made of several components of different physical ori-
gin, in the form of the cosmic-ray induced particle background
(CRPB), the residual focused component (RFC), and photons
(cosmic X-ray background and foreground emission). We mod-
eled individually these components and calibrated them on a
large set of over 500 blank-sky observations from the XMM
XXL survey (Pierre et al. 2016), totaling more than 6 Ms of data.
The adopted procedure, its calibration and an estimation of the
corresponding background subtraction accuracy are described in
the following.

4.1. Cosmic-ray particle-induced background

The primary background component in XMM-Newton data orig-
inates from the interaction between Galactic cosmic rays and
the structure of the spacecraft, generating secondary electrons.
The secondary electrons are recorded by the CCDs and can-
not be individually distinguished from photon-induced events,
which produces a background signal that will be referred to
as the cosmic-ray particle induced background. The normaliza-
tion of this component is known to be modulated by the Solar
cycle (Gastaldello et al. 2022) and its spectral shape resem-
bles a hard power law with a number of fluorescence lines
(Kuntz & Snowden 2008). In the MOS detectors, the CRPB
intensity can be monitored on-the-fly using the unexposed cor-
ners of the detectors, which are shielded from the telescope’s
FOV and thus record only CRPB-induced events. On the other
hand, a large collection of data with the filter wheel set in closed
position (hereafter filter-wheel-closed data, FWC) were accu-
mulated by XMM-Newton throughout the mission. Again, FWC
observations only record CRPB-induced events, allowing us to
determine the spectral shape and the variation of the CRPB
across the detector with high accuracy. For each observation,
we determine the current CRPB level using the MOS corners
and renormalize the FWC data such that they match the level
observed in the corner data using the ESAS tasks mos-spectra
and mos-back. We then use the rescaled FWC data to extract
the CRPB spectrum from the region of interest, and we fit the
resulting spectrum with a phenomenological model made of two
power laws and a combination of Gaussian fluorescence lines to
create an analytical model for the CRPB.

In the case of the pn detector, the situation is rendered more
complicated by the fact that the device does not include an area
that is fully shielded from the telescope’s FOV (Marelli et al.
2021). Therefore, it is not possible to monitor the CRPB rate
in the same way as for the MOS, especially in time frames that
are significantly affected by soft proton (SP) flares. Following
Marelli et al. (2021), we define an outer region (R > 905′′ from
the aimpoint) which is reasonably shielded from the telescope.
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Fig. 3. Relation between the pn and MOS2 high-energy (10−14 keV)
corner count rates in a large number of blank-sky observations with a
low level of residual focused contamination. The color code indicates
the level of contamination as traced by the inFOV–outFOV indicator
and the dotted line is the best-fit relation (Eq. (1)).

We then take advantage of the simultaneous MOS data to pre-
dict the level of CRPB in the pn. To this end, we make use of
the inFOV and outFOV count rates, as introduced in Sect. 3.1.
We recall that inFOV–outFOV can be used as an indicator of
the remaining SP contamination (Salvetti et al. 2017). We then
select a subset of our blank-sky observations with low contami-
nation (inFOV−outFOV < 0.04 cts s−1), for which we expect the
pn corner data to be unaffected by soft protons and representative
of the CRPB only. We then correlated the [10−14] keV pn count
rate in the corners with the MOS2 corner count rate and found
an excellent correlation between the two quantities, as already
reported by Marelli et al. (2021).

In Fig. 3 we show the relation between the pn and MOS2
corner count rates for observations with inFOV−outFOV <
0.04 cts s−1. The tight correlation demonstrates that for uncon-
taminated observations the pn corner count rates provide an
accurate estimate of the CRPB level. However, the color code
implemented in Fig. 3 shows that the scatter of the points around
the mean relation correlates with the level of contamination, with
the observations falling above the relation exhibiting systemati-
cally higher values of inFOV–outFOV than the relations falling
below it. To alleviate this issue, we fit a simple model to the data
in which the pn high-energy count rate is described as

outFOVPN = ACRPB outFOVMOS2 + ASP(inFOV − outFOV). (1)

In other words the pn outFOV rate is the sum of a CRPB compo-
nent that is related to the MOS2 corner count rate with a propor-
tionality constant ACRPB and of a SP contamination term that is
proportional to inFOV–outFOV with a proportionality constant
ASP. We then fitted the relation shown in Fig. 3 with this model
and determined the best-fitting values of ACRPB and ASP. We are
then able to predict the level of the CRPB-induced pn rate per
unit area as

CRPBPN = ACRPB outFOVMOS2. (2)

For each observation and each spectrum, we extract the local
CRPB spectrum from the FWC data using pn-spectra and
renormalize it such that the high-energy normalization matches
the prediction of Eq. (2).
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While this method has proven to be very effective in repro-
ducing the shape and normalization of the continuum emission,
it does not reproduce well the properties of the emission lines,
whose central energy and width are sensitive to gain variations
and charge-transfer-inefficiency (see Kuntz & Snowden 2008;
Sanders et al. 2020 for more details). This is why we decided to
exclude the energy ranges of the most prominent spectral lines
in our fit, as described in Sect. 3.3.

4.2. Residual focused component

The XMM-Newton orbit is known to host a large number of
clouds of low-energy protons (∼100 MeV) that are trapped
within the Earth’s magnetosphere. When the trajectory of the
spacecraft crosses such a cloud, soft protons (SP) can be fun-
neled through the telescope and focused in a similar way as
actual photons, albeit with a slightly different vignetting curve
(Kuntz & Snowden 2008). Soft protons can generate very bright
flares of the background intensity, with the background count
rates increasing by more than two orders of magnitude. While
the light curve filtering process introduced in Sect. 3.1 allows us
to exclude time periods that are strongly affected by soft proton
flares, in some cases there remains a low level of SP contamina-
tion even after the most affected time intervals have been clipped,
which constitutes a significant part of the residual focused com-
ponent. We attempted to create a predictive model of the residual
SP contamination from the set of ∼500 blank-sky pointings dis-
cussed above, as described in Appendix A. The SP component
is modeled as a power law I(E) = NQSPE−Γ with a fixed slope
(Γ = 0.6, Appendix A.1), while its normalization NQSP is pre-
dicted from the inFOV–outFOV indicator, using the calibration
expressions described in Appendix A.2, one for each instrument.
We take into account the variation of the SP component across
the field-of-view with its vignetting function, as provided by the
ESAS task protonscale. In this way, we can predict the value
of NQSP for each region, detector, and observation.

4.3. Sky background and foreground components

The sky contribution to our spectra is mainly due to three compo-
nents (e.g., Kuntz & Snowden 2000): the residual Cosmic X-ray
Background (CXB), and the foreground emission of the Galac-
tic Halo (GH), and the emission of the Local Hot Bubble (LHB).
For the LHB, we use an unabsorbed apec thermal model with
temperature fixed to 0.11 keV, solar metal abundance, and z = 0,
while for the GH we used an absorbed apec with tempera-
ture allowed to vary in the range 0.1−0.6 keV (flat prior in the
MCMC fit) as in McCammon et al. (2002) and solar metal abun-
dance4. In both cases, the normalizations are free parameters
of the fit. We model the CXB as an absorbed power-law, with
a fixed slope of 1.46 (Moretti et al. 2009) and free normaliza-
tion. For the absorption, we always use the phabs model and
the same NH value used to fit the cluster emission (Sect. 3.3).
We derive the free parameters of this model by fitting the spec-
tra extracted in an external annulus, ideally free of cluster emis-

4 Recently, Ponti et al. (2023) reported a much lower value for the
abundance of the hot circum-galactic medium with eROSITA data. The
value of the metal abundance is degenerate with the other free param-
eters, especially the normalization of the GH and LHB. We performed
simulations of a typical sky spectrum with Z = 0.06 Z� and found that
we can always retrieve a good fit with our procedure, even assuming
Z = Z�. This suggests that we can still use our baseline model as a good
phenomenological representation of the sky background components.

sion (Sect. 3.2). While running fits with the Bayesian MCMC
approach, we also used this approach to estimate the sky back-
ground: we derived posteriors for the four free parameters that
we modeled with Gaussian distributions to be given as priors in
the subsequent fits.

As discussed in Sect. 3.2, for six clusters in our sample
we could not define a region not contaminated by the clus-
ter emission in the FOV and offset observations are not avail-
able. In these conditions, we need to take into account a resid-
ual cluster component in the “closebkg” region, which is very
degenerate with the sky background parameters that we need to
estimate. To break this degeneracy and provide better constraints
to the free parameters in our model, we follow the method sug-
gested by Snowden et al. (2008) and we make use of an ancillary
data set: a spectrum extracted from the ROSAT All Sky Survey
(RASS) diffuse background map (Snowden et al. 1995, 1997) in
an annulus between one and two degrees from the cluster cen-
ter, using the HEASARC X-ray background tool5. We jointly
fit the RASS spectrum with the XMM one, taking into account
a cross-correlation factor between the two instruments of 15%
(Eckert et al. 2011) and binding together the parameters of the
sky background components. The normalization of the cluster
component is a free parameter in the XMM spectrum while it is
fixed to zero in the external RASS data, which essentially do not
contain cluster emission. During the fit of the sky background
spectra, we fix the temperature of the cluster component beyond
R500, since leaving it free often lead us to unphysical values for
this parameter. The fit is not very sensitive to the exact value of
this parameter and we chose to fix it to one third of the mean
expected temperature of the cluster, as estimated by the M−T
relation in Arnaud et al. (2005), taking into account the typical
decline of temperature profiles in the literature. We perform the
fits in the background region both with and without the RASS
ancillary dataset, to study its impact both on the sky parameters
estimates and on the temperature profiles (Sect. 5).

Impact of RASS joint fit on sky background parameters

We note that the joint fit with the RASS affects significantly the
best fit values of some sky components: the normalization of the
LHB, which is only poorly constrained in the XMM-only fit, the
normalization and temperature of the Galactic Halo (see Fig. 4).
This variation is systematic: with the RASS+XMM joint fit we
find lower LHB normalization (16%, computed as the weighted
mean of the ratio XMM+RASS/XMMonly), higher normaliza-
tion (55%) and lower temperature (16%) of the GH, reflecting
the strong degeneracies between these parameters.

