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This work considers the propagation of a tumor from the stage of a small avascular sphere in a host tissue
and the progressive onset of a tumor neovasculature stimulated by a pro-angiogenic factor secreted by
hypoxic cells. The way new vessels are formed involves cell sprouting from pre-existing vessels and fol-
lowing a trail via a chemotactic mechanism (CM). Namely, it is first proposed a detailed general family of
models of the CM, based on a statistical mechanics approach. The key hypothesis is that the CM is com-
posed by two components: i) the well–known bias induced by the angiogenic factor gradient; ii) the pres-
ence of stochastic changes of the velocity direction, thus giving rise to a diffusive component. Then, some
further assumptions and simplifications are applied in order to derive a specific model to be used in the
simulations. The tumor progression is favored by its acidic aggression towards the healthy cells. The
model includes the evolution of many biological and chemical species. Numerical simulations show
the onset of a traveling wave eventually replacing the host tissue with a fully vascularized tumor. The
results of simulations agree with experimental measures of the vasculature density in tumors, even in
the case of particularly hypoxic tumors.
1. Introduction

The growth of solid tumors as avascular nodules cannot exceed
the size of 1-2 mm of diameter since, beyond this size, the diffusion
of solutes from the surrounding environment is insufficient to
appropriately supply the cells with oxygen and nutrients, as shown
by experiments on in vitro tumor cellular spheroids (Freyer and
Sutherland, 1986). Indeed, the tumor needs to be vascularized to
grow further.

Generally, tumor vascularization requires the development of
new blood vessels following the proliferation of endothelial cells
(ECs) of pre-existing vessels and the formation of sprouts. This kind
of vascularization mechanism is called angiogenesis (Adair et al.,
2010). The angiogenesis process is under the control of a complex
interplay of chemical factors, both pro-angiogenic and anti-
angiogenic, secreted by the tumor cells and the stromal cells. The
process initiates with the activation into proliferation of the
endothelial cells of pre-existing vessels that give origin to sprouts.
Sprouts in turn proliferate creating a structure along the motion of
the tip cell whose orientation is biased by the gradient of the angio-
genic factor, subjected at the same time to a random change. After
anastomosis and some maturation process, such structures form a
network of new vessels allowing blood flow (Carmeliet et al., 2011).

Interest has been devoted over the past 40 years to the mathe-
matical modeling of blood vessel formation with focus on the
migratory response of endothelial cells to angiogenic factors since
the works of Ausprunk et al. (1977); Zigmond, 1977. Theoretical
studies on blood vessel growth and development may however
be traced back nearly a century (see e.g. Mantzaris et al., 2004;
Chaplain et al., 2006; Adair et al., 2010).

Much interest has been devoted to the mathematical modeling
of tumor–induced angiogenesis (Hahnfeldt et al., 1999; d’Onofrio
et al., 1999; d’Onofrio et al., 2009; d’Onofrio and Gandolfi, 2010)
as well as to both anti–angiogenesis therapies (Hahnfeldt et al.,
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1999; d’Onofrio et al., 1999; d’Onofrio and Gandolfi, 2006;
d’Onofrio et al., 2009; d’Onofrio et al., 2009) and the effects on
tumor vessels of anticancer chemo- and radiotherapies (d’Onofrio
and Gandolfi, 2010; Ledzewicz et al., 2012). As far as the spatio–

interstitial liquids and extracellular matrix (ECM). We denote by
/ x; tð Þ the local volume fraction occupied by cells and vessels at
position x and time t, with x 2 X � IR3. X is the domain on which
the model is defined, and it has to be viewed as a small portion

motility, which can be described by moderate Fickian diffusion.
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temporal dynamics, a particular effort has been focused on contin-
uum modeling of angiogenesis (Hillen and Painter, 2009), starting
with the work of Balding and McElwain (1985) who describe the
growth of a capillary network in terms of tip and sprout densities
in response to angiogenic growth factors.

Furthermore, we mention discrete models of angiogenesis
treating cells as individual units and incorporating cell movement
and interaction with the tissue (Anderson and Chaplain, 1998;
Rivero et al., 1989). Discrete models incorporating rules for sprout
branching and anastomoses that include elements of stochasticity
for the cell movement have also been proposed (see for instance
Othmer et al., 1988; Tranquillo et al., 1988; Anderson and
Chaplain, 1998).

Among the attempts of modeling tumor angiogenesis with
attention to optimal treatment strategies we quote the very recent
paper by Voutouri et al. (2019) in which the sprouting of new ves-
sels is described by means of two endothelial cell populations, that
the authors call ‘‘stable” and ‘‘unstable”, respectively, both subject
to a chemotactic motion simply governed by the gradient of angio-
genic factors.

Our approach differs in various aspects from previous works. In
particular we perform a finer analysis of chemotaxis, which
includes a random component generated by tumbling of the unsta-
ble cells and is based on different principles (the sheer proportion-
ality to the gradient of the chemotactic factor is known to be not
always adequate - and actually is not in this specific case, where
the gradient influences the orientation of velocity, but not its mod-
ulus). The concept pursued here is that the angiogenic factor gradi-
ent contributes to determine the tip cells orientation but not their
speed intensity.

The aim of this work is to build a mathematical model to
describe the growth of an invasive tumor within the host tissue
from its initial (avascular) phase, elucidating the relative role of
the neo-angiogenesis and of the possible vessel co-option, and per-
forming numerical simulations. Particular attention is devoted to
the stages giving rise to the new vasculature.

The model is formulated in Section 2. It includes the tumor
aggression to the surrounding healthy tissue. Modeling the forma-
tion of new vessels within the tumor goes through the description
of the evolution of different classes of cells under the stimulus of a
protein secreted by hypoxic tumor cells. In particular, we derive a
model for tip cell chemotactic migration under the influence of the
angiogenic factor. The numerical approach is explained in Section 3.
The values of the various parameter are listed and discussed in Sec-
tion 4. Results are shown and commented in Section 5. Starting
from a spherical, avascular tumor, simulations show that tumor
progresses as a traveling wave, eventually replacing the health tis-
sue. The paper contains two appendices. App. A shows that all the
quantities involved in the model stay in their natural physical
range; App. B analyzes the steady state created after the healthy
tissue has been replaced by the tumor. The analytical results of
App. B proved to be very useful in checking the validity of numer-
ical simulation. Our numerical results agree with the available
experimental data on tumor vasculature in a wide range of cases.

2. Model formulation

2.1. General assumptions
2

Both the tumor and the host tissue in which the tumor is devel-
oping are viewed as a mixture of cells of different types, vessels,
of the body. Under the saturation hypothesis, 1� / is the fraction
occupied by fluids plus ECM. The extracellular matrix, which is a
network of fibrillar protein and proteoglycans necessary to allow
active cell motility, is produced by stromal cells and degraded
through enzymes secreted by the tumor cells (Chaplain et al.,
1993). In the present model, for simplicity, we disregard the ECM
dynamics assuming that it is incompressible with constant volume
fraction /ECM . Similarly, the dynamics of liquids is also disregarded,
along with any mechanical interaction of cells with the surround-
ings. Likewise, the possible displacement of the vessel network
caused by tumor growth is not accounted for. The evolution of
the vessel network – including normal host vessels and neo-
formed vessels – will be traced by the dynamics of the involved
populations of endothelial cells.

Furthermore, we assume that random and directed cell motility,
as well as cell proliferation, decrease as the occupied volume frac-
tion / increases, and that cellular movement and proliferation
cease when / reaches some value /�. Obviously, /� cannot exceed
the maximal volume fraction available for cells and vessels, and
thus it must be /� 6 1� j/ECM , where the coefficient j > 1
accounts for the steric hindrance that increases the space actually
excluded by ECM.

Although the movement impairment in crowded environments
and the inhibition of cell proliferation are likely to follow different
laws with respect to /, we describe for simplicity both these phe-
nomena by means of a common function B /ð Þ that multiplicatively
modifies the proliferation rates as well as the diffusion and chemo-
taxis terms. The function B /ð Þ is such that B 0ð Þ ¼ 1;B /�ð Þ ¼ 0, and
B0 /ð Þ < 0; in particular we take (see (Swanson et al., 2011))

B /ð Þ ¼ 1� /
/�

� �p

; p > 1: ð1Þ

2.2. Tumor cells and host tissue

We suppose that tumor cells are endowed with active random
Tumor cells proliferate with a rate that decreases when the con-
centration of a critical chemical in the cell environment decreases.
At the same time, the progressive depletion of the same chemical
increases the tumor cell death rate. A background level of sponta-
neous cell death is also introduced. Although the model does not
include quiescent tumor cells, the onset of quiescence is implicitly
represented by the decrease of the proliferation rate. We identify
the critical chemical with oxygen, even though glucose and other
substances have a fundamental role in the energy metabolism of
cells (Bertuzzi et al., 2010). Denoting by n x; tð Þ the tumor cell den-
sity, we can write the following equation:

@tn ¼ r � DnB /ð Þrnð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusion

þB /ð Þv rð Þn|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
proliferation

�ln rð Þn|fflfflfflffl{zfflfflfflffl}
death

; ð2Þ

where r x; tð Þ indicates the oxygen concentration. The functions
v rð Þ and ln rð Þ are the per cell rates of proliferation and death
respectively, for which we take

v rð Þ ¼ Av
r

Kv þ r ; ð3Þ

and

ln rð Þ ¼ �lncos2 p
2

r
�rn

� �
þ l0; r 2 0; �rn½ �;

l0; r 2 �rn;þ1ð Þ;

(
ð4Þ



with obvious meaning of the symbols.
As a consequence of the tumor cell metabolism, acidification is

observed to occur in the surrounding microenvironment to the
extent that it becomes toxic for normal cells favoring the host tis-

tomize can generate tapered and/or leaking vessels. As a
consequence, the overall efficiency of the neo-formed tumor vas-
culature is expected to be poor.

