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Abstract. In the present paper, a study of the magnetic properties of a spin-1/2 Ising–Heisenberg Cairo
pentagonal structure is presented. The model has been investigated in [F.C. Rodrigues, S.M. de Souza, O.
Rojas, Ann. Phys. 379, 1 (2017)] in the absence of external magnetic field. Here, we consider the effects
of an external tunable magnetic field. By using the transfer matrix approach, we investigate the magnetic
ground-state phase transition, the low-temperature magnetization process, and how the magnetic field
influences the various thermodynamic parameters such as entropy, internal energy and specific heat. It is
shown that the model exhibits intermediate magnetization plateaux accompanied by a double-peak in the
specific heat curve versus temperature. The position of each magnetization jump is in accordance with the
merging and/or separation of the two peaks in the specific heat curve. Considering different g-factors for the
nodal Ising spins and spin dimers also results in arising different intermediate plateaux and to remarkable
alterations of the thermodynamic properties of the model.

1 Introduction

The study of quantum spin systems with competing inter-
actions is an active field of research in solid state physics.
Efforts have focused on ferrimagnetic chains, since they
feature both ferromagnetic and antiferromagnetic phases,
which have been studied both at zero and finite tempera-
ture [1–9]. Spin ladders have been also extensively studied
using various methods [9–20]. Analogously, 2-D lattices
like spin-1/2 Heisenberg antiferromagnets on the kagome
lattice have been also widely examined within the Lanczos
diagonalization both for the ground state properties up to
48 spins [21] and at finite temperature up to 42 spins [22],
and using DMRG [23,24].

Along the years, the synthesis of compounds such
as A3Cu3(PO4)4 with A = Ca,Sr [25], Cu3Cl6(H2O)2·
2H8C4SO2 [26,27], the ferromagnetic diamond chains in
polymeric coordination compound Cu3(TeO3)2Br2 [28]
and the natural mineral azurite [Cu3(CO3)2(OH)2] [29,
30], became possible. These materials can be studied in
terms of Heisenberg spin models. Recently, a mixed 3d/4f
cyclic coordination cluster with a ground-state spin of
S = 60 was studied experimentally in [31], where the
authors synthesized the Gd-containing isotropic member
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of a new series of cyclic coordination clusters, forming a
nano-torus with alternating gadolinium and iron ions with
a nearest neighbor Fe − Gd coupling and a frustrating
next-nearest neighbor Fe−Fe coupling. This arrangement
corresponds to a cyclic delta or saw-tooth chain [31]. Moti-
vated by the compound Bi2Fe4O9, in reference [32] it was
given a general solution for the frustrated Ising model
on the so-called 2-D Cairo pentagonal lattice, i.e. a pla-
nar lattice where the tiling is achieved with nonregular
pentagons. In reference [33] the antiferromagnetic Heisen-
berg model on the Cairo pentagonal lattice was studied.
Afterwards, Rodrigues et al. sketched a stripe of the Cairo
pentagonal Ising–Heisenberg model, and investigated the
ground-state phase transition and some thermodynamic
parameters for such model in [34]. The advantage of the
Cairo pentagonal Ising–Heisenberg stripe geometry is to
make possible analytical calculations, and also the pos-
sibility of considering the effect of the interactions of
classical spins interacting with quantum ones. Another
advantage, exploited in the following, is that it allows for
an evaluation of the effect of external magnetic fields.

Phase transitions in spin models with competing inter-
actions has been one of the most interesting topics of
condensed matter physics and statistical mechanics dur-
ing the last decades [18,19,35–42]. Further investigations
of the spin models in the presence of an external magnetic
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field have supplied exact outcomes for the ground-state
phase transition, which can be induced through the
exchange couplings [43–46]. The ground-state of the spin
ladders with higher spins have been examined so far [4,45].

The investigation of magnetization curves and plateaux
has attracted considerable interest. Exactly solvable quan-
tum spin models for which magnetization varies smoothly
as a function of the magnetic field until reaches its sat-
uration magnetization include spin-1/2 quantum chains
[47,48], ladders [18,49] and spin-1/2 Ising–Heisenberg dia-
mond chains [2,7,8,37–40]. The specific heat of magnetic
materials has attracted as well much attention, since it
may exhibit an anomalous thermal behavior when the
parameters of the Hamiltonian such as coupling constants,
spin exchange anisotropy and magnetic field are changed.
Such a function can be estimated by the Schottky theory
[9,50]. The associated round maximum (Schottky max-
imum) appeared in the specific heat curve, has been
detected in various magnetic materials by experimentalist
[51–53].