For the CXB normalization, we should consider two differ-
ent effects. For the more extended clusters, where we do not
have a clean region in the field of view to estimate the sky back-
ground, the fit without RASS should overestimate the CXB nor-
malization, since the residual cluster emission will be attributed
to the background components. Indeed, if we consider only the
6 extended clusters (9′ < R500 < 12′) where we used a “close-
bkg” region (purple points in Fig. 4), the normalization of the
fit without RASS is larger than the one with the joint fit, with
a mean difference of 17%. Besides that, there is another fun-
damental effect: since the source detection limit in the XMM-
Newton observations is lower than in the RASS data, the fraction
of the resolved CXB is different in the two spectra, leading to
different normalizations for this component, while in our joint

5 https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/xraybg/
xraybg.pl
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Fig. 4. Comparison of best-fit values for sky background parameters obtained with the RASS joint fit (x-axis) and using XMM-Newton only (y-
axis). We show the normalization of the LHB (upper left), and of the CXB (upper right), while in the bottom panels we report the GH normalization
(left) and temperature (right). Points are color-coded by the extension of the cluster, estimated by R500, in arcminutes. The dashed line marks the
equality line. The LHB and GH components show large systematic variations, reflecting the degeneracies between the components. The CXB
normalization shows only a moderate variation on the full sample, with larger difference for extended clusters.

fit we impose them to be the same. We can quantify this effect,
by comparing the best fit normalization with the joint fit and
the XMM-only, in the objects where we have a large enough
cluster-free region in the XMM-Newton observations. Indeed, for
the clusters with R500 < 6′, the normalization in the joint fit is
larger by 1.4% (mean, while 3.7% is the median difference). We
can thus conclude that with the joint fit we overestimate the nor-
malization by 1−4%, which is a much smaller error than the 17%
due to the use of XMM-only data for extended clusters. More-
over this error is smaller than the typical statistical errors on this
parameter ('4%), over which we marginalize during the MCMC
fit.

We address the impact of the variations of the sky back-
ground parameters on the temperature estimates in Sect. 5.4.1.

4.4. Application to the spectral fit

In the previous subsections, we have described in detail the prop-
erties of our physical background model, how we built and cal-

ibrated it. Here, we focus on how we apply it to the spectra
during the fitting process, both in the Maximum-Likelihood and
in the MCMC approach. As presented in Sect. 3.3, we joint fit
the spectra of the three instruments and to all of them we fit
the cluster component and the sky background model. The lat-
ter is expressed as apec+phabs*(apec+powerlaw), where the
temperature of the Galactic Halo and the normalizations of all
three components are estimated from the fit in the external region
(Sect. 4.3) and appropriately rescaled for the area. All parame-
ters are kept fixed in the standard ML fit, while in the MCMC the
normalizations and the GH temperature are treated as Gaussian
priors, using the statistical errors on the best-fit parameters for
the width (see Table 2, where we summarize the properties of
the priors for the background components in the MCMC analy-
sis).

For the CRPB and the RFC we build a separate model for
each detector. The former is expressed as a combination of two
power laws for the continuum emission and several Gaussians to
represent the fluorescent lines (Sect. 4.1), overall multiplied by a
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Table 2. Properties of the priors set in the MCMC analysis for the background parameters.

Parameter Shape Central value Width

CRPB norm. (MOS) Gaussian Best Fit of mos-back spectra 2% intrinsic scatter
CRPB norm. (pn) Gaussian Best fit of pn-back spectra renormalized by Eq. (2) 6% intrinsic scatter
RFC norm. (MOS) Uniform inFOV–outFOV, with Eq. (A.1) Intrinsic scatter
RFC norm. (pn) Uniform inFOVPN and outFOVMOS2 with Eqs. (A.1) and (A.2) Intrinsic scatter
LHB norm. Gaussian Best fit in background region 1σ errors
GH temp. Gaussian Best fit in background region 1σ errors
GH norm. Gaussian Best fit in background region 1σ errors
CXB norm. Gaussian Best fit in background region 1σ errors

Notes. For each of them, we report the shape of the prior, how we computed its central value, and its width.

constant which sets the intensity of this component. This model
is first fitted to the spectra of FWC data produced by the ESAS
tools mos/pn-back and then applied, with its best fit parame-
ters, to the spectra extracted from the observation. When per-
forming the ML fit all parameters are kept fixed, while in the
MCMC fit the multiplicative constant is allowed to vary within
its uncertainty and treated as a Gaussian prior (Table 2). For the
pn detector, the procedure is the same but we renormalize the
overall constant according to Eq. (2). Concerning the Residual
Focused component, we model it with a power law with fixed
slope −0.6 and normalization predicted by the inFOV–outFOV
value, measured for each detector, with Eq. (A.1). For the pn,
we estimate it by combining the inFOVPN and outFOVMOS2 as
described in Eq. (A.2). While doing the MCMC fit, we treat the
normalization as a flat prior, within the intrinsic scatter of the
relation between the Normalization of the SP component and
the inFOV–outFOV indicator (Figs. A.2 and A.3).

5. Impact of spectral analysis on temperature
measurements

In this section, we evaluate the robustness of our pipeline and
the impact of our decisions about the spectral fitting methods
on the temperature measurements. While some of these deci-
sions (such as the spectral model, the assumed NH, and the tech-
niques for the spectral fitting) affect all our measurements, other
assumptions on the background model will impact mainly the
outer cluster regions. Indeed, the effects of the latter strongly
depend on the relative intensity of the source with respect to
the background. Briefly, even a large error on the background
model will not affect significantly the best fit parameters in
a region where the source outshines the background, such as
in the central regions of galaxy clusters. Conversely, in the
external regions where the source intensity is comparable to,
or often even smaller than, the background level, even a few
percent error in the estimates of the background may affect
significantly our temperature measurements. To quantify this,
following Leccardi & Molendi (2008), we define the indicator
SOU/BKG for all DR1 clusters and for all regions where we
extracted spectra. We compute it as (OBS–BKG)/BKG, where
OBS is the observed count rate and BKG is the predicted count-
rate by the best fit model of all the background components. We
measure all count rates in the energy band 0.7−10 keV (compa-
rable to the band we used in our spectral fit, see Sect. 3.3), to be
consistent with Leccardi & Molendi (2008). We are aware that
the cluster count rate in the 0.7−10 keV band depends on tem-
perature, inducing a slight dependence also on the SOU/BKG
indicator. We estimated its impact by computing our indica-

tor also in a soft band (0.7−1.2 keV), where the count rate is
mostly independent of temperature for kT > 2 keV. We checked
that all the results presented later in this paper (e.g., Figs. 13
and 17) are robust with respect to the choice of the band in
which we compute our indicator and we decided to keep using
the full spectral band, to allow quantitative comparisons with
Leccardi & Molendi (2008). We compute this indicator for each
camera but we refer to the values obtained with MOS2.

In Fig. 5 we show the distribution of the SOU/BKG indicator
as a function of radius for all the regions, spanning four orders
of magnitudes. While most regions are clearly source dominated,
we have a significant fraction (∼20%) of regions where the back-
ground intensity is larger than the source, justifying our need for
the most accurate background modeling (Sect. 4). As we subse-
quently discuss in Sect. 6.2, we trust our temperature measure-
ments for regions with SOU/BKG > 0.2 and we thus excluded
about 30 regions with SOU/BKG below this threshold in some
of the analysis presented later. In Fig. 5, we note that about half
of the regions below the threshold are located at R < R500, ham-
pering the goal of reliably measuring the temperature profile up
to R500 for some clusters. As highlighted by the color-coding,
most of them are located in extended clusters (R500 > 9′), which
by construction of our sample correspond to low-redshift and
low-mass objects. These regions are located at relatively large
off-axis angles from the aimpoint, where the exposure is lower
than in the center, suppressing the source count-rate more than
the background one, whose dominant CRPB component is not
affected by vignetting.

5.1. MCMC vs. maximum-likelihood fitting

As discussed in Sect. 3.3, to assess the MCMC framework we
have utilized for our analysis, which marginalizes over uncer-
tainties in the background components, we also perform a sec-
ond set of fits using the standard ML approach, where the back-
ground model is fixed. It is possible in principle that the best
fit parameters obtained with the two methods could differ from
one another, since their definition is different. While the best fit
temperature in the standard ML fit is the value which minimizes
the Cash statistic, in the MCMC it is the mean of the posterior
distribution. These values could be different, especially in the
case of a skewed distribution. Moreover, during the marginaliza-
tion process of the MCMC the background parameters can move
with respect to the fixed values in the ML fit, and this can lead
to a change in the best fit temperature, especially in background-
dominated regions. We expect also an effect on the error bars of
the best fit parameters, which should be larger in the MCMC
fit, encompassing also the uncertainties on the background
modeling.
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Fig. 5. Distribution of the SOU/BKG indicator for MOS2 as a function
of scaled radius, for all the 354 regions from which we extracted spectra.
The color coding refers to the extension in the sky (R500 in arcmin)
of the corresponding cluster. The horizontal continuous line shows the
value where the source intensity gets lower than the background line,
while the dashed line marks the threshold SOU/BKG = 0.2 used in
the analysis of mean and median profiles (Sect. 6.2). The vertical line
marks R500. Most of the regions below the threshold SOU/BKG = 0.2
at R < R500 belong to very extended clusters and are thus located in
poorly exposed regions of the FOV.

In the left panel of Fig. 6, we compare the best fit tem-
perature values obtained with these two methods: the agree-
ment is very good, with a weighted mean of the difference
(TML − TMCMC)/TMCMC = (−0.7 ± 0.3)%. We expect the
MCMC approach to have a small impact in source dominated
regions and indeed the difference is consistent with zero, (TML −

TMCMC)/TMCMC = (−0.4 ± 0.4)% when SOU/BKG > 10. Con-
versely, in background dominated regions, the MCMC approach
has a larger impact on the best-fit parameters, since it allows the
background parameters to move from their value. Hence, tem-
peratures in this regime are very sensitive to the background
models. Indeed, the differences increase to (−4.6 ± 2.5)% in
regions with 0.2 < SOU/BKG < 0.5 and to (−7.5 ± 3.5)% for
SOU/BKG < 0.2. If we split the regions in three radial bins,
we find that the difference is consistent with zero at less than
1−2σ for R < 0.4 R500 and 0.4−0.8 R500 and measure a difference
of −5.6 ± 2.7% in the last radial bin (R > 0.8 R500). While the
results are only moderately significant, we can conclude that the
standard ML approach leads to an underestimate of the temper-
ature values of about 3−7% in background-dominated regions.
We note that this comparison depends on the estimator used in
the MCMC fit to derive the best fit parameters. As described in
Sect. 3.3, we use the mean of the posterior distribution, but we
could use also the median or the mode. These values do not dif-
fer significantly from the mean on the full sample (≤1%) but can
vary by a few percent in background-dominated regions, where
the posterior distributions become more skewed, moving closer
to the ML estimate. We should thus consider the value provided
above as an upper limit for this effect.

In the right panel of Fig. 6, we compare the 68% relative
symmetric error on the temperature measurement with the ML
and MCMC approach. Again, in source-dominated regions the
error on the measurement is dominated by the statistical quality
of the data and is very similar in both approaches. Conversely,
in background-dominated regions the error on the ML reflects
only the statistical quality on the data, while the one on the
MCMC should be larger because it propagates also the uncer-

tainties on the background models. This is indeed observed in
Fig. 6, where most of the points with low SOU/BKG lie above
the equality line. On average, the MCMC error is 25% (31%)
larger in regions with SOU/BKG < 1 (SOU/BKG < 0.5) with
respect to the standard ML approach. Conversely, the few points
with very low SOU/BKG that lie significantly below the line
may indicate that the MCMC did not converge there. We indi-
vidually investigated the three most deviant outliers: they corre-
spond to radial bins whose center is beyond R500 and with a very
low SOU/BKG < 0.1, corresponding to regions that we later
excluded from our analysis (see Sect. 6.2). The visual inspec-
tion of the chains confirms that the MCMC had not converged
in these cases and we thus reran the MCMC fitting, increas-
ing the number of steps to 105. After the rerun, the error bars
increased significantly. We decided not to rerun all our fits with
longer MCMC chains and that 5 × 104 steps is a good compro-
mise between convergence in most cases and computation speed.

