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Abstract
Geometric Semantic Genetic Programming (GSGP) has shown notable success in 
symbolic regression with the introduction of Linear Scaling (LS). This achieve-
ment stems from the synergy of the geometric semantic genetic operators of GSGP 
with the scaling of the individuals for computing their fitness, which favours pro-
grams with a promising behaviour. However, the initial combination of GSGP and 
LS (GSGP-LS) underutilised the potential of LS, scaling individuals only for fitness 
evaluation, neglecting to incorporate improvements into their genetic material. In 
this paper we propose an advancement, GSGP with Lamarckian LS (GSGP-LLS), 
wherein we update the individuals in the population with their scaling coefficients 
in a Lamarckian fashion, i.e., by inheritance of acquired traits. We assess GSGP-LS 
and GSGP-LLS against standard GSGP for the task of symbolic regression on five 
hand-tailored benchmarks and six real-life problems. On the former ones, GSGP-LS 
and GSGP-LLS both consistently improve GSGP, though with no clear global supe-
riority between them. On the real-world problems, instead, GSGP-LLS steadily out-
performs GSGP-LS, achieving faster convergence and superior final performance. 
Notably, even in cases where LS induces overfitting on challenging problems, 
GSGP-LLS surpasses GSGP-LS, due to its slower and more localised optimisation 
steps.

Keywords  Symbolic regression · Geometric semantic genetic programming · Linear 
scaling · Lamarckian evolution · Genetic programming

1  Introduction

Genetic Programming  (GP) [1] has garnered increased attention in addressing 
symbolic regression problems [2–4], due to its ability to handle problems char-
acterised by limited or uncertain data, its capacity to evolve models without 
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predetermined mathematical forms, and its capability to perform automatic fea-
ture selection during learning. Traditionally, GP is employed to address symbolic 
regression problems using established loss measures, like, for instance, the root 
mean square error  (RMSE), to evaluate fitness. While this approach remains 
widely adopted, it does have a limitation: certain solutions may receive unfa-
vourable fitness values, despite their potential promise. This occurs, for example, 
when solutions closely resemble the target function in shape but differ in terms of 
slope and/or location within the Cartesian space. Linear scaling (LS) was intro-
duced by Keijzer [5] to tackle this issue and improve the performance of GP on 
symbolic regression. LS modifies the fitness function, rescaling each individual 
by using their slope and intercept, two constants that can be easily calculated with 
a cost that is linear in the size of the training set. Since its introduction, the ben-
efit of LS was demonstrated on many theoretical benchmark functions [5] and 
real-life applications [6–9]. These studies indicate that LS does not only improve 
standard GP on training data but can also bestow on GP a better generalisation 
ability, often outperforming standard GP also on unseen data. However, Costel-
loe and Ryan  [10] pointed out that methods that improve training optimisation, 
including LS, may not always improve GP’s generalisation ability as well.

A decade after the inception of LS, Moraglio et  al.  [11] introduced a novel 
variant of GP, known as Geometric Semantic GP (GSGP). GSGP differs from tra-
ditional GP by implementing specialised genetic operators referred to as Geomet-
ric Semantic Operators (GSOs). GSOs, despite acting directly on GP individuals’ 
syntax, have an indirect and known effect on their semantics, notably yielding a 
unimodal error surface for supervised learning problems [11]. Several references 
in the literature have shown the success of GSGP, particularly in limiting overfit-
ting, often surpassing standard GP on unseen data, when applied to real-world 
symbolic regression problems [11–13].

Given that LS entails a redefinition of the fitness and GSGP introduces novel 
genetic operators, which are typically regarded as separate elements within 
the GP framework, it seems reasonable to explore an integrated approach that 
joins these methodologies, with the objective of capitalising on the merits of 
both GSGP and LS. In accordance with this idea, a unified system merging GSGP 
and LS, denoted as GSGP-LS, was recently introduced in Nadizar et al. [14]. The 
outcomes presented in Nadizar et al. [14] exhibit commendable quality but are not 
without controversy. While GSGP-LS unquestionably outperforms GSGP across 
the majority of the assessed test problems, affirming the expected advantages of 
this fusion, it is intriguing that, on some particularly challenging datasets, GSGP-
LS tends to overfit training data, yielding inferior performance when compared to 
GSGP on unseen data. This, upon initial analysis, seems to challenge the belief 
that LS invariably benefits GP, thereby alerting practitioners to the potential risk 
of overfitting in specific scenarios.

This paper aims at refining GSGP-LS by introducing a novel method referred to 
as GSGP with Lamarckian LS (GSGP-LLS). The genesis of GSGP-LLS stems from 
the observation that the method used to integrate LS in GSGP in Nadizar et al. [14] 
may not be the most effective. In fact, following the original recommendation from 
Keijzer [5], in Nadizar et al. [14] individuals were solely rescaled during the fitness 
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evaluation phase, leaving their structures unaltered within the population. Conse-
quently, only the root of individual trees was impacted by linear scaling during the 
evaluation, while the genetic material deeper within the trees remained unscaled. 
The approach we adopt here is converse to this: we apply linear scaling by incor-
porating the scaling directly in the genotype of the individual, essentially following 
the concept of Lamarckian evolution. This adjustment ensures that when the genetic 
material of that individual is employed by subsequent descendants in the evolution, 
it remains scaled. As a result, individuals within the population after several evolu-
tionary iterations undergo more than just the rescaling of their root value; numer-
ous internal subtrees are similarly affected by linear scaling. It is our expectation 
that this approach will facilitate the evolutionary process, enabling more gradual and 
localised optimisation steps, possibly contributing to mitigating overfitting, in par-
ticular on those challenging datasets where GSGP-LS was outperformed by GSGP. 
This paper effectively extends [14] by introducing GSGP-LLS into the experimental 
comparison, where it is assessed alongside GSGP and GSGP-LS across the same 
test problems.

The remainder of this paper is organised as follows. In Sect. 2 we review previous 
works relevant to this study, while in Sect. 3 we describe GSGP and LS. Section 4 
presents GSGP-LLS, deepening on the difference between Darwinian and Lamarck-
ian evolution. In Sect.  5. we describe our experimental setup, first presenting the 
used test problems and then discussing the parameter settings. In Sect. 6, we present 
and comment on the obtained results. Finally, in Sect. 7 we conclude the work and 
propose ideas for future research.

2 � Previous and related work

Although similar ideas to LS had already been proposed for GP before Keijzer’s 
contribution [5], the previous works involving multiple linear regression were 
considered costly and increased the likeliness of overfitting, since they introduced 
extra parameters and limitations to the system [15–18]. Conversely, Keijzer’s work 
showed a dramatic improvement in the performance of GP for symbolic regression 
by applying LS to the error measure [5], at a limited computational cost. In his first 
contribution, Keijzer demonstrated the benefits of LS on several synthetic test func-
tions. Shortly after, he published another article, where he gave theoretical corrobo-
ration to the success of LS [19].

After Keijzer’s contribution, LS has been used in several benchmark problems 
and real-life applications. For instance, Archetti et al. [6], reported using LS with GP 
to improve the performance on several regression tasks related to the area of drug 
discovery. A few years later, the same authors also successfully applied LS with GP 
on another problem from the medical field, consisting in predicting the effect of an 
anticancer therapy on a specific cohort of patients [20]. In the same year, Raja et al. 
[7] also combined LS with GP for applications in the telecommunication area and 
concluded that the system that used LS outperformed the system that did not use it. 
A general trend has also been to integrate LS in GP systems that also contain other 
novel methods. For instance, Pennachin et al. [21] used affine arithmetic to improve 
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both the performance and the robustness of GP for symbolic regression, and they 
also performed LS of outputs before fitness evaluation. The presented results indi-
cate that the proposed system reduces the number of fitness evaluations needed dur-
ing training and improves generalisation of GP, reducing overfitting. Similarly, Azad 
and Ryan  [22] integrated  LS and a method to maintain diversity in a GP  system 
aimed at exploring lifetime learning. A few years later, Virgolin et  al.  [8] applied 
LS to a GP-based algorithm, called GP-GOMEA, on a symbolic regression problem 
from the area of oncology. Later, in another work where several other real-world 
datasets were employed [23], the same authors confirmed the power of  LS, suc-
cessfully integrating LS in a semantic backpropagation-based GP system. Recently, 
[9] tackled dynamic target problems by integrating LS with a GP system, using the 
hinge-loss functions to evolve a set of discriminant functions for multi-class clas-
sification. The authors reported on the advantage of the version that uses LS. Later, 
these results were confirmed and extended, providing an upper bound to the error in 
dynamic symbolic regression [9, 24] and classification [25].

