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Abstract—According to Hebbian theory, synaptic plasticity is
the ability of neurons to strengthen or weaken the synapses
among them in response to stimuli. It plays a fundamental role
in the processes of learning and memory of biological neural
networks. With plasticity, biological agents can adapt on multiple
timescales and outclass artificial agents, the majority of which
still rely on static Artificial Neural Network (ANN) controllers.
In this work, we focus on Voxel-based Soft Robots (VSRs), a
class of simulated artificial agents, composed as aggregations of
elastic cubic blocks. We propose a Hebbian ANN controller where
every synapse is associated with a Hebbian rule that controls
the way the weight is adapted during the VSR lifetime. For
a given task and morphology, we optimize the controller for
the task of locomotion by evolving, rather than the weights,
the parameters of the Hebbian rules. Our results show that
the Hebbian controller is comparable, often better than a non-
Hebbian baseline and that it is more adaptable to damages. We
also provide novel insights into the inner workings of plasticity
and demonstrate that “true” learning does take place, as the
evolved controllers improve over the lifetime and generalize well.

Index Terms—Hebbian learning, synaptic plasticity, voxel-
based soft robots, evolutionary robotics.

I. INTRODUCTION

AN ambitious goal of robotics is to develop autonomous
robotic societies [1, 2], capable of supporting their own

existence in hazardous and exotic environments while achiev-
ing a human-aligned target. In such a scenario, adaptability
is pivotal, since robotic agents are called upon dealing with
changing environmental conditions and, possibly, changing
mission requirements. Moreover, it is not unlikely that future
robotic agents would undergo the same stages of life (birth,
maturity, death or disposal) of biological agents [3]. As such,
learning and adaptation should inherently guide “infant” robots
towards maturity [4], just like in animals. Indeed, learning has
been acknowledged as one of the main challenges in the road
towards fully autonomous robotic ecosystems [5].

For robotic societies to become reality, adaptation must take
place across all the three timescales: phylogenetic (evolution),
ontogenetic (development), and epigenetic (learning) [6]. As of
now, the vast majority of robotic systems are either evolved [7]
or learned [8]. While some works at the intersection of evolu-
tion and learning do exist [9], they mostly rely on a human-
assigned reward signal that must be decided by a “supervisor”,
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and thus might not be adequate for an autonomous robotic
society. On the other side, biological agents share both an
“innate” evolved component and a learned component. A robot
that only evolves, albeit powerful evolution might be, can
in principle beget offspring that are not viable. As a matter
of example, when jointly evolving brain and body, mismatch
can happen between the two [10]. A robot that only learns,
without an innate evolved “instinct”, since learning usually
relies on trial-and-error, incurs the risk of damaging itself and
the entities surrounding it [11]. For instance, an autonomous
vehicle can provoke serious damage if it optimizes a policy
by sampling random actions. Then, there is a need for robotic
systems that adapt on more than one timescale, quelling the
longstanding “nature vs. nurture” debate [12].

Among the shapes learning can take, we are concerned with
plasticity [13], since it is “unsupervised” in the sense that it
does not require a human-assigned reward signal. Additionally,
plasticity is known to play a key role in the learning processes
of biological agents [14] and it is a simple yet effective
model. Hebbian theory [15], which states that “neurons that
fire together, wire together”, enshrines it. Synapses between
neurons are plastic, i.e., they adapt their strength in response
to stimuli, following synapse-specific rules known as “Hebbian
rules”. These rules are in turn expressed through well-defined
parameters, according to the model employed [16].

In this work, we consider Voxel-based Soft Robots (VSRs),
aggregations of elastic cubic blocks made of soft material,
that actuate by contracting or expanding their volume [17].
VSRs have proven capable of amazing feats, like model-
ing synthetic organisms [18, 19], squeezing through tight
spaces [20], and swimming in aquatic environments [21].
Thanks to their intrinsic modularity, they have emerged as a
relevant formalism for designing state-of-the-art soft robotics
systems [22]. Modularity is a desirable property for robotic
systems [23], as it makes the morphological search space
compact without harming expressivity; indeed, interesting
processes (e.g., development [24]) are still plausible.

We apply Hebbian learning to an Artificial Neural Network
(ANN) controlling the VSR. We embed Hebbian learning
inside an Evolutionary Algorithm (EA) that optimizes the
parameters of the Hebbian rules; in this sense, there are two
scales of adaptation: evolution and learning, the former being
the longer and slower one. Indeed, Evolutionary Computation
(EC) [25] married with robotics to beget the field of evolution-
ary robotics this work belongs to, in which many successes
have been achieved [26, 27].

We evolve Hebbian learning rules for two fixed VSR
morphologies in a locomotion task on hilly terrains, and re-
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assess the VSRs performance on unseen terrains, in order to
quantify their ability to generalize. With experiments, we:
(a) confirm that the Hebbian controller is never worse (and

often better) than a non-Hebbian baseline, and truly
shines when adapting to unforeseen damages in its body;

(b) verify that Hebbian controllers indeed learn, i.e., improve
over the lifetime and can generalize;

(c) unveil some of the weight dynamics underlying learning.
This work falls in the more general study of the link be-

tween learning and evolution, which is rooted in both biology
and artificial intelligence, with fundamental consequences on
robotics. In this regard, a recent position paper [4] argued that
evolutionary robots systems should always “contain a learning
component where a newborn robot refines its inherited con-
troller to align with its body, which will inevitably be different
from its parents”. The authors summarized this concept with
the motto: “if it evolves it needs to learn”. As already pointed
out in [28], this paradigm can be shifted though, as we do
here, where we show that the learning-evolution link is actually
bidirectional. In our experiments, not only the evolved agents
need to have a learning phase, but also the learning strategy
(i.e., the parameters of the Hebbian rules) needs to evolve
over the course of the generations. In other words, learning
emerges through evolution. We can summarize this concept
by paraphrasing the aforestated motto as follows: if it evolves
it needs to learn, but if it learns, it needs to evolve.