5.2. Impact of total NH

As presented in Sect. 3.3, we use the total NHtot value, compris-
ing the contribution of both the atomic and molecular hydrogen,
computed in Bourdin et al. (2023). We tested the impact of this
choice on the temperature measurements by refitting all spectra
with the standard atomic absorption (NHI) and computing the rel-
ative difference of the best fit values obtained with and without
the molecular component: ∆TNH = (TNHI − TNHtot)/TNHtot. We
then divided our sample into three subsamples: a low absorp-
tion regime (NHI < 2 × 1020 cm−2), an intermediate regime
(2 < NHI/1020 cm−2 < 5), and a (relatively) high absorption
sample (NHI > 5 × 1020 cm−2). We then computed the median
value of ∆TNH on the three subsamples. In the low absorption
regime differences in the temperature values are negligible and
the median difference is only 0.2%. In the intermediate regime,
we start to see some differences, especially at high temperature,
but the median difference is still 1%. Finally, in the high absorp-
tion sample we systematically find higher temperatures when fit-
ting with the atomic component only, with a median difference of
6.8%. These results are consistent with those for the full CHEX-
MATE sample described in Bourdin et al. (2023).

We use the mean difference in the derived temperatures as
an estimate of the systematic associated to the assumption of a
fixed NH in our fit. On the full DR1 sample, we estimated ∆TNH =
(1.5 ± 0.3)% and found a consistent value at low SOU/BKG and
in different radial ranges. This is indeed expected since it should
not depend on the background level. We emphasize that NH is
a fixed parameter in all our fits and thus the uncertainty on its
measurement is not propagated in the temperature estimate even
in the MCMC fit.

5.3. Impact of abundance table

Abundance tables are used in XSPEC to compute plasma emis-
sion and photoelectric emission models and thus can impact all
the free parameters in our fits, not only the metal abundance.
The relative changes can be estimated making use of XSPEC
simulations, as described in Appendix B. Here we briefly recall
the results concerning the temperature, comparing the ones mea-
sured with a given table (Tab) with respect to the values obtained
with the reference table in our analysis (Taspl, Asplund et al.
2009, see Sect. 3.3). The abundance table is used both in the
apec model and in the absorption phabs model, and it is the
latter which causes the most significant differences in the tem-
perature measurements. Indeed, all the simulations performed
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Fig. 6. Comparison of best-fit temperature values (left panel) and relative symmetric errors (right panel) for all clusters and all regions obtained
with the standard ML technique (x-axis) and with the MCMC approach (y-axis). The color coding refers to the SOU/BKG ratio in each region, the
dashed line represents the equality line.

with NH = 0 show negligible variations (<1%) in the tem-
perature estimate. Conversely, when we use an intermediate
absorption, NH = 5 × 1020 cm−2, we find significant variations
(Tab − Taspl)/Tab of −3 ± 1% using Lodders et al. (2009) and
−6 ± 3% using Anders & Grevesse (1989). We interpret this
result as being due to the different abundance of helium in the
solar tables.

5.4. Impact of background assumption in low SOU/BKG
regions

In this section, we assess the impact of different background
treatments on the temperature measurements, especially in outer
regions associated with a low SOU/BKG ratio. Since we want
to address the impact of background parameters that are free to
vary within their priors in the MCMC fit, in this section we show
results obtained with the ML fit, where these parameters are kept
fixed.

5.4.1. Impact of joint fit with RASS

In Sect. 4.3 we introduced our strategy to derive the parame-
ters of the sky background components by performing a joint
fit of the XMM-Newton spectrum beyond R200 with the RASS
spectrum around the cluster and discussed the impact on the
background parameters themselves. Here we want to assess the
impact on temperature measurements, by comparing the best fit
values obtained with our pipeline (TRASS) with those obtained
turning off the joint fit with RASS data (TNORASS), using XMM
data only to estimate the sky background parameters. We com-
pare the temperature ratios as a function of SOU/BKG in Fig. 7.
We emphasize that we use the nomenclature TRASS, but we never
use RASS data for measuring the cluster temperature, only for
determining the sky background model in a joint fit with XMM-
Newton. The differences in the temperature that we discuss here
are the consequence of the different sky background parameters,
presented in Sect. 4.3 and Fig. 4.

First, we focus on the six clusters of our sample with R500 >
9′, for which we do not have a clean region in the FOV and
we used the “closebkg” annulus (1.1 R500 − 14′), likely contam-
inated by cluster emission, as a background region (Sect. 3.2).
In Sect. 4.3 we noticed that the introduction of the joint fit
with RASS reduces the CXB normalization by a factor of 17%

Fig. 7. Ratio of the difference between the temperature values obtained
using XMM only in the background region (TNORASS) and that obtained
with our standard pipeline (TRASS, joint fit with RASS in the background
region) over TRASS, in percent units, as a function of the SOU/BKG ratio
in the spectral region. Filled points show the individual measurements
(error bars not shown for clarity), while the open squares represent the
weighted mean ratio and its error in different intervals of SOU/BKG.
Blue points refer to measurements in clusters with R500 > 9′, red are for
the remaining objects. The cyan triangle shows the median value for the
regions with SOU/BKG < 0.2 and clusters with R500 > 9′, significantly
different than the mean with the same criteria.

for these clusters. Concerning the ICM temperature, the effect
of a reduced CXB normalization is negligible in regions with
SOU/BKG > 1: temperatures obtained with the two methods are
always consistent within the error bars and the mean difference is
less than 1%. In background-dominated regions (SOU/BKG <
1), individual measurements may be significantly different, with
variations up to 20−50%, larger than the statistical errors on the
measurements. Nonetheless, there is not a clear trend (see blue
points in Fig. 7): in most cases we find TRASS > TNORASS but
in others we find the opposite. We computed the weighted mean
variations in different SOU/BKG regimes and we find a signifi-
cant difference only in the bin with SOU/BKG < 0.2, where we
find (TNORASS − TRASS)/TRASS = (−22 ± 4.5)% (see Fig. 7). We
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Fig. 8. Ratio of the difference between the temperature values obtained
neglecting the soft proton component (TNOSP) and the one of our
pipeline (TSP, including a SP component) over TSP in percent units,
as a function of the SOU/BKG ratio in the spectral region. Filled
points show the individual measurements (error bars not shown for
clarity), while the open squares represent the weighted mean ratio and
its error in different intervals of SOU/BKG. Blue points refer to mea-
surements in observations with a significant residual contamination
(inFOV−outFOV > 0.04 cts s−1), red are for observations with a low
contamination. The magenta triangles shows the median value for clus-
ters with low contamination, when the median is significantly different
from the mean.

note however that this mean value is driven by one single mea-
surement with small uncertainty but with a variation of '50%
and may return an overestimate for this effect. The median value
(also shown in Fig. 7) on the same sample is significantly lower
(−4.6±4.7%) and may better reflect the properties of the distribu-
tion. We note that, by construction of the CHEX-MATE sample,
the clusters with R500 > 9′ are nearby low-mass objects, where
the temperature in the external regions lies in the range 2−3 keV.
It is possible that the variations of the sky-background parame-
ters, especially the CXB normalization, may have a larger impact
in different temperature regimes.

We also checked that the joint fit with RASS did not intro-
duce a bias in our temperature measurements, possibly due to
the cross-calibration of the two instruments and to the different
parameters of the foreground components, with the systematic
underestimate of 1−4% in the CXB normalization discussed in
Sect. 4.3. To assess this, we compare TRASS with TNORASS also
for the remaining 22 clusters with R500 < 9′ (red points in Fig. 7):
in all cases temperatures are consistent within the two methods
and start to differ only at SOU/BKG < 1, but remain consis-
tent within the error bars in most cases. We computed the mean
weighted ratio to be (TNORASS − TRASS)/TRASS = (0.2 ± 0.4)%
on the full sample. The difference increases in regions with low
SOU/BKG (3.5±3.3% in the range 0.2−0.5 and 2.3±4.7% when
SOU/BKG < 0.2), remaining nonetheless consistent with zero.
We can conclude that if we introduce a systematic bias with our
method, this is less than 5%.

5.4.2. Impact of the residual focused component

As discussed in Sect. 4.2, we introduced a novel approach
to model the residual focused component basing on the IN–

OUT indicator. This component, which we attribute to resid-
ual soft protons, is typically subdominant with respect to
other background components in all DR1 observations ((IN–
OUT)M2 < 0.1 cts s−1), and becomes comparable to the inten-
sity of the sky background and to the CRPB only in the cluster
with the most contaminated observation (PSZ2 G195.75−24.32).
Still, it can have an important impact in background domi-
nated regions. To estimate this effect, we divide this sample
in two subsamples: 24 objects with low residual contamina-
tion (lowSP with (inFOV–outFOV)M2 < 0.04 cts s−1) and six
with a significant residual contamination (highSP with 0.04 <
(inFOV−outFOV)M2 < 0.1 cts s−1) and we perform the fit turn-
ing off the SP correction. We then compare the temperatures
obtained with this method with those obtained with our base-
line pipeline and we show their ratio in Fig. 8 as a func-
tion of the SOU/BKG in the fitting region. Individual measure-
ments are typically consistent in source-dominated regions and
start to show large variations (up to more than 100%) when
SOU/BKG < 1. This effect is particularly large in the sub-
sample with large residual contamination, where we measure a
weighted mean (TNOSP − TSP)/TSP = (14 ± 6)% in regions with
0.2 < SOU/BKG < 1 and (23 ± 11)% when SOU/BKG < 0.2.
Nonetheless, the effect is visible also on the individual measure-
ments of clusters with a low contamination. While the weighted
mean value for the highSP sample does not seem to report sig-
nificant differences (Fig. 8), probably driven low by a few mea-
surements with a small statistical error, the median difference
(magenta square in Fig. 8) in the SOU/BKG < 0.2 range is
16 ± 5%.

The large impact of including or neglecting the SP compo-
nent on the temperature measurements in external regions of
galaxy clusters highlights the importance of modeling this com-
ponent, even in “clean” observations. We emphasize here how-
ever that with this comparison we are not measuring the real
systematics associated to our SP modeling but rather measuring
the potential effect if we neglect this component in our analysis,
which we do not.

An alternative method of measuring the systematic effect
associated with the SP modeling is to compare the median scaled
temperature profiles of the subsample with high contamination
and those of the subsample with low contamination. In principle
the profiles should not differ and any systematic difference could
be interpreted as due to the SP modeling. We show their differ-
ence ((Ts,highSP − Ts,lowSP)/Ts,lowSP, where the notation Ts marks
the scaled temperature T/T[0.15−0.75] R500) as a function of the
scaled radius R/R500 in Fig. 9. In some radial bins, we measure
a significant difference, which is, however, consistent with the
observed dispersion of the profiles, preventing its interpretation
as a systematic bias. We expect to derive better estimates when
we analyze the full CHEX-MATE sample. For the moment, we
can use the dispersion level (10% outside the core) as an upper
limit to the systematics related to SP modeling.