Even though LS has been applied to GP several times, if we exclude [14], so far 
in the literature it is possible to find only one contribution in which LS has been 
integrated with GSGP: in 2015, Vanneschi et al. [26] applied LS to GSGP for tack-
ling an application in the maritime awareness domain. The objective of that work 
was to predict the position of vessels at sea, based on information related to the 
vessels’ past positions in a specific time interval, using AIS data. The proposed sys-
tem was compared to two different GP variants and three non-evolutionary machine 
learning methods, outperforming all of them.

Despite the several successes on real-life applications, Costelloe et  al.  [10] 
remarked that several methods that improve GP’s training performance, includ-
ing  LS, may not improve GP’s generalisation ability as well. This consideration 
is important since it partially reflects some of the findings that were presented in 
Nadizar et al. [14].

Lamarckian evolution, a notion discredited in traditional biology, has found 
renewed interest in the realm of digital evolution. It was explored within the context 
of evolutionary algorithms by several researchers. For instance, Gruau and Whitley 
[27] integrated a learning component into the development process of their grammar 
trees. The grammar trees underwent enhancement through learning during recom-
bination. These enhancements were then incorporated back into the chromosome, 
reflecting a Lamarckian evolutionary approach. Their objective was to facilitate 
early learning by enabling the impact of learning on development. Whitley et  al. 
[28] emphasised the potential for utilising Lamarckian strategies to expedite results, 
recognising their efficiency in accelerating the search process. Ross [29] stated that 
Lamarckian localised optimisation tends to enhance the fitness of the individuals in 
a population of Genetic Algorithms (GAs), consequently boosting the search perfor-
mance. However, he cautioned that if fitness evaluations during localised searches 
are computationally expensive, the use of Lamarckian evolution could incur high 
costs. Therefore, the practical application of Lamarckian evolution within  GAs 
should be judiciously weighed against the computational expenses relative to the 
problem being investigated. Starting from the understanding that individual learn-
ing can enhance evolution, Mingo and Aler [30] integrated the Lamarck mechanism 
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in their grammatical evolution system guided by reinforcement. This integration 
involved substituting the original genotype with information learned by the phe-
notype. Incorporating local learning into GP, Topchy and Punch [31] enabled the 
tuned performance of individuals to directly impact the genome, aligning with the 
Lamarckian principle of evolution. Their modifications aimed at improving final fit-
ness and speed. In their research, La Cava and Spector [32] introduced a GP method 
that effectively harnessed the benefits of Lamarckian updating, particularly its abil-
ity to drive fast convergence. This was achieved by conserving inheritable pheno-
typic improvements in offspring. Merta and Brandejský [33] conducted a compara-
tive analysis of Lamarckian and Baldwinian approaches to lifetime adaptation in GP 
for symbolic regression. Their experiments demonstrated that Lamarckian evolution 
exhibited faster performance than standard GP for symbolic regression of third-
degree polynomials, even considering the additional costs and computational time 
involved.

3 � Background

3.1 � Geometric semantic genetic programming

Let X = {x1, x2, ..., xn} be the set of input data (also referred to as training instances, 
observations or fitness cases) of a symbolic regression problem, and t = [t1, t2, ..., tn] 
the vector of the respective expected (scalar) output or target values (in other 
words, for each i = 1, 2, ..., n , ti is the expected output corresponding to input xi ). A 
GP individual (or program) P can be seen as a function that, for each input vector 
xi returns the scalar value P(xi) . Following [11], we call semantics of P the vec-
tor sP = [P(x1),P(x2), ...,P(xn)] . This vector can be represented as a point in an 
n-dimensional space, that we call semantic space. Note that the target vector t itself 
is a point in the semantic space. As explained above, GSGP is a variant of GP where 
the standard crossover and mutation are replaced by Geometric Semantic Opera-
tors (GSOs). The objective of GSOs is to define modifications on the syntax of GP 
individuals that have a precise effect on their semantics. In particular, Geometric 
Semantic Crossover  (GSC) generates one offspring whose semantics stands in the 
line joining the semantics of the two parents in the semantic space, while Geometric 
Semantic Mutation (GSM), by mutating an individual i, allows us to obtain another 
individual j such that the semantics of j stands inside a ball of a given predetermined 
radius centered in the semantics of i. One of the reasons why GSOs became popular 
is because GSOs induce a unimodal error surface (on training data) for any super-
vised learning problem where fitness is calculated using an error measure between 
outputs and targets. In other words, when using GSOs the error surface on training 
data is guaranteed to not have any locally optimal solution. This property holds, for 
instance, for any regression or classification problem, independently of how big and 
how complex data are. A detailed explanation of the reason why the error surface is 
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unimodal and why this is important can be found in Vanneschi [34]. The definitions 
of the GSOs are, as given in Moraglio et al. [11], respectively1:

Geometric Semantic Crossover (GSC) Given two parent functions 
T1, T2 ∶ ℝ

n
→ ℝ , GSC returns the function TXO = (T1 ⋅ TR) + ((1 − TR) ⋅ T2) , where 

TR is a random function, i.e., a randomly generated tree, whose output values range 
in the interval [0, 1].

Geometric Semantic Mutation (GSM) Given a parent function T ∶ ℝ
n
→ ℝ , 

GSM with mutation step ms returns the function TM = T + ms ⋅ (TR1 − TR2) , where 
TR1 and TR2 are random functions, i.e., randomly generated trees.

The reason why GSM uses two random trees TR1 and TR2 is that the amount of 
modification caused by  GSM must be centred in zero. In other words, a random 
expression is needed that has the same probability of being positive or negative. As 
pointed out in Moraglio and Mambrini [35], any isotropic Gaussian random function 
centred in zero can, in principle, be replaced with the term (TR1 − TR2) in the defini-
tion of GSM. Even though this is not in the original definition of GSM, later contri-
butions [13, 34, 36] have clearly shown that limiting the codomain of TR1 and TR2 in 
a predefined interval (for instance [0, 1], as it is done for TR in GSC) helps improve 
the generalisation ability of GSGP. For this reason, as in several previous works [12, 
34], also in this paper we constrain the outputs of TR , TR1 , and TR2 by wrapping them 
in a logistic function. As reported in Refs. [11, 34], GSOs have the drawback of gen-
erating larger offspring than the parents, and this entails a rapid growth of the size 
of the individuals in the population—to as many as 108 nodes, in our case. To coun-
teract this problem, in Refs. [12, 37, 38] implementations of GSOs were proposed, 
that make GSGP not only usable in practice but also significantly faster than stand-
ard GP. This is possible through a smart representation of GP individuals that allows 
us to not store their genotypes during the evolution. The implementation presented 
in [39] also employs the same idea, and it is the one used here.