The rest of the paper is structured as follows. The next
section summarizes the related works. Section III details the
models of the VSRs, Hebbian learning, and the evolutionary
algorithm used in our experimentation. Section IV presents
our experimental results. Finally, in Section V we draw the
main conclusions of this study.

II. RELATED WORKS

Neural plasticity [13], a form of learning, plays a key role in
the development of biological neural networks. Intuitively, it is
crucial in adapting to changes in environmental conditions, as
well as in shaping memories [14]. Indeed, starting from [29],
there has been growing evidence about the Baldwin effect,
i.e., an acceleration of evolution when learning happens during
lifetime. In a seminal computational study, Hinton et al. [30]
showed that learning can provide a gradient for evolution to
follow even on an extremely deceptive fitness landscape.

Following [31], we distinguish between structural and func-
tional plasticity. The former refers to the ability of the nervous
system to rewire its neural connections, creating new pathways
among neurons and undoing existing ones. The latter refers to
the ability of the nervous system to alter over time the func-
tional properties of neurons. In this work, we are concerned
with functional plasticity and, in particular, with changes in
synaptic strength in response to previous activity (activity-
dependent plasticity) [32]. Previous activities can induce per-
sistent strengthening of synapses (long-term potentiation) [33]
or persistent weakening (long-term depression) [34].

As a result of the well-known benefits of plasticity, there
has been a considerable amount of literature devoted to
engineering “plastic” ANNs. Schmidhuber [35] first proposed

“fast weights”, where a slow-learning ANN learns the weights
of a fast-learning ANN, as a thought experiment. In the last
decade, new studies have taken inspiration from fast weights,
including adaptive HyperNEAT [36], fast weights for recurrent
neural networks [37], and hypernetworks [38]. Moreover, there
is a growing amount of research on the attention mecha-
nism [39, 40], which can be seen as a form of “adaptive
weights”, and synaptic pruning of ANNs [41, 42, 43], which
can be seen as a very “sharp” form of structural plasticity.

However creative and ground-breaking these works might
have been, they are still very complex to engineer. Hebbian
learning [16] provides a more succinct, yet biologically-
plausible representation. According to Hebbian theory [15], if
a pre-synaptic neuron often stimulates the activation of a post-
synaptic one, then their synapse increases in strength1. Past
studies [45, 46] applied Hebbian learning to evolve ANN con-
trollers for mobile robots, and found improved performance
over non-plastic ANNs. More recently, several studies have
successfully evolved Hebbian learning rules [47, 48, 49, 50]
and achieved competitive results in reinforcement learning
scenarios. For these reasons, we adopt Hebbian learning to
model synaptic plasticity.

The present work is built upon our previous research on
VSRs. These form a class of robotic agents that, being intrin-
sically modular and re-configurable, allow great freedom to
the designer. Previous works have focused on the optimization
of the controller [51], the morphology [52], the morphology
jointly with the controller [53], or even the sensory appara-
tus [54]. In this work, we study the controller optimization and
focus on a Hebbian controller. To the best of our knowledge,
this is the first work on applying Hebbian learning to VSRs.

III. METHODS

A. Background: voxel-based soft robots

Voxel-based Soft Robots (VSRs) are a kind of modular
robots composed as aggregations of elastic cubic blocks (vox-
els), made of soft material. Each voxel can contract or expand
its volume; it is the overall concert of volume changes that
allows for the emergence of the high-level behavior of the
robot. VSRs were first formalized and fabricated in [17]. In
this work, we consider a 2-D variant of simulated (in discrete
time and continuous space) VSRs [55], which approximate
cubes with squares. While disregarding one dimension cer-
tainly makes these simulated VSRs less realistic, it also eases
the optimization of VSR design, thanks to the smaller search
space. We remark, however, that the representation and the
algorithms adopted in this paper are easily portable to a 3-D
setting, and so are the considerations on Hebbian learning.

In the following, we outline the characteristics of VSRs
relevant to this study, and refer the reader to [55] for more
details. A VSR is completely defined by its morphology (i.e.,
the body, that also includes its sensors) and its controller (i.e.,
the brain), that we explain in more detail below.

1This statement should be read with a pinch of salt: if two neurons activate
at the same time, then there cannot be causation between the two activations.
For causation to subsist, it must happen that one neuron took part in activating
the other [44]. In this work, we consider connectionist ANNs, where there is
no need to take into account the temporal dimension.
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1) VSR morphology: The morphology of a VSR describes
how the voxels, i.e., deformable squares, are arranged in a
grid topology of size w × h. We model each voxel as the
assembly of spring-damper systems, masses, and distance
constraints [55]. Each voxel is rigidly connected to its four
adjacent voxels (if present).