5.5. Error budget

In the previous sections, we have quantified the impact of our
choices for spectral analysis on the temperature estimate. In
some cases, such as the choice of NH and the abundance table,
we are able to measure a significant effect which allows us to
associate a possible systematic error in our measurement. In
other cases, the mean differences between the temperature under
different assumptions are consistent with zero at one or two σ,
in different SOU/BKG or radial ranges. This means that the
true systematic errors in our method are smaller than the sta-
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Fig. 9. Ratio of the difference between the median scaled tempera-
ture profiles for the subsample with high contamination with respect
to the low contamination sample. The points show the ratio between
the median value in each bin, while the dashed lines mark the observed
dispersion, which is typically larger than the measured difference, pre-
venting its interpretation as a systematic bias.

Table 3. Potential systematic errors in temperature measurements in
percent units.

Effect Percent impact in SOU/BKG range
0.2−0.5 <0.2

NH 1.5% 1.5%
Ab. table 3−6% 3−6%
ML-MCMC <5% <7%
RASS <6.6% <9.4%
SP (∗) <10% <10%

Notes. Upper limits are at 95% c.l. (∗)Using the difference between the
scaled profile in the high and low contamination subsamples.

tistical uncertainty for our sample of 30 clusters and we can
only provide an upper limit for each of them. We estimated the
upper limit at 95% confidence level as twice the uncertainty
on the weighted mean temperature difference and we report
all of them in Table 3. As discussed before, in some cases,
related to the background modeling, our estimate of systemat-
ics depends on the SOU/BKG of the regions we are consider-
ing, with larger effects in more background dominated regions.
Conversely, in other cases the effect is independent of the inten-
sity of the source. In Table 3, we report the values in two
ranges, for SOU/BKG < 0.2 (where, as we subsequently show
in Sect. 6.2, temperature measurements are probably biased)
and 0.2 < SOU/BKG < 0.5, that is, the most background
dominated regions where we consider we have reliable tem-
peratures. In both regimes, possible systematics related to the
choices of our spectral analysis are on the order of a few per-
cent, with upper limit on the order of 10% in the most back-
ground dominated regions. We note that this is the same order
of magnitude of the cross-calibration between the three EPIC
cameras, leading to significantly different temperatures when
estimated with single detectors (e.g., Schellenberger et al. 2015;
Nevalainen & Molendi 2023). We checked that for the DR1 sam-
ple, the mean difference between the value measured with a sin-
gle detector and our baseline joint fit is 5%, consistent with lit-
erature results.

Fig. 10. Cumulative distribution of clusters where the temperature mea-
surement in the [0.8−1.2] R500 bin reaches a nominal error as a function
of the relative statistical error σT/T . The black continuous line shows
the goal in the CHEX-MATE feasibility (15%), while the dashed line
shows the median value on the sample (12.7%).

Besides the estimate of systematic errors induced by our
method, it is also important to assess the statistical quality of
our measurements. In Fig. 6 we show the distribution of rel-
ative errors in the MCMC and ML fit: the bulk of the val-
ues is below 15%, but in a few cases errors can reach values
of 30−40%. The size of the errors depends on several factors,
such as the signal in the radial bin, the SOU/BKG ratio and
even the temperature value itself (with low temperature values
featuring smaller errors, even in relative terms, than higher tem-
peratures). In the CHEX-MATE XMM-Newton proposal prepa-
ration, we tuned the exposure time to reach an error of 15% in the
annulus [0.8−1.2] R500, based on an empirical relation between
the counts in the soft band and the error on temperature (see
CHEX-MATE Collaboration 2021, for more details). We can use
our sample to verify this method a posteriori: we extracted spec-
tra in this annulus for each DR1 clusters and fitted them with
our pipeline. We used the ML fit, since we did not foresee using
the MCMC approach at the time of the proposal. In Fig. 10 we
show the cumulative distribution of clusters with a symmetric
relative temperature error smaller than a given σT/T . We reach
the requirement of 15% error for 22 clusters and the median error
on the full sample is 12.7%. The maximum fractional error in
this radial range is 23%. We do not find any clear correlation
between the size of the errors and the physical properties of the
clusters.

6. Results

6.1. The temperature profiles

We show the temperature profiles of the 30 DR1 clusters in
Fig. 11. The measured temperatures range from 2 to more than
14 keV, reflecting the large spread in mass of the CHEX-MATE
and DR1 sample. The radial range of the profiles also reflects
the presence of some nearby and very extended objects and of
high-redshift and compact clusters in the sample. The color cod-
ing by total mass in the left panel of Fig. 11 highlights these
dependencies.

We rescaled the profiles according to self-similar predictions
in the right panel of Fig. 11. We divide the radial coordinate by
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Fig. 11. Individual temperature profiles of the 30 DR1 clusters, color-coded by the total mass. The left panel shows the temperature as a function
of the projected position of the annuli in arcminutes, highlighting the large range of measured temperatures and extension of the DR1 sample. The
right panel shows the rescaled profiles.
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Fig. 12. Rescaled temperature profiles of the DR1 sample: clusters
belonging to the most relaxed, the most disturbed, and the mixed class
are shown in blue, red, and gray, respectively. We use the logarithmic
scale on the x-axis to focus on the more central regions.

R500, estimated from the Planck SZ mass, reported in Table 1. We
underline that these masses can be biased with respect to total
masses and may scatter around the hydrostatic masses that would
be derived from the X-ray data. As discussed in Bartalucci et al.
(2023), this may have an impact in the shape of the profiles
and should be taken into account when comparing with simula-
tions and with other samples. Concerning the y-axis, we rescaled
the temperature by a mean value obtained by fitting a spectrum
extracted in an annulus in the range [0.15−0.75] R500, that is,
excluding the core and the outer background- dominated regions.
This scaling is not completely independent from the data in the
profiles as it is extracted from the same data set. An alternative

approach (which we use for the scatter profile in Sect. 6.3 and for
some literature comparison in Sect. 7.1) is to rescale by an exter-
nal value derived from the mass, through scaling relations. The
rescaling of the profiles reduces significantly the scatter in the
profiles and the dependency on the cluster mass, as highlighted
in the comparison of the two plots in Fig. 11, both color-coded by
cluster mass. Nonetheless, the scatter among the profiles is non-
negligible, reflecting both the uncertainties on the measurements
and the cluster to cluster variations (Sect. 6.3). The tempera-
ture profiles in the central regions of galaxy clusters have been
shown to correlate with the dynamical state of the cluster (e.g.,
Hudson et al. 2010; Leccardi et al. 2010; Pratt et al. 2010). In
Campitiello et al. (2022), we identified the most relaxed and the
most disturbed clusters in the CHEX-MATE sample, according
to the M parameter, which is a combination of several dynamical
indicators (surface brightness concentration, centroid shift, and
power ratios). Bartalucci et al. (2023) showed that this classifica-
tion segregates clusters with peaked emission measure profiles in
the center from those showing a flatter slope. In Fig. 12, we show
the temperature profiles of the most relaxed, most disturbed and
mixed clusters in the DR1 sample. We do not find a clear segre-
gation of clusters, contrary to the emission measure profile, sug-
gesting that our classification based on the M parameter is not
effective in separating clusters with different temperature pro-
files. This may be due to the definition of the parameter itself,
which combines indicators on different scales and is not tailored
to measure the properties of the core. However, we should also
note that we have only three clusters in DR1 belonging to the
most relaxed class according to Campitiello et al. (2022) and
none of them show very low values of the M parameter. It is
also, thus, possible that we are lacking the most extreme clusters
which would drive the segregation, and this result should be ver-
ified in the full CHEX-MATE sample. Indeed, the KS test, used
to check the consistency with the parent sample (Sect. 2), is not
very sensitive to the tails of the distribution.
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Fig. 13. Comparison of weighted mean (left panel) and median (right panel) temperature radial profiles applying different thresholds in the
SOU/BKG indicator. We plot only values with more than 15 (half sample) individual measurements.

6.2. The mean and median temperature profile

Several methods can be applied to stack the rescaled tem-
perature profiles of individual clusters (Sect. 6.1) into a sin-
gle average profile of the sample under study. For instance,
Leccardi & Molendi (2008) report a weighted mean profile,
obtained by weighting the Ti individual measurements by their
absolute errors dTi. They apply a further weight by consider-
ing the fraction of the original radial bin ri ± dri which falls
in the radial bin R ± dR used in the output average profile.
This method has the advantage to account for the position and
the extent of the original radial binning of the individual mea-
surements with respect to the output mean profiles. Moreover,
it considers the different errors of individual measurements,
giving more weight to more precise estimates. However, it is
important to note that the error bars on temperature measure-
ments do not reflect only the statistical quality of the spec-
tra from which they were derived, but also depend strongly on
the temperature itself. Indeed, it is easier to measure low tem-
peratures than high temperatures with XMM-Newton, mainly
because of the shape of the effective area and the higher inten-
sity of the source with respect to the particle background at low
energy. This is reflected into smaller uncertainties (also in rela-
tive terms) for low temperature values than for higher temper-
ature measurements. It is easy to infer that the error weight-
ing can bias low the average values in situations where we
have a large spread in the temperature measurements, such as
in the innermost bins, due to the presence of cool cores, and
also in the external regions where measurements in background-
dominated regions can lead to (biased) low-temperature val-
ues (Leccardi & Molendi 2008). An alternative approach used
by other authors (e.g., Arnaud et al. 2010; Lovisari & Reiprich
2019) is to compute the median of the individual measurements
at a given radius rather than the weighted mean (see the compar-
ison in Lovisari & Reiprich 2019 for the metal abundance pro-
file). By construction, the median is less sensitive to the tails of
the distribution and therefore should be less biased in the situa-
tions described above with low temperature values. Conversely,
as it is not weighted, we do not account for the position of the ini-
tial radial binning with respect to the one of the final profiles. In
our analysis, we estimate the error bars on the median profile by
performing a randomization of the individual Ti measurements

in each bin within their error bars and recompute the median
1000 times.

In Fig. 13, we show the average profile, both with the
weighted mean (taking into account the radial bin fraction) and
with the median. In both cases, following Leccardi & Molendi
(2008), we show the profiles obtained considering only tem-
perature measurements in regions with the SOU/BKG indicator
above different thresholds (namely 2, 1, 0.5, 0.3, 0.2, 0.1 and no-
threshold), plotting only the points where the average is obtained
with more than 15 independent measurements (half sample).
Focusing on the weighted mean profile (left panel), we note
that profiles with different thresholds are almost identical up to
0.5 R500 and start to show some differences only at larger radii.
While up to 0.8 R500 differences are not significant, in the radial
bin between 0.8 and 1 R500, the mean values of the profile with-
out applying any threshold and the one with SOU/BKG > 0.1
(magenta and purple in the left panel of Fig. 13) are significantly
lower (at more than 3σ) than the other values. This means that
the mean profile is likely biased low, by a factor of about 15%.
Conversely, the results obtained with higher thresholds do not
deviate from one another, suggesting that a threshold as low as
SOU/BKG = 0.2 can be safely used to measure temperature
profiles up to R500, which is one of the goals of the CHEX-MATE
project.

