
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2024) 25:17
https://doi.org/10.1007/s10710-024-09488-0

1 3

Geometric semantic GP with linear scaling: Darwinian
versus Lamarckian evolution

Giorgia Nadizar1 · Berfin Sakallioglu2 · Fraser Garrow3 · Sara Silva4 ·
Leonardo Vanneschi2

Received: 6 November 2023 / Revised: 29 April 2024 / Accepted: 12 May 2024
© The Author(s) 2024

Abstract
Geometric Semantic Genetic Programming (GSGP) has shown notable success in
symbolic regression with the introduction of Linear Scaling (LS). This achieve-
ment stems from the synergy of the geometric semantic genetic operators of GSGP
with the scaling of the individuals for computing their fitness, which favours pro-
grams with a promising behaviour. However, the initial combination of GSGP and
LS (GSGP-LS) underutilised the potential of LS, scaling individuals only for fitness
evaluation, neglecting to incorporate improvements into their genetic material. In
this paper we propose an advancement, GSGP with Lamarckian LS (GSGP-LLS),
wherein we update the individuals in the population with their scaling coefficients
in a Lamarckian fashion, i.e., by inheritance of acquired traits. We assess GSGP-LS
and GSGP-LLS against standard GSGP for the task of symbolic regression on five
hand-tailored benchmarks and six real-life problems. On the former ones, GSGP-LS
and GSGP-LLS both consistently improve GSGP, though with no clear global supe-
riority between them. On the real-world problems, instead, GSGP-LLS steadily out-
performs GSGP-LS, achieving faster convergence and superior final performance.
Notably, even in cases where LS induces overfitting on challenging problems,
GSGP-LLS surpasses GSGP-LS, due to its slower and more localised optimisation
steps.

Keywords  Symbolic regression · Geometric semantic genetic programming · Linear
scaling · Lamarckian evolution · Genetic programming

1  Introduction

Genetic Programming (GP) [1] has garnered increased attention in addressing
symbolic regression problems [2–4], due to its ability to handle problems char-
acterised by limited or uncertain data, its capacity to evolve models without

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-024-09488-0&domain=pdf

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 2 of 24

predetermined mathematical forms, and its capability to perform automatic fea-
ture selection during learning. Traditionally, GP is employed to address symbolic
regression problems using established loss measures, like, for instance, the root
mean square error (RMSE), to evaluate fitness. While this approach remains
widely adopted, it does have a limitation: certain solutions may receive unfa-
vourable fitness values, despite their potential promise. This occurs, for example,
when solutions closely resemble the target function in shape but differ in terms of
slope and/or location within the Cartesian space. Linear scaling (LS) was intro-
duced by Keijzer [5] to tackle this issue and improve the performance of GP on
symbolic regression. LS modifies the fitness function, rescaling each individual
by using their slope and intercept, two constants that can be easily calculated with
a cost that is linear in the size of the training set. Since its introduction, the ben-
efit of LS was demonstrated on many theoretical benchmark functions [5] and
real-life applications [6–9]. These studies indicate that LS does not only improve
standard GP on training data but can also bestow on GP a better generalisation
ability, often outperforming standard GP also on unseen data. However, Costel-
loe and Ryan [10] pointed out that methods that improve training optimisation,
including LS, may not always improve GP’s generalisation ability as well.

A decade after the inception of LS, Moraglio et al. [11] introduced a novel
variant of GP, known as Geometric Semantic GP (GSGP). GSGP differs from tra-
ditional GP by implementing specialised genetic operators referred to as Geomet-
ric Semantic Operators (GSOs). GSOs, despite acting directly on GP individuals’
syntax, have an indirect and known effect on their semantics, notably yielding a
unimodal error surface for supervised learning problems [11]. Several references
in the literature have shown the success of GSGP, particularly in limiting overfit-
ting, often surpassing standard GP on unseen data, when applied to real-world
symbolic regression problems [11–13].

Given that LS entails a redefinition of the fitness and GSGP introduces novel
genetic operators, which are typically regarded as separate elements within
the GP framework, it seems reasonable to explore an integrated approach that
joins these methodologies, with the objective of capitalising on the merits of
both GSGP and LS. In accordance with this idea, a unified system merging GSGP
and LS, denoted as GSGP-LS, was recently introduced in Nadizar et al. [14]. The
outcomes presented in Nadizar et al. [14] exhibit commendable quality but are not
without controversy. While GSGP-LS unquestionably outperforms GSGP across
the majority of the assessed test problems, affirming the expected advantages of
this fusion, it is intriguing that, on some particularly challenging datasets, GSGP-
LS tends to overfit training data, yielding inferior performance when compared to
GSGP on unseen data. This, upon initial analysis, seems to challenge the belief
that LS invariably benefits GP, thereby alerting practitioners to the potential risk
of overfitting in specific scenarios.

This paper aims at refining GSGP-LS by introducing a novel method referred to
as GSGP with Lamarckian LS (GSGP-LLS). The genesis of GSGP-LLS stems from
the observation that the method used to integrate LS in GSGP in Nadizar et al. [14]
may not be the most effective. In fact, following the original recommendation from
Keijzer [5], in Nadizar et al. [14] individuals were solely rescaled during the fitness

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 3 of 24  17

evaluation phase, leaving their structures unaltered within the population. Conse-
quently, only the root of individual trees was impacted by linear scaling during the
evaluation, while the genetic material deeper within the trees remained unscaled.
The approach we adopt here is converse to this: we apply linear scaling by incor-
porating the scaling directly in the genotype of the individual, essentially following
the concept of Lamarckian evolution. This adjustment ensures that when the genetic
material of that individual is employed by subsequent descendants in the evolution,
it remains scaled. As a result, individuals within the population after several evolu-
tionary iterations undergo more than just the rescaling of their root value; numer-
ous internal subtrees are similarly affected by linear scaling. It is our expectation
that this approach will facilitate the evolutionary process, enabling more gradual and
localised optimisation steps, possibly contributing to mitigating overfitting, in par-
ticular on those challenging datasets where GSGP-LS was outperformed by GSGP.
This paper effectively extends [14] by introducing GSGP-LLS into the experimental
comparison, where it is assessed alongside GSGP and GSGP-LS across the same
test problems.

The remainder of this paper is organised as follows. In Sect. 2 we review previous
works relevant to this study, while in Sect. 3 we describe GSGP and LS. Section 4
presents GSGP-LLS, deepening on the difference between Darwinian and Lamarck-
ian evolution. In Sect. 5. we describe our experimental setup, first presenting the
used test problems and then discussing the parameter settings. In Sect. 6, we present
and comment on the obtained results. Finally, in Sect. 7 we conclude the work and
propose ideas for future research.

2 � Previous and related work

Although similar ideas to LS had already been proposed for GP before Keijzer’s
contribution [5], the previous works involving multiple linear regression were
considered costly and increased the likeliness of overfitting, since they introduced
extra parameters and limitations to the system [15–18]. Conversely, Keijzer’s work
showed a dramatic improvement in the performance of GP for symbolic regression
by applying LS to the error measure [5], at a limited computational cost. In his first
contribution, Keijzer demonstrated the benefits of LS on several synthetic test func-
tions. Shortly after, he published another article, where he gave theoretical corrobo-
ration to the success of LS [19].