3.2 � Linear scaling

Linear Scaling (LS) [5] is a method that was introduced to facilitate the task of GP 
of searching for the best function matching a set of known data. It consists in calcu-
lating the slope and intercept of the formula coded by a GP individual. Let P(xi) be 
the output of a GP individual P on the i-th observation of the training set. Using the 
same notation as in Sect. 3.1, a linear regression on the target values t can be per-
formed using the equations:

(1)b =

n
∑

i=1

[

(

ti − t
)

(

P(xi) − P
)]

n
∑

i=1

(

P(xi) − P
)2

, a = t − b P

1  Only the definitions of the GSOs for symbolic regression problems are given here since they are the 
only ones used in this work. For the definition of GSOs for other domains, we refer the reader to Mora-
glio et al. [11].
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where n is the number of training observations (fitness cases) and P and t denote the 
average output and the average target value, respectively. Values b and a respectively cal-
culate the slope and intercept of the set of outputs P(xi) , such that the sum of the squared 
errors between t and a + bP is minimised. After this, any error measure can be calculated 
on the scaled formula a + bP , for instance the RMSE. If a is different from 0 and b is 
different from 1, the procedure outlined above is guaranteed to reduce the RMSE for any 
formula P [5]. The cost of calculating the slope and intercept is linear in the size of the 
training set. By efficiently calculating the slope and intercept for each individual, the bur-
den of searching for these two constants is removed from the evolution. GP is then free to 
search for the expression whose shape is most similar to that of the target function.

3.3 � Lamarckian evolution

Lamarckian evolution, also known as Lamarckism, is a theory of evolution that was 
proposed by the French biologist Jean-Baptiste Lamarck in the early 19th century. 
Lamarck’s theory was an attempt to explain how species change over time through a 
mechanism involving the inheritance of acquired characteristics. Namely, Lamarck 
proposed that an organism could acquire new traits or characteristics during its life-
time, for instance as a result of its interactions with the environment. These acquired 
traits were believed to be passed on to the organism’s offspring, leading to evolu-
tionary change. It contradicts with Darwinian evolution by emphasising the direct 
impact of individual experiences on genetic inheritance.

Despite its substantial rejection in the field of Biology, Lamarckian evolution has 
demonstrated efficacy in artificial evolution applications within the realm of com-
puting. Unlike in natural scenarios, computer programs use simple mapping of phe-
notypic traits to genotypes, and the reversal of phenotypes back to their correspond-
ing genotypes is frequently manageable [29, 32]. In the context of GP, Lamarckian 
evolution involves encoding acquired traits directly into the genotype, impacting fit-
ness distribution and genotypic values [31, 40]. The concept of inheriting certain 
acquired characteristics from one generation to the next, in the context of the inte-
gration of GSGP and LS, will be elaborated in Sect. 4.

4 � LS and GSGP: Darwinian versus Lamarckian evolution

Building on top of the notions presented in Sect. 3, we hereby describe how we 
incorporate LS in GSGP. Namely, we consider two settings: one where evolution 
is performed in a standard Darwinian fashion, as already proposed in Nadizar 
et al. [14], and one where evolution follows the principles of Lamarckism.

In Darwinian evolution, we perform the standard GSGP evolutionary loop, 
applying LS for the fitness evaluation only, giving rise to GSGP with LS (GSGP-
LS). In this case, the only difference with respect to standard GSGP lies in the 
fitness evaluation, where we first compute the scaling coefficients on the training 
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set, as described in Sect. 3.2, and then rescale the individual accordingly to com-
pute its error. Clearly, when evaluating on the test set, we do not re-compute the 
scaling coefficients, but we use the ones computed on the training set. This cor-
responds to the recommendation of the original formulation of  LS by Keijzer, 
applied on GSGP instead of GP. It is important to note that in this case the coeffi-
cients serve only to compute the fitness of an individual, and are discarded there-
after. Hence, these coefficients, which likely yielded an improvement of an indi-
vidual, do not become available as genetic material.

Conversely, when applying Lamarckian evolution, in what we call GSGP with 
Lamarckian LS (GSGP-LLS), the scaling coefficients do become part of the 
individual’s genotype, and can therefore be used to generate fitter offspring. In 
more detail, given a function T, we first compute its scaling coefficients a and 
b, and then replace the initial individual T with Ts = a + bT  , which has the coef-
ficients embedded in its representation. Thus, the next generation will not inherit 
from T, but from Ts , which has acquired some traits, i.e., the scaling coefficients, 
after its interaction with the environment, i.e., after the evaluation on some data, 
as Lamarckism suggests. The rationale behind the idea of including the coeffi-
cients in the genotype is based on the fact that GSGP is able to induce a unimodal 
error surface. When we move from T to Ts , we make a step in the semantic space 
towards a more favourable area of the fitness landscape. Thus, we expect it to be 
more convenient to start from Ts to generate the offspring, rather than from T, as 
we could, in principle, get even closer to the target via mutation or crossover of 
a fitter individual. Nonetheless, there are no guarantees of GSGP-LLS being bet-
ter than GSGP or GSGP-LS: although the starting points for computing the new 
population might be better, as it is usual in traditional GSGP, we have no war-
ranty of moving in the right direction, e.g., when performing a mutation. Another 
point worth mentioning is that GSGP-LLS, differently from GSGP or GSGP-LS, 
further increases the size of the tree at each generation by appending four nodes 
to it (+ , × , a, b). However, this does not hinder the applicability of the method, 
because we do not constrain the size of the tree and we leverage a GSGP imple-
mentation which is efficient regardless of the tree size, thanks to a mechanism 
which exploits the output of the evolving programs instead of storing their geno-
type [39].

In conclusion,  Table  1 illustrates a brief example highlighting the difference 
between GSGP-LS and GSGP-LLS. We consider a single individual T in gen-
eration 0, and its progress to generation 1, using only the mutation operator. For 
GSGP-LS, the progression is straightforward: the scaling coefficients are absent 
because they are used only for calculating the fitness, and they are never stored as 
part of the individual. For GSGP-LLS, the first column represents the intermedi-
ate individual before adding the coefficients, while the second column represents 
the final individual after adding the coefficients, that is the individual that is actu-
ally inserted into the new population.
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5 � Experimental setup

We investigate the effectiveness of LS and LLS when combined with GSGP. To do 
so, we compare the performance of traditional GSGP (simply GSGP from now on), 
GSGP with LS (GSGP-LS) and GSGP with LLS (GSGP-LLS). As in [14], we con-
duct the experimental comparison on five hand-tailored symbolic regression bench-
marks and six real-life regression datasets. We implemented GSGP-LS and GSGP-
LLS using the General Purpose Optimisation Library  (GPOL) [39], a publicly 
available software platform that integrates numerous computational intelligence 
algorithms, including GSGP. LS and LLS have been integrated in the library on top 
of the existent GSGP implementation. This section describes the experimental study 
carried out: in Sect. 5.1 we overview the considered test problems and in Sect. 5.2 
we describe the parameter settings.

5.1 � Test problems

The five theoretical benchmarks that we have studied were taken directly from the 
paper that introduced LS [5]. They are:

•	 f5(x) = x3 exp−x cos(x) sin(x)(sin2(x) ∗ cos(x) − 1)

•	 f6(x, y, z) =
30xz

(x − 10)y2
•	 f7(x) =

x
∑

i
1∕i

•	 f8(x) = log x

•	 f9(x) =
√

x

Besides being a good scientific practice to test a method (in this study, LS) on the 
same case studies that were used when it was introduced, motivations for choos-
ing these benchmarks are the same as in Keijzer [5]. Namely, “many of the prob-
lems above mix trigonometry with polynomials, or make the problems in other 
ways highly non-linear”. Also, it is relevant to point out that, as stated in Keijzer 
[5],  “being of low dimensionality does not make the problems easy”. Exactly as 

Table 1   Progression of a single individual from generation 0 to generation 1 in GSGP-LS and GSGP-
LLS, using only mutation

For GSGP-LLS, the second column displays the final individual after the integration of the scaling coef-
ficients in the genotype. It is this final individual that is inserted into the new population

Gen GSGP-LS GSGP-LLS (intermediate) GSGP-LLS (final)

0 T T a0 + b0T

1 T + ms(TR1 − TR2) a0 + b0T + ms(TR1 − TR2) a1 + b1(a0 + b0T + ms(TR1 − TR2))

… … … …
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in Keijzer  [5], we have used these benchmarks with the training and test intervals 
reported in Table 2.