We underline that the value we consider here as a safe thresh-
old for our measurements, SOU/BKG > 0.2, is three times
lower than the safe value suggested by Leccardi & Molendi
(2008), who introduced this diagnostic plot and also used the
weighted mean for their profiles. This implies that the CHEX-
MATE pipeline, allows to obtain reliable temperature profiles
at much lower SOU/BKG limit, where the cluster intensity is
only 20% of the background. We investigated if this improve-
ment could be due to the MCMC fitting approach used here,
but results obtained with the standard ML fitting do not differ
significantly from what is shown in Fig. 13. The improvement
is most likely due to the more advanced physical background
model introduced in the CHEX-MATE pipeline and to the high
quality of our observations, tailored to reach a good accuracy in
temperature measurements at R500.

The median profile, shown in the right panel of Fig. 13,
does not show the steepening of the profiles obtained with low
SOU/BKG thresholds that was apparent in the weighted mean
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Fig. 14. Distributions of the rescaled temperatures as a function of the
SOU/BKG in the extraction region for the measurements encompassing
0.9 R500. The vertical dashed lines mark the thresholds used in Fig. 13,
with the same color scheme.

profile: except for the last bin, all measurements are very con-
sistent within each other at a given radius. Even in the bin
[0.8−1] R500 the difference is less than 10% and only appears
if we include regions with SOU/BKG < 0.1. This is qualita-
tively expected since the median is less sensitive to the low tem-
perature values in the tails of the distribution, as it is apparent
also in the inner two bins of the profile, where the median pro-
file shows only a moderate decrease, while the weighted mean
profile shows a much larger decrease, due to the presence of a
few low temperature values, with small error bars, in cool-core
clusters.

To understand the effect of including low SOU/BKG mea-
surements in our mean and median profiles we looked at the dis-
tribution of the individual measurements Ti and (SOU/BKG)i
values in different radial bins. Up to 0.6 R500, the distribution of
Ti as a function of SOU/BKG is rather flat, therefore the exclu-
sion of a few points at low SOU/BKG does not alter significantly
the distribution and its mean and median are not affected by the
cut. However, at larger radii, we start to see a correlation between
temperature and SOU/BKG, with lower temperatures measured
in more background dominated regions. An example is shown
in Fig. 14 for the bin at 0.9 R500: most Ti/T[0.15−0.75] R500 val-
ues below 0.7 are measured in regions with SOU/BKG < 0.2.
Therefore, if we exclude these regions the median changes from
0.72 to 0.79 (∼9%) while the weighted mean moves from 0.63
to 0.78 (∼18%).

In Fig. 15 we compare the weighted mean, the median and
the mean fit profile. The latter is computed as the best-fit mean
value in each radial bin, approximating the distribution with a
Gaussian function, and is a byproduct of the scatter computa-
tion described in Sect. 6.3, to which we refer for details. We
show both the profiles obtained with all measurements and those
excluding the regions with SOU/BKG < 0.2 (shaded areas). In
the central regions, the weighted mean is biased low because of
the presence of cool cores, while the mean and median return
consistent results. If we consider the values obtained with all
measurements (filled circles), the weighted mean tend to be
always lower than the other methods and in the last bin at
0.9 R500 the difference with the median is maximal, with the
mean returning an intermediate value. Conversely, out of the
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Fig. 15. Comparison of the average profiles obtained with different
methods: median (black points and gray shaded area), weighted mean
(red), and fit mean (blue). Filled points refer to values derived by all
measurements, while shaded regions show the values obtained when
applying the SOU/BKG > 0.2 selection. Out of the core, the differ-
ent methods return consistent results after excluding regions with low
SOU/BKG, while if we use all measurements the weighted mean always
returns lower values than the other methods.

Table 4. Weighted mean and median temperature profiles (rescaled
by T[0.15−0.75] R500) and their ratio, after excluding regions with
SOU/BKG < 0.2.

R/R500 ∆R/R500 Weighted mean Median Ratio

0.025 0.025 0.822 ± 0.005 1.015 ± 0.017 0.810
0.075 0.025 0.983 ± 0.005 1.085 ± 0.015 0.906
0.125 0.025 1.067 ± 0.006 1.109 ± 0.013 0.962
0.175 0.025 1.079 ± 0.007 1.102 ± 0.014 0.978
0.225 0.025 1.062 ± 0.008 1.079 ± 0.015 0.985
0.275 0.025 1.057 ± 0.009 1.067 ± 0.017 0.991
0.350 0.050 1.027 ± 0.007 1.046 ± 0.013 0.982
0.450 0.050 0.969 ± 0.009 0.994 ± 0.017 0.975
0.550 0.050 0.919 ± 0.012 0.941 ± 0.021 0.977
0.700 0.100 0.838 ± 0.012 0.847 ± 0.026 0.990
0.900 0.100 0.783 ± 0.023 0.813 ± 0.036 0.964

core all profiles are consistent when we exclude the regions with
SOU/BKG < 0.2. We report the weighted mean and the median
profiles under this condition in Table 4). Since the median is the
quantity less affected by the presence of low SOU/BKG, from
now on we shall use it for the comparison with other samples in
the literature (Sect. 7.1), for which it is not possible to apply the
SOU/BKG selection.

6.3. The intrinsic scatter

In Fig. 11, we qualitatively show that the scatter in the pro-
files reduces significantly when we rescale temperatures by their
mean value in the range [0.15−0.75] R500 and radii by R500.
The residual scatter after scaling is due both to the statisti-
cal uncertainties on the individual measurements and to the
intrinsic scatter between the profiles, which reflects the varia-
tions from cluster to cluster and can shed light on the non self-
similar processes affecting the ICM. We computed the radial
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Fig. 16. Profile of the intrinsic scatter in the scaled temperature mea-
surements of DR1 clusters. The two profiles refer to the two differ-
ent methods for scaling temperature: a global temperature measured
in the [0.15−0.75] R500 annulus (red points) and the temperature T500
estimated from the mass (black points).

profile of the intrinsic scatter by modeling the individual scaled
T s

i = Ti/T[0.15−0.75] R500 measurements in a given radial bin with
a Gaussian, whose width is the sum of the squares of the sta-
tistical and intrinsic scatter. We then fit them in a Bayesian
framework to derive the parameters of the Gaussian: the mean
(used in Sect. 6.2 and Fig. 15) and the intrinsic scatter (see
Ghirardini et al. 2019; Bartalucci et al. 2023 for more details).
The resulting intrinsic scatter profile for the DR1 temperatures is
shown in Fig. 16. We show two profiles, obtained with two differ-
ent scalings of the temperature values. For the red one, we used
the mean temperature estimated in the annulus [0.15−0.75] R500,
as shown in Sect. 6.1, while for the black one we used an
independent estimate of T500, derived from the SZ M500, using
Eq. (10) in Ghirardini et al. (2019). We immediately notice that
the scatter profile with the T[0.15−0.75] R500 scaling is significantly
lower than the one with the external mass scaling in the radial
range [0.1−0.6] R500. Indeed, the covariance between the mea-
sured points and the scaling quantities has been shown to induce
suppression of the scatter (Pratt et al. 2022). Conversely, the
scaling with the temperature derived from the mass relation is
independent of the measured values, since we use the mass
derived from the SZ signal, and the scatter profile is indeed larger
(see Sect. 7.1). For this reason, from now on, we shall use the
mass scaling when measuring the scatter.

The scatter profile shows the typical behavior of thermo-
dynamic quantities, highlighted also in Ghirardini et al. (2019):
it shows a high value in the center, reflecting the difference
between cool-core and non cool-core clusters, then reaches a
minimum between 0.2 and 0.5 R500 and starts increasing again at
large radii. We note that the scatter in the temperature profiles is
low, around 10% at its minimum value, smaller than the values
observed in the Emission Measure profiles for the full CHEX-
MATE sample (Bartalucci et al. 2023). Indeed, Ghirardini et al.
(2019) showed that temperature is the thermodynamic quantity
with the smallest intrinsic scatter.

6.4. Fit of the temperature profile

The shape of the temperature profiles of galaxy clusters has
been widely discussed in the literature, looking for a uni-
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Fig. 17. Fit of the temperature profile with a power law for R > 0.3 R500.
Orange (blue) points represent regions where SOU/BKG is greater
(smaller) than 0.2. The blue line and dark envelope represent the best
fit function and its errors on the full dataset, while the light shaded area
marks the intrinsic scatter. The red line and envelope show the best-fit
for regions with SOU/BKG > 0.2 (intrinsic scatter not shown for clar-
ity).

versal function (e.g., Baldi et al. 2012; Ghirardini et al. 2019).
The most used function has been introduced by Vikhlinin et al.
(2006), originally applied to the three-dimensional deprojected
profiles, but often used also to model the projected profiles
with different choices of the parameters (e.g., Baldi et al. 2012;
Ghirardini et al. 2019). This model predicts a temperature gra-
dient in the central regions, which however is typically present
only in cool-core clusters, and it is thus customary to fit sep-
arately the profiles of the two classes of objects. As discussed
in Sect. 6.1 we do not have a clear separation between the two
classes in our sample and the number of objects is relatively
small. We thus prefer to postpone this analysis to the full CHEX-
MATE sample. Nonetheless, beyond the core regions, the tem-
perature profiles of cool core and non-cool core clusters have
been shown to be quite similar, thus allowing us to fit the entire
sample with a single function. Moreover, in this radial regime
the profile can be well approximated with a power law with
T/T[0.15−0.75] R500 = N(R/R500)−α. We decided to fit the pro-
files for R > 0.3 R500 and derive the best fit parameters for
the slope, the normalization and the intrinsic scatter, first using
the full dataset and then considering only measurements with
SOU/BKG > 0.2. In both cases, we perform our fit in a Bayesian
framework, as presented in Sect. 6.3. The points and best fit func-
tions are shown in Fig. 17. For the full dataset, we measure the
slope α = 0.37±0.04 and the intrinsic scatter σint = 0.11±0.01.
If we exclude the regions with SOU/BKG < 0.2, the slope
becomes slightly flatter α = 0.29 ± 0.03 and the scatter reduces
to σint = 0.07 ± 0.01. We also split the radial range in two bins
(0.3 < R/R500 < 0.55 and 0.55 < R/R500 < 1) and fit each
of them with a separate power law (see e.g., Ghirardini et al.
2019). In the [0.3−0.55] R500 radial bin we do not have points
with SOU/BKG < 0.2, therefore we performed a single fit and
measured α = 0.25±0.05. In the [0.55−1] R500, the profile steep-
ens and we find α = 0.70±0.15 for the full sample and 0.44±0.15
for SOU/BKG > 0.2 (see also Table 5).

The steepening of the profile while moving to exter-
nal regions has been already observed in the literature (e.g.,
Ghirardini et al. 2019) and our results are in qualitative agree-
ment (see also Sect. 7.1). We note however that the steepening
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Table 5. Best fit slope in different radial range for our sample and com-
parison samples.