After Keijzer’s contribution, LS has been used in several benchmark problems
and real-life applications. For instance, Archetti et al. [6], reported using LS with GP
to improve the performance on several regression tasks related to the area of drug
discovery. A few years later, the same authors also successfully applied LS with GP
on another problem from the medical field, consisting in predicting the effect of an
anticancer therapy on a specific cohort of patients [20]. In the same year, Raja et al.
[7] also combined LS with GP for applications in the telecommunication area and
concluded that the system that used LS outperformed the system that did not use it.
A general trend has also been to integrate LS in GP systems that also contain other
novel methods. For instance, Pennachin et al. [21] used affine arithmetic to improve

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 4 of 24

both the performance and the robustness of GP for symbolic regression, and they
also performed LS of outputs before fitness evaluation. The presented results indi-
cate that the proposed system reduces the number of fitness evaluations needed dur-
ing training and improves generalisation of GP, reducing overfitting. Similarly, Azad
and Ryan [22] integrated LS and a method to maintain diversity in a GP system
aimed at exploring lifetime learning. A few years later, Virgolin et al. [8] applied
LS to a GP-based algorithm, called GP-GOMEA, on a symbolic regression problem
from the area of oncology. Later, in another work where several other real-world
datasets were employed [23], the same authors confirmed the power of LS, suc-
cessfully integrating LS in a semantic backpropagation-based GP system. Recently,
[9] tackled dynamic target problems by integrating LS with a GP system, using the
hinge-loss functions to evolve a set of discriminant functions for multi-class clas-
sification. The authors reported on the advantage of the version that uses LS. Later,
these results were confirmed and extended, providing an upper bound to the error in
dynamic symbolic regression [9, 24] and classification [25].

Even though LS has been applied to GP several times, if we exclude [14], so far
in the literature it is possible to find only one contribution in which LS has been
integrated with GSGP: in 2015, Vanneschi et al. [26] applied LS to GSGP for tack-
ling an application in the maritime awareness domain. The objective of that work
was to predict the position of vessels at sea, based on information related to the
vessels’ past positions in a specific time interval, using AIS data. The proposed sys-
tem was compared to two different GP variants and three non-evolutionary machine
learning methods, outperforming all of them.

Despite the several successes on real-life applications, Costelloe et al. [10]
remarked that several methods that improve GP’s training performance, includ-
ing LS, may not improve GP’s generalisation ability as well. This consideration
is important since it partially reflects some of the findings that were presented in
Nadizar et al. [14].

Lamarckian evolution, a notion discredited in traditional biology, has found
renewed interest in the realm of digital evolution. It was explored within the context
of evolutionary algorithms by several researchers. For instance, Gruau and Whitley
[27] integrated a learning component into the development process of their grammar
trees. The grammar trees underwent enhancement through learning during recom-
bination. These enhancements were then incorporated back into the chromosome,
reflecting a Lamarckian evolutionary approach. Their objective was to facilitate
early learning by enabling the impact of learning on development. Whitley et al.
[28] emphasised the potential for utilising Lamarckian strategies to expedite results,
recognising their efficiency in accelerating the search process. Ross [29] stated that
Lamarckian localised optimisation tends to enhance the fitness of the individuals in
a population of Genetic Algorithms (GAs), consequently boosting the search perfor-
mance. However, he cautioned that if fitness evaluations during localised searches
are computationally expensive, the use of Lamarckian evolution could incur high
costs. Therefore, the practical application of Lamarckian evolution within GAs
should be judiciously weighed against the computational expenses relative to the
problem being investigated. Starting from the understanding that individual learn-
ing can enhance evolution, Mingo and Aler [30] integrated the Lamarck mechanism

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 5 of 24  17

in their grammatical evolution system guided by reinforcement. This integration
involved substituting the original genotype with information learned by the phe-
notype. Incorporating local learning into GP, Topchy and Punch [31] enabled the
tuned performance of individuals to directly impact the genome, aligning with the
Lamarckian principle of evolution. Their modifications aimed at improving final fit-
ness and speed. In their research, La Cava and Spector [32] introduced a GP method
that effectively harnessed the benefits of Lamarckian updating, particularly its abil-
ity to drive fast convergence. This was achieved by conserving inheritable pheno-
typic improvements in offspring. Merta and Brandejský [33] conducted a compara-
tive analysis of Lamarckian and Baldwinian approaches to lifetime adaptation in GP
for symbolic regression. Their experiments demonstrated that Lamarckian evolution
exhibited faster performance than standard GP for symbolic regression of third-
degree polynomials, even considering the additional costs and computational time
involved.

3 � Background

3.1 � Geometric semantic genetic programming

Let X = {x1, x2, ..., xn} be the set of input data (also referred to as training instances,
observations or fitness cases) of a symbolic regression problem, and t = [t1, t2, ..., tn]
the vector of the respective expected (scalar) output or target values (in other
words, for each i = 1, 2, ..., n , ti is the expected output corresponding to input xi ). A
GP individual (or program) P can be seen as a function that, for each input vector
xi returns the scalar value P(xi) . Following [11], we call semantics of P the vec-
tor sP = [P(x1),P(x2), ...,P(xn)] . This vector can be represented as a point in an
n-dimensional space, that we call semantic space. Note that the target vector t itself
is a point in the semantic space. As explained above, GSGP is a variant of GP where
the standard crossover and mutation are replaced by Geometric Semantic Opera-
tors (GSOs). The objective of GSOs is to define modifications on the syntax of GP
individuals that have a precise effect on their semantics. In particular, Geometric
Semantic Crossover (GSC) generates one offspring whose semantics stands in the
line joining the semantics of the two parents in the semantic space, while Geometric
Semantic Mutation (GSM), by mutating an individual i, allows us to obtain another
individual j such that the semantics of j stands inside a ball of a given predetermined
radius centered in the semantics of i. One of the reasons why GSOs became popular
is because GSOs induce a unimodal error surface (on training data) for any super-
vised learning problem where fitness is calculated using an error measure between
outputs and targets. In other words, when using GSOs the error surface on training
data is guaranteed to not have any locally optimal solution. This property holds, for
instance, for any regression or classification problem, independently of how big and
how complex data are. A detailed explanation of the reason why the error surface is

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 6 of 24

unimodal and why this is important can be found in Vanneschi [34]. The definitions
of the GSOs are, as given in Moraglio et al. [11], respectively1:

Geometric Semantic Crossover (GSC) Given two parent functions
T1, T2 ∶ ℝ

n
→ ℝ , GSC returns the function TXO = (T1 ⋅ TR) + ((1 − TR) ⋅ T2) , where

TR is a random function, i.e., a randomly generated tree, whose output values range
in the interval [0, 1].

Geometric Semantic Mutation (GSM) Given a parent function T ∶ ℝ
n
→ ℝ ,

GSM with mutation step ms returns the function TM = T + ms ⋅ (TR1 − TR2) , where
TR1 and TR2 are random functions, i.e., randomly generated trees.

The reason why GSM uses two random trees TR1 and TR2 is that the amount of
modification caused by GSM must be centred in zero. In other words, a random
expression is needed that has the same probability of being positive or negative. As
pointed out in Moraglio and Mambrini [35], any isotropic Gaussian random function
centred in zero can, in principle, be replaced with the term (TR1 − TR2) in the defini-
tion of GSM. Even though this is not in the original definition of GSM, later contri-
butions [13, 34, 36] have clearly shown that limiting the codomain of TR1 and TR2 in
a predefined interval (for instance [0, 1], as it is done for TR in GSC) helps improve
the generalisation ability of GSGP. For this reason, as in several previous works [12,
34], also in this paper we constrain the outputs of TR , TR1 , and TR2 by wrapping them
in a logistic function. As reported in Refs. [11, 34], GSOs have the drawback of gen-
erating larger offspring than the parents, and this entails a rapid growth of the size
of the individuals in the population—to as many as 108 nodes, in our case. To coun-
teract this problem, in Refs. [12, 37, 38] implementations of GSOs were proposed,
that make GSGP not only usable in practice but also significantly faster than stand-
ard GP. This is possible through a smart representation of GP individuals that allows
us to not store their genotypes during the evolution. The implementation presented
in [39] also employs the same idea, and it is the one used here.