The six real-world regression problems that we have employed, and that have 
often been used as case studies for GP experiments, are:

•	 Boston Housing [41]: a dataset provided by the Statistical Library and main-
tained by Carnegie Mellon University. The purpose is to forecast housing prices 
using data such as air pollution, criminality, pupil-teacher ratio, etc.

•	 Concrete Compressive Strength [42]: a dataset aimed at predicting the strength 
of concrete depending on the age, mixture and other features of the ingredients.

•	 Parkinson Total UPDRS [43]: composed of a range of biomedical voice meas-
urements and other features of Parkinson’s disease patients. The aim is to predict 
the clinician’s Parkinson’s disease symptom score on the UPDRS scale.

•	 Bioavailability [6]: consists in predicting the human oral bioavailability of a set 
of drug compounds, based on a set of molecular descriptors.

•	 LD50 [6]: is also a problem in the field of pharmacokinetics. Its purpose is to 
predict the median lethal dose of a molecular compound, which is one of the 
most used measures to assess the toxicity of drugs.

•	 PPB [6]: is another dataset from the field of pharmacokinetics. Its aim is to pre-
dict the percentage of the initial drug dose which binds plasma proteins.

Table 3 reports the number of instances and attributes for each one of these data-
sets. Among these datasets, the Bioavailability one was criticised in Dick et al. [44], 
partially because of a lack of preprocessing, since it includes features that contain 
no information as well as contradictory relationships between the dependent and 
independent variables. However, according to many authors who have used this 
dataset, these characteristics are interesting and should be integrated in a reason-
able benchmark suite, because they allow us to test the ability of our algorithms to 
deal with the difficulties and ambiguities that are typical of real-world data. It is not 
our objective to discuss what characteristics a good benchmark suite should pos-
sess (the interested reader is referred to [45–48] for such a discussion). We simply 
observe that the Bioavailability dataset, as well as the PPB and LD50 datasets, have 

Table 2   Intervals used as training and test set for the hand-tailored benchmarks used in this work (taken 
from [5])

Intervals are expressed using the notation [start:step:stop]

Benchmark Training set Test set Note

f5 x, z = rnd(−1, 1),
y = rnd(1, 2)

x, z = rnd(−1, 1),
y = rnd(1, 2)

Train: 1000 cases,
Test: 10000 cases

f6 x = [1 ∶ 1 ∶ 50] x = [1 ∶ 1 ∶ 120] Extrapolation
f7 x = [1 ∶ 1 ∶ 100] x = [1 ∶ 0.1 ∶ 100] Interpolation
f8 x = [0 ∶ 1 ∶ 100] x = [1 ∶ 0.1 ∶ 100] Interpolation
f9 x = [0 ∶ 1 ∶ 100] x = [1 ∶ 0.1 ∶ 100] Interpolation
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been used in several previous GP studies, clearly indicating a trend for overfitting to 
emerge [12, 13, 36]. We thus use these three datasets as a sort of stress-test suite to 
assess the generalisation ability of GSGP with LS and LLS, compared to GSGP.

5.2 � Parameter settings

The objective of this work is to compare the studied LS variants on the GSGP algo-
rithm. Our focus is not on obtaining the best possible results on the considered test 
problems. For this reason, instead of optimising the hyperparameters, which would 
probably lead us to the use of different parameters for each problem, we have pre-
ferred to use a relatively standard parameter setting, taken as much as possible from 
the literature. This enabled us to use the same setting across all the experimental 
cases. Table 4 reports the employed parameters for each configuration.

We use a population of 100 individuals and run for 500 generations. The popu-
lations are initialised with the Ramped Half-and-Half method [1], with maximum 
initial tree depth of 6, and with no depth limit imposed during the evolution [11]. 
We employ the same function and terminal sets for each configuration, with the four 
basic arithmetic operators and no random constants, as in [13, 34, 36]. In the func-
tion set, ÷p refers to the protected division function that returns 1.0 if the denomi-
nator is less than 0.001. Tournament selection is used with elitism of size 1 (best 
individual copied unchanged into the next generation). Regarding the genetic opera-
tors, we use the GSOs described in Sect. 3.1. The genetic operator probabilities fol-
low the general guidelines for GSGP, without any particular tuning. GSGP uses a 
logistic wrapper on all random trees, as described in Sect. 3.1. As suggested in [13], 
the mutation step (ms parameter in the definition of GSM in Sect. 3.1) is a random 
number between 0 and 1, that is generated independently of the previous ones at 
each mutation event (note that the value of ms could also be optimised via gradient 
descent, as in [49]).

For each of the studied problems, we performed 30 independent runs for each 
configuration. The execution of each run took approximately one minute, with the 
exception of the theoretical benchmark f5 and the Parkinson dataset, which took 
around 70-80 seconds, given their larger amount of instances. We conducted the 
experimental evaluation on a Virtual Machine running on VMware ESXi, 7.0.3 with 

Table 3   Number of instances 
and attributes of the datasets

Problems Instances Attributes

Boston 506 14
Concrete 1030 9
Parkinson 5875 20
Bioavailability 260 247
LD50 234 627
PPB 131 627
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Ubuntu 22.04.05, 16 VCPU, 64GB RAM, and Nvidia A100 (VGPU with 20GB of 
VRAM, MIG mode).

Concerning the training-test partitioning, for the theoretical benchmarks we have 
used the intervals reported in Table 2, which are the same as in [5]. For the real-
life problems, at each run, we have selected at random, with uniform probability, 
70% of the observations to form the training set, while the remaining 30% were used 
as test set. This well-known and widely used subsampling method is also referred 
to as Montecarlo crossvalidation [50, 51]. It is important to point out that, in the 
same run, all the configurations used the same partitions, and the partitions change 
(because they are randomly generated each time) from one run to the other. The 
results reported in the next section are the medians and interquartile range, com-
puted over the performed 30 runs, of the fitness on the training and on the test set of 
the individual with the best fitness on the training set at each generation.

6 � Experimental results

Figure 1 reports the evolution of training and test fitness for GSGP, GSGP-LS, and 
GSGP-LLS on the theoretical benchmarks.

From these plots, we can observe that both GSGP-LS and GSGP-LLS outper-
form GSGP on the training set for all the case studies. On the test set, except for 
function  f6 , both GSGP-LS and GSGP-LLS also outperform GSGP. As for func-
tion  f6 , GPSP-LS slowly reaches the same fitness as GSGP (and would probably 
outperform it if given more generations) whereas GSGP-LLS outperforms both. 

Table 4   Parameter settings used 
in the experiments

Parameter GSGP/GSGP-
LS/GSGP-
LLS

Generations 500
Population size 100
Initialisation Ramped
Max. init. depth 6
Max. depth ∞

Function set {+,−,×,÷p}

Terminal set { features }

Selection Tournament
Tournament size 2
Elites 1
Genetic operators GSOs
Crossover probability 0.3
Mutation probability 0.7
Mutation step U(0, 1]

Random tree wrapper Logistic
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On the remaining problems, GSGP-LLS performs the same as GSGP on func-
tion  f7 , and slightly worse than GSGP on the remaining three functions.