Over time, voxels change their area according to (a) external
forces acting on the voxel (e.g., other bodies, including other
voxels) and (b) an actuation signal computed by the controller.
The latter produces a contraction/expansion force that is mod-
eled in the simulation as an instantaneous change in the resting
length of the spring-damper systems of the voxel. The length
change is linearly dependent on an actuation value residing
in [−1,+1], −1 being the greatest possible expansion and +1
being the greatest possible contraction.

A VSR can be equipped with sensors and each voxel can
have one or more sensors. A sensor outputs, for every time
step, a sensor reading s ∈ Rm, where m is the dimensionality
of the sensor type. In this study, we endow VSRs with four
different types of sensors. For consistency and replicability, the
four sensors and parametrization thereof have been configured
as in previous research based on VSRs [54, 56].

Area sensors sense the ratio between the current area of
the voxel and its resting area (m = 1). Touch sensors sense
whether the voxel is currently touching another body different
from the robot itself (e.g., the ground) or not, and output a
value of 1 or 0, respectively (m = 1). Velocity sensors sense
the speed of the center of mass of the voxel along the x- and
y-directions (m = 2). Lidar sensors sense the distance from
the center of mass of the voxel to the closest object along a
predefined set of directions; if no object is within the sensor
range d, the sensor reading is set to d. We use d = 10 m (the
side of the voxel being 3 m long) and the following directions
with respect to the positive x-axis: − 1

4π, 0, 1
4π (so m = 3).

The lidar range thus corresponds to (circa) one body length in
the case of biped, and half body length in the case of worm,
i.e., it has been set to compensate for the different aspect ratios
of the two body shapes [54, 56, 43]. We normalize all sensor
readings into [0, 1]m. We should note that, for the touch sensor
only, this normalization does not have any effect since the raw
sensor values are already in the normalized range (being either
0 or 1). After normalization, to simulate real-world sensor
noise, we perturb every sensor reading with additive Gaussian
noise with mean 0 and variance σ2

noise. We set σnoise = 0.01.
We remark that, since the model of noise and characteristics

of the signals generated by each sensor depend on the specific
sensor systems being used [57], in a potential real-world
application of this study the above-defined sensor apparatus
should be adapted to the sensor technology currently available
for soft robots [58]. Nevertheless, this engineering aspect goes
beyond the scope of this work, where we focus on the effect
of Hebbian learning at a more fundamental level.

2) VSR controller: Let n be the number of voxels of the
VSR and let s(k) = [s1 s2 . . . ] be the concatenation of sensor
readings for all the VSR sensors at time step k, i.e., at time
step t = k∆t, where ∆t is the interval between two simulation
time steps. The controller is, in general, a dynamical system
that takes, at each time step k, s(k) as input and outputs a(k) ∈

[−1,+1]n, i.e., the actuation values for the voxels.
In this work, we employ ANNs as controllers. ANNs have

proven effective at exploiting sensors for robotic tasks, includ-
ing soft robots [51, 59, 60]. We denote by fθ an instance of an
ANN-based controller, such that a(k) = fθ

(
s(k)

)
. An ANN-

based controller is completely specified by the parameters
θ ∈ Rp of the ANN. Thus, we optimize a VSR for a given
task by optimizing the parameters θ. We remark however that
θ may not necessarily be the weights and biases of the ANN,
as shall be discussed later. p depends on the ANN topology,
i.e., the number of layers and their number of neurons. The
number of neurons of the input and output layers are equal to
the overall number of sensor readings and number of voxels,
respectively. The number and size of inner layers can be
decided by the designer: after preliminary experiments, we
chose to use one intermediate layer with the same number of
neurons as the input layer and tanh as activation function for
all the neurons.

In this work, we consider two variants of ANNs: with
plasticity and without (static). In the former, the weights of the
ANN change over the course of life of the robot (a simulation)
following a set of well-defined rules. In this case, θ consists
in the parameters governing such rules; as a result, genomes
evolve to synthesize recipes to learn during lifetime. By adding
a learning process on top of the existing evolutionary one, plas-
ticity holds the potential to make individuals more adaptable.
We also use, as a baseline, a static variant, where weights of
the ANN do not change during life, and we call it Multi Layer
Perceptron (MLP). In this case, adaptation takes place only at
the evolutionary level and the controller parameters θ consist
in the weights associated with the synapses.

In this work, we adopt the Hebbian model for the plastic
variant. We introduce it thoroughly in the next subsection.

B. Hebbian learning

As discussed above, Hebbian learning provides a way to
optimize an ANN while performing a given task. In an ANN,
the weights play the role of the synapses, as each of them
modulates the connection between any pair of pre-synaptic
and post-synaptic neurons. From a computational point of
view [61], the general formulation of Hebbian learning updates
the weights according to:

w
(k+1)
ij = w

(k)
ij + ∆w

(k)
ij (1)

∆w
(k)
ij = ηx

(k)
i y

(k)
j (2)

where x
(k)
i and y

(k)
j are the activation of the pre-synaptic

and post-synaptic neurons, respectively, at time step k, and
η is the learning rate. In synthesis, Equation (2) dictates to
strengthen the synapse value if x(k)i and y

(k)
j are positively

correlated, weaken it if they are negatively correlated, and
keep it constant if at least one of the two is zero. This model
takes inspiration from biological systems, in which there is
evidence that plasticity in the frontal-striatal synapses arises
from changes in the concentration of dopamine, which in turn
is a function of the difference between observed and expected
outcomes [62, 63].
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While several works [64, 65, 49] have successfully em-
ployed this “generalized” Hebbian learning to train ANNs,
many variations of it do exist [16]. In this work, we use the so-
called Hebbian ABCD model [66, 67, 68, 48], which updates
the weights according to:

∆w
(k)
ij = η

(
Ax

(k)
i y

(k)
j +Bx

(k)
i + Cy

(k)
j +D

)
(3)

where A,B,C,D ∈ R are the eponymous coefficients and
η ∈ R is the learning rate. The four coefficients determine
the local weight dynamics, with A modulating the relation
between the two signals, B and C modulating the pre-synaptic
and post-synaptic values, respectively, and D acting as a bias
specific to the synapse.