When practicable, the possibility of using an analyt-
ical approach to describe the ground-state diagram and
magnetic and thermodynamic properties of quantum spin
systems such as magnetization, entropy, internal energy,
and specific heat, is certainly unvaluable. A very useful
method is the transfer-matrix formalism which has widely
been applied to a number of strongly correlated systems
at zero-temperature and low temperature for studying the
ground- and low-lying state properties of spin models.
In the following of the analytical discussion in reference
[34], we here investigate the magnetic and thermody-
namic properties of the spin-1/2 Ising–Heisenberg Cairo
pentagonal model in the presence of an external mag-
netic field using the same transfer matrix technique. We
also consider the possibility to have in this model dif-
ferent Landé g-factors [54,55], showing that the defiance
among them plays an important role in the magnetic and
thermodynamic behaviors of the model.

The paper is organized as follows. In Section 2, we
describe the model and present its thermodynamic solu-
tion within the transfer-matrix formalism. In Section 3,
we numerically discuss the magnetization process and the
thermodynamic behavior of the model in the presence
of an external homogeneous magnetic field. Finally, the
most significant results will be summarized together in
Section 4.

2 Model and exact solution within the
transfer matrix formalism

The Hamiltonian of the spin-1/2 Ising–Heisenberg Cairo
pentagonal model shown in Figure 1 can be written as

H =
N∑
i=1

[
Habi−1,i +Hcdi,i

]
+Hz, (1)

where the Hamiltonians of two sub-units block cell-1
(Habi−1,i) and cell-2 (Hcdi,i) in each block together with the

Zeeman term are given by

Habi−1,i = −J(σa,i · σb,i)∆ − J0

(
s1,i−1 + s4,i

)
σza,i

−J0

(
s2,i−1 + s3,i)σ

z
b,i,

Hcdi,i = −J ′(σc,i · σd,i)∆′ − J0

(
s3,i + s4,i

)
σzc,i

−J0

(
s1,i + s2,i)σ

z
d,i,

Hz = −µBBz
N∑
i=1

[
g1

(
σza,i + σzb,i + σzc,i + σzd,i

)
+

1

2
g2

(
s1,i + s2,i + s3,i + s4,i

)]
,

(2)

where N is the number of unit blocks. Two different Landé
g-factors g1 and g2 are considered. The XXZ interaction
between pair spins of ab-dimer can be given by

J(σa,i · σb,i)∆ ≡ J
(
σxa,iσ

x
b,i + σya,iσ

y
b,i

)
+ ∆σza,iσ

z
b,i.

(3)
Analogously, for the cd-dimer we have following definition

J ′(σc,i · σd,i)∆′ ≡ J ′
(
σxc,iσ

x
d,i + σyc,iσ

y
d,i

)
+ ∆′σzc,iσ

z
d,i.

(4)
The nodal spins sα,i (α = {1, 2, 3, 4}) localized on the
wings of each pentagon are Pauli operators, taking values
(−1, 1). The pure Ising-type exchange coupling J0 repre-
sents interaction between nodal spins sα,i and Heisenberg
dimer spins. σ = {σx, σy, σz} are Pauli operators of
Heisenberg dimers (with ~ = 1) and are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The final part of the Hamiltonian (1) accounts for the
Zeeman,s energy of magnetic moments in the external

magnetic field B = Bz. We will write Hz =
∑N
i=1Hiz,

with Hiz = (Habi−1,i)
z + (Hcdi,i)z representing the Zeeman,s

energy of each two cells in the block Hamiltonian, and

H =
∑N
i=1Hi, with Hi = Habi−1,i +Hcdi,i +Hiz. From now

on, we consider J0 as energy unit for all other parame-
ters with B/J0, J/J0, ∆/J0 and T/J0 being dimensionless
parameters, restoring J0 in equations and plots when
needed for clarity. Moreover, we will set µB = 1.