3.2 � Linear scaling

Linear Scaling (LS) [5] is a method that was introduced to facilitate the task of GP
of searching for the best function matching a set of known data. It consists in calcu-
lating the slope and intercept of the formula coded by a GP individual. Let P(xi) be
the output of a GP individual P on the i-th observation of the training set. Using the
same notation as in Sect. 3.1, a linear regression on the target values t can be per-
formed using the equations:

(1)b =

n
∑

i=1

[

(

ti − t
)

(

P(xi) − P
)]

n
∑

i=1

(

P(xi) − P
)2

, a = t − b P

1  Only the definitions of the GSOs for symbolic regression problems are given here since they are the
only ones used in this work. For the definition of GSOs for other domains, we refer the reader to Mora-
glio et al. [11].

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 7 of 24  17

where n is the number of training observations (fitness cases) and P and t denote the
average output and the average target value, respectively. Values b and a respectively cal-
culate the slope and intercept of the set of outputs P(xi) , such that the sum of the squared
errors between t and a + bP is minimised. After this, any error measure can be calculated
on the scaled formula a + bP , for instance the RMSE. If a is different from 0 and b is
different from 1, the procedure outlined above is guaranteed to reduce the RMSE for any
formula P [5]. The cost of calculating the slope and intercept is linear in the size of the
training set. By efficiently calculating the slope and intercept for each individual, the bur-
den of searching for these two constants is removed from the evolution. GP is then free to
search for the expression whose shape is most similar to that of the target function.

3.3 � Lamarckian evolution

Lamarckian evolution, also known as Lamarckism, is a theory of evolution that was
proposed by the French biologist Jean-Baptiste Lamarck in the early 19th century.
Lamarck’s theory was an attempt to explain how species change over time through a
mechanism involving the inheritance of acquired characteristics. Namely, Lamarck
proposed that an organism could acquire new traits or characteristics during its life-
time, for instance as a result of its interactions with the environment. These acquired
traits were believed to be passed on to the organism’s offspring, leading to evolu-
tionary change. It contradicts with Darwinian evolution by emphasising the direct
impact of individual experiences on genetic inheritance.

Despite its substantial rejection in the field of Biology, Lamarckian evolution has
demonstrated efficacy in artificial evolution applications within the realm of com-
puting. Unlike in natural scenarios, computer programs use simple mapping of phe-
notypic traits to genotypes, and the reversal of phenotypes back to their correspond-
ing genotypes is frequently manageable [29, 32]. In the context of GP, Lamarckian
evolution involves encoding acquired traits directly into the genotype, impacting fit-
ness distribution and genotypic values [31, 40]. The concept of inheriting certain
acquired characteristics from one generation to the next, in the context of the inte-
gration of GSGP and LS, will be elaborated in Sect. 4.

4 � LS and GSGP: Darwinian versus Lamarckian evolution

Building on top of the notions presented in Sect. 3, we hereby describe how we
incorporate LS in GSGP. Namely, we consider two settings: one where evolution
is performed in a standard Darwinian fashion, as already proposed in Nadizar
et al. [14], and one where evolution follows the principles of Lamarckism.

In Darwinian evolution, we perform the standard GSGP evolutionary loop,
applying LS for the fitness evaluation only, giving rise to GSGP with LS (GSGP-
LS). In this case, the only difference with respect to standard GSGP lies in the
fitness evaluation, where we first compute the scaling coefficients on the training

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 8 of 24

set, as described in Sect. 3.2, and then rescale the individual accordingly to com-
pute its error. Clearly, when evaluating on the test set, we do not re-compute the
scaling coefficients, but we use the ones computed on the training set. This cor-
responds to the recommendation of the original formulation of LS by Keijzer,
applied on GSGP instead of GP. It is important to note that in this case the coeffi-
cients serve only to compute the fitness of an individual, and are discarded there-
after. Hence, these coefficients, which likely yielded an improvement of an indi-
vidual, do not become available as genetic material.

Conversely, when applying Lamarckian evolution, in what we call GSGP with
Lamarckian LS (GSGP-LLS), the scaling coefficients do become part of the
individual’s genotype, and can therefore be used to generate fitter offspring. In
more detail, given a function T, we first compute its scaling coefficients a and
b, and then replace the initial individual T with Ts = a + bT  , which has the coef-
ficients embedded in its representation. Thus, the next generation will not inherit
from T, but from Ts , which has acquired some traits, i.e., the scaling coefficients,
after its interaction with the environment, i.e., after the evaluation on some data,
as Lamarckism suggests. The rationale behind the idea of including the coeffi-
cients in the genotype is based on the fact that GSGP is able to induce a unimodal
error surface. When we move from T to Ts , we make a step in the semantic space
towards a more favourable area of the fitness landscape. Thus, we expect it to be
more convenient to start from Ts to generate the offspring, rather than from T, as
we could, in principle, get even closer to the target via mutation or crossover of
a fitter individual. Nonetheless, there are no guarantees of GSGP-LLS being bet-
ter than GSGP or GSGP-LS: although the starting points for computing the new
population might be better, as it is usual in traditional GSGP, we have no war-
ranty of moving in the right direction, e.g., when performing a mutation. Another
point worth mentioning is that GSGP-LLS, differently from GSGP or GSGP-LS,
further increases the size of the tree at each generation by appending four nodes
to it (+ , × , a, b). However, this does not hinder the applicability of the method,
because we do not constrain the size of the tree and we leverage a GSGP imple-
mentation which is efficient regardless of the tree size, thanks to a mechanism
which exploits the output of the evolving programs instead of storing their geno-
type [39].

In conclusion, Table 1 illustrates a brief example highlighting the difference
between GSGP-LS and GSGP-LLS. We consider a single individual T in gen-
eration 0, and its progress to generation 1, using only the mutation operator. For
GSGP-LS, the progression is straightforward: the scaling coefficients are absent
because they are used only for calculating the fitness, and they are never stored as
part of the individual. For GSGP-LLS, the first column represents the intermedi-
ate individual before adding the coefficients, while the second column represents
the final individual after adding the coefficients, that is the individual that is actu-
ally inserted into the new population.

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 9 of 24  17

5 � Experimental setup

We investigate the effectiveness of LS and LLS when combined with GSGP. To do
so, we compare the performance of traditional GSGP (simply GSGP from now on),
GSGP with LS (GSGP-LS) and GSGP with LLS (GSGP-LLS). As in [14], we con-
duct the experimental comparison on five hand-tailored symbolic regression bench-
marks and six real-life regression datasets. We implemented GSGP-LS and GSGP-
LLS using the General Purpose Optimisation Library (GPOL) [39], a publicly
available software platform that integrates numerous computational intelligence
algorithms, including GSGP. LS and LLS have been integrated in the library on top
of the existent GSGP implementation. This section describes the experimental study
carried out: in Sect. 5.1 we overview the considered test problems and in Sect. 5.2
we describe the parameter settings.

5.1 � Test problems

The five theoretical benchmarks that we have studied were taken directly from the
paper that introduced LS [5]. They are:

•	 f5(x) = x3 exp−x cos(x) sin(x)(sin2(x) ∗ cos(x) − 1)

•	 f6(x, y, z) =
30xz

(x − 10)y2
•	 f7(x) =

x
∑

i
1∕i

•	 f8(x) = log x

•	 f9(x) =
√

x

Besides being a good scientific practice to test a method (in this study, LS) on the
same case studies that were used when it was introduced, motivations for choos-
ing these benchmarks are the same as in Keijzer [5]. Namely, “many of the prob-
lems above mix trigonometry with polynomials, or make the problems in other
ways highly non-linear”. Also, it is relevant to point out that, as stated in Keijzer
[5], “being of low dimensionality does not make the problems easy”. Exactly as

Table 1   Progression of a single individual from generation 0 to generation 1 in GSGP-LS and GSGP-
LLS, using only mutation

For GSGP-LLS, the second column displays the final individual after the integration of the scaling coef-
ficients in the genotype. It is this final individual that is inserted into the new population

Gen GSGP-LS GSGP-LLS (intermediate) GSGP-LLS (final)

0 T T a0 + b0T

1 T + ms(TR1 − TR2) a0 + b0T + ms(TR1 − TR2) a1 + b1(a0 + b0T + ms(TR1 − TR2))

… … … …

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 10 of 24

in Keijzer [5], we have used these benchmarks with the training and test intervals
reported in Table 2.