To assess the statistical significance of these results, we performed a pairwise 
Mann–Whitney U  test with significance level � = 0.05∕3 , the /3 being derived 
from the Bonferroni correction, for both training and test sets, for each problem, 
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Fig. 1   Comparison between GSGP, GSGP-LS, and GSGP-LLS on Keijzer’s theoretical benchmarks. 
Evolution of median fitness and interquartile range (in 30 independent runs) of the best individual on the 
training and test sets
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at each generation, with the null hypothesis that the distribution of the RMSE of 
the best individual originated from the 30 runs is the same for the two compared 
methods (GSGP vs. GSGP-LS, GSGP vs. GSGP-LLS, GSGP-LS vs. GSGP-
LLS). The evolution of the p-values on the test set is shown in Fig. 2. We show 
the significance threshold in each plot (black horizontal line at 0.017) and we clip 
the y-axis at 0.2 to ease the visual examination of the results. As for the training 
set, although we do not show the plots, we report that the pairwise differences are 
always statistically significant, with the exception of those between GSGP-LS and 
GSGP-LLS for function f5 when the two lines cross (around generation 150) and 
for function f8 after approximately 300 generations.

These plots clearly confirm that GSGP is significantly worse than both GSGP-
LS and GSGP-LLS on the test set for all the studied theoretical benchmarks, 
except for function  f6 . All other reported differences are statistically significant.

Figure 3 reports the evolution of training and test fitness for GSGP, GSGP-LS, 
and GSGP-LLS on the real-life problems.

Again, both GSGP-LS and GSGP-LLS consistently outperform GSGP on the 
training set for all considered problems. Concerning the results on the test set, 
instead, we notice that although GSGP-LS outperforms GSGP on three of the 

Fig. 2   Evolution of p-values of the Mann–Whitney U  test from the pairwise comparisons between the 
three methods on the test data of Keijzer’s benchmarks. Whenever the green line is not visible, it means 
it is behind the orange line (Color figure online)
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considered problems, it suffers from overfitting issues on the Bioavailability, LD50, 
and PPB datasets, as already pointed out in [14]  (in the figure, these three cases 
are separated from the previous three by means of a horizontal dashed line). As for 
GSGP-LLS, it outperforms GSGP-LS in all cases, although sometimes by a small 
margin. It also outperforms GSGP on the three top problems, achieving practically 
the same results as GSGP on the bottom problems.

Figure  4 reports the evolution of the p-values on the test set. Analogously to 
the case of the theoretical benchmarks, also for the real-life problems we do not 
show the p-values of the Mann–Whitney U test on the training set. However, we can 
report that, for all the problems, those p-values confirm that the differences (between 
GSGP and GSGP-LS, GSGP and GSGP-LLS, and GSGP-LS and GSGP-LLS) are 
statistically significant on the training set, with the only exception of those between 
GSGP-LS and GSGP-LLS in the early stages of evolution for Bioavailability, LD50, 
and PPB.

Considering the results obtained on the test set for the real-life problems, at first 
glance we can clearly divide them into two groups: (1) the first group, including the 
Boston, Concrete, and Parkinson datasets, for which the GSGP-LS and GSGP-LLS 
methods are always significantly better than GSGP (p-values of the order of 10−15 ), 
and (2) the second group, involving the remaining datasets, for which the results 
are more controversial. For the second group, although the results are less clear, we 
notice some common trends. When comparing GSGP with GSGP-LS, the p-values 
are initially smaller than the threshold; they grow very fast and then decay, eventu-
ally crossing the significance level for Bioavailability and LD50. This, together with 
the plots of Fig. 3, tells us that there are three distinct phases during the evolution: 
(1) initially, GSGP-LS significantly outperforms GSGP, (2) then, for some genera-
tions, the two methods have comparable performance, and (3) in the end, GSGP-LS 
becomes (significantly) worse due to overfitting. As for the comparison of GSGP 
with GSGP-LLS, the behaviour also repeats itself on the three problems: like with 
GSGP-LS, the p-values begin small and then rise, except that with GSGP-LLS they 
rise slower and remain higher until the end. Looking again at Fig. 3, what is happen-
ing is that GSGP-LLS also starts better than GSGP and then the differences vanish. 
Finally, the p-values comparing GSGP-LS with GSGP-LLS, together with the plots 
of Fig. 3, reveal that GSGP-LLS is significantly better than GSGP-LS on the test set 
for two of these difficult problems, being the same for the remaining one. However, 
the fact that, for these three problems, both GSGP-LS and GSGP-LLS exhibit test 
error curves that increase from the very first generations should also be noticed. We 
extend our analysis and discussion of this matter later in this section.

Last, it is interesting to notice that, for both training and test sets, the initial 
RMSE values of both GSGP-LS and GSGP-LLS are already lower than the final 
RMSE values of GSGP. On the training set, this outcome was expected, given 
the known benefits of LS on the initial population [5]. In addition, although 
GSGP plateaus fairly soon during evolution, the performance of both GSGP-LS 
and GSGP-LLS normally improves steadily across generations on the training set 
(which sometimes leads to overfitting). This is probably caused by the fact that 
GSGP has to look for constants  a and  b of Eq.  (1), while both GSGP-LS and 
GSGP-LLS already have those constants calculated. This gives GSGP-LS and 
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Fig. 3   Comparison between GSGP, GSGP-LS, and GSGP-LLS on the real-life problems. Evolution of 
median fitness and interquartile range (in 30 independent runs) of the best individual on the training set, 
evaluated on the training and test sets. Easier problems are on top (above the horizontal dashed line) and 
harder problems are on the bottom (below the dashed line)
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GSGP-LLS a greater degree of freedom in the search for a function with optimal 
shape, which clearly leads to an overall better fit of the training data.

Another observation is that, on the three hardest problems, GSGP-LS fits the 
training data much easier than GSGP-LLS. We speculate this descends from the 
fact that LLS acts as a regulariser, preventing individuals from making exces-
sively large steps in the search space, as they are stabilised in their current loca-
tion by the addition of the scaling coefficients in their genomes. This is closely 
related to how GSGP-LLS overfits less than GSGP-LS: we elaborate further on 
this in the following discussion.

Discussion Although the results obtained with GSGP-LS and GSGP-LLS 
appear generally promising, we have encountered some overfitting issues. Since 
GSGP has demonstrated its ability to control overfitting [13, 52], it is natural to 
wonder if the introduction of LS specifically disrupts the benefits of GSGP or if 
LS is in general more prone to overfitting on some datasets. We already addressed 
this question in our previous work [14], including an experiment on GP, where 
we found that LS can induce or worsen overfitting on some problems, regardless 
of the base evolutionary algorithm.

Interestingly, though, we observe that GSGP-LLS overfits less than GSGP-LS. 
To explain this phenomenon we studied how the two algorithms explore the seman-
tic space. In fact, previous studies have highlighted that performing larger steps in 
the semantic space can lead to overfitting [36]. To test if this is the reason behind 
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the larger overfitting of GSGP-LS with respect to GSGP-LLS, we measure the size 
of the step performed in the semantic space at each generation by the two variants. 
More in detail, we measure the normalised parent-offspring distance dpo defined 
as the Euclidean distance between the semantics of the parent and the one its off-
spring, divided by the fitness of the parent (for crossover we consider the distance 
between the first parent and the offspring). For GSGP-LLS, we compute dpo after 
the offspring has undergone the traits acquisition, i.e., after the inclusion of the 
scaling coefficients in its genome. In Fig. 5, we show the evolution of dpo for the 
best individual in the population, for the three datasets where we observed over-
fitting. For two of the problems, Bioavailability and PPB, it is quite obvious the 
relationship between the distances and the amount of overfitting observed in Fig. 3. 
The larger the distances, the more overfitting, GSGP-LS being the one with larger 
distances and higher overfitting, followed by GSGP-LLS and finally GSGP with the 
smaller distances and less overfitting. Also for the LD50 problem, it is clear that 
GSGP-LLS exhibits smaller distances than GSGP-LS, justifying why it overfits less 
than GSGP-LS. As for the distances observed in GSGP, it is not clear where they 
stand when compared to GSGP-LS. The distance measurements contain a large 
amount of noise, both in mutation (random mutation step) and crossover (random 
choice of the first parent), blurring any clear relationship that may be present. Still, 
and curiously enough, LD50 is precisely the problem where GSGP overfits the 
most.