To describe this complex scenario, we make the following
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sue invasion (Gatenby and Gawlinski, 1996; Gatenby et al., 2003;
Fasano et al., 2009). We do not include the dynamics of H+ ions
in the model and we simply represent tumor aggression by assum-
ing that host cells are killed with per cell rate proportional to the
local concentration of tumor cells. The normal tissue hosting the
tumor is modeled by means of a density h x; tð Þ of identical cells,
which are properly supplied with nutrients by an isotropic net-
work of vessels. For simplicity, the possible renewal process, which
implies some proliferative activity to compensate the effect of
spontaneous cell death, is disregarded. So, host cells are assumed
to be quiescent, devoid of motility, and subjected to cell death only
for oxygen deprivation and/or tumor aggression. According to the
above assumptions, the equation for h x; tð Þ reads
@th ¼ �dhnh|fflfflffl{zfflfflffl}

tumor aggression

� lh rð Þh|fflfflfflffl{zfflfflfflffl}
death by hypoxia

; ð5Þ

where

lh rð Þ ¼ �lhcos2 p
2

r
�rh

� �
; r 2 0; �rh½ �;

0; r 2 �rh;þ1ð Þ:

(
ð6Þ

It is reasonable that �rh > �rn, in view of the enhanced role of
anaerobic metabolism in tumor cells. The value �rh has to be taken
smaller than the oxygen concentration in the host tissue in the
absence of tumor.

2.3. Vasculature and angiogenesis: some key phenomena and
assumptions

The present model considers only the microvasculature, which
as far as the host tissue is concerned, includes arterioles, capillar-
ies, and venules. In most cases, during tumor invasion, capillaries
and venules of the host tissue are eventually destroyed (Vaupel
et al., 1989), possibly after transient co-option (Maisonpierre
et al., 1997). Arterioles appear to be totally or partially conserved
(Vaupel et al., 1989), or more slowly degraded and possibly
reformed (Nagy et al., 2009). Host capillaries and venules are
replaced by tumor vessels formed upon the angiogenesis process
that is stimulated and controlled by a complex interplay among
pro-angiogenic and anti-angiogenic factors released by tumor cells
and stromal cells (Carmeliet et al., 2011). In some cases, however,
the whole host vascular network is co-opted by the tumor and
angiogenesis may not occur (Donnem et al., 2013).

The angiogenesis process starts with the formation of sprouts
from existing vessels. The tip cell of a sprout appears to be pheno-
typically distinct from the other endothelial cells (EC) of the sprout,
which are termed stalk cells (Geudens and Gerhardt, 2011). The tip
cells sense the environment by extending filopodia so as to guide
the sprout growth in a direction dictated by chemical gradients.
The stalk cells adjacent to the tip proliferate pushing the tip cell
forward and generating the endothelial cells that build the sprout
body (Ausprunk et al., 1977; Gerhardt et al., 2003; Geudens and
Gerhardt, 2011). The remaining stalk cells are quiescent and immo-
bile. As the sprout grows, the stalk cells arrange themselves to form
a lumen. Sprouts can form anastomoses with other sprouts, and
with newly formed or preformed vessels. After sprout anastomosis,
a new vessel is formed allowing blood flow. The newborn vascula-
ture undergoes a maturation process in which some branches
regress and others are stabilized. In tumors, however, this vascular
remodeling appears abnormal. The newly created vessels, which
are the tumor exchange vessels, are generally enlarged and tortu-
ous. Vascular loops can be present and sprouts that do not anas-
assumptions:

� the host arteriolar tree is conserved and incorporated in the
tumor;

� host exchange vessels – capillaries and venules – are degraded
with a rate proportional to the local density of tumor cells;

� only a single, representative pro-angiogenic factor secreted by
the tumor cells is considered (in the following: tumor angio-
genic factor, TAF). Anti-angiogenic factors are not included in
the model, but they are indirectly taken into account by suitably
tuning the TAF degradation rate.

� the pro-angiogenic factor induces the sprouting process by acti-
vating the proliferation of the endothelial cells of pre-existing
vessels and promotes the cell proliferation in the sprout;

� tumor exchange vessels originate soon after sprout anastomo-
sis. Any vessel maturation stage is disregarded.

Although experimental evidence (Geudens and Gerhardt, 2011)
indicates that a number of stalk cells near the tip are actually pro-
liferating in a sprout whereas the tip cells do not divide, for sim-
plicity we assign the mitotic capability to the sprout tip cells and
we assume:

� only the tip cell proliferates, with an apparent mitotic rate that
accounts for the total proliferative activity occurring in the
sprout;

� the tip cells change randomly their orientation with a bias in
the direction of the gradient of the TAF concentration.

In the above scheme, after a tip cell mitosis, one daughter cell
becomes a quiescent stalk cell, while the other, which has moved

forward, becomes the new tip cell. Therefore, in the present model,
only the sprout tip cells are mobile and we can actually identify the
sprout extension with the trajectory traced by the tip cell, as in the
‘‘snail-trail” model proposed by Balding and McElwain (1985).
Note that, as a consequence of the growth mechanism described
above, the tip cell velocity is proportional to the number of prolif-
erating stalk cells and to their mitotic rate. Thus, the tip cells
migration mechanism is only partly conditioned by the TAF con-
centration gradient (in a way that will be discussed at length later
on). Since such cells do not move freely, but adhere to the forming
vessel, their speed has a natural upper bound related to the minimal
duration of the EC cell cycle and to their size.Such a picture is also
supported by the findings of many experimental and theoretical
works where the dependence of the tip cell velocity on the density
of proangiogenic factors has been stressed. Among these works, we
cite the papers by the Carmeliet research group (see De Smet et al.,
2009; Carlier et al., 2012) and the experimental paper by Phng and
Gerhardt (2009).

Let us now denote by w x; tð Þ; z x; tð Þ;v x; tð Þ, and vh x; tð Þ the den-
sities of sprout tip cells, sprout stalk cells, endothelial cells of
tumor vessels, and endothelial cells of host vessels, respectively.
The constant density of the arteriolar ECs is indicated by va. The
average concentration in the interstitial fluids of the free pro-
angiogenic factor is denoted by P x; tð Þ.

Cells sense the presence of macromolecular chemicals in the
surrounding liquid through the occupancy of specific receptors
on their surface. Moreover, eukaryotic cells appear to move toward
higher chemoattractant concentrations by sensing the difference in
the amount of bound receptors across the cell length (Zigmond,
1977; Rivero et al., 1989; Levine et al., 2013). This mechanism
exhibits a remarkable sensitivity, as evidenced by experimental



results in which cells were able to respond to chemoattractant con-
centration differences along the cell as small as 1% (Tranquillo
et al., 1988).

In this scenario chemotaxis is driven, in a way that will be dis-

Segel model (Patlak, 1953; Keller et al., 1971). However, in view
of such linearity, the chemotactic velocity is potentially unbounded,
which is physically unacceptable. This limitation of the PKS model
has been recognized by Rivero et al. (1989) who derived, in a differ-
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cussed, by the TAF concentration gradient, when detectable at the
cellular scale. At the macroscopic scale, supposing the receptor-
TAF reaction very fast, and supposing the dissociation equilibrium
constant Kd of binding equal for all the EC types, we may define the
locally averaged fraction w x; tð Þ of the endothelial cell receptors
bound to TAF as follows

w x; tð Þ ¼ P x; tð Þ
Kd þ P x; tð Þ : ð7Þ

Moreover, we make the reasonable assumption that the ‘‘front-
tail” difference in the number of bound receptors sensed by the ECs
at position x are, in average, proportional to the gradient of w x; tð Þ.
In conclusion, we assume.

� the EC proliferative activity depends on w; the chemotactic sig-
nal received by the sprout tip cells depends on the gradient of w.

We observe that rw and rP have the same direction, since

rw ¼ Kd

Kd þ Pð Þ2
rP; ð8Þ

and, for an equal jrPj, the force of the chemotactic signal decreases
as the TAF concentration increases. In fact, when almost all the sur-
face receptors are occupied, their actual distribution is hardly
detected by the cells. Experimental evidence of the reduction of
chemotactic sensitivity at high TAF concentration is reported by
Zigmond (1977) and discussed in Tranquillo et al. (1988). When P
is negligible with respect to Kd;rw can be considered equal to
rP=Kd.

To describe the sprouting process, we define a per cell genera-
tion rate a w;/ð Þ representing the per cell rate at which vessel
ECs and sprout stalk ECs duplicate during the branching process
under the TAF control. Such cell divisions are thought to be asym-
metric producing one endothelial cell and one sprout tip cell. For
the function a w;/ð Þ we take the form:

a w;/ð Þ ¼ Aaw 1� wð ÞmB /ð Þ; ð9Þ
where Aa denotes the maximal cell proliferation rate and mP 0.
When m > 0, an inhibition of the EC activation at high concentration
of TAF is present, as suggested by in vitro experimental observations
(Zigmond, 1977). Denoting by utip the modulus of the tip cell veloc-
ity, according to our assumptions we have

utip w;/ð Þ ¼ Kb w;/ð Þ; ð10Þ
where K is the average displacement of a tip cell at each cell dupli-
cation, equal to a fraction of the average longitudinal size of prolif-
erating stalk cells contributing to the sprout elongation. The per cell
mitotic rate of a tip cell, b, is equal to the mitotic rate of proliferat-
ing stalk cells multiplied by their mean number in a sprout. Simi-
larly to Eq. (9), we assume

b w;/ð Þ ¼ Abw 1� wð ÞmB /ð Þ: ð11Þ
Then, we have utip < KAb.