The six real-world regression problems that we have employed, and that have
often been used as case studies for GP experiments, are:

•	 Boston Housing [41]: a dataset provided by the Statistical Library and main-
tained by Carnegie Mellon University. The purpose is to forecast housing prices
using data such as air pollution, criminality, pupil-teacher ratio, etc.

•	 Concrete Compressive Strength [42]: a dataset aimed at predicting the strength
of concrete depending on the age, mixture and other features of the ingredients.

•	 Parkinson Total UPDRS [43]: composed of a range of biomedical voice meas-
urements and other features of Parkinson’s disease patients. The aim is to predict
the clinician’s Parkinson’s disease symptom score on the UPDRS scale.

•	 Bioavailability [6]: consists in predicting the human oral bioavailability of a set
of drug compounds, based on a set of molecular descriptors.

•	 LD50 [6]: is also a problem in the field of pharmacokinetics. Its purpose is to
predict the median lethal dose of a molecular compound, which is one of the
most used measures to assess the toxicity of drugs.

•	 PPB [6]: is another dataset from the field of pharmacokinetics. Its aim is to pre-
dict the percentage of the initial drug dose which binds plasma proteins.

Table 3 reports the number of instances and attributes for each one of these data-
sets. Among these datasets, the Bioavailability one was criticised in Dick et al. [44],
partially because of a lack of preprocessing, since it includes features that contain
no information as well as contradictory relationships between the dependent and
independent variables. However, according to many authors who have used this
dataset, these characteristics are interesting and should be integrated in a reason-
able benchmark suite, because they allow us to test the ability of our algorithms to
deal with the difficulties and ambiguities that are typical of real-world data. It is not
our objective to discuss what characteristics a good benchmark suite should pos-
sess (the interested reader is referred to [45–48] for such a discussion). We simply
observe that the Bioavailability dataset, as well as the PPB and LD50 datasets, have

Table 2   Intervals used as training and test set for the hand-tailored benchmarks used in this work (taken
from [5])

Intervals are expressed using the notation [start:step:stop]

Benchmark Training set Test set Note

f5 x, z = rnd(−1, 1),
y = rnd(1, 2)

x, z = rnd(−1, 1),
y = rnd(1, 2)

Train: 1000 cases,
Test: 10000 cases

f6 x = [1 ∶ 1 ∶ 50] x = [1 ∶ 1 ∶ 120] Extrapolation
f7 x = [1 ∶ 1 ∶ 100] x = [1 ∶ 0.1 ∶ 100] Interpolation
f8 x = [0 ∶ 1 ∶ 100] x = [1 ∶ 0.1 ∶ 100] Interpolation
f9 x = [0 ∶ 1 ∶ 100] x = [1 ∶ 0.1 ∶ 100] Interpolation

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 11 of 24  17

been used in several previous GP studies, clearly indicating a trend for overfitting to
emerge [12, 13, 36]. We thus use these three datasets as a sort of stress-test suite to
assess the generalisation ability of GSGP with LS and LLS, compared to GSGP.

5.2 � Parameter settings

The objective of this work is to compare the studied LS variants on the GSGP algo-
rithm. Our focus is not on obtaining the best possible results on the considered test
problems. For this reason, instead of optimising the hyperparameters, which would
probably lead us to the use of different parameters for each problem, we have pre-
ferred to use a relatively standard parameter setting, taken as much as possible from
the literature. This enabled us to use the same setting across all the experimental
cases. Table 4 reports the employed parameters for each configuration.

We use a population of 100 individuals and run for 500 generations. The popu-
lations are initialised with the Ramped Half-and-Half method [1], with maximum
initial tree depth of 6, and with no depth limit imposed during the evolution [11].
We employ the same function and terminal sets for each configuration, with the four
basic arithmetic operators and no random constants, as in [13, 34, 36]. In the func-
tion set, ÷p refers to the protected division function that returns 1.0 if the denomi-
nator is less than 0.001. Tournament selection is used with elitism of size 1 (best
individual copied unchanged into the next generation). Regarding the genetic opera-
tors, we use the GSOs described in Sect. 3.1. The genetic operator probabilities fol-
low the general guidelines for GSGP, without any particular tuning. GSGP uses a
logistic wrapper on all random trees, as described in Sect. 3.1. As suggested in [13],
the mutation step (ms parameter in the definition of GSM in Sect. 3.1) is a random
number between 0 and 1, that is generated independently of the previous ones at
each mutation event (note that the value of ms could also be optimised via gradient
descent, as in [49]).

For each of the studied problems, we performed 30 independent runs for each
configuration. The execution of each run took approximately one minute, with the
exception of the theoretical benchmark f5 and the Parkinson dataset, which took
around 70-80 seconds, given their larger amount of instances. We conducted the
experimental evaluation on a Virtual Machine running on VMware ESXi, 7.0.3 with

Table 3   Number of instances
and attributes of the datasets

Problems Instances Attributes

Boston 506 14
Concrete 1030 9
Parkinson 5875 20
Bioavailability 260 247
LD50 234 627
PPB 131 627

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 12 of 24

Ubuntu 22.04.05, 16 VCPU, 64GB RAM, and Nvidia A100 (VGPU with 20GB of
VRAM, MIG mode).

Concerning the training-test partitioning, for the theoretical benchmarks we have
used the intervals reported in Table 2, which are the same as in [5]. For the real-
life problems, at each run, we have selected at random, with uniform probability,
70% of the observations to form the training set, while the remaining 30% were used
as test set. This well-known and widely used subsampling method is also referred
to as Montecarlo crossvalidation [50, 51]. It is important to point out that, in the
same run, all the configurations used the same partitions, and the partitions change
(because they are randomly generated each time) from one run to the other. The
results reported in the next section are the medians and interquartile range, com-
puted over the performed 30 runs, of the fitness on the training and on the test set of
the individual with the best fitness on the training set at each generation.

6 � Experimental results

Figure 1 reports the evolution of training and test fitness for GSGP, GSGP-LS, and
GSGP-LLS on the theoretical benchmarks.

From these plots, we can observe that both GSGP-LS and GSGP-LLS outper-
form GSGP on the training set for all the case studies. On the test set, except for
function f6 , both GSGP-LS and GSGP-LLS also outperform GSGP. As for func-
tion f6 , GPSP-LS slowly reaches the same fitness as GSGP (and would probably
outperform it if given more generations) whereas GSGP-LLS outperforms both.

Table 4   Parameter settings used
in the experiments

Parameter GSGP/GSGP-
LS/GSGP-
LLS

Generations 500
Population size 100
Initialisation Ramped
Max. init. depth 6
Max. depth ∞

Function set {+,−,×,÷p}

Terminal set { features }

Selection Tournament
Tournament size 2
Elites 1
Genetic operators GSOs
Crossover probability 0.3
Mutation probability 0.7
Mutation step U(0, 1]

Random tree wrapper Logistic

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 13 of 24  17

On the remaining problems, GSGP-LLS performs the same as GSGP on func-
tion f7 , and slightly worse than GSGP on the remaining three functions.