Going back to the results of Figs. 3 and 4, we wonder how to tackle the problem 
of overfitting. Since the test error starts rising from the very beginning of the evolu-
tion, it is not possible to rely on the most trivial solution that consists of early stop-
ping. For this reason, in the second part of Sect. 7, we propose other strategies that 
should be explored in the future to limit overfitting.

Fig. 5   Distance between parent and (final) offspring for the best individual in the population along all the 
generations
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7 � Conclusions and future work

We investigated the impact of incorporating Linear Scaling  (LS) in Geometric 
Semantic Genetic Programming (GSGP). Our exploration encompassed two distinct 
approaches: a conventional Darwinian strategy where LS exclusively contributed to 
the fitness computation (GSGP with LS, GSGP-LS), and a Lamarckian approach 
(GSGP with Lamarckian LS, GSGP-LLS), where the scaling coefficients are inte-
grated into the individual’s genetic material, becoming accessible for the compu-
tation of offspring. Our analysis involved an extensive experimental evaluation on 
the task of symbolic regression for five theoretical benchmarks and six real-life 
problems of varying complexities. We compared GSGP-LS and GSGP-LLS against 
standard GSGP, both in terms of efficiency, i.e., how fast evolution is able to achieve 
the desired goal, and in terms of generalisation, i.e., how well the induced model is 
able to generalise to unseen data. Our findings indicate a notable enhancement in 
standard GSGP performance through the incorporation of LS across various sce-
narios, evident in both training and test sets. Namely, on the theoretical benchmarks, 
GSGP-LS and GSGP-LLS both neatly outperform GSGP, with a competitive bal-
ance between Darwinian and Lamarckian evolution. Conversely, on the real-world 
problems GSGP-LLS consistently surpasses GSGP-LS, excelling both in conver-
gence speed and generalisation capabilities. However, our observations reveal that 
the integration with LS renders GSGP more susceptible to overfitting, especially 
when dealing with challenging data. This trend echoes our earlier findings with 
standard GP under analogous circumstances [14], suggesting that LS may induce 
overfitting in particularly difficult cases. Notably, GSGP-LLS exhibits a reduced 
susceptibility to overfitting, attributed to its more localised search within the seman-
tic space.

In the future, our main objective is to address the overfitting issue. In problems 
where overfitting does not occur immediately, early termination of the search pro-
cess could be effective. A stopping condition based on the semantic neighbourhood, 
as suggested by [53], might be a valuable avenue to explore when the datasets are too 
small to split into training, test and validation. Beyond early stopping, other methods 
have recently demonstrated their effectiveness in mitigating overfitting. One con-
ceivable strategy involves dynamic activation and deactivation of LS throughout the 
evolution. This approach, inspired by a recent contribution on local search within 
GSGP [54], would involve enabling LS at the onset of the run and subsequently dis-
abling it to curb overfitting. This strategy could enable harnessing the benefits of LS 
in initial generations, followed by continued evolution using standard GSGP to limit 
overfitting. Other established methods for controlling overfitting in GSGP and GP 
include dynamic interleaving of training instances [55] and soft target regularisation 
[56]. These methods hold promise for enhancing the combination of GSGP with LS 
and LLS. Furthermore, exploring the potential of explicit feature selection in a pre-
processing phase, building upon the implicit feature selection in GP, as exemplified 
by the approach proposed in [57], is a worthwhile research direction. Last, given the 
large size of the trees found by GSGP—here as many as 108 nodes, with an almost 
equal distribution among different symbols in all scenarios—it would be noteworthy 
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to explore the application of LS and LLS on SLIM_GSGP [58], a recently intro-
duced non-bloating variant of GSGP.

Acknowledgements  We wish to thank the SPECIES Society and Anna Esparcia-Alcázar for organis-
ing the SPECIES Summer School 2022, which brought us together and gave us the chance to start this 
collaboration.

Author contributions  GN: conceptualisation, methodology, investigation, software, data curation, visu-
alisation, writing, review. BS: investigation, software, data curation, visualisation, writing. FG: investiga-
tion, software, data curation, writing, review. SS: conceptualisation, methodology, writing, review. LV: 
conceptualisation, methodology, writing, review.

Funding  Open access funding provided by Università degli Studi di Trieste within the CRUI-CARE 
Agreement. This work was partially supported by FCT, Portugal, through funding of research units 
MagIC/NOVA IMS (UIDB/04152/2020) and LASIGE (UIDB/00408/2020 and UIDP/00408/2020).

Data availability  Data available on request from the authors.

Declarations 

Ethical approval  Non applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT Press, Cambridge, 1992)

	 2.	 D.A. Augusto, H.J.C. Barbosa, Symbolic regression via genetic programming. In: Proceedings. 
Vol.1. Sixth Brazilian Symposium on Neural Networks, pp. 173–178 (2000). https://​doi.​org/​10.​
1109/​SBRN.​2000.​889734

	 3.	 I. Icke, J.C. Bongard, Improving genetic programming based symbolic regression using determin-
istic machine learning. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1763–1770 
(2013). https://​doi.​org/​10.​1109/​CEC.​2013.​65577​74

	 4.	 M. Nicolau, J. McDermott, Genetic programming symbolic regression: what is the prior on the pre-
diction? In: Banzhaf, W., Goodman, E., Sheneman, L., Trujillo, L., Worzel, B. (eds.) Genetic Pro-
gramming Theory and Practice XVII, pp. 201–225. Springer, Cham (2020). https://​doi.​org/​10.​1007/​
978-3-​030-​39958-0_​11

	 5.	 M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling. In: C. Ryan 
et al. (ed.) Genetic Programming, Proceedings of the 6th European Conference, EuroGP 2003. 
LNCS, vol. 2610, pp. 71–83. Springer, Essex (2003)

	 6.	 F. Archetti, S. Lanzeni, E. Messina, L. Vanneschi, Genetic programming for computational phar-
macokinetics in drug discovery and development. Genet. Program Evolvable Mach. 8(4), 413–432 
(2007)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SBRN.2000.889734
https://doi.org/10.1109/SBRN.2000.889734
https://doi.org/10.1109/CEC.2013.6557774
https://doi.org/10.1007/978-3-030-39958-0_11
https://doi.org/10.1007/978-3-030-39958-0_11


1 3

Genetic Programming and Evolvable Machines           (2024) 25:17 	 Page 21 of 24     17 

	 7.	 A. Raja, R.M.A Azad, C. Flanagan, C. Ryan, Real-time, non-intrusive evaluation of voip. 
EuroGP’07, pp. 217–228. Springer, Berlin, Heidelberg (2007)

	 8.	 M. Virgolin, T. Alderliesten, A. Bel, C. Witteveen, P.A.N. Bosman, Symbolic regression and feature 
construction with gp-gomea applied to radiotherapy dose reconstruction of childhood cancer survi-
vors. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’18, pp. 
1395–1402. Association for Computing Machinery, New York, NY, USA (2018).https://​doi.​org/​10.​
1145/​32054​55.​32056​04

	 9.	 S. Ruberto, V. Terragni, J.H. Moore, Sgp-dt: towards effective symbolic regression with a semantic 
gp approach based on dynamic targets. In: Proceedings of the 2020 Genetic and Evolutionary Com-
putation Conference Companion. GECCO ’20, pp. 25–26. Association for Computing Machinery, 
New York, NY, USA (2020). https://​doi.​org/​10.​1145/​33779​29.​33974​86

	10.	 D. Costelloe, C. Ryan, On improving generalisation in genetic programming, in Genetic Program-
ming. ed. by L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, M. Ebner (Springer, Berlin, 
2009), pp.61–72

	11.	 A. Moraglio, K. Krawiec, C. Johnson, Geometric semantic genetic programming. In: Coello, C.C., 
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from 
Nature - PPSN XII. Lecture Notes in Computer Science, vol. 7491, pp. 21–31. Springer (2012)