We call the four ABCD coefficients together a rule, and,
in our model, there exists one separate rule per synapse.
In line with uniform plasticity [69], all the rules share the
same learning rate η (we digress on the non-uniform case in
Section IV-D); after preliminary experiments, we set η = 0.01.
Moreover, we initialize w

(0)
ij = 0 for every i, j, i.e., at the

beginning of the life of the VSR, every weight is set to
0. The parameters θ that we optimize consist then in the
concatenation of the ABCD coefficients for all the rules. The
Hebbian controller has thus four times the number of free
parameters of an MLP with the same architecture.

C. Evolutionary algorithm

We resort to EC for optimization, and, in particular, adopt
Evolution Strategies (ES) [70] as our EA, described in Algo-
rithm 1. Indeed, EAs have proven competitive for reinforce-
ment learning problems [71]; in particular, ES have achieved
state-of-the-art results for continuous control tasks [72].

1 function evolve():
2 P ← initialize(npop)
3 foreach i ∈ {1, . . . , ngen} do
4 Pparents ← bestIndividuals

(
P,
⌊
|P |
4

⌋)
5 µ← mean(Pparents)
6 P ′ ← {bestIndividuals(P, 1)}
7 while |P ′| < npop do
8 P ′ ← P ′ ∪ {µ+N (0, σ2)p}
9 end

10 P ← P ′

11 end
12 return bestIndividuals(P, 1)
13 end

Algorithm 1: The EA used in our experiments.

The EA evolves a fixed-size population of npop individuals,
i.e., numerical vectors θ of dimension p. At first, npop indi-
viduals (i.e., the concatenation of ABCD coefficients for the
Hebbian controller or the weights for the MLP controller) are
initialized randomly by sampling U(−1,+1) . Then, for every
generation, the fittest quarter of the individuals is chosen as
parents. npop− 1 children are born from the parents, each one
obtained by adding a Gaussian noise ∼ N (0, σ2) to each of
the p components of the element-wise mean µ of all parents.

Finally, the generated offspring merges with the fittest parent
to form the population for the next generation. This process
is continued for ngen generations, and the fittest individual is
returned at the end of the evolutionary run.

After preliminary trials, we set npop = 40, ngen = 500
(corresponding to 20 000 fitness evaluations), and σ = 0.35.

IV. EXPERIMENTAL ANALYSIS

We performed several experiments aimed at answering the
following research questions:
RQ1 Is evolution with Hebbian learning effective? That is,

are VSRs equipped with the Hebbian controller ef-
fective in the task of locomotion? Are they able to
generalize to unseen conditions as new environments
or malfunctions in the morphology?

RQ2 Is there any “true” learning?
RQ3 Why Hebbian learning works?

We anticipate that by “true” learning, here we mean that the
agent retains the ability of accomplishing the task even once
Hebbian plasticity is disabled, i.e., the weights are frozen (this
will become clearer below).

For answering these questions, we experimented with two
different VSR shapes, see Figure 1. In particular, we consid-
ered a 4× 3 (size of the grid enclosing the voxels) rectangle
with a 2× 1 rectangle of missing voxels at the bottom-center,
that we call biped, and a 7×1 rectangle, that we call worm. For
each shape, we considered three sensory apparatuses differing
in the number and kind of sensors they are composed of,
hence in their complexity. We equipped the high-complexity
apparatus as follows: area sensors for all the voxels, touch
sensors for the voxels in the bottom row of the shape, velocity
sensors for the voxels in the top row of the shape, and lidar
sensors for the voxels in the rightmost column of the shape.
The medium-complexity apparatus is equivalent to the high
apparatus, with the exception of the lidar sensors, that are
absent. Finally, we equipped the low-complexity apparatus
with just the area sensors for the two top rows in the case of
the biped shape, and the three central voxels in the case of the
worm shape. For the three apparatuses respectively, the input
dimension is 48, 36, and 8 for the biped shape, 31, 28, and
3 for the worm shape. We experimented with different shapes
and sensory apparatuses to get a sense of the effectiveness
of Hebbian learning across a wide array of morphological
conditions.

For all the experiments, we considered the task of locomo-
tion. The goal is to travel on a terrain as fast as possible along
the positive x direction, in a fixed amount of simulated time
tfinal. The fitness of a VSR is given by its average velocity
vx, computed considering the x-position of the VSR center of
mass at the beginning and at the end of the simulation. We
set tfinal = 60 s. Locomotion is a classic task in evolutionary
robotics [73] and usually consists in running along a flat
surface. Here, we instead use a hilly terrain. It consists in
a sequence of bumps, having an average height of 3 m and an
average distance of 30 m. Additionally, the random seed for
procedurally generating the bumps is different at every fitness
evaluation, so as to prevent individuals from “overfitting” to
one single terrain profile, making adaptation more challenging.
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Fig. 1: Frames of the simulation of the two shapes during the locomotion. The color of the voxel depends on its action. Red
voxels are contracting, green ones are expanding, and yellow are resting. The red lines represent the rays of the lidar sensor.