2.4. A velocity-jump random walk model for the chemotactic equation
of tip cells

Usually, in continuummodels of angiogenesis (see Scianna et al.,
2013 and references therein), the directed motility of sprout tip
cells is described by a chemotactic term linearly dependent on
the TAF concentration gradient, according to the Patlak-Keller-
ent biological context and in 1D geometry, alternative models with
bounded chemotactic velocity (see also Hillen and Painter, 2009). In
the context of angiogenesis, the same kind of approach has been fol-
lowed by Sun et al. (2005) and Travasso et al. (2011). We remark
that utip depends on w and not onrw. The latter quantity intervenes
in selecting the direction of the chemotactic motion.

Now, we derive the chemotactic equation of tip cells by means
of a velocity-jump random walk model. Let us start by considering
a population of non-interacting cells that move following a
‘‘velocity-jump random walk” (Stroock, 1974; Othmer et al.,
1988). Unlike the framework commonly used to describe this kind
of stochastic process, in which the cell velocity is assumed to
change at discrete times taking values in a fixed set of vectors, here
we assume that only the velocity direction e 2 Sd�1 can vary ran-
domly, whereas the velocity modulus is a deterministic function

s x; tð Þ of position and time, with x 2 X � IRd; d ¼ 2;3. To describe
the cell population, we introduce the cell number density with
respect to x and e at time t, which is denoted by q x; e; tð Þ.

Without substantial loss of generality, let us suppose that no
cell sources or sinks are present. Then, we can write the following
kinetic transport equation for q

@q
@t

þ e � rx sqð Þ ¼ �cqþ c
Z
Sd�1

T e; e0ð Þq x; e0; tð Þde0; ð12Þ

where the turning rate c x; tð Þ is such that c x; tð Þdt þ o dtð Þ provides
the probability that a cell changes its direction between t and
t þ dt, and the turning kernel T e; e0ð Þ defines the probability of a
jump transition from the velocity direction e0 to the new velocity
direction e. Obviously

R
Sd�1 T e; e0ð Þde ¼ 1 to ensure particle

conservation.
Next, we derive the transport equations for the first two

moments of q, defined as

m0 x; tð Þ ¼ R
Sd�1 q x; e; tð Þde;

m1 x; tð Þ ¼ R
Sd�1 eq x; e; tð Þde: ð13Þ

By integrating Eq. (12) over Sd�1 with respect to e, we get

@m0

@t
þr � sm1ð Þ ¼ �cm0 þ c

Z
Sd�1

Z
Sd�1

T e; e0ð Þq x; e0; tð Þde0de; ð14Þ

wherer stands forrx. By exchanging the integration order, we rec-
ognize that the latter term in Eq. (14) equals cm0, so that we obtain
the following equation for m0

@m0

@t
þr � sm1ð Þ ¼ 0: ð15Þ

By integrating Eq. (12) multiplied by sewith respect to e 2 Sd�1,
we obtain the equationZ
Sd�1

se
@q
@t

deþ
Z
Sd�1

ser � seqð Þde

¼ �c
Z
Sd�1

seqdeþ c
Z
Sd�1

se
Z
Sd�1

T e; e0ð Þq x; e0; tð Þde0de: ð16Þ

For the first term of Eq. (16), we use the equalityZ
Sd�1

se
@q
@t

de ¼ @

@t

Z
Sd�1

seqde
� �

� @s
@t

Z
Sd�1

eqde

¼ @

@t
sm1ð Þ � @s

@t
m1;

while the second term of Eq. (16) can be expressed in terms of the
dyadic product e� e as follows



R
Sd�1 ser � seqð Þde ¼ R

Sd�1 se e � srqþ qrsð Þð Þde
¼ s2

R
Sd�1 e e � rqð Þdeþ s

R
Sd�1 qe e � rsð Þde

¼ s2
R
Sd�1 r � e� eqð Þdeþ s

R
Sd�1 qr � e� esð Þde

¼ s2r � R d�1 e� eqdeþ srs � R d�1 e� eqde:

where the generation term a w;/ð Þ is given by (9).
Following Rivero et al. (1989), we consider the quasi-stationary

state approximation of Eq. (26), neglecting the terms dependent on
the utip derivatives. Setting

R
S2 e~T eð Þde ¼ C rwð Þ, we get
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S S

ð17Þ
Since Eq. (17) involves the second order moment of q, the

system for m0 and m1 is not closed. Therefore, according to the
L2-moment closure of transport equations (Hillen, 2004; Hillen,
2005; Bellomo et al., 2013), we use the approximationZ

Sd�1
e� eqde ’ 1

d
m0I; ð18Þ

where I is the identity tensor in IRd, and we get the equalityZ
Sd�1

ser � seqð Þde ¼ s2

d
rm0 þ s

d
m0rs:

Moreover, we assume

T e; e0ð Þ ¼ ~T eð Þ; ð19Þ
i.e. the probability of turning to the velocity direction e does not
depend on the previous velocity direction of the cell. So, we get to
the following equation for the moment m1:

@

@t
sm1ð Þ � @s

@t
m1 þ s2

d
rm0 þ s

d
m0rs

¼ �csm1 þ csm0

Z
Sd�1

e~T eð Þde: ð20Þ

The moment m1 allows us to express the cell flux J as

J x; tð Þ ¼ s x; tð Þm1 x; tð Þ; ð21Þ
and using the definition (21) in Eqs. (15), (20), we obtain
@m0

@t
þr � J ¼ 0; ð22Þ

@J
@t

¼� cJ þ @s
@t

J
s
� s2

d
rm0 � s

d
m0rsþ csm0

Z
Sd�1

e~T eð Þde; ð23Þ

that generalizes to d ¼ 2;3 the model proposed by Rivero et al.
(1989) for d ¼ 1. The last term in the r.h.s. of (23) represents chemo-
taxis as it results from cell tumbling, whereas the term includingrs
gives to the dynamics of the cell flux the contribution of the so
called chemokinesis.

If one neglects space and time dependence of s in (23), then the
system takes the form
@m0
@t þ r � J ¼ 0;
@J
@t ¼ �cJ � s2

d rm0 þ csm0
R
Sd�1 e~T eð Þde;

ð24Þ

which coincides with the one previously derived by Hillen (2004)
and Perthame (2004) starting directly from the assumption of a
constant velocity modulus.

Let us now specialize the previous argument in order to derive a
tip cell chemotactic equation of the kind described in Section 2. So,
let q x; e; tð Þ denote the sprout tip cell density with respect to x and
e. Setting d ¼ 3 and slightly simplifying the notation, we take
m0 x; tð Þ ¼ w x; tð Þ and
s x; tð Þ ¼ utip w x; tð Þ;/ x; tð Þð Þ:

Moreover, Eqs. (22) and (23) will now include source and sink
terms representing the processes of branching and anastomosis.
Assuming that sourceandsinkare independentofe,weget the system
@w
@t

þr � J ¼ a w;/ð Þ vh þ v þ zð Þ � jan va þ vh þwþ zþ vð Þw� lww;

ð25Þ
@J
@t

¼� cJ þ 1
utip

@utip

@t
J � u2

tip

3
rw� utip

3
wrutip þ cutipw

Z
S2

e~T eð Þde;

ð26Þ
J ¼ �u2
tip

3c
rwþ utipC rwð Þw: ð27Þ

In our approach, still following Rivero et al. (1989), we take
~T eð Þ ¼ p e;rwð Þ and, in agreement with the choice (31), we suppose
that p is such thatZ
S2

ep e;rwð Þde ¼ rw
Kq þ jrwj : ð28Þ

An example of probability density function complying with (28)
is

p̂ e;rwð Þ ¼ 1� jrwj
Kq þ jrwj

� �
U eð Þ þ jrwj

Kq þ jrwj d e� rw
jrwj

� �
;

where U �ð Þ is a uniform density in S2 and d �ð Þ is the Dirac distribu-
tion. Then, we have

Jw ¼ �Dw w;/ð Þrwþ utip w;/ð Þq jrwjð Þ rw
jrwjw: ð29Þ

The function Dw w;/ð Þ in (29) is given by

Dw w;/ð Þ ¼ u2
tip w;/ð Þ
3c

; ð30Þ

In the expressions above, the crowding effect, which every-
where else is introduced by means of the factor B /ð Þ, is actually
included in utip, as shown by Eqs.(10), (11). Finally, as suggested
by Rivero et al. (1989), we take

q jrwjð Þ ¼ jrwj
Kq þ jrwj ; ð31Þ

where 1=Kq is the chemotactic sensitivity.