The commutation relation between each of two different
block Hamiltonians [Hi,Hj ] = 0 enables us to extract the
partition function of the model under consideration from
the following formula

Z = Tr

[
N∏
i=1

exp
(
−βHi

)]
, (5)

where β = 1/kBT with kB the Boltzmann constant and
T the temperature (for simplicity we set kB = 1). Hence,
we can write the 4× 4 transfer matrix W as follows:

W = TabTcd =
4∑
k=1

exp
[
− βEk(s1,i−1 s2,i−1 | s4,i s3,i)

]
×

4∑
k=1

exp
[
−βĒk(s1,i s4,i | s2,i s3,i)

]
. (6)
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Fig. 1. Schematic structure of the spin-1/2 Ising–Heisenberg Cairo pentagonal model. Yellow circles represent Heisenberg dimer
spins and green circles between them, localized on the external vertices of each pentagon, represent the Ising nodal spins. The
dashed rectangle represents a unit block.

Tab represents the transfer matrix of the cell-1 and
Tcd represents the transfer matrix of the cell-2. Sym-
bol “|” distinguishes the interplay between rows (pair
nodal spins {s1,i−1, s2,i−1}) and the columns (nodal spins
{s4,i, s3,i}) of the transfer matrix Tab, and between rows
(pair nodal spins {s1,i, s4,i}) and the columns (nodal
spins {s2,i, s3,i}) of the transfer matrix Tcd. Moreover,
Ek denote the eigenvalues of the Hamiltonian Habi−1,i +

(Habi−1,i)
z and depend on the spins sα,i (with α = 1, 2, 3, 4).

One obtains

E1,2 = −∆
4 −

g2B
4 (s1,i−1 + s2,i−1 + s3,i + s4,i)

± 1
4 (2g1B + J(s1,i−1 + s2,i−1 + s3,i + s4,i)) ,

E3,4 = ∆
4 −

g2B
4 (s1,i−1 + s2,i−1 + s3,i + s4,i)

± 1
2

√
J2

0 (s1,i−1 + s4,i − s2,i−1 − s3,i)
2

+ J2.

(7)
Analogously, the corresponding eigenenergies for cd-dimer
are given by

Ē1,2 = −∆′

4 −
g2B

4 (s1,i + s2,i + s3,i + s4,i)

± 1
4 (2g1B + J ′(s1,i + s2,i + s3,i + s4,i)) ,

Ē3,4 = ∆′

4 −
g2B

4 (s1,i + s2,i + s3,i + s4,i)

± 1
2

√
J2

0 (s1,i + s2,i − s4,i − s3,i)
2

+ J ′2.

(8)

Hereafter, for simplicity, we consider the case J ′ = J
and ∆′ = ∆. Since we look for eigenvalues of the transfer
matrix W in the thermodynamic limit N →∞, as usual
the largest eigenvalue Λmax is the only one determining
the thermodynamic properties of the system [56]. Hence,
the free energy per block can be obtained from the largest
eigenvalue of the transfer matrix (6) as

f = − 1
β lim
N→∞

ln 1
NZ = − 1

β ln Λmax. (9)

The magnetization, entropy, and specific heat per block
can be defined as

M = −
(
∂f
∂B

)
T
, S = −

(
∂f
∂T

)
B
, C = −T

(
∂2f
∂T 2

)
B
. (10)

3 Results and discussion

This section introduces the results obtained from the
study of the possible ground-state phase transitions, mag-
netization process, entropy, internal energy, and specific
heat behavior of the spin-1/2 Ising–Heisenberg Cairo
pentagonal model in different cases.