To assess the statistical significance of these results, we performed a pairwise
Mann–Whitney U test with significance level � = 0.05∕3 , the /3 being derived
from the Bonferroni correction, for both training and test sets, for each problem,

0

0.2

0.4

0.6
R

M
SE

Training set

f 5

Test set

0

0.5

1

R
M

SE

f 6

0

0.5

1

R
M

SE

f 7
0

2

4

R
M

SE

f 8

0 100 200 300 400 500

0

1

2

3

Generation

R
M

SE

0 100 200 300 400 500

Generation

f 9

GSGP GSGP-LS GSGP-LLS

Fig. 1   Comparison between GSGP, GSGP-LS, and GSGP-LLS on Keijzer’s theoretical benchmarks.
Evolution of median fitness and interquartile range (in 30 independent runs) of the best individual on the
training and test sets

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 14 of 24

at each generation, with the null hypothesis that the distribution of the RMSE of
the best individual originated from the 30 runs is the same for the two compared
methods (GSGP vs. GSGP-LS, GSGP vs. GSGP-LLS, GSGP-LS vs. GSGP-
LLS). The evolution of the p-values on the test set is shown in Fig. 2. We show
the significance threshold in each plot (black horizontal line at 0.017) and we clip
the y-axis at 0.2 to ease the visual examination of the results. As for the training
set, although we do not show the plots, we report that the pairwise differences are
always statistically significant, with the exception of those between GSGP-LS and
GSGP-LLS for function f5 when the two lines cross (around generation 150) and
for function f8 after approximately 300 generations.

These plots clearly confirm that GSGP is significantly worse than both GSGP-
LS and GSGP-LLS on the test set for all the studied theoretical benchmarks,
except for function f6 . All other reported differences are statistically significant.

Figure 3 reports the evolution of training and test fitness for GSGP, GSGP-LS,
and GSGP-LLS on the real-life problems.

Again, both GSGP-LS and GSGP-LLS consistently outperform GSGP on the
training set for all considered problems. Concerning the results on the test set,
instead, we notice that although GSGP-LS outperforms GSGP on three of the

Fig. 2   Evolution of p-values of the Mann–Whitney U test from the pairwise comparisons between the
three methods on the test data of Keijzer’s benchmarks. Whenever the green line is not visible, it means
it is behind the orange line (Color figure online)

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 15 of 24  17

considered problems, it suffers from overfitting issues on the Bioavailability, LD50,
and PPB datasets, as already pointed out in [14] (in the figure, these three cases
are separated from the previous three by means of a horizontal dashed line). As for
GSGP-LLS, it outperforms GSGP-LS in all cases, although sometimes by a small
margin. It also outperforms GSGP on the three top problems, achieving practically
the same results as GSGP on the bottom problems.

Figure 4 reports the evolution of the p-values on the test set. Analogously to
the case of the theoretical benchmarks, also for the real-life problems we do not
show the p-values of the Mann–Whitney U test on the training set. However, we can
report that, for all the problems, those p-values confirm that the differences (between
GSGP and GSGP-LS, GSGP and GSGP-LLS, and GSGP-LS and GSGP-LLS) are
statistically significant on the training set, with the only exception of those between
GSGP-LS and GSGP-LLS in the early stages of evolution for Bioavailability, LD50,
and PPB.

Considering the results obtained on the test set for the real-life problems, at first
glance we can clearly divide them into two groups: (1) the first group, including the
Boston, Concrete, and Parkinson datasets, for which the GSGP-LS and GSGP-LLS
methods are always significantly better than GSGP (p-values of the order of 10−15 ),
and (2) the second group, involving the remaining datasets, for which the results
are more controversial. For the second group, although the results are less clear, we
notice some common trends. When comparing GSGP with GSGP-LS, the p-values
are initially smaller than the threshold; they grow very fast and then decay, eventu-
ally crossing the significance level for Bioavailability and LD50. This, together with
the plots of Fig. 3, tells us that there are three distinct phases during the evolution:
(1) initially, GSGP-LS significantly outperforms GSGP, (2) then, for some genera-
tions, the two methods have comparable performance, and (3) in the end, GSGP-LS
becomes (significantly) worse due to overfitting. As for the comparison of GSGP
with GSGP-LLS, the behaviour also repeats itself on the three problems: like with
GSGP-LS, the p-values begin small and then rise, except that with GSGP-LLS they
rise slower and remain higher until the end. Looking again at Fig. 3, what is happen-
ing is that GSGP-LLS also starts better than GSGP and then the differences vanish.
Finally, the p-values comparing GSGP-LS with GSGP-LLS, together with the plots
of Fig. 3, reveal that GSGP-LLS is significantly better than GSGP-LS on the test set
for two of these difficult problems, being the same for the remaining one. However,
the fact that, for these three problems, both GSGP-LS and GSGP-LLS exhibit test
error curves that increase from the very first generations should also be noticed. We
extend our analysis and discussion of this matter later in this section.

Last, it is interesting to notice that, for both training and test sets, the initial
RMSE values of both GSGP-LS and GSGP-LLS are already lower than the final
RMSE values of GSGP. On the training set, this outcome was expected, given
the known benefits of LS on the initial population [5]. In addition, although
GSGP plateaus fairly soon during evolution, the performance of both GSGP-LS
and GSGP-LLS normally improves steadily across generations on the training set
(which sometimes leads to overfitting). This is probably caused by the fact that
GSGP has to look for constants a and b of Eq. (1), while both GSGP-LS and
GSGP-LLS already have those constants calculated. This gives GSGP-LS and

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 16 of 24

Fig. 3   Comparison between GSGP, GSGP-LS, and GSGP-LLS on the real-life problems. Evolution of
median fitness and interquartile range (in 30 independent runs) of the best individual on the training set,
evaluated on the training and test sets. Easier problems are on top (above the horizontal dashed line) and
harder problems are on the bottom (below the dashed line)

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 17 of 24  17

GSGP-LLS a greater degree of freedom in the search for a function with optimal
shape, which clearly leads to an overall better fit of the training data.

Another observation is that, on the three hardest problems, GSGP-LS fits the
training data much easier than GSGP-LLS. We speculate this descends from the
fact that LLS acts as a regulariser, preventing individuals from making exces-
sively large steps in the search space, as they are stabilised in their current loca-
tion by the addition of the scaling coefficients in their genomes. This is closely
related to how GSGP-LLS overfits less than GSGP-LS: we elaborate further on
this in the following discussion.

Discussion Although the results obtained with GSGP-LS and GSGP-LLS
appear generally promising, we have encountered some overfitting issues. Since
GSGP has demonstrated its ability to control overfitting [13, 52], it is natural to
wonder if the introduction of LS specifically disrupts the benefits of GSGP or if
LS is in general more prone to overfitting on some datasets. We already addressed
this question in our previous work [14], including an experiment on GP, where
we found that LS can induce or worsen overfitting on some problems, regardless
of the base evolutionary algorithm.

Interestingly, though, we observe that GSGP-LLS overfits less than GSGP-LS.
To explain this phenomenon we studied how the two algorithms explore the seman-
tic space. In fact, previous studies have highlighted that performing larger steps in
the semantic space can lead to overfitting [36]. To test if this is the reason behind

0 250 500

0

0.1

0.2

Generation

p
-v
al
ue

Boston

0 250 500

Generation

Concrete

0 250 500

Generation

Parkinson

0 250 500

0

0.1

0.2

Generation

p
-v
al
ue

Bioavailability

0 250 500

Generation

LD50

0 250 500

Generation

PPB

GSGP vs. GSGP-LS GSGP vs. GSGP-LLS

GSGP-LS vs. GSGP-LLS

Fig. 4   Evolution of p-values of the Mann–Whitney U test from the pairwise comparisons of the three
methods on the test data of the real-life problems, divided by difficulty

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 18 of 24

the larger overfitting of GSGP-LS with respect to GSGP-LLS, we measure the size
of the step performed in the semantic space at each generation by the two variants.
More in detail, we measure the normalised parent-offspring distance dpo defined
as the Euclidean distance between the semantics of the parent and the one its off-
spring, divided by the fitness of the parent (for crossover we consider the distance
between the first parent and the offspring). For GSGP-LLS, we compute dpo after
the offspring has undergone the traits acquisition, i.e., after the inclusion of the
scaling coefficients in its genome. In Fig. 5, we show the evolution of dpo for the
best individual in the population, for the three datasets where we observed over-
fitting. For two of the problems, Bioavailability and PPB, it is quite obvious the
relationship between the distances and the amount of overfitting observed in Fig. 3.
The larger the distances, the more overfitting, GSGP-LS being the one with larger
distances and higher overfitting, followed by GSGP-LLS and finally GSGP with the
smaller distances and less overfitting. Also for the LD50 problem, it is clear that
GSGP-LLS exhibits smaller distances than GSGP-LS, justifying why it overfits less
than GSGP-LS. As for the distances observed in GSGP, it is not clear where they
stand when compared to GSGP-LS. The distance measurements contain a large
amount of noise, both in mutation (random mutation step) and crossover (random
choice of the first parent), blurring any clear relationship that may be present. Still,
and curiously enough, LD50 is precisely the problem where GSGP overfits the
most.