	12.	 M. Castelli, S. Silva, L. Vanneschi, A c++ framework for geometric semantic genetic programming. 
Genet. Program Evolvable Mach. 16(1), 73–81 (2015)

	13.	 L. Vanneschi, S. Silva, M. Castelli, L. Manzoni, Geometric semantic genetic programming for real 
life applications. In: Riolo, R., Moore, J.H., Kotanchek, M. (eds.) Genetic Programming Theory and 
Practice XI, pp. 191–209. Springer, New York, NY (2014)

	14.	 G. Nadizar, F. Garrow, B. Sakallioglu, L. Canonne, S. Silva, L. Vanneschi, An investigation of geo-
metric semantic gp with linear scaling. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference. GECCO ’23, pp. 1165–1174. Association for Computing Machinery, New York, 
NY, USA (2023). https://​doi.​org/​10.​1145/​35831​31.​35904​18

	15.	 H. Iba, H. Garis, T. Sato, Genetic Programming Using a Minimum Description Length Principle 
(MIT Press, Cambridge, 1994)

	16.	 H. Iba, N. Nikolaev, Genetic programming polynomial models of financial data series. In: Proceed-
ings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol. 2, pp. 
1459–14662 (2000). https://​doi.​org/​10.​1109/​CEC.​2000.​870826

	17.	 N.Y. Nikolaev, H. Iba, Regularization approach to inductive genetic programming. IEEE Trans. 
Evol. Comput. 5(4), 359–375 (2001). https://​doi.​org/​10.​1109/​4235.​942530

	18.	 H.G. Hiden, M.J. Willis, M.T. Tham, P. Turner, G.A. Montague, Non-linear principal components 
analysis using genetic programming. In: Second International Conference On Genetic Algorithms In 
Engineering Systems: Innovations And Applications, pp. 302–307 (1997). https://​doi.​org/​10.​1049/​
cp:​19971​197

	19.	 M. Keijzer, Scaled symbolic regression. Genet. Program Evolvable Mach. 5(3), 259–269 (2004). 
https://​doi.​org/​10.​1023/B:​GENP.​00000​30195.​77571.​f9

	20.	 F. Archetti, I. Giordani, L. Vanneschi, Genetic programming for anticancer therapeutic response 
prediction using the nci-60 dataset. Comput. Oper. Res. 37, 1395–1405 (2010). https://​doi.​org/​10.​
1016/j.​cor.​2009.​02.​015

	21.	 C. Pennachin, M. Looks, J.A. Vasconcelos, Robust symbolic regression with affine arithmetic. In: 
Genetic and Evolutionary Computation Conference (GECCO) (2010)

	22.	 R.M.A. Azad, C. Ryan, A simple approach to lifetime learning in genetic programming-based sym-
bolic regression. Evol. Comput. 22(2), 287–317 (2014)

	23.	 M. Virgolin, T. Alderliesten, P.A.N. Bosman, Linear scaling with and within semantic backprop-
agation-based genetic programming for symbolic regression. In: Proceedings of the Genetic and 
Evolutionary Computation Conference. GECCO ’19, pp. 1084–1092. Association for Computing 
Machinery, New York, NY, USA (2019). https://​doi.​org/​10.​1145/​33217​07.​33217​58

	24.	 S. Ruberto, V. Terragni, J. Moore, A semantic genetic programming framework based on 
dynamic targets. Genet. Programm. Evolv. Mach. 22, 1–31 (2021). https://​doi.​org/​10.​1007/​
s10710-​021-​09419-3

	25.	 S. Ruberto, V. Terragni, J.H. Moore, Towards effective gp multi-class classification based on 
dynamic targets. In: Proceedings of the Genetic and Evolutionary Computation Conference. 
GECCO ’21, pp. 812–821. Association for Computing Machinery, New York, NY, USA (2021). 
https://​doi.​org/​10.​1145/​34496​39.​34593​24

https://doi.org/10.1145/3205455.3205604
https://doi.org/10.1145/3205455.3205604
https://doi.org/10.1145/3377929.3397486
https://doi.org/10.1145/3583131.3590418
https://doi.org/10.1109/CEC.2000.870826
https://doi.org/10.1109/4235.942530
https://doi.org/10.1049/cp:19971197
https://doi.org/10.1049/cp:19971197
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1016/j.cor.2009.02.015
https://doi.org/10.1016/j.cor.2009.02.015
https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1007/s10710-021-09419-3
https://doi.org/10.1007/s10710-021-09419-3
https://doi.org/10.1145/3449639.3459324


	 Genetic Programming and Evolvable Machines           (2024) 25:17 

1 3

   17   Page 22 of 24

	26.	 L. Vanneschi, M. Castelli, E. Costa, A. Re, H. Vaz, V. Lobo, P. Urbano, Improving maritime aware-
ness with semantic genetic programming and linear scaling: prediction of vessels position based on 
ais data, in Applications of Evolutionary Computation. ed. by A.M. Mora, G. Squillero (Springer, 
Cham, 2015), pp.732–744

	27.	 F. Gruau, D. Whitley, Adding learning to the cellular development of neural networks: evolution 
and the Baldwin effect. Evol. Comput. 1(3), 213–233 (1993)

	28.	 D. Whitley, V.S. Gordon, K. Mathias, Lamarckian evolution, the baldwin effect and function optimi-
zation. In: Parallel Problem Solving from Nature-PPSN III: International Conference on Evolution-
ary Computation The Third Conference on Parallel Problem Solving from Nature Jerusalem, Israel, 
October 9–14, 1994 Proceedings 3, pp. 5–15 (1994). Springer

	29.	 B.J. Ross, A lamarckian evolution strategy for genetic algorithms. Pract. Handb. Genet. Algo-
rithms Complex Coding Syst. 3, 1–16 (1999)

	30.	 J.M. Mingo, R. Aler, Grammatical evolution guided by reinforcement. In: 2007 IEEE Congress 
on Evolutionary Computation, pp. 1475–1482 (2007). IEEE

	31.	 A. Topchy, W.F. Punch, et  al. Faster genetic programming based on local gradient search of 
numeric leaf values. In: Proceedings of the Genetic and Evolutionary Computation Conference 
(GECCO-2001), vol. 155162 (2001). Morgan Kaufmann San Francisco, CA

	32.	 W. La Cava, L. Spector, Inheritable epigenetics in genetic programming. In: Riolo, R., Worzel, 
W.P., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XII, pp. 37–51. Springer, 
Cham (2015)

	33.	 J. Merta, T. Brandejskỳ, Lifetime adaptation in genetic programming for the symbolic regres-
sion. In: Computational Statistics and Mathematical Modeling Methods in Intelligent Systems: 
Proceedings of 3rd Computational Methods in Systems and Software 2019, Vol. 2 3, pp. 339–
346 (2019). Springer

	34.	 L. Vanneschi, In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) An Introduction to 
Geometric Semantic Genetic Programming, pp. 3–42. Springer, Cham (2017)

	35.	 A. Moraglio, A. Mambrini, Runtime analysis of mutation-based geometric semantic genetic 
programming for basis functions regression. In: Proceedings of the 15th Annual Conference on 
Genetic and Evolutionary Computation. GECCO ’13, pp. 989–996. Association for Computing 
Machinery, New York, NY, USA (2013). https://​doi.​org/​10.​1145/​24633​72.​24634​92

	36.	 I. Gonçalves, S. Silva, C.M. Fonseca, On the generalization ability of geometric semantic genetic 
programming, in Genetic Programming. ed. by P. Machado, M.I. Heywood, J. McDermott, M. 
Castelli, P. García-Sánchez, P. Burelli, S. Risi, K. Sim (Springer, Cham, 2015), pp.41–52

	37.	 A. Moraglio, An efficient implementation of GSGP using higher-order functions and memoi-
zation. In: Semantic Methods in Genetic Programming, Workshop at Parallel Problem Solving 
from Nature (2014)