2.5. The model for the dynamics of vessel cell densities

We can nowwrite the equations for the cell densitiesw; z, and v,
obtaining

@tw ¼ r � Dw w;/ð Þrwð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
diffusion

�r � utip w;/ð Þq jrwjð Þ rw
jrwjw

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

chemotaxis

þ a w;/ð Þ vh þ vð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
generation

�jan va þ vh þwþ zþ vð Þw|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
anastomosis

� lww|ffl{zffl}
death

;

ð32Þ

@tz ¼ b w;/ð Þw|fflfflfflfflfflffl{zfflfflfflfflfflffl}
proliferation

�jan va þ vh þwþ zþ vð Þz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transition z!v

� lzz|{z}
death

; ð33Þ

@tv ¼ jan va þ vh þwþ zþ vð Þ zþwð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transition zþw!v

� lvv|ffl{zffl}
death

: ð34Þ

Note that since jan va þ vh þwþ zþ vð Þ is the per cell rate at
which tip cells anastomize, such a rate is assumed to be the per cell
rate at which sprout cells becomes cells belonging to tumor
vessels.

Concerning the dynamics of host vessels, we write:

@tvh ¼ �dvh
nvh|fflfflfflfflffl{zfflfflfflfflffl}

tumor aggression

ð35Þ

The balance between the degradation of host vessels and the
degradation of host tissue cells it is likely to control the extent of
host vessel co-option. Indeed, if the rate dvh

is smaller than the rate



dh the tumor can advance in a space that still contain host vessels.
If dvh

> 0, the vessel co-option is anyway transient and the co-
opted host vessels are eventually destroyed. If instead dvh

> dh,
host vessel co-option should occur to a minimal extent.

/�
P > /�, which guarantees a positive lower bound to the TAF avail-

able volume fraction even when / ¼ /�.
Important pro-angiogenic factors, such as VEGF, are produced

also by non-tumoral cells, so that they can be present in the body
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2.6. Dead cells

For simplicity, all the dead cells, irrespectively of their origin,
are assumed to degrade in situ into liquids following a first order
kinetics with the same rate constant km:

@tm ¼ ln rð Þnþ lh rð Þhþ lwwþ lzzþ lvv þ dhnhþ dvh
nvh

� kmm|ffl{zffl}
dissolution

: ð36Þ

2.7. Chemicals

Oxygen The dynamics of oxygen must express the balance

among its diffusion, supply, and consumption. Since oxygen

6

appears capable of crossing the cell membrane freely, we assume
that oxygen diffuses in the whole space domain with constant dif-
fusivity Dr. The mean oxygen concentration in the tissue is repre-
sented by the variable r x; tð Þ. Oxygen supply to tissues is described
by means of two diffuse sources that mimic the oxygen efflux from
the host and the tumor vasculature, respectively. Both the source
intensities are taken proportional to the local vascular extent (vh

and v, respectively) and to the difference between the (constant)
average intravascular oxygen concentration and r x; tð Þ:

chvh x; tð Þ r�
h � r x; tð Þ� �

; cvv x; tð Þ r�
v � r x; tð Þ� �

;

where r�
h and r�

v denote the mean oxygen concentration into
healthy and tumor vessels, respectively, while ch and cv denote
the related proportionality coefficients. We disregard the contribu-
tion to oxygen supply of arterioles, since their exchange surface is
much less than the one of the remaining microvasculature.

Although the oxygen concentrations in afferent arterioles of
host and neo-formed vasculature may be the same, the model
includes different values of r�

h and r�
v to reflect different blood flow

rate in the two vascular network. Given the dysfunctional nature of
the neo-formed vessel network, we take r�

h > r�
v .

The oxygen consumption by tumor and host cells, for simplicity,
is supposed to depend on the oxygen concentration according to
the same Michaelis–Menten law. The oxygen consumption of the
ECs forming vessels and sprouts, instead, is assumed not to affect
the dynamics of r, since these cells take oxygen directly from
blood. We then may write the equation

@tr ¼ Drr2r|fflfflfflffl{zfflfflfflffl}
diffusion

þ chvh r�
h � r

� �þ cvv r�
v � r

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
supply from

vh;v

� Hn rð Þnþ Hh rð Þhð ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
consumption by tumor and healthy cells

;
ð37Þ

where the per cell oxygen consumption rate is modeled as

Hi rð Þ ¼ AHi
r

KHi þ r ; i ¼ n; h: ð38Þ

Pro-angiogenic factor Pro-angiogenic factors are macro-
molecules that find a barrier in the cell membrane and in the
ECM. Thus, their diffusion occurs through the interstitial liquid
only (Krol et al., 1999). We express the TAF available volume frac-
tion as /�

P � / x; tð Þ, where /�
P 6 1� /ECM is the interstitial liquid

volume fraction in the absence of cells and vessels. It is reasonable
that the space available for cells and vessels is reduced by the ECM
to a greater extent than the space available for TAF. So, we take
even in the absence of tumors. Nevertheless, in the present model
we assume that only tumor cells produce TAF and that the secre-
tion rate increases as the oxygen concentration (inside and around
the cell) decreases.

The derivation of the equation for the average TAF concentra-
tion P x; tð Þ in the available space requires some attention since
the volume fraction available for TAF can change in space and time.
Let us consider a generic compact subdomain A � X. We assume
that the fraction of elementary surface around x on @A available
for the flow of TAF molecules is equal to the available volume frac-
tion at x, for any surface orientation. Moreover, we assume that the
average gradient of the microscopic interstitial TAF concentration
on the elementary surface portion that allows the flow, is well
approximated by the gradient of P x; tð Þ. Therefore the outflow from
the boundary of A is expressed as

�DP

Z
@A

e xð Þ � rP x; tð Þ /�
P � / x; tð Þ� �

dS;

where DP is the TAF diffusivity in the interstitial fluids and e xð Þ
denotes the outward normal. In addition, the amount of TAF con-
tained in A is given byZ
A

P x; tð Þ /�
P � / x; tð Þ� �

dx:

Taking into account that A is a generic set, the following bal-
ance equation can be derived by means of standard arguments:

@t /�
P � /

� �
P

� � ¼ r � DP /�
P � /

� �rP
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion through interstices

þ pP rð Þn|fflfflfflffl{zfflfflfflffl}
production

� CP Pð Þ vh þ v þ zþwð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
consumption by ECs

� kPP /�
P � /

� �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
degradation

;
ð39Þ

Since after internalization into EC cytoplasm the angiogenic fac-
tor is rapidly degraded, no TAF outflow from ECs is allowed. The
per cell production rate pP rð Þ is described by

pP rð Þ ¼ Ap
Kp

Kp þ r
; ð40Þ

whereas, taking into account that only the receptor-bound TAF is
internalized and degraded by the endothelial cells (Mac Gabhann
and Popel, 2004) we assume CP proportional to w, so that recalling
(7), we write

CP Pð Þ ¼ AC
P

Kd þ P
: ð41Þ

An explicit account of the possible washout of TAF through the
vasculature is omitted because of the lack of specific experimental
information. We rather incorporate this phenomenon in the choice
of the parameter kP . We may note, however, that in case of VEGF
the fast spontaneous loss of bioactivity (Serini et al., 2003) could
overcome the loss through the vascular washout.

2.8. The volume fraction /

In order to close the system, it remains to specify / x; tð Þ. We
assume for simplicity that all cells have the same volume Vc and
that the ratios of the volume fractions of arterioles, host exchange
vessels, tumor exchange vessels, and sprouts to the volume frac-
tions of the cells forming them have the same average value K.
Then, the local fraction of volume / is given by

/ ¼ Vc nþ hþmþ K va þ vh þ v þwþ zð Þð Þ: ð42Þ



In the formula above we are treating arterioles as they were
similar to the other vessels, which is not the case. Thus, the quan-
tity va represents an equivalent concentration providing the actual
experimental value for the corresponding volume fraction.

@n
@t

¼ 1
r2

@

@r
r2DnB /ð Þ@n

@r

� �
þB /ð Þv rð Þn�ln rð Þn;

@h
@t

¼�dhnh�lh rð Þh; � �� � � �
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Remark 1. It is to be noted that for the physical consistency of
the model it is necessary that / x; tð Þ does not exceed /�. The
proof of this property, along with the proof of the non-negativity
of all the quantities representing cellular densities, is given in
Appendix A under the hypothesis that the equation system, with
the boundary and initial conditions specified below, has one
unique classical solution in the class C2;1 X	 0; Tð Þð Þ. The proof of
the wellposedness of the model is instead beyond the scope of
this paper.

2.9. Boundary and initial conditions

Eqs. (2), (32), (37), (39) are completed by the following condi-

tions on @X for t > 0:

h r 2 R1;Rð �;

vh r 2 R1;Rð �;
n x; tð Þ ¼ 0;
w x; tð Þ ¼ 0;
r x; tð Þ ¼ rff ;

P x; tð Þ ¼ 0:

ð43Þ

The null boundary conditions for n;w, and P are justified if the
domain X is taken sufficiently large to guarantee, along with suit-
able initial conditions such as those described below, that the
tumor remains substantially ‘‘far” from the boundary in the consid-
ered time interval 0; T½ �. Concerning the oxygen, rff > 0 is a far field
concentration that we identify with the stationary oxygen concen-
tration in the host tissue in the absence of tumor.

The initial conditions are given by continuous, bounded, and

non-negative functions n0 xð Þ;h0 xð Þ;m0;v0
h xð Þ;w0 xð Þ; z0 xð Þ; v0 xð Þ,

and r0 xð Þ; P0 xð Þ. The cell densities must be such that /, defined
by (42), satisfies the property 0 < / x;0ð Þ < /� for any x in X. More-
over, on @X, the compatibility conditions

n0 xð Þ ¼ 0;
w0 xð Þ ¼ 0;
r0 xð Þ ¼ rff ;

P0 xð Þ ¼ 0;

ð44Þ

are required.
In addition, since the boundary of X is supposed to be ‘‘far” from

the tumor, we choose to have n0 xð Þ;w0 xð Þ; z0 xð Þ;v0 xð Þ identically
equal to zero in a rather large portion of X, which is adjacent
and includes @X.