Going back to the results of Figs. 3 and 4, we wonder how to tackle the problem
of overfitting. Since the test error starts rising from the very beginning of the evolu-
tion, it is not possible to rely on the most trivial solution that consists of early stop-
ping. For this reason, in the second part of Sect. 7, we propose other strategies that
should be explored in the future to limit overfitting.

Fig. 5   Distance between parent and (final) offspring for the best individual in the population along all the
generations

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 19 of 24  17

7 � Conclusions and future work

We investigated the impact of incorporating Linear Scaling (LS) in Geometric
Semantic Genetic Programming (GSGP). Our exploration encompassed two distinct
approaches: a conventional Darwinian strategy where LS exclusively contributed to
the fitness computation (GSGP with LS, GSGP-LS), and a Lamarckian approach
(GSGP with Lamarckian LS, GSGP-LLS), where the scaling coefficients are inte-
grated into the individual’s genetic material, becoming accessible for the compu-
tation of offspring. Our analysis involved an extensive experimental evaluation on
the task of symbolic regression for five theoretical benchmarks and six real-life
problems of varying complexities. We compared GSGP-LS and GSGP-LLS against
standard GSGP, both in terms of efficiency, i.e., how fast evolution is able to achieve
the desired goal, and in terms of generalisation, i.e., how well the induced model is
able to generalise to unseen data. Our findings indicate a notable enhancement in
standard GSGP performance through the incorporation of LS across various sce-
narios, evident in both training and test sets. Namely, on the theoretical benchmarks,
GSGP-LS and GSGP-LLS both neatly outperform GSGP, with a competitive bal-
ance between Darwinian and Lamarckian evolution. Conversely, on the real-world
problems GSGP-LLS consistently surpasses GSGP-LS, excelling both in conver-
gence speed and generalisation capabilities. However, our observations reveal that
the integration with LS renders GSGP more susceptible to overfitting, especially
when dealing with challenging data. This trend echoes our earlier findings with
standard GP under analogous circumstances [14], suggesting that LS may induce
overfitting in particularly difficult cases. Notably, GSGP-LLS exhibits a reduced
susceptibility to overfitting, attributed to its more localised search within the seman-
tic space.

In the future, our main objective is to address the overfitting issue. In problems
where overfitting does not occur immediately, early termination of the search pro-
cess could be effective. A stopping condition based on the semantic neighbourhood,
as suggested by [53], might be a valuable avenue to explore when the datasets are too
small to split into training, test and validation. Beyond early stopping, other methods
have recently demonstrated their effectiveness in mitigating overfitting. One con-
ceivable strategy involves dynamic activation and deactivation of LS throughout the
evolution. This approach, inspired by a recent contribution on local search within
GSGP [54], would involve enabling LS at the onset of the run and subsequently dis-
abling it to curb overfitting. This strategy could enable harnessing the benefits of LS
in initial generations, followed by continued evolution using standard GSGP to limit
overfitting. Other established methods for controlling overfitting in GSGP and GP
include dynamic interleaving of training instances [55] and soft target regularisation
[56]. These methods hold promise for enhancing the combination of GSGP with LS
and LLS. Furthermore, exploring the potential of explicit feature selection in a pre-
processing phase, building upon the implicit feature selection in GP, as exemplified
by the approach proposed in [57], is a worthwhile research direction. Last, given the
large size of the trees found by GSGP—here as many as 108 nodes, with an almost
equal distribution among different symbols in all scenarios—it would be noteworthy

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 20 of 24

to explore the application of LS and LLS on SLIM_GSGP [58], a recently intro-
duced non-bloating variant of GSGP.

Acknowledgements  We wish to thank the SPECIES Society and Anna Esparcia-Alcázar for organis-
ing the SPECIES Summer School 2022, which brought us together and gave us the chance to start this
collaboration.

Author contributions  GN: conceptualisation, methodology, investigation, software, data curation, visu-
alisation, writing, review. BS: investigation, software, data curation, visualisation, writing. FG: investiga-
tion, software, data curation, writing, review. SS: conceptualisation, methodology, writing, review. LV:
conceptualisation, methodology, writing, review.

Funding  Open access funding provided by Università degli Studi di Trieste within the CRUI-CARE
Agreement. This work was partially supported by FCT, Portugal, through funding of research units
MagIC/NOVA IMS (UIDB/04152/2020) and LASIGE (UIDB/00408/2020 and UIDP/00408/2020).

Data availability  Data available on request from the authors.

Declarations 

Ethical approval  Non applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion (MIT Press, Cambridge, 1992)

	 2.	 D.A. Augusto, H.J.C. Barbosa, Symbolic regression via genetic programming. In: Proceedings.
Vol.1. Sixth Brazilian Symposium on Neural Networks, pp. 173–178 (2000). https://​doi.​org/​10.​
1109/​SBRN.​2000.​889734

	 3.	 I. Icke, J.C. Bongard, Improving genetic programming based symbolic regression using determin-
istic machine learning. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1763–1770
(2013). https://​doi.​org/​10.​1109/​CEC.​2013.​65577​74

	 4.	 M. Nicolau, J. McDermott, Genetic programming symbolic regression: what is the prior on the pre-
diction? In: Banzhaf, W., Goodman, E., Sheneman, L., Trujillo, L., Worzel, B. (eds.) Genetic Pro-
gramming Theory and Practice XVII, pp. 201–225. Springer, Cham (2020). https://​doi.​org/​10.​1007/​
978-3-​030-​39958-0_​11

	 5.	 M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling. In: C. Ryan
et al. (ed.) Genetic Programming, Proceedings of the 6th European Conference, EuroGP 2003.
LNCS, vol. 2610, pp. 71–83. Springer, Essex (2003)

	 6.	 F. Archetti, S. Lanzeni, E. Messina, L. Vanneschi, Genetic programming for computational phar-
macokinetics in drug discovery and development. Genet. Program Evolvable Mach. 8(4), 413–432
(2007)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SBRN.2000.889734
https://doi.org/10.1109/SBRN.2000.889734
https://doi.org/10.1109/CEC.2013.6557774
https://doi.org/10.1007/978-3-030-39958-0_11
https://doi.org/10.1007/978-3-030-39958-0_11

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 21 of 24  17

	 7.	 A. Raja, R.M.A Azad, C. Flanagan, C. Ryan, Real-time, non-intrusive evaluation of voip.
EuroGP’07, pp. 217–228. Springer, Berlin, Heidelberg (2007)

	 8.	 M. Virgolin, T. Alderliesten, A. Bel, C. Witteveen, P.A.N. Bosman, Symbolic regression and feature
construction with gp-gomea applied to radiotherapy dose reconstruction of childhood cancer survi-
vors. In: Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’18, pp.
1395–1402. Association for Computing Machinery, New York, NY, USA (2018).https://​doi.​org/​10.​
1145/​32054​55.​32056​04

	 9.	 S. Ruberto, V. Terragni, J.H. Moore, Sgp-dt: towards effective symbolic regression with a semantic
gp approach based on dynamic targets. In: Proceedings of the 2020 Genetic and Evolutionary Com-
putation Conference Companion. GECCO ’20, pp. 25–26. Association for Computing Machinery,
New York, NY, USA (2020). https://​doi.​org/​10.​1145/​33779​29.​33974​86