Sample [0.3−1] [0.3−0.55] [0.55−1]

DR1 all 0.37 ± 0.04 0.25 ± 0.05 0.70 ± 0.15
DR1 high S/B 0.29 ± 0.03 0.25 ± 0.05 0.44 ± 0.15
REXCESS 0.50 ± 0.05 0.20 ± 0.05 0.99 ± 0.19
ESZ 0.38 ± 0.03 0.16 ± 0.04 0.73 ± 0.14
X-COP spectro 0.45 ± 0.05 0.16 ± 0.14 0.61 ± 0.16
Simulations 0.34 ± 0.03 0.24 ± 0.07 0.41 ± 0.08

is less pronounced if we consider only measurements with
SOU/BKG > 0.2 and that even in the full radial range the best
fit profile is flatter than when using all measurements (Fig. 17).
This is in agreement with the results already shown for the
mean and median profile in Sect. 6.2 and it is likely due to
temperature measurements biased low in heavily background-
dominated regions (Fig. 14). We checked the results presented
in this section also using a SOU/BKG estimator computed in the
soft band and we find consistent results.

7. Discussion

7.1. Comparison with previous results

In this section, we compare our average profiles with results
from other samples with different selections. We tried to be con-
sistent in our comparisons, computing the median from the indi-
vidual profiles for the literature samples with the same code used
for DR1 analysis and applying a similar scaling on temperature
whenever possible. Since we cannot apply SOU/BKG thresholds
in the comparison samples, we do not apply it to the DR1 sam-
ple either. We focus only on cluster samples observed by XMM-
Newton and for which we had access to the individual profiles.

In the left panel of Fig. 18, we compare our median tem-
perature profile with the one of REXCESS (Pratt et al. 2010)
and ESZ (a sample of 62 SZ-selected clusters described in
Planck Collaboration V 2013). For these samples, we could
rescale the temperature by the value measured in an annu-
lus [0.15−0.75] R500, as we do for our data, with the only
difference that R500 in the comparison samples is obtained
from MYX while in DR1 from MSZ. Moreover the binning
scheme used to derive the temperature profiles in both sam-
ples is very similar to the one we used here. REXCESS is
a purely X-ray selected sample (Böhringer et al. 2007), cov-
ering a redshift range 0.05−0.18 and a mass range M500 in
[1−8]×1014 M� (Pratt et al. 2010). Conversely, ESZ is the inter-
section of the 189 clusters detected by Planck in the Early SZ
sample (Planck Collaboration VIII 2011) and the XMM-Newton
archive as of mid-2011 (Planck Collaboration XI 2011). The
DR1 median profile is consistent, at less than one sigma, with
the other measurements in almost all radial bins. We note that
the error bars of the DR1 profiles are always smaller than in the
other samples although with a similar sample size. This may be
related to the better quality of the CHEX-MATE data, tailored to
reach a 15% error on the temperature measurements at R500, with
respect to the other samples. The only significant difference is
with REXCESS in the [0.8−1] R500 bin, where temperature mea-
surements are more sensitive to the details of the background
treatment. Moreover, the different selection as well as the lower
median mass in the sample could also have a role in the
difference.

In the right panel of Fig. 18 we compare the DR1 median
profile with that of the X-COP sample, both from the standard
X-ray analysis (blue squares) and with the joint fit with SZ data
(red triangles, see Ghirardini et al. 2019 for more details). Here,
the background treatment of the XMM-Newton data is more sim-
ilar to what we used, but the binning and observation strategy
is different. Moreover, we could not scale the temperature by
an external value in the same region, so we relied on rescal-
ing by a predicted temperature from the mass, as introduced in
Sect. 6.3, using in both cases Eq. (10) in Ghirardini et al. (2019).
This could induce some difference, since for X-COP we used
the hydrostatic masses rather than MSZ. In the external regions,
the agreement between the DR1 profile and the spectroscopic X-
COP is very good. Only in the last radial bin, the joint X-SZ mea-
surement is slightly larger than the DR1 profile, but it is interest-
ing to note that it is consistent with our measurement once we
exclude low SOU/BKG regions (gray empty circles in Fig. 18).
This is further indirect indication of a bias in measuring X-ray
temperatures in strongly background dominated spectra. There
are some differences in the more internal regions which are at
least partly due to the different fraction of cool cores in the two
samples and to the different binning.

In Fig. 19, we compare the scatter profile of CHEX-MATE
DR1 with the literature samples discussed above. The DR1 scat-
ter profile is consistent with that of REXCESS and ESZ at
all radii and only marginally smaller than the one in X-COP
between [0.15−0.5] R500. We note that in all cases we used T500
derived from the mass to rescale the temperature measurements,
but only for the DR1 sample the scaling value is independent, as
it is derived from the SZ masses. Indeed, for X-COP we used the
hydrostatic masses, while for ESZ and REXCESS we used the
mass derived from YX. In both cases they are not independent
from the temperature measurements and this may in principle
induce a covariance which suppresses the scatter.

We fit the profile with a power law also for the comparison
samples in the same radial ranges used for DR1 (Sect. 6.4) and
report the best fit slopes in Table 5. For the comparison sam-
ples, we always use all available measurements in our fits. The
slope values are typically consistent within 2σ with the values
measured for our sample using all our measurements. It is inter-
esting to note that, especially in the radial bin [0.55−1] R500,
all profiles show a steep slope and only our measurement with
SOU/BKG > 0.2 is significantly flatter, which is however con-
sistent with the slope measured from the combination of X-ray
and SZ data in X-COP by Ghirardini et al. (2019) in a similar
radial range (α = −0.34 ± 0.18 for 0.56 < R/R500 < 0.86). This
suggests that once we exclude heavily background-contaminated
regions, our analysis allows us to reproduce the shape of the
temperature profiles as derived by other independent methods,
in principle less affected by background systematic than X-ray
measurements. During the fit procedure, we scale our profiles,
as well as REXCESS and ESZ, with T[0.15−0.75] R500 , while the
X-COP profiles are rescaled based on the mass.

7.2. Comparison with numerical simulations

In this section, we compare our results with predictions from
numerical cosmological simulations. More specifically, we used
the GADGET-X version of the simulations from The Three
Hundred collaboration (Cui et al. 2018), which contains a rel-
atively large set of massive clusters and is thus well-suited to
compare with the CHEX-MATE sample. The baryon physics
adopted in these simulations includes the star formation models
and stellar and AGN feedback, described in Rasia et al. (2015).
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Fig. 18. Comparison of median temperature profiles of the CHEX-MATE DR1 sample (black circles) with other samples studied in the liter-
ature. Left panel: comparison with ESZ and REXCESS median profiles, where we have scaled temperature values by the best fit in a region
[0.15−0.75] R500. Right panel: comparison with X-COP, both the standard results from the X-ray analysis (blue squares) and the joint fit with SZ
data (red triangles). The gray empty circles show the DR1 median profile after applying the SOU/BKG > 0.2 selection. Here the temperature
scaling T500 is computed from the mass with the expression in Ghirardini et al. (2019), both for X-COP and for CHEX-MATE data. Dashed lines
show the total scatter in the DR1 profile.
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Fig. 19. Comparison of the intrinsic scatter profiles in CHEX-MATE
DR1 (black points) with other samples in the literature (colored shaded
areas), showing consistent results at all radii.

We built a simulated counterpart for the DR1 sample using a
procedure similar to the one adopted in Bartalucci et al. (2023),
to which we refer for details. Briefly, we match each observed
cluster with a simulated one, in the closest redshift snapshot and
with similar mass, taking into account a 20% possible under-
estimate of the mass MSZ of DR1 clusters due to hydrostatic
bias. For each simulated cluster, we extract spectroscopic-like
temperature (Mazzotta et al. 2004) profiles in fixed bins of R500,
projected in three orthogonal directions. We compute a temper-
ature and an error in each radial bin for each object, using the
mean and dispersion of the three projections.

We then analyze the profiles of simulated clusters as we do
for observations (Sect. 6.3), to obtain the mean profileshown in
Fig. 20. The mean scaled profile, obtained by rescaling temper-
atures by the value measured in the annulus [0.15−0.75] R500,
shows a nice agreement with the observed profile at R > 0.3 R500.

This is confirmed by the fit with a power law of the simulated
profiles, which returns a slope 0.34 ± 0.03 in the [0.3−1] R500
radial range, consistent with the value for the DR1 sample (see
Table 5). It is interesting to note that for R > 0.55 R500 we obtain
a slope of 0.41±0.07, which is similar to the value obtained using
only the regions with SOU/BKG > 0.2, thus supporting our
choice of excluding the more background-dominated regions.
We see some differences in the central regions, which may be
due to the different morphological mix between the observed
and simulated sample, but also to the difficulties of simulations
to fully reproduce the complex physics of cool core clusters.

To compute the profile of intrinsic scatter, also shown in
Fig. 20, both for observations and simulations we rescale the
temperature by T500 derived from the mass to minimize the
covariance. For simulations, we reduce the true masses by a fac-
tor of 20% to mimic “hydrostatic-like” masses. The scatter in
simulated clusters shows a very nice agreement with the obser-
vations, suggesting that our simulations and the DR1 sample
are consistently sampling the variety of properties of the clus-
ters population. Moreover, it suggests that these simulations cap-
ture the main physical processes (gravity-driven accretion and
feedback processes) driving the shape of the profiles and their
diversity.

8. Summary and conclusions

In this paper, we present the pipeline that will be used in
the CHEX-MATE collaboration for spectral extraction in radial
annuli, for their fit, and for the production of projected radial
profiles. We also applied it for the study of the temperature pro-
file of a subsample of 30 objects that are representative of the
CHEX-MATE sample.

The pipeline combines the best practices developed during
previous projects, namely REXCESS (Pratt et al. 2007, 2010),
Planck (Planck Collaboration XI 2011; Planck Collaboration V
2013), X-COP (Tchernin et al. 2016; Ghirardini et al. 2019),
and M2C (Bartalucci et al. 2018, 2019), taking the peculiar
characteristics of the CHEX-MATE sample (including both
nearby extended objects and more distant compact clusters
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Fig. 20. Comparison of the mean temperature (left panel) and intrinsic scatter (right panel) of the DR1 sample with those obtained from numerical
simulations, using both spectroscopic-like temperatures.

CHEX-MATE Collaboration 2021) into account. The main nov-
elties of our pipeline, which have been presented in this paper for
the first time, are the construction of a physical model for the par-
ticle background (both induced by high-energy Galactic cosmic
rays and soft protons) for all EPIC detectors and the application
of a Bayesian MCMC framework, allowing for the propagation
of uncertainties on the background parameters up to the final
results of the spectral analysis.

We applied the pipeline to a subset of 30 CHEX-MATE clus-
ters (DR1), which was built to cover the different observation
properties of the full sample (background level and soft proton
contamination) and, at the same time, to be representative of the
physical properties of the parent sample, including the different
angular sizes of the targets. We measured temperatures ranging
from ∼2 to ∼14 keV in different clusters and regions and we
could map the profiles from the cores to the external regions
around R500 (Fig. 11). We have shown that, with the CHEX-
MATE pipeline and data quality, we are able to recover tem-
peratures in regions where the source intensity is as low as 20%
of the background in the 0.7−10 keV band, which is a significant
improvement with respect to past analysis (Leccardi & Molendi
2008 considered reliable-only measurements in regions where
SOU/BKG > 0.6). We estimated that the choices that we
inevitably had to make during the spectral fitting and background
modeling impact the temperature measurements for less than
10%, as long as we focus on regions with SOU/BKG > 0.2.