3. Numerical simulation

The model is studied numerically in spherical symmetry. More-

over, we take a quasi-steady state assumption for the dynamics of

7

oxygen, since the diffusion coefficient of this chemical is much lar-
ger than the diffusivities of either cells and TAF. On the contrary,
typical values of the TAF diffusion coefficient are not such to guar-
antee the validity of the quasi-steady state assumption for the TAF
dynamics.

Let the spatial domain be a sphere of radius R. In spherical sym-
metry, all the cell densities and the chemical concentration are
functions of the radial distance r and t, and the model equations,
for r 2 0;Rð Þ and t 2 0; Tð Þ, become:
@w
@t

¼ 1
r2

@

@r
r2Dw w;/ð Þrw
� �� 1

r2
@

@r
r2utip w;/ð Þq j@w

@r
j sign

@w
@r

w

þa w;/ð Þ vhþvð Þ
�jan vaþvhþwþzþvð Þw�lww;

@z
@t

¼b w;/ð Þw�jan vaþvhþwþzþvð Þz�lzz;

@v
@t

¼jan vaþvhþwþzþvð Þ zþwð Þ�lvv ;
@m
@t

¼ln rð Þnþlh rð Þhþlwwþlzzþlvvþdhnhþdvh
nvh�kmm;

0¼Dr
1
r2

@

@r
r2
@r
@r

� �
þchvh r�

h�r
� �þcvv r�

v�r
� �

�Hn rð Þn�Hh rð Þh;
@P
@t

¼ 1
r2

@

@r
DP /�

P�/
� �@P

@r

� �
þpP rð ÞnþP

@/
@t

�CP Pð Þ vhþvþzþwð Þ�kPP:

ð45Þ

Denoting by n0 rð Þ; h0 rð Þ;m0 rð Þ;v0
h rð Þ;w0 rð Þ; z0 rð Þ;v0 rð Þ the initial

distributions of cells in 0;R½ �, we assume

n0 rð Þ ¼
�n r 2 0;R0½ �
�n cos2 p

2
r�R0
R1�R0

� �
r 2 R0;R1ð �

0 r 2 R1;Rð �;

8>><
>>: ð46Þ

h0 rð Þ ¼
0 r 2 0;R0½ �
�h sin2 p

2
r�R0
R1�R0

� �
r 2 R0;R1ð �

�

8>><
>>: ð47Þ
v0
h rð Þ ¼

0 r 2 0;R0½ �
�vh sin

2 p
2

r�R0
R1�R0

� �
r 2 R0;R1ð �

�

8>><
>>: ð48Þ
and

m0 rð Þ ¼ w0 rð Þ ¼ z0 rð Þ ¼ v0 rð Þ 
 0; r 2 0;R½ �; ð49Þ

with �n; �h, and �vh such that / r; 0ð Þ < /�, and �n > n�; n� denoting a
minimal threshold concentration of tumor cells allowing to identify
the tumor. We thus have a central subdomain 0;R0½ � representing an
initial avascular tumor nodule, whose radius R0 can be taken suffi-
ciently small to justify m0 
 0. This tumoral core is surrounded by
a small transition zone R0;R1½ � in which n0 decreases to zero, while

h0 and v0
h increase from 0 to the values respectively taken in the

outer domain R1;Rð �.
Concerning the boundary conditions, all the mobile species are

subject to zero flux boundary conditions at r ¼ 0 because of
symmetry

@n
@r

jr¼0 ¼ @w
@r

jr¼0 ¼ @r
@r

jr¼0 ¼ @P
@r

jr¼0 ¼ 0;

whereas at r ¼ R we impose (43).
For the numerical solution of Eqs. (2) and (32) an explicit finite-

difference, forward in time, scheme was implemented. To dis-
cretize the chemotactic term in Eq. (32), we adopted the upwind
explicit scheme of the paper by Tsyganov et al. (2004). The solution
of the equations for oxygen and TAF was obtained by using the
Gauss–Seidel iterative method.



4. Parameter values

The baseline values of parameters are reported in Table 1. Here,
some comments on their choice follow.

the size range experimentally measured for the endothelial cells
(see for instance the review by Krüger-Genge et al. (2019)). Coming
to the parameter K, we recall that it represents the mean ratio
between the volume fraction of vessels of any kind and the volume

Table 1
Baseline parameter values.

General parameters

/� 0:85 See text
p 1:1 See text
Vc 2.145 �10�9 cm3 Freyer and Sutherland (1985)

K 8:0 � 10�4 cm Krüger-Genge et al. (2019)

r0 1.0 �10�3 cm Welter et al. (2008)

d 2 �10�4 cm Krüger-Genge et al. (2019)

K 3.27 See text
K/va 4.0 �10�3 See text

km 2:08 � 10�2 h�1 Darzynkiewicz et al. (1997)

Oxygen
Dr 7.2 � 10�2 cm2� h�1 Stamper et al. (2010)
r�
h 7:62 � 10�5M

(=60 mmHg)

Vaupel et al. (1991)

r�
v 4:45 � 10�5 M

(=35 mmHg)

Vaupel et al. (1991)

ch; cv 1:86 � 10�3 h�1 cm3 Casciari et al. (1992)

AHn;AHh 2.99 �10�13 mol � h�1 Freyer and Sutherland (1985)

KHn;KHh 4:64 � 10�6 M Casciari et al. (1992)

Tumor and host tissue
Dn 3.6 � 10�7 cm2� h�1 Stamper et al. (2010)
Av 2:88 � 10�2 h�1 Bertuzzi et al. (2003)

Kv 5:08 � 10�6 M
(=4 mmHg)

Bertuzzi et al. (2003)

�rn 2:54 � 10�6M (=2 mmHg) Freyer and Sutherland (1986)
�ln 5 ln 2=24ð )=0.144 h�1 Franko et al. (1978)
l0 ln 2= 10 � 24ð )=2:88 � 10�3

h�1

See text

dh; dvh 4 �10�9 h�1 � cm3 Gatenby and Gawlinski (1996)
�rh 3.81 �10�6M (=3 mmHg) See text
�lh 5 ln 2=24ð )=0.144 h�1 See text

Angiogenesis and TAF
/�
P 0:90 See text

Kd 5:75 � 10�10 M Swanson et al. (2011)

Aa 2:88 � 10�2 h�1 Bertuzzi et al. (2003)

Ab 1:15 � 10�1 h�1 Chaplain et al. (1993) and Stamper
et al. (2010)

m 1 See text
DP 1.8 � 10�3 cm2� h�1 Anderson et al. (2000)
Ap 5:96 � 10�19 mol �h�1

(per cell)

Swanson et al. (2011)

Kp 4:45 � 10�5 M
(=35 mmHg)

Assumed

AC 3:86 � 10�19 mol �h�1

(per cell)

Mac Gabhann and Popel (2004)

kP 0.65 h�1 Serini et al. (2003)

Vasculature
c 0.1 h�1 See text
Kq 5 � 104 cm�1 Rivero et al. (1989)

jan 4 �10�9 cm3 � cell�1 � h�1 Assumed

lv 1:0 � 10�3 h�1 Chaplain et al. (1993)

lw;lz 5 � 10�4 h�1 See text
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Volume fraction of ECM, cells and vasculature The mean cel-
lular volume Vc is assumed equivalent to the volume of a sphere
with diameter 16lm, irrespective of the cell tissue type or shape.
With this choice, we get Vc ¼ 2:145 � 10�9 cm3 (see Table 1) in
agreement with the experimental data in Freyer and Sutherland
(1985). Assuming such a relatively small mean cellular volume is
a suitable choice in our model, which is written in terms of local
volume fractions. The same value of Vc is also compatible with
fraction of the cells constituting the vessels. To estimate K, we sup-
posed all the vasculature (including the sprouts developed during
angiogenesis) ideally decomposed in identical cylindrical units of

inner radius r0, wall thickness d, and length L. Thus, p r0 þ dð Þ2L is

the volume of the vessel unit, whereas p r0 þ dð Þ2 � r20
h i

L is the vol-

ume of the vessel wall, and then of the ECs lining the lumen. There-
fore, from the ratio between these volumes, we get

K ¼ r0 þ dð Þ2
d 2r0 þ dð Þ ;

which, assuming r0 ¼ 10 lm and d ¼ 2 lm, provides the value
K ¼ 3:27 reported in Table 1.