	10.	 D. Costelloe, C. Ryan, On improving generalisation in genetic programming, in Genetic Program-
ming. ed. by L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, M. Ebner (Springer, Berlin,
2009), pp.61–72

	11.	 A. Moraglio, K. Krawiec, C. Johnson, Geometric semantic genetic programming. In: Coello, C.C.,
Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from
Nature - PPSN XII. Lecture Notes in Computer Science, vol. 7491, pp. 21–31. Springer (2012)

	12.	 M. Castelli, S. Silva, L. Vanneschi, A c++ framework for geometric semantic genetic programming.
Genet. Program Evolvable Mach. 16(1), 73–81 (2015)

	13.	 L. Vanneschi, S. Silva, M. Castelli, L. Manzoni, Geometric semantic genetic programming for real
life applications. In: Riolo, R., Moore, J.H., Kotanchek, M. (eds.) Genetic Programming Theory and
Practice XI, pp. 191–209. Springer, New York, NY (2014)

	14.	 G. Nadizar, F. Garrow, B. Sakallioglu, L. Canonne, S. Silva, L. Vanneschi, An investigation of geo-
metric semantic gp with linear scaling. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference. GECCO ’23, pp. 1165–1174. Association for Computing Machinery, New York,
NY, USA (2023). https://​doi.​org/​10.​1145/​35831​31.​35904​18

	15.	 H. Iba, H. Garis, T. Sato, Genetic Programming Using a Minimum Description Length Principle
(MIT Press, Cambridge, 1994)

	16.	 H. Iba, N. Nikolaev, Genetic programming polynomial models of financial data series. In: Proceed-
ings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol. 2, pp.
1459–14662 (2000). https://​doi.​org/​10.​1109/​CEC.​2000.​870826

	17.	 N.Y. Nikolaev, H. Iba, Regularization approach to inductive genetic programming. IEEE Trans.
Evol. Comput. 5(4), 359–375 (2001). https://​doi.​org/​10.​1109/​4235.​942530

	18.	 H.G. Hiden, M.J. Willis, M.T. Tham, P. Turner, G.A. Montague, Non-linear principal components
analysis using genetic programming. In: Second International Conference On Genetic Algorithms In
Engineering Systems: Innovations And Applications, pp. 302–307 (1997). https://​doi.​org/​10.​1049/​
cp:​19971​197

	19.	 M. Keijzer, Scaled symbolic regression. Genet. Program Evolvable Mach. 5(3), 259–269 (2004).
https://​doi.​org/​10.​1023/B:​GENP.​00000​30195.​77571.​f9

	20.	 F. Archetti, I. Giordani, L. Vanneschi, Genetic programming for anticancer therapeutic response
prediction using the nci-60 dataset. Comput. Oper. Res. 37, 1395–1405 (2010). https://​doi.​org/​10.​
1016/j.​cor.​2009.​02.​015

	21.	 C. Pennachin, M. Looks, J.A. Vasconcelos, Robust symbolic regression with affine arithmetic. In:
Genetic and Evolutionary Computation Conference (GECCO) (2010)

	22.	 R.M.A. Azad, C. Ryan, A simple approach to lifetime learning in genetic programming-based sym-
bolic regression. Evol. Comput. 22(2), 287–317 (2014)

	23.	 M. Virgolin, T. Alderliesten, P.A.N. Bosman, Linear scaling with and within semantic backprop-
agation-based genetic programming for symbolic regression. In: Proceedings of the Genetic and
Evolutionary Computation Conference. GECCO ’19, pp. 1084–1092. Association for Computing
Machinery, New York, NY, USA (2019). https://​doi.​org/​10.​1145/​33217​07.​33217​58

	24.	 S. Ruberto, V. Terragni, J. Moore, A semantic genetic programming framework based on
dynamic targets. Genet. Programm. Evolv. Mach. 22, 1–31 (2021). https://​doi.​org/​10.​1007/​
s10710-​021-​09419-3

	25.	 S. Ruberto, V. Terragni, J.H. Moore, Towards effective gp multi-class classification based on
dynamic targets. In: Proceedings of the Genetic and Evolutionary Computation Conference.
GECCO ’21, pp. 812–821. Association for Computing Machinery, New York, NY, USA (2021).
https://​doi.​org/​10.​1145/​34496​39.​34593​24

https://doi.org/10.1145/3205455.3205604
https://doi.org/10.1145/3205455.3205604
https://doi.org/10.1145/3377929.3397486
https://doi.org/10.1145/3583131.3590418
https://doi.org/10.1109/CEC.2000.870826
https://doi.org/10.1109/4235.942530
https://doi.org/10.1049/cp:19971197
https://doi.org/10.1049/cp:19971197
https://doi.org/10.1023/B:GENP.0000030195.77571.f9
https://doi.org/10.1016/j.cor.2009.02.015
https://doi.org/10.1016/j.cor.2009.02.015
https://doi.org/10.1145/3321707.3321758
https://doi.org/10.1007/s10710-021-09419-3
https://doi.org/10.1007/s10710-021-09419-3
https://doi.org/10.1145/3449639.3459324

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 22 of 24

	26.	 L. Vanneschi, M. Castelli, E. Costa, A. Re, H. Vaz, V. Lobo, P. Urbano, Improving maritime aware-
ness with semantic genetic programming and linear scaling: prediction of vessels position based on
ais data, in Applications of Evolutionary Computation. ed. by A.M. Mora, G. Squillero (Springer,
Cham, 2015), pp.732–744

	27.	 F. Gruau, D. Whitley, Adding learning to the cellular development of neural networks: evolution
and the Baldwin effect. Evol. Comput. 1(3), 213–233 (1993)

	28.	 D. Whitley, V.S. Gordon, K. Mathias, Lamarckian evolution, the baldwin effect and function optimi-
zation. In: Parallel Problem Solving from Nature-PPSN III: International Conference on Evolution-
ary Computation The Third Conference on Parallel Problem Solving from Nature Jerusalem, Israel,
October 9–14, 1994 Proceedings 3, pp. 5–15 (1994). Springer

	29.	 B.J. Ross, A lamarckian evolution strategy for genetic algorithms. Pract. Handb. Genet. Algo-
rithms Complex Coding Syst. 3, 1–16 (1999)

	30.	 J.M. Mingo, R. Aler, Grammatical evolution guided by reinforcement. In: 2007 IEEE Congress
on Evolutionary Computation, pp. 1475–1482 (2007). IEEE

	31.	 A. Topchy, W.F. Punch, et al. Faster genetic programming based on local gradient search of
numeric leaf values. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), vol. 155162 (2001). Morgan Kaufmann San Francisco, CA

	32.	 W. La Cava, L. Spector, Inheritable epigenetics in genetic programming. In: Riolo, R., Worzel,
W.P., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XII, pp. 37–51. Springer,
Cham (2015)

	33.	 J. Merta, T. Brandejskỳ, Lifetime adaptation in genetic programming for the symbolic regres-
sion. In: Computational Statistics and Mathematical Modeling Methods in Intelligent Systems:
Proceedings of 3rd Computational Methods in Systems and Software 2019, Vol. 2 3, pp. 339–
346 (2019). Springer

	34.	 L. Vanneschi, In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) An Introduction to
Geometric Semantic Genetic Programming, pp. 3–42. Springer, Cham (2017)

	35.	 A. Moraglio, A. Mambrini, Runtime analysis of mutation-based geometric semantic genetic
programming for basis functions regression. In: Proceedings of the 15th Annual Conference on
Genetic and Evolutionary Computation. GECCO ’13, pp. 989–996. Association for Computing
Machinery, New York, NY, USA (2013). https://​doi.​org/​10.​1145/​24633​72.​24634​92

	36.	 I. Gonçalves, S. Silva, C.M. Fonseca, On the generalization ability of geometric semantic genetic
programming, in Genetic Programming. ed. by P. Machado, M.I. Heywood, J. McDermott, M.
Castelli, P. García-Sánchez, P. Burelli, S. Risi, K. Sim (Springer, Cham, 2015), pp.41–52