We implemented the experimental setup in Java, building
on top of two frameworks: JGEA2 [74] for the evolutionary
optimization and 2D-VSR-Sim3 [55] for the simulation of
VSRs. For the simulator, we set the time step to ∆t = 1/60 s
and the other parameters to the default values (as a result,
all the voxels share the same mechanical properties). The
code to reproduce the experiments is publicly available at
https://github.com/ndr09/VSRevo.

For each experiment, we performed 10 evolutionary runs
with different random seeds for the EA. We remark that, for a
given VSR and terrain, the simulations are deterministic. After
verifying the adequate hypotheses, we carried out statistical
tests with the two-sided Mann Whitney U rank test [75] for
independent samples using α = 0.05 as confidence level.

A. RQ1: effectiveness of evolution with Hebbian learning

As starting point, we are interested in investigating the effec-
tiveness of the Hebbian controller. We measure effectiveness in
two different cases: in the same conditions as evolution, and on
a re-assessment procedure with slightly different conditions.
In both cases, the performance index is vx, which, in the first
case, is the fitness function itself. The aim of the second case
is to test the generalization abilities of an evolved individual.
To this end, we compute vx across 10 unseen hilly terrains,
obtained with 10 different predefined random seeds.

We compare the Hebbian model against a baseline model.
In this work, we used as baseline a “vanilla” MLP controller,
with the same architecture as the Hebbian controller (see
Section III-A2). The baseline controller is different from the
Hebbian controller in two ways. First, the weights of the MLP
of the former stay the same for the entire simulation, while
in the latter they change at every time step according with
Equation (3). Second, in the baseline controller we optimize
the weights, differently than in the Hebbian controller, where
we optimize the ABCD parameters. For the optimization,
we use the same EA of Algorithm 1. As for the Hebbian
controller, we couple the baseline controller with the two
shapes and the three sensory apparatuses previously outlined.

We summarize the results in Figure 2, which shows vx of the
best individuals at the end of evolution, and Figure 3, which
shows vx of the best individuals on the re-assessment terrains.

2https://github.com/ericmedvet/jgea
3https://github.com/ericmedvet/2dhmsr
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Fig. 2: Distribution of the velocity vx of the best individuals
found in each of the 10 evolutionary runs, obtained with the
two controller types on each combination of shape and sensory
apparatus. Hebbian learning is never worse than the baseline.
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Fig. 3: Distribution of the velocity vx across 10 unseen hilly
terrains for the best individuals found in each of the 10
evolutionary runs, obtained with the two controller types on
each combination of shape and sensory apparatus. Hebbian
learning is never worse than the baseline.

For the same shape and sensory apparatus, we also report the
p-value for the statistical test against the null hypothesis of
equality between the medians. Figure 4 plots vx in terms of
median ± std. dev. over the course of evolution.

From the figures, we find that Hebbian learning is never
worse that the baseline: in fact, it is either comparable or
better. In particular, if we look at the results shown in
Figure 2, it turns out that the Hebbian controller consistently
outperforms the MLP for the low sensory apparatus in both
shapes, and the high sensory apparatus in the biped shape,
which are the configurations whose p-values are significant.
Also, the performance gap seems to be particularly abysmal
in the low sensory apparatus; we speculate the reason to be

https://github.com/ndr09/VSRevo
https://github.com/ericmedvet/jgea
https://github.com/ericmedvet/2dhmsr
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Fig. 4: Median ± std. dev. (solid line and shaded area) of the
velocity vx of the best individuals found during each of the
10 evolutionary runs, obtained with the two controller types
on each combination of shape and sensory apparatus. Hebbian
learning converges as fast as the baseline even if it has four
times the number of parameters.

that Hebbian learning is particularly effective with “scarce”
perceptual conditions. When comparing the two shapes, we
find instead that the advantage of Hebbian learning over the
MLP is more evident with the biped shape than with the worm.
We hypothesize that this difference may be due to the fact
that, having a much simpler shape, the worm can perform
well already with a simple, “instinctive” controller (i.e., one
that maps statically inputs to outputs, as the MLP), i.e., there
is little margin for learning. On the contrary, the biped shape
may benefit from learning since the controller space has an
increased complexity reflecting the higher complexity of the
body. This somehow matches the previous observation on the
increased effectiveness of Hebbian learning with simpler sen-
sor apparatuses: with less sensors, learning can provide a better
way to exploit the available perceptual information, while with
more sensors an instinctive controller is enough. The results on
the re-assessment, shown in Figure 3, corroborate and mirror
these effects, indicating that the evolved Hebbian controllers
also have generalization abilities. Moreover, Figure 4 confirms
that, despite having four times the number of parameters of
the MLP, the Hebbian controller succeeds in converging to a
plateau in the fitness landscape.