The volume fractions of ECM, cells and vasculature vary with
the tissue type, and the measured values often change also with
the measurement technique. In humans, the ECM volume fraction
have been found to range from 3% in healthy liver to 15–20% in
brain (Ariza de Schellenberger et al., 2018). Values of the cell vol-
ume fraction of 76% in rat liver (Donahue et al., 1995) and 56%
in rat brain (Buckley et al., 1999) were measured by MRI, whereas
a value of 69% was found in rat tumors (Donahue et al., 1995). In
human brain tumors, PET measurements of extracellular space
reported by Bruehlmeier et al. (2003) suggest a cell volume frac-
tion in the range 39%–56%. According to these data, we assume
/ECM ¼ 0:1;/� ¼ 0:85, and for the initial non-zero values of /h

and /n the values 0.65 and 0.6, respectively.
Concerning the blood volume fraction, values ranging from

2.7% to 7.0% are reported for human tissues (see e.g. Ito
et al., 2001; Lai et al., 2009), while in vivo MRI measurements
in rat healthy and tumor brain tissues yielded fraction values in
the range of 2% to 4% (Perles-Barbacaru et al., 2012). Some of
these studies provide measures of the arterial percentage of the
total blood volume fraction, noting in addition that the arterial
fraction remains relatively constant in time (Lai et al., 2009). An
arterial percentage of about 10% in skeletal muscle blood vol-
ume is measured by Lai et al. (2009) using near-infrared spec-
troscopy, whereas a 20% arterial percentage is found in other
organs (for instance human liver (Hashimoto et al., 2006)).
Overall, these experimental findings suggest values of 4� 5%
for the total (capillaries, venules, and arterioles) blood volume
fraction in the host tissue. Hence, we set an initial non-zero
value of /vh

equal to 0.04. Moreover, we will assume a constant
arteriolar fraction equal to 10% of the total. Assuming the lower
measured value is justified by the reduction of the arterial part
of the vasculature which likely occurs eventually during the
tumor evolution, but which is not represented in our dynamical
model.

Tip cell motion Concerning the choice of c, we start from the
remark (Rivero et al., 1989) that the time 1=c (persistence time)
has to be substantially smaller than the ”observation time” of the
tumor progression, since this guarantees that the approximations
leading to (27) are feasible. If the observation time is chosen to
be 10 days (a time over which changes in the system can be
observed), an acceptable choice is c ¼ 0:1h�1. The 10 h persistence
time appears a reasonable choice if compared with the 24 h time
scale for cells replication. A larger time (e.g. 50 h) would basically
suppress the chemotactic random component, a shorter time (e.g.
1 h) would mitigate the constraint around the main orientation in
an excessive way.

Cell death rates According to Eqs. (4), (6), the oxygen-
dependent death rates ln rð Þ;lh rð Þ are assumed to be decreasing



functions of r. We further assume that cells die (with maximal
rates �ln; �lh) when the oxygen concentration falls below critical
values (here denoted by �rn; �rh, respectively) that we deduced
from experimental literature data (Franko et al., 1978; Freyer

with Hh rð Þ given by Eq. (38). In the present simulation,
rff ¼ 7:03 � 10�5 M (51.37 mmHg).

The time course of the chemical quantities r and P are plotted
in Fig. 1 from the initial time t ¼ 0 up to 360 days, with time step
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and Sutherland, 1986, see Table 1). The remaining parameters
of ln rð Þ;lh rð Þ were inferred either from the mentioned experi-
mental data or from estimates obtained in our previous works
on tumor growth (Bertuzzi et al., 2010). So, we fixed �lh ¼ �ln

and l0 equal to a fraction of �ln, also choosing �rh as indicated
in Section 2. Finally, in the absence of direct information on
the death rates of sprout cells, we fixed lw ¼ lz ¼ 0:5lv (lv as
in Chaplain et al. (1993)).

5. Computational results

The numerical solution of our model has been computed

according to the scheme depicted in Section 3 within a spherical

spatial domain of radius R ¼ 1 cm and over a time interval
T ¼ 360 days. Eqs. (45) have been solved using the boundary and
initial conditions (43), (44), and assuming the baseline parameter
values of Table 1. For the remaining parameters of the initial distri-
butions we set: initial tumor radius R0 ¼ 0:02 cm, external radius
of the tumor-host interstitial gap R1 ¼ 0:03 cm, local volume frac-
tions Vc�n ¼ Vc

�h ¼ 0:6;KVc�vh ¼ 0:04, and K/va
¼ 0:1	 KVc �vh ¼

4 � 10�3. The initial oxygen distribution is computed as the quasi-
stationary solution of the oxygen diffusion equation in system
(45), imposing zero flux condition @r=@r ¼ 0 at r ¼ 0 and prescrib-
ing a constant ”far field” value rff > 0 at r ¼ R. The concentration
rff > 0 satisfies the equation

ch�vh r�
h � rff

� �� Hh rff
� ��h ¼ 0;
Fig. 1. Evolution of the chemical concentrations in a spherical domain of radius R ¼ 1 c
concentration (nM).

9

120 days.
With the same criterion, Figs. 2 and 3 illustrate the evolution of

the spatial distributions of cell populations towards the steady
state and the host invasion by the tumor. More precisely, denoting
by p the generic cell population density, in the following figures we
plot the corresponding local volume fraction /p, defined as

/p ¼ Vc p; p ¼ n;h;m; va;vh;w; z;v : ð50Þ
Using this notation for all cell and vessel quantities, in Fig. 2 we

plot the behaviors of the local volume fractions of host cells /h,
tumor cells /n, dead cells /m, and of the total volume fraction /
(see (42)).

Fig. 3 illustrates the formation of the tumor neovasculature,
which proceeds simultaneously to the tumor growth, reporting
the local volume fractions of vessels in the tumor and host tissue.
In particular, the left panels of Fig. 3 report the local volume frac-
tions of host and tumor vessels, K/vh

and K/v respectively, while
the right panels report the patterns of K/w and K/z.

The simulation shows that the tumor progression takes the
form of a traveling wave. The wave front profile propagates with
velocity approximately equal to 20lm per day, as it could be
expected in view of the chosen values of the proliferation rate
and cellular diameter.

As studied analytically in Appendix B, numerical simulations
eventually develop into a steady state in which healthy cells and
vessels (/h;/vh

) have been eliminated and supplanted by a neovas-
cularized tumor. The numerical solution after 360 days (see bot-
m up to 360 days. Upper panels: oxygen concentration (mmHg), lower panels: TAF



tom panels of Figs. 2, 3) indicates that all quantities tend to become
constant in time and space attaining the following values: r ¼ 21:1
mmHg, P ¼ 0:27 nM, w ¼ 0:32;/n ¼ 0:64;K/v ¼ 1:9 � 10�2;K/w ¼
9:1 � 10�4;K/z ¼ 3:6 � 10�4;/m ¼ 8:8 � 10�2;/ ¼ 0:75.

There are papers reporting experimental and clinical data on
the vasculature density in tumors. Indeed, some studies have
demonstrated the validity of using the tumor microvasculature
density (MVD) as a prognostic indicator for a wide range of can-

Fig. 2. Simulated evolution of the local volume fractions of cells: /n (tumor, dashed
line); /h (host, solid line); /m (dead, dot-dashed line); / (total volume fraction,
dotted line).
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From the previous set of values, and using (50), we evaluated
the corresponding model variables and we verified that the
obtained set is a solution to the system of equations given in
Appendix B. One more remark which is in order is the fact that
in Fig. 2 the wave front exhibits coexistence of healthy and tumor
cells. The model by Gatenby and Gawlinski (1996) was conceived
to account for a necrotic gap appearing in some kind of tumor.
The possible onset of such a gap is related to the strength of the
tumor aggression, i.e. to the value of the parameter dh in our model.
As proven in Fasano et al. (2009), the gap is replaced by an overlap-
ping zone if dh is not large enough. We could have made a gap
appear by choosing a larger dh.
cers. In addition, quantification of MVD can contribute in assessing
the efficacy of antiangiogenic therapies. The quantity MVD is gen-
erally expressed as the number of vessels in a 1 mm2 section, so
that denoting by K/vasc the vessel volume fraction and by rvasc
the mean vessel radius (in mm), we can write

MVD ¼ K/vasc

pr2vasc
: ð51Þ

As expected, the MVD values measured in tumors spread in a
rather large interval ranging from about 10 mm�2 up to
100 mm�2 and more (Kather et al., 2015; Forster et al., 2017).

It is interesting to compute MVD at the final time of our simu-
lation so as to compare its value with experimental data in tumors.
According to the simulation, after the tumor invasion the effective
vasculature consists of tumor vessels and host arterioles, i.e.
/vasc ¼ /v þ /z þ /va

, and at 360 days our results give K/vasc ¼
2:3 � 10�2. Hence, recalling that in our assumption rvasc ¼ r0 þ d ¼
1:2 � 10�2 mm, we get tumor MVD = 50.1 mm�2. Here we are iden-
tifying volumetric and surface densities, referring to the ideal case
in which vessels are identical and parallel to each other. This is
clearly an approximation which however does not alter the order
of magnitude.

In the clinical study by Sundfør et al. (1998), both the maximum
and the mean vascular density are measured in patients with
malignant carcinomas. The mean MVD values are found to range
between 10 and 35 mm�2 (average 20), whereas the maximum
MVD fall in the range 20–70 mm�2. Thus, our simulation result
agrees with the higher experimental values. The work by Kather
et al. (2015) proposes an automatic approach for vessel counting
to make the quantification more objective, accurate and efficient.
Mean MVDs measured in prostate tumors range from 48 to 145.
So, our result is now close to the lower measured values of MVD.
In view of the wide variability of the experimental MVD in tumors,
in the paper by Kather et al. (2015), as well as in the review by
Forster et al. (2017), the role of MVD as an independent prognostic
factor is questioned and the importance of the simultaneous MVD
evaluation in normal tissue areas is pointed out.