	38.	 J.F.B.S. Martins, L.O.V.B. Oliveira, L.F. Miranda, F. Casadei, G.L. Pappa, Solving the expo-
nential growth of symbolic regression trees in geometric semantic genetic programming. In: 
Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’18, pp. 1151–
1158. ACM, New York, NY, USA (2018)

	39.	 I. Bakurov, M. Buzzelli, M. Castelli, L. Vanneschi, R. Schettini, General purpose optimization 
library (gpol): a flexible and efficient multi-purpose optimization library in python. Appl. Sci. 
(2021). https://​doi.​org/​10.​3390/​app11​114774

	40.	 M. Kommenda, B. Burlacu, G. Kronberger, M. Affenzeller, Parameter identification for sym-
bolic regression using nonlinear least squares. Genet. Program Evolvable Mach. 21(3), 471–501 
(2020)

	41.	 D. Harrison, D.L. Rubinfeld, Hedonic housing prices and the demand for clean air. J. Environ. 
Econ. Manag. 5(1), 81–102 (1978). https://​doi.​org/​10.​1016/​0095-​0696(78)​90006-2

	42.	 I.-C. Yeh, Modeling of strength of high-performance concrete using artificial neural networks. 
Cem. Concr. Res. 28(12), 1797–1808 (1998). https://​doi.​org/​10.​1016/​S0008-​8846(98)​00165-3

	43.	 M.A. Little, P.E. McSharry, S.J. Roberts, D.A. Costello, I.M. Moroz, Exploiting nonlinear recur-
rence and fractal scaling properties for voice disorder detection. Biomed. Eng. 6(1), 23 (2007). 
https://​doi.​org/​10.​1186/​1475-​925X-6-​23

	44.	 G. Dick, A.P. Rimoni, P.A. Whigham, A re-examination of the use of genetic programming on 
the oral bioavailability problem. In: Proceedings of the 2015 Annual Conference on Genetic and 
Evolutionary Computation, pp. 1015–1022 (2015)

	45.	 J. McDermott, D.R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K. 
Krawiec, R. Harper, K. De Jong, U.-M. O’Reilly, Genetic programming needs better benchmarks. 

https://doi.org/10.1145/2463372.2463492
https://doi.org/10.3390/app11114774
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1186/1475-925X-6-23


1 3

Genetic Programming and Evolvable Machines           (2024) 25:17 	 Page 23 of 24     17 

In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation. 
GECCO ’12, pp. 791–798. Association for Computing Machinery, New York, NY, USA (2012). 
https://​doi.​org/​10.​1145/​23301​63.​23302​73

	46.	 J. Woodward, S. Martin, J. Swan, Benchmarks that matter for genetic programming. In: Proceed-
ings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary 
Computation. GECCO Comp ’14, pp. 1397–1404. Association for Computing Machinery, New 
York, NY, USA (2014). https://​doi.​org/​10.​1145/​25983​94.​26098​75

	47.	 M. Nicolau, A. Agapitos, M. O’Neill, A. Brabazon, Guidelines for defining benchmark prob-
lems in genetic programming. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 
1152–1159 (2015). https://​doi.​org/​10.​1109/​CEC.​2015.​72570​19

	48.	 J. McDermott, G. Kronberger, P. Orzechowski, L. Vanneschi, L. Manzoni, R. Kalkreuth, M. Cas-
telli, Genetic programming benchmarks: looking back and looking forward. ACM SIGEVOlution 
(2022). https://​doi.​org/​10.​1145/​35784​82.​35784​83

	49.	 G. Pietropolli, L. Manzoni, A. Paoletti, M. Castelli, Combining geometric semantic gp with gradi-
ent-descent optimization. In: European Conference on Genetic Programming (Part of EvoStar), pp. 
19–33 (2022). Springer

	50.	 L. Vanneschi, S. Silva, Lectures on Intelligent Systems (Springer, Berlin, 2023)
	51.	 W. Dubitzky, M. Granzow, D.P. Berrar, Fundamentals of Data Mining in Genomics and Proteomics 

(Springer, Cham, 2006)
	52.	 L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic gp 

applied to predicting pharmacokinetic parameters. In: Genetic Programming: 16th European Con-
ference, EuroGP 2013, Vienna, Austria, April 3–5, 2013. Proceedings, vol. 7831, pp. 205–216 
(2013). Springer Berlin, Germany

	53.	 I. Gonçalves, S. Silva, C.M. Fonseca, M. Castelli, Unsure when to stop? ask your semantic neigh-
bors. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 929–936 
(2017)

	54.	 M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores, P. Legrand, Geometric semantic genetic 
programming with local search. In: Proceedings of the 2015 Annual Conference on Genetic and 
Evolutionary Computation. GECCO ’15, pp. 999–1006. Association for Computing Machinery, 
New York, NY, USA (2015). https://​doi.​org/​10.​1145/​27394​80.​27547​95

	55.	 I. Gonçalves, S. Silva, Balancing learning and overfitting in genetic programming with interleaved 
sampling of training data, in Genetic Programming. ed. by K. Krawiec, A. Moraglio, T. Hu, A.Ş. 
Etaner-Uyar, B. Hu (Springer, Berlin, 2013), pp.73–84

	56.	 L. Vanneschi, M. Castelli, Soft target and functional complexity reduction: a hybrid regularization 
method for genetic programming. Expert Syst. Appl. 177, 114929 (2021). https://​doi.​org/​10.​1016/j.​
eswa.​2021.​114929

	57.	 N.M. Rodrigues, J.E. Batista, W. La Cava, L. Vanneschi, S. Silva, Slug: Feature selection using 
genetic algorithms and genetic programming, in Genetic Programming. ed. by E. Medvet, G. Pappa, 
B. Xue (Springer, Cham, 2022), pp.68–84

	58.	 L. Vanneschi, SLIM_GSGP: The non-bloating geometric semantic genetic programming. In: Euro-
pean Conference on Genetic Programming (Part of EvoStar), pp. 125–141 (2024). Springer

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Giorgia Nadizar1 · Berfin Sakallioglu2 · Fraser Garrow3 · Sara Silva4 · 
Leonardo Vanneschi2

 *	 Giorgia Nadizar 
	 giorgia.nadizar@phd.units.it

https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1145/2598394.2609875
https://doi.org/10.1109/CEC.2015.7257019
https://doi.org/10.1145/3578482.3578483
https://doi.org/10.1145/2739480.2754795
https://doi.org/10.1016/j.eswa.2021.114929
https://doi.org/10.1016/j.eswa.2021.114929


	 Genetic Programming and Evolvable Machines           (2024) 25:17 

1 3

   17   Page 24 of 24

	 Berfin Sakallioglu 
	 bsakallioglu@novaims.unl.pt

	 Fraser Garrow 
	 fg28@hw.ac.uk

	 Sara Silva 
	 sara@fc.ul.pt

	 Leonardo Vanneschi 
	 lvanneschi@novaims.unl.pt

1	 Department of Mathematics, Informatics, and Geosciences, University of Trieste, Trieste, Italy
2	 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus 

de Campolide, 1070‑312 Lisboa, Portugal
3	 School of Informatics, University of Edinburgh, Edinburgh, UK
4	 LASIGE, Department of Informatics Faculty of Sciences, University of Lisbon, Lisbon, 

Portugal


	Geometric semantic GP with linear scaling: Darwinian versus Lamarckian evolution
	Abstract
	1 Introduction
	2 Previous and related work
	3 Background
	3.1 Geometric semantic genetic programming
	3.2 Linear scaling
	3.3 Lamarckian evolution

	4 LS and GSGP: Darwinian versus Lamarckian evolution
	5 Experimental setup
	5.1 Test problems
	5.2 Parameter settings

	6 Experimental results
	7 Conclusions and future work
	Acknowledgements 
	References