	37.	 A. Moraglio, An efficient implementation of GSGP using higher-order functions and memoi-
zation. In: Semantic Methods in Genetic Programming, Workshop at Parallel Problem Solving
from Nature (2014)

	38.	 J.F.B.S. Martins, L.O.V.B. Oliveira, L.F. Miranda, F. Casadei, G.L. Pappa, Solving the expo-
nential growth of symbolic regression trees in geometric semantic genetic programming. In:
Proceedings of the Genetic and Evolutionary Computation Conference. GECCO ’18, pp. 1151–
1158. ACM, New York, NY, USA (2018)

	39.	 I. Bakurov, M. Buzzelli, M. Castelli, L. Vanneschi, R. Schettini, General purpose optimization
library (gpol): a flexible and efficient multi-purpose optimization library in python. Appl. Sci.
(2021). https://​doi.​org/​10.​3390/​app11​114774

	40.	 M. Kommenda, B. Burlacu, G. Kronberger, M. Affenzeller, Parameter identification for sym-
bolic regression using nonlinear least squares. Genet. Program Evolvable Mach. 21(3), 471–501
(2020)

	41.	 D. Harrison, D.L. Rubinfeld, Hedonic housing prices and the demand for clean air. J. Environ.
Econ. Manag. 5(1), 81–102 (1978). https://​doi.​org/​10.​1016/​0095-​0696(78)​90006-2

	42.	 I.-C. Yeh, Modeling of strength of high-performance concrete using artificial neural networks.
Cem. Concr. Res. 28(12), 1797–1808 (1998). https://​doi.​org/​10.​1016/​S0008-​8846(98)​00165-3

	43.	 M.A. Little, P.E. McSharry, S.J. Roberts, D.A. Costello, I.M. Moroz, Exploiting nonlinear recur-
rence and fractal scaling properties for voice disorder detection. Biomed. Eng. 6(1), 23 (2007).
https://​doi.​org/​10.​1186/​1475-​925X-6-​23

	44.	 G. Dick, A.P. Rimoni, P.A. Whigham, A re-examination of the use of genetic programming on
the oral bioavailability problem. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pp. 1015–1022 (2015)

	45.	 J. McDermott, D.R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K.
Krawiec, R. Harper, K. De Jong, U.-M. O’Reilly, Genetic programming needs better benchmarks.

https://doi.org/10.1145/2463372.2463492
https://doi.org/10.3390/app11114774
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1186/1475-925X-6-23

1 3

Genetic Programming and Evolvable Machines (2024) 25:17 	 Page 23 of 24  17

In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation.
GECCO ’12, pp. 791–798. Association for Computing Machinery, New York, NY, USA (2012).
https://​doi.​org/​10.​1145/​23301​63.​23302​73

	46.	 J. Woodward, S. Martin, J. Swan, Benchmarks that matter for genetic programming. In: Proceed-
ings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary
Computation. GECCO Comp ’14, pp. 1397–1404. Association for Computing Machinery, New
York, NY, USA (2014). https://​doi.​org/​10.​1145/​25983​94.​26098​75

	47.	 M. Nicolau, A. Agapitos, M. O’Neill, A. Brabazon, Guidelines for defining benchmark prob-
lems in genetic programming. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp.
1152–1159 (2015). https://​doi.​org/​10.​1109/​CEC.​2015.​72570​19

	48.	 J. McDermott, G. Kronberger, P. Orzechowski, L. Vanneschi, L. Manzoni, R. Kalkreuth, M. Cas-
telli, Genetic programming benchmarks: looking back and looking forward. ACM SIGEVOlution
(2022). https://​doi.​org/​10.​1145/​35784​82.​35784​83

	49.	 G. Pietropolli, L. Manzoni, A. Paoletti, M. Castelli, Combining geometric semantic gp with gradi-
ent-descent optimization. In: European Conference on Genetic Programming (Part of EvoStar), pp.
19–33 (2022). Springer

	50.	 L. Vanneschi, S. Silva, Lectures on Intelligent Systems (Springer, Berlin, 2023)
	51.	 W. Dubitzky, M. Granzow, D.P. Berrar, Fundamentals of Data Mining in Genomics and Proteomics

(Springer, Cham, 2006)
	52.	 L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic gp

applied to predicting pharmacokinetic parameters. In: Genetic Programming: 16th European Con-
ference, EuroGP 2013, Vienna, Austria, April 3–5, 2013. Proceedings, vol. 7831, pp. 205–216
(2013). Springer Berlin, Germany

	53.	 I. Gonçalves, S. Silva, C.M. Fonseca, M. Castelli, Unsure when to stop? ask your semantic neigh-
bors. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 929–936
(2017)

	54.	 M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores, P. Legrand, Geometric semantic genetic
programming with local search. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. GECCO ’15, pp. 999–1006. Association for Computing Machinery,
New York, NY, USA (2015). https://​doi.​org/​10.​1145/​27394​80.​27547​95

	55.	 I. Gonçalves, S. Silva, Balancing learning and overfitting in genetic programming with interleaved
sampling of training data, in Genetic Programming. ed. by K. Krawiec, A. Moraglio, T. Hu, A.Ş.
Etaner-Uyar, B. Hu (Springer, Berlin, 2013), pp.73–84

	56.	 L. Vanneschi, M. Castelli, Soft target and functional complexity reduction: a hybrid regularization
method for genetic programming. Expert Syst. Appl. 177, 114929 (2021). https://​doi.​org/​10.​1016/j.​
eswa.​2021.​114929

	57.	 N.M. Rodrigues, J.E. Batista, W. La Cava, L. Vanneschi, S. Silva, Slug: Feature selection using
genetic algorithms and genetic programming, in Genetic Programming. ed. by E. Medvet, G. Pappa,
B. Xue (Springer, Cham, 2022), pp.68–84

	58.	 L. Vanneschi, SLIM_GSGP: The non-bloating geometric semantic genetic programming. In: Euro-
pean Conference on Genetic Programming (Part of EvoStar), pp. 125–141 (2024). Springer

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Giorgia Nadizar1 · Berfin Sakallioglu2 · Fraser Garrow3 · Sara Silva4 ·
Leonardo Vanneschi2

 *	 Giorgia Nadizar
	 giorgia.nadizar@phd.units.it

https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1145/2598394.2609875
https://doi.org/10.1109/CEC.2015.7257019
https://doi.org/10.1145/3578482.3578483
https://doi.org/10.1145/2739480.2754795
https://doi.org/10.1016/j.eswa.2021.114929
https://doi.org/10.1016/j.eswa.2021.114929

	 Genetic Programming and Evolvable Machines (2024) 25:17

1 3

 17   Page 24 of 24

	 Berfin Sakallioglu
	 bsakallioglu@novaims.unl.pt

	 Fraser Garrow
	 fg28@hw.ac.uk

	 Sara Silva
	 sara@fc.ul.pt

	 Leonardo Vanneschi
	 lvanneschi@novaims.unl.pt

1	 Department of Mathematics, Informatics, and Geosciences, University of Trieste, Trieste, Italy
2	 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus

de Campolide, 1070‑312 Lisboa, Portugal
3	 School of Informatics, University of Edinburgh, Edinburgh, UK
4	 LASIGE, Department of Informatics Faculty of Sciences, University of Lisbon, Lisbon,

Portugal

	Geometric semantic GP with linear scaling: Darwinian versus Lamarckian evolution
	Abstract
	1 Introduction
	2 Previous and related work
	3 Background
	3.1 Geometric semantic genetic programming
	3.2 Linear scaling
	3.3 Lamarckian evolution

	4 LS and GSGP: Darwinian versus Lamarckian evolution
	5 Experimental setup
	5.1 Test problems
	5.2 Parameter settings

	6 Experimental results
	7 Conclusions and future work
	Acknowledgements
	References