With the baseline parameters assumed in the simulation, we
get a normal tissue MVD = 97.2 mm�2 (initial

K /vh
þ /va

� �
=0.044), which is approximately double the tumor

MVD. This result agrees rather well with the findings reported by
Kather et al. (2015) for prostate cancer. We note, however, that
other authors have observed tumors which are more vascularized
than the healthy tissue. Nevertheless, our result is consistent with
the hypothesis of acidic tumor aggression to healthy cells, deriving
from a metabolism with less consumption of oxygen and thus
requiring a lesser vascularization.

The review by Forster et al. (2017) collects data of studies on
head and neck cancers (typically hypoxic) demonstrating that
MVD is significantly higher in carcinoma than in the corresponding
normal tissue. High concentrations of vascularization are observed
in these tumors, which are more commonly associated to high vas-
cular heterogeneity and acute hypoxia. In fact, blood oxygenation
levels lower than normal are observed in irregular vascular net-
works such as the ones of tumors. The data presented by Forster
et al. (2017) have mean MVD in healthy tissues in the range 30–
88 mm�2, and mean intratumoral MVD correspondingly varying
between 58 and 165 mm�2.

To simulate the MVD increase observed in some tumors, we
computed the model evolution modifying the proportionality coef-



Fig. 3. Simulated evolution of the local volume fractions of vessels. Left panels: K/vh
(host, solid line); K/v (tumor, dashed line). Right panels: K/w (sprout tip, solid line); K/z

(sprout stalk, solid line).

Fig. 4. Comparison of two model evolutions for t ¼ 360 days: plot of chemical and vascular quantities with parameter values as in Table 1, with cv ¼ ch (baseline, solid line);
parameters unchanged except cv ¼ 0:1ch (hypoxic, dashed line (tumor vessels), dotted line (normal vessels).
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ficients of oxygen supply in Eq. (37), setting cv ¼ 0:1ch, keeping ch
and any other parameter to the baseline value of Table 1. The
results for t ¼ 360 days are shown in Fig. 4 where we also report
the baseline plots for comparison. The tumor volume fractions

Numerical simulations carried out in spherical symmetry, start-
ing from a tumor core surrounded by healthy tissue, show that the
tumor invasion develops as a traveling wave, progressively replac-
ing the healthy tissue with a vascularized tumor. The theoretical a
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K/v ;K/w;K/z are now increased of about three times. In particular,
for r ¼ 0:3 cm, it is K/v ¼ 6:1 � 10�2;K/w ¼ 1:3 � 10�3;

K/z ¼ 2:1 � 10�4 and, according to (51), we obtain tumor
MVD = 143.6 mm�2 (normal MVD = 97.2 mm�2). The upper panels
of Fig. 4 depicts the oxygen and TAF distributions for the same two
simulations. It can be noticed the decrement of the mean oxygen
level, which is more than halved in the tumor with r ¼ 7:64mmHg
(baseline 21.1 mmHg) and the increment of the TAF gradient near
the tumor edge. The obtained curves along with the profiles of K/w

and K/z reveal increased tumor vascularity and angiogenesis activ-
ity occurring at the margins of the invasive region, as it has exper-
imentally been observed (Forster et al., 2017). The fraction K/vh

of
normal vessels is displayed for this latter simulation in the bottom
left panel of Fig. 4, while the tumor and cell volume fractions are
not displayed as they change only negligibly. It can also be noted
a slight reduction of the stationary TAF concentration in the
hypoxic case, which can be explained by the occurrence of a lim-
ited increase in TAF production as compared to the increase in
TAF consumption owing to augmented tumor vascularization.

6. Conclusions

Tumors that grow over a size such that the flow of oxygen or

nutrients become insufficient to keep cells alive need to develop
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their own vasculature. They do so by emitting so-called angiogenic
factors, which induce sprouting of new vessels from the existing
ones and lead them by chemotaxis to the tumor. We have formu-
lated and implemented a model for tumor growth encompassing
the phenomenon of angiogenesis. Among the distinctive features
of the model we list:

� tumor aggression to healthy cells (in the spirit of Gatenby and
Gawlinski, 1996);

� generation and dynamics of the cells giving rise to the new ves-
sels organized in three families (tip cells, sprout cells, tumor
vasculature cells);

� detailed derivation of a general family of models of the tumoral
angiogenesis-related chemotaxis;

� influence of oxygen concentration on the birth/death rate of
tumor cells and of cells involved in the angiogenesis process;

� dynamics of the tumor angiogenic factor;
� crowding effect inhibiting proliferation and cells mobility.

Particular care has been devoted to modeling the motion of tip
cells, tracing the way to sprout cells for the construction of the new
vasculature. This, indeed, is a fundamental step to understand the
growth dynamics of a vascularized tumor. The underlying idea of
the proposed family of models of the chemotaxis of the neoplastic
vasculature is that tip cell speed is determined by the proliferation
rate, while the gradient of the angiogenic factor contributes to
select their orientation. The latter is also influenced by a random
process which surfaces the chemotactic model as a diffusion com-
ponent. We think that an appropriate modeling of the chemotaxis
driven by the proangiogenic factors is an innovation aimed at
arriving to a better understanding of the dynamics of growth of
vascularized tumors. Note that the model was derived on a number
of biologically driven assumptions reported in the literature (De
Smet et al., 2009; Carlier et al., 2012; Phng and Gerhardt, 2009)
and not axiomatically proposed.
priori analysis in Appendix A leads to the conclusion that all quan-
tities intervening in the model stay within their expected physical
range. The study of nontrivial steady state solution is performed in
Appendix B, were we find that in the asymptotic state void of
healthy cells all other species must be present. In the final state,
deprived of healthy cells, the tumor newly formed vasculature is
approximately half of the one formerly present in the healthy tis-
sue, also supported by the survived arteriole, overall providing
enough oxygen for the tumor metabolism. Such results are in good
agreement with the experimental data, thus indicating that the
model is sufficiently flexible to represent also particularly hypoxic
tumors characterized by a higher degree of vascularization.

An evident critical aspect of the present model can be recog-
nized in its many biological parameters. Though we strove to
retrieve their values from the literature, we eventually had to
guess a small number of them based on similarity criteria or by
trial and error. However, such parameters do not look particularly
critical, in the sense that varying them in a reasonable range does
not alter the model outcome by orders of magnitude. This is a clear
limitation of the model, but in our opinion it is acceptable for the
following reasons. Mathematical models for cancer growth can
be roughly divided in two classes: the ones with few, reasonably
well known parameters, and the ones, including our model, facing
the tough task of dealing with many equations and many parame-
ters. It is well known that cancer is such a complicated disease that
normally, when coming to mathematical modeling, authors choose
to select just some particular aspects. Simpler models may have
the advantage of providing some general answer (like for instance
the ones based on ordinary differential equations describing just
the growth of the cell population), but as soon as one enters an
intrinsically complex process like angiogenesis, there is no way
to bypass the difficulty of describing the interplay of several con-
current phenomena. In this case, it is necessary to adopt some
compromise and if eventually a good fit is found with experimental
results, it means that the model has at least provided a better
insight of the problem studied. Of course, this paper is a theoretical
biology work. The agreement with experimentally known data
may be considered mainly qualitative. We hope that our work
could stimulate specific experimental work to assess the relevance
of our hypotheses and the realism of our findings. Moreover, the
proposed model will be the basis to go a step forward, introducing
the action of anti–tumor chemotherapy and of anti–angiogenic
drugs. This follow-up work will be the occasion to provide further
support by means of a validation based on experimental data.

Moreover, among other future lines of research, it would be of
extreme interest (although computationally very challenging) to
investigate the impact of the unavoidable extrinsic spatio–tempo-
ral stochasticity (ES) (García-Ojalvo and Sancho, 2012) on the
dynamics of the proposed system. Indeed: i) it is well known in
statistical physics that ES can deeply impact on the dynamics of
general traveling waves (Panja, 2004); ii) in non–spatial context
some models suggested that ES are of particular interest to better
investigate tumor–induced angiogenesis (d’Onofrio and Gandolfi,
2010).

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Appendix A. Proving that all the model variables are in the
physical range

Here, we prove some a priori estimates. Preliminarily, we point

for the unknowns ~w;~z; ~v become identical to their original analog.
Then the desired result for the triple (w; z;v) is achieved. More pre-
cisely, we can say that v and z remain positive in time at all points
where they have attained a positive value.It remains to analyzem. It

Proof. The proof is obtained by suitably applying the maximum
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out that in the model formulation, all the coefficients depending on
the unknown quantities should actually be defined also out of their
physical range, since it is not guaranteed a priori that all the
unknowns stay in their expected range. We do this tacitly, assum-
ing that the coefficients are extended as constants and in such a
way to be continuous. For instance, the function B defined in (1)
is extended for / < 0 and / > /� by prolonging B keeping its
extreme values constant, so to guarantee its continuity, i.e. B ¼ 1
for / < 0 and B ¼ 0 for / > /�.

Proposition 6.1. Let the system (2), (5), (32)–(36), (37), (39) with
boundary conditions (43) have one unique classical solution in the
class C2;1 X	 0; Tð Þð Þ. Then all the quantities representing cellular
densities are non-negative.