We used our results to measure the weighted mean and
median temperature profile and found that the latter is less
affected by regions with low SOU/BKG. We thus used the
median profile to compare our results with literature samples,
where we could not apply the SOU/BKG cut, and found consis-
tent results. We also measured the profile of the intrinsic scatter
and showed that scaling by a mean temperature T[0.15−0.75] R500
suppresses the scatter with respect to the scaling for an external
quantity, such as the gravitational temperature derived from the
mass (Fig. 16). With the external scaling, the agreement is very
good, both with other samples (Fig. 19) and with simulations
(Fig. 20). We modeled the temperature profile at R > 0.3 R500
with a piece-wise power law and noticed that the profile steepens
going outward, in agreement with other samples in the literature.
It is interesting to note that in the radial range [0.55−1] R500, the
slope of the profile is steep and consistent with all other X-ray
measurements in the literature. However, once we excluded

heavily background-contaminated regions with SOU/BKG <
0.2, our analysis returned a flatter profile, reproducing the shape
of the temperature profiles derived by the joint fit of SZ and
X-ray measurements (Ghirardini et al. 2019), which in principle
are less affected by background systematic than X-ray spectro-
scopic measurements. Moreover, our profile matches the predic-
tions of numerical simulations.

The temperature profiles presented in this paper will be used
in combination with the surface brightness measurements shown
in Bartalucci et al. (2023) to reconstruct the three-dimensional
radial profiles of most thermodynamic quantities of the ICM,
the total mass profile through the hydrostatic equilibrium equa-
tion, and all of the related integrated quantities, with the purpose
of addressing the main scientific question of the CHEX-MATE
projects (CHEX-MATE Collaboration 2021). We will apply
the CHEX-MATE pipeline presented in this paper for spec-
tral extraction and fitting to the full CHEX-MATE sample of
118 clusters to extract radial temperature profiles for all of them.
This will allow us to extend the analysis presented in this paper
to the full sample and thus to perform the statistical comparison
that was not possible with only 30 objects. The full sample will
allow us to compare the temperature profiles in different mass
and redshift ranges, as well as in different dynamical states.
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Appendix A: Calibration of the background model

This section presents the calibration of the physically motivated
background model introduced in Sect. 4 on a large set of more
than 500 individual blank-sky pointings. The selected blank
fields were mainly collected in the framework of the XMM-
XXL survey (Pierre et al. 2016) and following surveys. The typ-
ical duration of the observations is in the range 10−40 ks, which
matches well the typical duration of CHEX-MATE observations.
The blank-sky pointings were reduced using the exact same
procedure as devised in Sect. 3.1, including the extraction of
CRPB spectra (Sect. 4.1) and of the SP contamination indica-
tor inFOV − outFOV .

A.1. Stacked residual spectra

We extracted spectra from four annuli centered on the telescope’s
aim point covering the radial ranges [0′−5′], [5′−9′], [9′−12′],
and [12′ − 15′]. For each spectrum, we modeled the CRPB con-
tribution using the method devised in Sect. 4.1 and used the
ROSAT all-sky survey spectra to model the sky background (see
Sect. 4.3). These two components are well characterized and
their origin is well understood, such that the difference between
the measured spectra and the predicted model gives us a handle
on the residual focused component, at least partly due to SP. We
then sorted the observations in term of their residual SP contam-
ination as traced by the inFOV − outFOV indicator and stacked
the residual spectra in bins of inFOV − outFOV .

In Fig. A.1 we show the stacked residuals in the [12′ − 15′]
annulus for low (inFOV − outFOV < 0.03 cts/s) and high SP
contamination (0.08 < inFOV −outFOV < 0.18 cts/s). We see a
significant excess over the model in all cases, although the ampli-
tude of the excess strongly depends on inFOV−outFOV . At low
energy (E < 2 keV), where the dominant background component
is the sky emission, the residuals are essentially independent of
inFOV − outFOV . This points toward a systematic calibration
offset between XMM-Newton and ROSAT, as already shown by
Eckert et al. (2011). The ROSAT spectral normalization appears
on average 14% lower than the XMM-Newton one, which we
correct for the remainder of the analysis by applying a renor-
malization factor of 1/0.88 to the ROSAT spectra (see Sect. 4.3).
Conversely, beyond 2 keV the residual spectra strongly depend
on inFOV − outFOV , indicating that the model residuals scale
well with the SP contamination. Therefore, we fit the residual
spectra beyond 2 keV with a power law I(E) ∝ E−Γ, which is
indicated with the solid lines in Fig. A.1. The spectral shape of
the residual SP component appears universal, with a slope of
Γ = 0.6 that is nearly independent of inFOV − outFOV .

A.2. Relation between SP normalization and
inFOV − outFOV for MOS

Given the finding that the excess component seems to corre-
late with SP contamination and that its spectral shape is nearly
universal, we fit the residual spectra of each observation with a
power law I(E) = NQS PE−Γ with a fixed slope Γ = 0.6. We then
study how the normalization of the SP component, NQS P, can be
predicted on the basis of inFOV − outFOV . Assuming that the
additional component considered here can be entirely attributed
to a residual SP contamination, we expect this component to vary
across the detector with a vignetting curve that is consistent with
the known SP vignetting, which is flatter than that of photons. To
take the SP vignetting into account, for each spectrum we used
the SAS task protonscale to determine an effective region area

(hereafter PROTSCAL) and normalized the fitted SP normaliza-
tion by the corresponding PROTSCAL value, such that in case
the excess component is induced by a residual SP component its
pattern across the detector is correctly take into account.

In Fig. A.2 we show the fitted SP normalization scaled by
the SP vignetting factor PROTSCAL as a function of inFOV −
outFOV for the two MOS detectors. We observe a clear correla-
tion between the two quantities, with a Pearson correlation coef-
ficient of 0.82 (MOS1) and 0.88 (MOS2). For comparison, we
also show the normalization of the excess component obtained
when fitting stacked spectra in bins of inFOV − outFOV , which
allows us to better highlight the relation. We then fit the relation
with a power law,

NQS P

PROTS CAL
= ASP

(
inFOV − outFOV

0.05cts/s

)BSP

(A.1)

and a free log-normal intrinsic scatter. For MOS1 we measure
ASP,MOS1 = (4.73 ± 0.29) × 10−5 and BSP,MOS1 = 1.15 ± 0.10
with an intrinsic scatter σlog N = 0.16+0.07

−0.05 dex. We obtain very
similar values for MOS2, with ASP,MOS2 = (4.53 ± 0.31) ×
10−5, BSP,MOS2 = 1.06 ± 0.09 and an intrinsic scatter σlog N =

0.18+0.06
−0.05 dex. The consistent results obtained with the two MOS

detectors are probably unsurprising, given that the detector and
telescope properties are very similar.

A.3. Relation between SP normalization and
inFOV − outFOV for pn

As in the previous section, we attempted to correlate the normal-
ization of the excess component with the inFOV−outFOV indi-
cator for the pn detector as well. While we also found a relation
between the pn excess component and inFOV − outFOV (com-
puted for the MOS2 detector as in Marelli et al. 2017), the rela-
tion appears to have a much larger intrinsic scatter of ∼ 0.4 dex,
such that it is much more difficult to predict the value of NQS P for
the pn data on the basis of inFOV − outFOV . The main reason
for the large intrinsic scatter is the difference in the selection of
good time intervals between the MOS and pn detectors. Indeed,
given the higher sensitivity of the pn to SP, the light curve fil-
tering procedure (see Sect. 3.1) typically excludes a higher frac-
tion of the total observation time for pn than for MOS, such that
the selection of good time intervals need not coincide. Given the
highly variable nature of the SP component, the relation between
the excess component and the inFOV − outFOV indicator based
on MOS2 data exhibits a substantial level of scatter. To allevi-
ate this issue, we considered the possibility of defining its own
inFOV − outFOV indicator for pn as well. This is rendered dif-
ficult by the lack of shielded area in the pn. Following the proce-
dure devised in Sect. 4.1, we predict the expected intensity of the
pn CRPB on the basis of the MOS2 outFOV value, which can
be done in spite of the different selection of good time intervals
as the CRPB is known to vary over timescales that are typically
much longer than our observation. We can then determine the
high-energy count rate inside the pn FoV, scale this value per
unit area, and compute an equivalent of inFOV − outFOV in the
following way:

(inFOV − outFOV)PN = CRann − ACRPB outFOVMOS 2 (A.2)

with ACRPB the CRPB proportionality constant defined in Eq. 2
and CRann the [10-14] keV count rate in the [12 − 15] arcmin
annulus centered on the aim point. The use of the external annu-
lus allows us to exclude any potential photon contribution in
case a bright, hot cluster is observed on axis. We then attempted
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Fig. A.1. Stacked residual spectra in the [12′ − 15′] annulus for two sets of blank-sky observations sorted by their values of inFOV − outFOV .
The left-hand panel shows the low-contamination dataset (inFOV − outFOV < 0.03 cts/s) whereas in the right-hand panel we are selecting only
highly contaminated observations (0.08 < inFOV − outFOV < 0.18 cts/s). The residuals were fit beyond 2 keV with a power law indicated by the
solid lines. The bottom panels show the residuals compared to the model.
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Fig. A.2. Normalization NQS P of the excess component as a function of inFOV − outFOV for MOS1 (left) and MOS2 (right). The gray points
show individual blank-sky observations whereas the red points show the stacked results in bins of inFOV − outFOV . The blue solid line and
shaded area show the fit to the data and the 1σ error envelope around the model, whereas the cyan shaded area shows the intrinsic scatter of the
relation.

to correlate the new indicator defined in Eq. A.2 with the nor-
malization of the pn excess component. The resulting relation
is shown in Fig. A.3. We found a much tighter correlation than
with the MOS-based quantity, with a correlation coefficient of
0.85. Fitting the data with the same model as in Eq. A.1 albeit
with (inFOV − outFOV)PN instead of inFOV − outFOV , we
found ASP,PN = (1.85 ± 0.08) × 10−4, BSP,PN = 0.98 ± 0.05, and
σlog N = 0.10+0.05

−0.04 dex. We can see that the normalization of the
excess component for pn is about 4 times higher than that of the
MOS detectors. In all cases, the slope of the relation is close to
one.
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Fig. A.3. Normalization NQS P of the excess component as a function
of the pn inFOV − outFOV indicator, computed as in Eq. A.2. As in
the previous plot, gray points represent individual measurements and
red points are stacked results, the blue solid line and area show the best
fit relation and its 1σ envelope, while the light blue shows the intrinsic
scatter.
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Appendix B: Effects of the different abundance
tables on the best-fit spectral measurements of
the parameter of the phabs(apec)

Fig. B.1. Ratio of the abundances of the different elements (indicated
with their atomic number Zelem) between the values quoted in angr and
lodd09 and the values of reference in aspl. In brown (lodd09) and filled
diamonds (angr), we show the relative abundance of helium (Zelem = 2)
and iron (Zelem = 26).