We visually inspected the robot with the evolved Hebbian
controllers and found their behaviors to be highly adapted
for a locomotion task on uneven terrain; bipeds hop on
their legs and worms inch forward as real caterpillars do.
Visual inspection is fundamental since behaviors are a strong
indicator of a possible reality gap [76, 77]. We made sam-
ple videos available at: https://youtu.be/bZ2Ek9ohzXI, https:
//youtu.be/5tCaQTRXRp8, and https://youtu.be/q0NrstiF9AQ.

To further investigate the generalization abilities of the
Hebbian controllers, we tested their ability to recover from un-
foreseen damages affecting the body of the VSR. In particular,
we used the following protocol. After half of the simulation
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Fig. 5: Distribution of the velocity vx across 10 unseen hilly
terrains for the best individuals found in each of the 10 evolu-
tionary runs (with damages), obtained with the two controller
types on each combination of shape and sensory apparatus.
Hebbian learning is decisively better than the baseline.

(30 s) has elapsed, the VSR experiences a trauma, with every
voxel having a 0.5 probability of breaking—thus, every VSR
has, on average, 50 % of the voxels broken for the second
half of the simulation. Upon breakage, a voxel does not apply
anymore the actuation signal it receives from the controller,
and hence its area is determined only by external forces. We
ran an experimental campaign of 10 evolutionary runs for the
Hebbian and MLP controller types, and re-assessed the best
individuals on 10 unseen hilly terrains, as already explained.
Note that, during each simulation (either in evolution or re-
assessment), the VSRs experience damages affecting different
voxels—this makes the task of evolving a controller harder
than without the damages. We found the results in these
conditions to be not significantly different from those obtained
without damages, and, for the sake of conciseness, we report
just the re-assessment results in Figure 5.

From the figure, we conclude that, beyond any doubt, the
evolved Hebbian controller is more effective at recovering
from unforeseen damages in the body. Taken from this per-
spective, controllers with Hebbian plasticity would fit neatly
into the design of an autonomous robotic ecosystem.

These findings confirm that Hebbian learning is an effective
learning paradigm and that, when coupled with evolution,
generalization to unseen conditions is where it can truly shine.
Two questions then arise: is the Hebbian controller really
learning? Furthermore, why does it work, i.e., what is the
dynamics of the weights during the robot lifetime? We set out
to answer these questions in the following two subsections.

B. RQ2: is there any “true” learning?

We aim at verifying whether, in our experiments, a VSR
with Hebbian learning does indeed learn. Intuitively, we say
that an individual has “learned” how to perform a task if
(a) it has built some internal representation of the experience
collected on the task while learning and (b) it is able to
re-use this experience. That is, we assume that the outcome
of learning is available even after the process of learning
has ended. From this assumption it follows that if we stop
the learning once enough experience has been collected, the
individual should still be able to achieve the task; if, instead,
we stop it too early, the individual should not be able to
achieve the task. If, at some point of its life, an individual

https://youtu.be/bZ2Ek9ohzXI
https://youtu.be/5tCaQTRXRp8
https://youtu.be/5tCaQTRXRp8
https://youtu.be/q0NrstiF9AQ
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Fig. 6: Median ± std. dev. (solid line and shaded area) of
the velocity vx of the best individuals found in each of the
10 evolutionary runs, with weights frozen at different time
steps of the simulation (on x-axis, in s), obtained with the
Hebbian controller on the two shapes and the high sensory
apparatus. Hebbian learning requires just ≈ 10 s for the biped
and ≈ 5 s for the worm to converge to a high-performing
weight configuration.

that is learning is already able to achieve the task and we
stop the learning, there could be two outcomes: either (a) the
individual retains its ability to solve the task or (b) it loses
its ability. In the latter case, we might conclude that what
was happening inside the individual was not “learning” in the
sense we described above, but was instead some form of fast
adaptation of the brain that was itself functional to the ability
of the individual. Namely, it is so functional that, if you stop
it, the individual looses its ability to solve the task. Stopping
the learning and looking at what happens can hence be used
to verify whether true learning is happening.

Based on these considerations, we performed the following
experiment. Given a VSR with an evolved Hebbian controller,
we take a snapshot of it, along with its weights, at every
second during the simulation. For every such snapshot, we
measure its average velocity vx in a new simulation lasting
60 s over an unseen hilly terrain with Hebbian learning turned
off (i.e., we fix the weights to the frozen values of the snapshot
and do not change them anymore during the simulation). We
performed this procedure for the best individual (i.e., set of
ABCD parameters) of every evolutionary run. We report the
results of such validation in Figure 6, in terms of median ±
std. dev. across the 10 runs. On the x-axis, we report the time
(in s) at which we took the corresponding snapshot. For the
sake of conciseness, we report the results only for the high
sensory apparatus since it is the configuration that delivered
the best results for the Hebbian controller. The other cases are
qualitatively similar.

From Figure 6, we observe that for both shapes the median
vx rises very steeply and then settles around a stable point. It
takes about 10 s to 20 s before stabilizing for the biped shape,
while for the worm it converges more rapidly in the first 5 s.
This observation demonstrates that learning does indeed take
place: after an initial settling period (which can be seen as the
actual “learning” phase), the robots are capable of achieving
high vx even with the weights frozen—that is, they have
acquired some experience through learning and they are able
to exploit it to run effectively even after learning has stopped.
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Fig. 7: Weight distributions for two sample best individuals
(one per shape, both with high sensory apparatus), at three
different time steps of the simulation: 1 s, 15 s, and 60 s. In
Hebbian learning, weights do diverge.