Proof. We can regard Eq. (2) as a linear equation of the form

@tn ¼ Anþ Bv� ln

� �
n; ðA:1Þ
where A is a strictly elliptic operator in the divergence form, as long � �
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as B > 0 (i.e. / < /�), degenerating when B ¼ 0. Though ln is strictly
positive, the coefficient of n in the last term takes also positive val-
ues (if the tumor grows), in principle creating instabilities. How-
ever, we may apply the maximum principle in the general form
provided by Theorem 2.1 p. 13 of Ladyzenskaja et al. (1968), saying
that, even for non-uniformly parabolic equations like (A.1), the esti-
mate n P 0 holds true, since the initial and boundary data taken for
n are non-negative. Passing to Eq. (5), setting M x; tð Þ ¼ dhnþ lh rð Þ
we may write

h x; tð Þ ¼ h0 xð Þ exp �
Z t

0
M x; sð Þds

� �
; ðA:2Þ

and therefore h x; tð Þ ¼ 0 only at those points where h0 xð Þ ¼ 0, while
0 < h x; tð Þ 6 h0 xð Þ otherwise, for all t > 0. In addition, h tends to
zero at infinity at all point where n remains strictly positive. Next,
the property

0 6 vh x; tð Þ 6 v0
h xð Þ; ðA:3Þ

follows immediately from Eq. (35), remembering that n P 0. Now
let us deal with system (32)–(34) with the aim of proving that
v ;w, and z do not take negative values. We modify Eq. (33) by
replacing w by wþ ¼ max 0;wð Þ, thus defining a new unknown ~z
satisfying

@t~z ¼ bwþ � kan va þ vh þ v þwþ þ ~zð Þ~z� lz
~z: ðA:4Þ

Likewise, we modify (34) replacing w by wþ and z by ~z, thus defin-
ing ~v satisfying

@t ~v ¼ kan va þ vh þwþ þ ~zð Þ wþ þ ~zð Þ þ kan wþ þ ~zð Þ~v � lv ~v: ðA:5Þ
Returning to (32), we complete the reformulation of the model
replacing v ; z by ~v ;~z, respectively, and calling ~w the new unknown,
which is actually the one to be used in (A.4), (A.5). The same
changes of variables are to be made when calculating / and in all
the remaining equations of the model. At this point we assume that
the new model with the same initial and boundary conditions has
one unique classical solution, as we made for the original model.
Now, looking at (A.4) as a linear differential equation in ~z (i.e. con-
sidering the term ~z in the brackets as a known function) we deduce
that ~z P 0, and similarly, from (A.5), that ~v P 0. Finally, the
inequality ~w P 0 follows using the same arguments applied to Eq.
(A.1) to prove that n P 0. Therefore ~wþ ¼ ~w and the three equations
is now ascertained that all the terms at the right hand side of (36),
except the last one, are not negative. This is enough to say that m
too has the property to stay positive once it has become positive.�

Proposition 6.2. Under the same assumption of Prop. 6.1, we have
0 < r < r�

h.
principle to the parabolic Eq. (37).�

Finally, we want to show
Proposition 6.3. Under the same assumptions as above, / never
attains the saturation value /�.

Proof. Let us recall the notation (50) for the local volume fractions
of cells and vessels and the consequent expression of the total vol-
ume fraction /
/ ¼ /n þ /h þ /m þ K /va
þ /vh

þ /w þ /z þ /v :

Multiplying by Vc the model equations for n; h;m;w; z;v ;vh, it is
easy to rewrite the model in terms of fractions /p. Summing up
the equations so obtained and recalling that /a is assumed constant,
we formally get the following expression of @t/:

@t/ ¼ r � DnB /ð Þr/nð Þ þ B /ð Þv rð Þ/n þ Ka w;/ð Þ /vh
þ /v

� �
þ Kr � Dw w;/ð Þr/wð Þ � Kr � utip w;/ð Þq jrwjð Þ rw

jrwj/w

� �
þKb w;/ð Þ/w

þ 1� Kð Þ lw/w þ lz/z þ lv/v þ dvh
Vc

/n/vh

� �
� km/m:

ðA:6Þ

We have seen that, if the system (2), (5), (32)–(36), (37), (39) with
boundary conditions (43) has a unique solution with C2;1 compo-
nents then all cells concentrations are non-negative. Along such a
solution, it is obviously / x; tð Þ P 0 and we prove by contradiction
that / x; tð Þ < /� holds.

To this end, let us suppose that there exists a time �t > 0 such
that / attains the value /� for the first time in �t, and let x� � X be
the set of points �x such that / �x;�tð Þ ¼ /�. It is easily seen that / is
constant on the boundary of X, where there is no evolution of cells
concentration, thus x� does not include points of @X. Since
/ x;0ð Þ < /� for any x, the value /� is necessarily reached from
below.

Therefore the points �x 2 x� are maximum points for / �;�tð Þ, so
that r/ ¼ 0 in �x;�tð Þ. In addition, it is B / �x;�tð Þð Þ ¼ 0, which implies
that the functions a; b;utip, and Dw are also null in �x;�tð Þ. So, taking
into account that the solution is assumed to have bounded spatial
derivatives up to the second order, Eq. (6) in �x;�tð Þ reduces to

@t/ �x;�tð Þ ¼ 1� Kð Þ lw/w �x;�tð Þ þ lz/z �x;�tð Þ þ lv/v �x;�tð Þ þ dvh

Vc
/n �x;�tð Þ/vh

�x;�tð Þ
� �

� km/m �x;�tð Þ: ðA:7Þ

The first term of the r.h.s. of Eq. (7) is non positive since K > 1. On
the other hand, we can prove that m x; tð Þ is strictly positive for any
x; tð Þ; t > 0 and x 2 X. Indeed, from (36) and (4) we deduce

@tm P l0n� kmm: ðA:8Þ
Furthermore, as proved Prop. 6.1, it is n x; tð Þ > 0 for 0 < t < �t and
x 2 X. Thus, from (8) and in view of the comparison theorem, we



have m �x;�tð Þ > 0. As a consequence, @t/ �x;�tð Þ is negative, which leads
to a contradiction. Therefore, for any solution such that / x;0ð Þ < /�,
we have / x; tð Þ < /� for any t 2 0; Tð � and x 2 X. We remark that the
inequality just obtained implies an obvious upper bound for all cells

ing the existence of a solution. Now we have reached the conclusion
a ¼ a rð Þ, defined implicitly through (9). Concerning dead cells,
from (36) we have

k m ¼ l rð Þnþ l v þ l wþ l z: ðB:12Þ
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concentrations. �

Appendix B. Steady state solutions with tumor cells only

Here we investigate the asymptotic state in which no healthy

cells are left, namely h ¼ 0;vh ¼ 0, which are consequences of (5)

14
and (35), respectively. Eq. (2) provides

B /ð Þv rð Þ � ln rð Þ ¼ 0; ðB:1Þ
expressing / as a function of r, provided that the parameters are
correctly prescribed. We recall that if r is in a suitable range then
the loss term ln rð Þ equals l0. From Eq. (B.1), being B /ð Þ a monoton-
ically decreasing function of /, we derive a unique solution for /.
We deduce that asymptotically / < /�. From Eq. (37), we get the
following asymptotic value of the ratio n=v as a function of r:

n ¼ cvv r�
v � r

� �
=Hn rð Þ; ðB:2Þ

which requires r < r�
v . Next we consider the asymptotic form of

Eqs. (32)–(34). Remembering that b ¼ ca, we have

av ¼ X þ lw

� �
w; or

v
w

¼ X þ lw

a
; ðB:3Þ

caw ¼ X þ lz

� �
z; or

z
w

¼ ca
X þ lz

; ðB:4Þ

lvv ¼ X wþ zð Þ; ðB:5Þ
where we have set X ¼ jan va þ gð Þ and
g ¼ v þ zþw: ðB:6Þ
Dividing (B.5) by w and using (B.3), (B.4) we get the following quad-
ratic equation:

1� lv
a

� �
X2 þ lz þ ca� lvlw þ lvlz

a

� �
X � lvlwlz

a
¼ 0; ðB:7Þ

from which we can find X, and consequently g, in terms of a. For the
moment, we consider a as a parameter. We know that it is a func-
tion of w and of r (through Eq. (9)). The analysis of (B.7) is not triv-
ial. For instance, if we take lw ¼ lz ¼ l and we set a ¼ lv=h, (B.7)
reduces to

1� hð ÞX2 þ l 1� 2hð Þ þ c
h

h i
X � hl2 ¼ 0;

whose discriminant can be written in the form lþ c=hð Þ2
�4l 2lhþ cð Þ, which requires h small enough to be positive. This
can be checked only a posteriori, once we determine a. Now, we
solve the linear system (B.3), (B.4), (B.6) finding

v ¼ 1
D
g X þ lw

� �
X þ lz

� �
; ðB:8Þ

w ¼ 1
D
ag X þ lz

� �
; ðB:9Þ

z ¼ 1
D
ca2g; ðB:10Þ

where D ¼ a caþ X þ lz

� �	 
þ X þ lw

� �
X þ lz

� �
. Thus, we have

expressed implicitly v ;w; z in terms of a. The dependence of n on
a and r is emphasized by (B.2). Now we shift our attention to w,
i.e. to P, considering the steady state of Eq. (9))

pP rð Þn ¼ CP Pð Þgþ kPP /�
P � /

� �
; ðB:11Þ

which provides P, and hence w, as a function of r and a, keeping into
account what we have found so far. Note that the r.h.s. of (B.11)
grows monotonically from 0 to 1 as P runs from 0 to 1 guarantee-
m n v w z

Thus, m is a function of r too. Finally, we pass to (42), which we
write in the form

/ ¼ Vc nþmþ K va þ gð Þð Þ; ðB:13Þ
and which has the role of determining r, since the two sides of the
equation have been found independently as functions of r. Of
course, all the steps above are feasible if the parameters are given
in a suitable way.
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