We have estimated the effects of changing the adopted abun-
dance table in XSPEC on the best-fit spectral parameters of a
thermal model, either absorbed or not. We refer to the spectral
model phabs(apec) set as a reference and in which both com-
ponents depend on the assumed table for the metal abundance6.

We simulate spectra in XSPEC convolved with the XMM pn
response using the fake command with no background, and
defining an exposure time (texp = 106 sec) and a normaliza-
tion of the thermal model (Kapec = 1) high enough that the
count statistic is not a limitation. We evaluate the impact of the
assumed table for the metal abundance in two cases, one with
NH = 0.05 × 1022 cm−2 and fixing NH = 0. The latter condi-
tion allows us to quantify the impact on the thermal model only.
We simulate the spectrum with a metallicity of Z = 0.3 times
the solar values in aspl (Asplund et al. 2009), and investigate
how the best-fit parameters change by changing the abundance
table with the XSPEC command abund. We consider all the
abundance tables available in XSPEC7, plus Lodders et al. 2009
(hereafter lodd09) that is not available in XSPEC and is loaded
with the command abund file lodders09.tab, where “lod-
der09.tab” is a one-column file with the number density rela-
tive to hydrogen of the elements with atomic number Zelem from

6 about the dependence of the phabs model see https://heasarc.
gsfc.nasa.gov/xanadu/xspec/manual/node249.html
7 see https://heasarc.nasa.gov/xanadu/xspec/manual/
XSabund.html also for references

Table B.1. Variation in percentage with respect to aspl. The quoted val-
ues indicate the minimum, mean and maximum over the range investi-
gated in temperature and redshift. The best-fit parameters are the apec
normalization K, the temperature T and the metal abundance Z, and are
estimated with different nH .

NH = 0.05 × 1022 cm−2

angr lodd09
K −0.5, 1.4, 3.8 −2.7,−2.3,−1.7
T −8.7,−5.7,−3.0 −3.8,−2.7,−1.8
Z −38.5,−32.6,−25.1 −8.5,−3.1, 2.0

NH = 0
angr lodd09

K −3.9,−3.5,−2.5 −4.7,−4.2,−3.9
T 0.0, 0.3, 1.0 −0.4,−0.3,−0.2
Z −30.3,−29.3,−26.5 −2.4,−0.7, 0.2

1 to 30. We run the procedure using a range of temperatures
(2, 5, 8 keV) and redshifts (0.05, 0.2, 0.6) defined to enclose
the properties of the systems that will be studied in the CHEX-
MATE analysis. Each spectrum is rebinned to have at least 1
count in each bin and fitted with Cash statistics over the range
0.5−8 keV.

We focus our analysis on the changes due to the use of the
abundance tables angr and lodd09 in fitting simulated spectra
produced with the abundance table aspl. The values in the tab-
ulated metal abundances are plotted in Fig. B.1 as a function
of the atomic number and normalized to the ones in aspl. The
main differences with respect to aspl are the higher (by ∼40%)
Fe abundance in angr and the lower (by 12%) He abundance in
lodd09 (see also Ettori et al. 2020).

The outputs of the spectral analysis are saved and the results
are plotted in Fig. B.2 and summarized in Table B.1. We con-
clude that the differences are more severe (with an average bias
of −30%) on the estimates of the metal abundance in angr
because of its higher reference abundance of Fe, whereas they
are in the order of few percent on the measurements of K and T .
When an NH = 0.05 × 1022cm−2 is considered, the mean bias in
normalization K is −2(+2)% for lodd09 (angr). On the temper-
ature T , it is −3% for lodd09 and −6% for angr. The metallicity
Z is biased by −3% (−30%) in lodd09 (angr). When no Galactic
absorption is considered and just the effect on the thermal model
is quantified, the biases using lodd09 with respect to the adopted
aspl are in the order of < 1% on T , −1% on Z, and about −4% on
K; using angr, they are similar on T and K, and are still −30%
on Z.

We emphasize that the estimates performed here for NH , 0
are valid only for the phabs model, which uses the abundance
table set for the XSPEC fit. Other models, such as wabs and
tbabs use their own hard-coded abundance table.

A68, page 25 of 37

https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node249.html
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node249.html
https://heasarc.nasa.gov/xanadu/xspec/manual/XSabund.html
https://heasarc.nasa.gov/xanadu/xspec/manual/XSabund.html


Rossetti, M., et al.: A&A, 686, A68 (2024)

Fig. B.2. Ratios between the best-fit parameters and the input values. Points are color-coded according to the adopted abundance table (aspl: red,
lodd09: yellow, aspl: blue, grsa: green, wilm: purple). Different symbols refer to different redshifts (z = 0.05: open diamonds; z = 0.2: open
circles; z = 0.6: filled circles). (Left) Assuming NH = 0.05 × 1022 cm−2; (right) with NH = 0.
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Appendix C: Data and figures of individual clusters

In this Appendix, we report the data, the plots of the temperature
profiles, and the images with masked point sources and annuli
used for spectral extraction for all the clusters in our sample.
The full table with the temperature profiles is available in elec-
tronic format at CDS. Here we show an excerpt in Table C.1.
The first column shows the name of the cluster, while the second
and third ones show the sky extension R500 in arcminutes and

the mean temperature T[0.15−0.75]R500, estimated in the annulus
between 0.15 and 0.75R500. Columns 4 and 5 report the coor-
dinates of the center used for spectral extraction (the peak in
Bartalucci et al. 2023), while columns 6 and 7 show the center
of the radial bin R and the width dR (annulus included between
R − dR and R + dR). Columns 8, 9, and 10 report the best
fit temperature and its errors (downward and upward) obtained
with our baseline MCMC procedure, while column 11 shows the
S OU/BKG ratio in the radial bin.

Table C.1. Temperature profiles for the clusters of our sample. The full table is available at CDS.

Name R500 Tmean R.A. Dec. radius width T dTdown dTup S OU/BKG
arcmin keV deg deg arcmin arcmin keV keV keV

PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 0.0825 0.0825 7.74 0.91 0.82 29.69
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 0.2475 0.0825 6.95 0.58 0.57 29.72
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 0.4400 0.1100 6.76 0.45 0.47 18.40
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 0.6875 0.1375 7.51 0.47 0.46 11.29
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 0.9900 0.1650 6.55 0.38 0.36 7.28
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 1.3750 0.2200 6.60 0.33 0.30 5.01
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 1.8700 0.2750 8.44 0.54 0.53 3.38
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 2.5025 0.3575 6.66 0.36 0.38 1.98
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 3.3275 0.4675 6.44 0.50 0.51 1.01
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 4.4000 0.6050 6.81 0.86 0.86 0.35
PSZ2 G008.31-64.74 4.51 6.83 344.7010 -34.8005 5.6925 0.6875 6.40 1.86 1.17 0.12
PSZ2 G041.45+29.10 6.48 6.35 259.4366 19.6766 0.1100 0.1100 6.14 0.73 0.71 12.85
PSZ2 G041.45+29.10 6.48 6.35 259.4366 19.6766 0.3025 0.08250 7.37 0.66 0.67 13.4
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Fig. C.1. Image and temperature profile of PSZ2G008.31-64.74. The left panel shows the cluster image in the [0.7 − 1.2] keV band, with overlaid
masked point sources and the annulus used for estimating the sky background. In the central panel we show the annular regions used for the
extraction of the temperature profile, which is represented in the right panel, where the dashed line marks the position of R500.
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Fig. C.2. Same as Fig. C.1 for cluster PSZ2G041.45+29.10.
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Fig. C.3. Same as Fig. C.1 for cluster PSZ2G042.81+56.61.
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Fig. C.4. Same as Fig. C.1 for cluster PSZ2G046.88+56.48.
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Fig. C.5. Same as Fig. C.1 for cluster PSZ2G050.40+31.17.
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Fig. C.6. Same as Fig. C.1 for cluster PSZ2G056.77+36.32.
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Fig. C.7. Same as Fig. C.1 for cluster PSZ2G056.93-55.08.
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Fig. C.8. Same as Fig. C.1 for cluster PSZ2G057.78+52.32.
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Fig. C.9. Same as Fig. C.1 for cluster PSZ2G057.92+27.64.
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Fig. C.10. Same as Fig. C.1 for cluster PSZ2G066.41+27.03.
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Fig. C.11. Same as Fig. C.1 for cluster PSZ2G072.62+41.46.
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Fig. C.12. Same as Fig. C.1 for cluster PSZ2G077.90-26.63.
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Fig. C.13. Same as Fig. C.1 for cluster PSZ2G083.86+85.09.
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Fig. C.14. Same as Fig. C.1 for cluster PSZ2G113.29-29.69.
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Fig. C.15. Same as Fig. C.1 for cluster PSZ2G113.91-37.01.
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Fig. C.16. Same as Fig. C.1 for cluster PSZ2G114.79-33.71.

A68, page 32 of 37



Rossetti, M., et al.: A&A, 686, A68 (2024)

  

 

 

  

 

 

  

 

 

PSZ2G149.39-36.84

15 10 5 0 -5 -10 -15

Arc Minutes

-15

-10

-5

0

5

10

15

A
r
c
 M

in
u

t
e
s

  

 

 

  

 

 

PSZ2G149.39-36.84

15 10 5 0 -5 -10 -15

Arc Minutes

-15

-10

-5

0

5

10

15

A
r
c
 M

in
u

t
e
s

Fig. C.17. Same as Fig. C.1 for cluster PSZ2G149.39-36.84.
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Fig. C.18. Same as Fig. C.1 for cluster PSZ2G195.75-24.32.
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Fig. C.19. Same as Fig. C.1 for cluster PSZ2G207.88+81.31.
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Fig. C.20. Same as Fig. C.1 for cluster PSZ2G224.00+69.33.
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Fig. C.21. Same as Fig. C.1 for cluster PSZ2G238.69+63.26.
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Fig. C.22. Same as Fig. C.1 for cluster PSZ2G243.15-73.84.
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Fig. C.23. Same as Fig. C.1 for cluster PSZ2G243.64+67.74.
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Fig. C.24. Same as Fig. C.1 for cluster PSZ2G277.76-51.74.

  

 

 

  

 

 

  

 

 

PSZ2G287.46+81.12

15 10 5 0 -5 -10 -15

Arc Minutes

-15

-10

-5

0

5

10

15

A
r
c
 M

in
u

t
e
s

  

 

 

  

 

 

PSZ2G287.46+81.12
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Fig. C.25. Same as Fig. C.1 for cluster PSZ2G287.46+81.12.
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Fig. C.26. Same as Fig. C.1 for cluster PSZ2G313.33+61.13.
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Fig. C.27. Same as Fig. C.1 for cluster PSZ2G313.88-17.11.
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Fig. C.28. Same as Fig. C.1 for cluster PSZ2G324.04+48.79.
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Fig. C.29. Same as Fig. C.1 for cluster PSZ2G340.94+35.07.
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Fig. C.30. Same as Fig. C.1 for cluster PSZ2G349.46-59.95.
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