We speculate that, by the time vx settles into a stable point, the
weights have converged to a high-performing attractor in the
weight space. These findings are in line with previous research
on Hebbian learning for robotic agents, in particular [48].

C. RQ3: why Hebbian learning works

We want to understand why Hebbian learning works. In
order to do so, we investigate the weight dynamics underlying
locomotion and see whether they disclose some insights. Also
in this case, for the sake of conciseness, we report the results
only for the high sensory apparatus, since it performed the
best in terms of effectiveness (see Section IV-A). The results
are qualitatively the same for the other configurations.

Figure 7 plots, separately for two sample best individuals
(one per shape), the histograms of the relative frequency of
weights at different time steps of the simulation.

From the figure, one finding strikes us. By the end of the
simulation, weights diverge to assume a bell-shaped distribu-
tion centered on their initial value of 0.0. Moreover, there are
small clusters of values that accumulate on the boundaries and
assume very large values. If we consider that learning takes
about 10 s to happen (see Section IV-B), weights divergence is
interesting since it persists over the entire simulation. We also
visualized the neuron activations and found the corresponding
histograms to be bi-modal, with two peaks at the boundaries
(i.e., −1 and +1). Considering that we employ tanh as
activation function (whose output domain is indeed [−1,+1]),
it is clear that activations become saturated. The divergence of
the weights might hint that evolution is essentially performing
a form of synaptic pruning [42, 41], and implicitly optimizing
not really the weights, but rather the topology of the neural net-
works. Figure 7 thus led us to believe that Hebbian plasticity
creates some kind of underlying “Boolean” dynamics in the
neural networks. This fact bears similarity to what happens
with weight agnostic neural networks [78] and “bang-bang”
controllers [79], which are continuous-action controllers that,
when optimized, degenerate to binary controllers. Inspecting
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Fig. 8: Distribution of the velocity vx of the best individuals
found in each of the 10 evolutionary runs, obtained with the
Hebbian controller (with and without weight normalization to
[−1,+1]) on the two shapes and the high sensory apparatus.

the weights and activations of the other best individuals
confirmed these results. Here, we plotted just two of them
for the sake of conciseness.

To better understand the role that weight divergence plays,
we introduce, in the form of an ablation study, a normalized
Hebbian model. In this representation, we normalize weights
to [−1,+1] as w′(k+1)

ij = w
(k+1)
ij / ‖ w(k+1)

i ‖2, where w(k+1)
i

is the vector of pre-synaptic weights for the post-synaptic
i-th neuron. In other words, at each step for every neuron
we divide its pre-synaptic weights by their Euclidean norm.
We remark that, in the previous experiments, weights were
unbounded. In doing so, we tap into the body of evidence
on local synaptic competition between neurons in vivo [80],
according to which adjacent synapses modulate their strength
so as to specialize and not be subdued by the others. Moreover,
the relative relevance of weights of a given neuron does not
change, and so there is no bias introduced in the EA. The
rationale behind the normalized Hebbian model is clearly that,
since we are preventing the weights from diverging, we want
to see whether it unveils more insights about the original, non-
normalized model whose weights diverged.

We ran an experimental campaign of 10 independent runs
for the normalized Hebbian model, using the same parameters
of the non-normalized Hebbian model. We report the results
in Figure 8 in terms of the fitness vx of the best individuals at
the end of evolution, and compare it with the non-normalized
Hebbian model results from Section IV-A. Figure 9 plots the
histograms of the relative frequency of weights at different
time steps of the simulation, for two sample best individuals.

From Figure 8, we first notice that normalizing the weights
does not impact performance and that the normalized Hebbian
model reaches fitness vx comparable (or even better) to the
non-normalized Hebbian model. Also, Figure 9 proves very
insightful. As expected, weights do not diverge outside of
the [−1,+1] range and distribute more uniformly in that
range. We also visualized the neuron activations over time
and, in contrast with the non-normalized Hebbian model, they
display a clear recurrent cyclical pattern (see Figures 1 and 2
shown in the Supplementary Material). We conjectured the
reason for this to be that the normalized Hebbian model
evolves to exploit the dynamics of the underlying soft body;
intuitively, soft materials are so powerful that, in order to
produce a gait, everything the controller is left to do is to
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Fig. 9: Weight distributions for two sample best individuals
(one per shape, both with high sensory apparatus), at three
different time steps of the simulation: 1 s, 15 s, and 60 s. In
Hebbian learning with normalization, weights do not diverge.
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Fig. 10: Median ± std. dev. (solid line and shaded area) of
the velocity vx of the best individuals found in each of the 10
evolutionary runs, with weights frozen at different time steps
of the simulation (on x-axis, in s), obtained with the Hebbian
controller on the two shapes and the high sensory apparatus,
with weight normalization to [−1,+1]. Hebbian learning with
weight normalization does not stabilize.

instill a cyclical recurring pattern. This hypothesis appears
even more grounded if we consider that the frequency of
activation “cycles” corresponds to the frequency of the real
gait for the two shapes, being higher and more regular for the
biped (bipeds gait has a period of ≈ 1.5 s), whereas lower
and less regular for the worm (worms gait has a period of
≈ 2 s). Under this light, the dynamical system of the soft
body coupled with the dynamical system of the normalized
Hebbian controller can be seen as an instance of morphological
computation [81, 82], according to which the brain offloads
part of the computation to the body.

To test this hypothesis, we repeated the same validation used
in Section IV-B, and report the results in Figure 10 using
the same semantics of Figure 6. We remark that, during the
simulation of a snapshot, we freeze the corresponding weights.

Surprisingly, the results are quite different from what ob-
served for the non-normalized Hebbian model in Section IV-B.
In fact, the median average velocity vx remains stuck at around
0 m/s, meaning that individuals are not producing any useful
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locomotion at all. In the non-normalized case, see Figure 6, vx
climbed up very quickly. This analysis holds for both shapes.

Our interpretation is that, while it is possible to freeze Heb-
bian learning (after a settling period) in the non-normalized
case, the same is not true for the normalized case. It is
likely that the dynamical system of the Hebbian controller
and the dynamical system of the soft body act in unison
as a single dynamical system. Hebbian plasticity—in the
normalized case—concurs to instill the correct gait dynamics
for locomotion, but this is not “true” learning (as specified
in Section IV-B), since freezing Hebbian learning results in
extinguishing an entangled portion of the dynamical system.

We conclude that unbounded weights are a necessary com-
ponent in the original formulation. We speculate the reason
why weights divergence does not affect performance may be
explained in two different ways. As mentioned earlier, one
hypothesis is that a sort of “Boolean” dynamics emerges in the
Hebbian model. This hypothesis sounds alluring if we consider
that, in theory, the action space for each voxel (which is contin-
uous) might be shrunk to a binary space with just contraction
or expansion. To test this hypothesis it would be necessary,
as a matter of example, to switch from the foundational task
of locomotion to more complex ones that cannot be solved
by a mere recurring pattern. We leave this investigation for
future work. Another hypothesis is that those synapses that
diverge are in fact synapses that do not contribute much to the
output and we could, in theory, prune them. This hypothesis
seems even more intriguing if we parallel it with the recently
introduced “lottery ticket hypothesis” [83], according to which
optimizing a dense neural network boils down to optimizing
the most effectively-initialized sub-networks. However, our
setting is slightly different, as weights are initialized at the
same value and develop over time through Hebbian plasticity.
Future work will consider how to extend the lottery ticket
hypothesis to our setting. Finally, for the sake of this study,
we were not concerned with other physiological processes
other than Hebbian plasticity. There is evidence that other
processes, e.g., homeostatic plasticity [84], complement it to
maintain the overall activity of a neuron within the network,
and might balance unconstrained synaptic growth. We leave
this investigation as future work.

D. Additional experiments

In the following, we list experiments that we carried out,
but delivered less interesting results.

First, we tried to evolve η alongside the ABCD coefficients.
The motivation for this is that the joint space of η and the
ABCD coefficients is, potentially, a more expressive represen-
tation. In particular, it might allow evolution to find learning
rates that are tailored to specific Hebbian rules, in parallel with
what happens in the human brain, where plasticity is known
to operate on a different timescale for the striatum and the
amygdala [85]. The results turned out to be not significantly
different than searching in the sole ABCD space. So, for
the sake of this paper, we resorted to the more compact
representation between the two, i.e., the one evolving only
the ABCD coefficients. The reason for this might be that the

EA searches more effectively in the more compact ABCD
space, or that differing η values do not benefit the Hebbian
learning model.

Second, we experimented with different Hebbian models
than the one presented in Section III having a different
Hebbian rule for every synapse, that we will hereon label full.
In particular, we tested:

(a) a single model, where all the synapses share a single
Hebbian rule;

(b) a sensors model, where pre-synaptic connections of input
neurons corresponding to sensors of the same type share
the same Hebbian rule and there is an unique rule for
each one of the other two layers;

(c) a post-synaptic model, where the post-synaptic connec-
tions of a given neuron share the same Hebbian rule;

(d) a pre-synaptic model, where the pre-synaptic connections
of a given neuron share the same Hebbian rule.

We ran an experimental campaign for each of the models
above, using the same setup of the full model. The single,
sensors, and input models turned out to be ineffective for all
shapes and sensory apparatuses. The pre-synaptic model, on
the other side, managed to evolve and settle on a plateau.
Nevertheless, it still under-performed the full model. Since
what distinguishes these models is the number of parameters
to optimize, they present different compactness-expressivity
trade-offs. We then believe these results are a consequence of
expressivity, being the latter, for this setting, beneficial.

Finally, we experimented with the initialization of the
weights at the beginning of the life of the robot. In addition to
the zero initialization adopted in this paper, we considered a
case with initialization of the weights from U(−1,+1), but
we did not find any statistically significant difference. We
thus resorted to zero initialization since starting from an idle
posture is more sensible for a locomotion task and there is
one less causal factor.

V. CONCLUDING REMARKS

Our experiments revealed a number of noteworthy findings.
First, we observed that the evolved Hebbian controllers are
never worse, and often better, than their counterparts based on
MLP with evolved weights. This is true for all the tested com-
binations of two VSR shapes and three sensory apparatuses.
Second, we found that the adopted Hebbian learning model
does indeed “learn”, i.e., the robots perform well even when
the weight update is disabled, provided that a sufficient amount
of time was previously allotted to the learning process. Third,
we found that unbounded weights are a necessary element of
learning in our model, in that they lead to an implicit form of
pruning. On the contrary, when we normalize weights, robot
performance with learning is still comparable; however, if we
disable the weight update, performance drops dramatically.
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