3.1 Magnetization and ground-state phase diagram

We start by considering the case g1 = g2 for the Landé
g-factors. Various possible magnetic ground-states of a
unit-block of the spin-1/2 Ising–Heisenberg Cairo pen-
tagonal model can be identified in terms of six different
phases with the corresponding magnetization plateaux
at zero, one-eighth, one-fourth, three-eighth, and one-
half of saturation magnetization and fully polarized state
(FPS). The magnetic ground-state phase diagrams in the
(B/J0 − ∆/J0) plane are displayed in Figures 2a and
2b for fixed values of, respectively, J = 0.5J0 and J =
1.5J0 by supposing the same g-factors for the nodal Ising
spins and Heisenberg dimers, i.e., g1 = 1 and g2 = 1. In
Figure 2a, we see that at anisotropy range ∆ > −J0 there
is a single magnetization jump from the zero plateau to
the FPS saturation magnetization. When the anisotropy
decreases, the magnetization curve reveals intermediate
magnetization plateau at one-eighth of the saturation
magnetization at 0.05J0 . B . 0.1J0. Meanwhile, inter-
mediate plateaux at three-eighth and one-fourth of the
saturation value are present in the magnetic field range
0.1J0 . B . 0.7J0 when the anisotropy changes in the
interval −3J0 . ∆ . −J0.
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Fig. 2. The ground-state magnetic phase diagram of the model in the (B/J0 − ∆/J0) plane by considering fixed values: (a)
J = 0.5J0 and g1 = g2 = 1; (b) J = 1.5J0 and g1 = g2 = 1; (c) J = 0.5J0, g1 = 1, and g2 = 2; (d) J = 1.5J0, g1 = 1, and g2 = 2.

With a further decrease of the anisotropy ∆ . −3J0

another intermediate plateau at one-half of saturation
value is observed for the magnetic field range B & 0.7J0.
It is quite visible from Figure 2b that the increment of
J/J0 leads to broaden the area of one-half plateau.

Let us now study the case g1 6= g2, considering the
ratio g2/g1 being an integer. For g1 = 1 and g2 = 2, as
in Figures 2c and 2d, the model has ground-states with
completely different magnetization intermediate plateaux
at zero, one-sixth and one-third normalized with respect
to its saturation value.

Figure 3 illustrates the magnetic field dependences
of the magnetization per block in the unit of its sat-
uration value for various fixed values of the exchange
anisotropy parameter ∆/J0. Figure 3a demonstrates the
magnetization per block against the magnetic field at
low temperature (T = 0.02J0) and fixed value of the
isotropic coupling constant J = 0.5J0 and g1 = g2 = 1,
where several values of the anisotropy ∆/J0 have been
considered. On the other hand, Figure 3b displays this
quantity versus the magnetic field at a larger coupling
constant, J = 1.5J0, for the same set of other parame-
ters of Figure 3a. As mentioned before, the magnetization
curve shows intermediate plateaux at zero, one-eighth,
one-fourth, three-eighth, and one-half of saturation mag-
netization for anisotropy range ∆/J0 < 0. It is shown in
these figures the magnetization jumps accompanied with
the first-order ground-state phase transition between dif-
ferent magnetization plateaux. Critical magnetic fields at
which magnetization jumps occur are observable as well.

These points strongly depend on both parameters J/J0

and ∆/J0.
It is evident from Figure 3b that by tuning J/J0

the magnetization jump occurs at different critical mag-
netic fields. From the discontinuous ground-state phase
transition perspective, when the coupling constant J/J0

increases, the transition from the state with magnetiza-
tion M/Ms = 1/4 to that of with M/Ms = 1/2 occurs
at lower magnetic field, while the transition from ground-
state with the related magnetization M/Ms = 1/2 to the
FPS occurs at stronger magnetic fields compared with the
case J = 0.5J0.

Again assuming different g-factors g1 = 1 and g2 = 2,
we observe significant changes in the magnetization curve
of the model. For instance, as shown in Figure 3c, when
fixed values J = 0.5J0, g1 = 1, and g2 = 2 are considered,
intermediate plateaux at zero, one-sixth, and one-third
of saturation magnetization appear in the magnetiza-
tion curve. By increasing the coupling constant J/J0, see
Figure 3d, the width of one-sixth plateau decreases, while
the one-third plateau gets wider so that the magnetization
jumps between these plateaux occurs at a lower magnetic
field.

Figure 4a displays the temperature dependence of the
magnetization for several fixed values of the magnetic field
for J = 0.5J0, g1 = g2 = 1 and at a fixed ∆ = −1.5J0. The
main effect of the temperature on the magnetization is to
aggregate the magnetization curves which are strictly dis-
continuous at finite low temperatures. The magnetization
gaps in this figure denote the magnetization jumps from
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Fig. 3. (a) Magnetization in units of the saturation value M/Ms as a function of external magnetic field B/J0 at temperature
T = 0.02J0 for J = 0.5J0, g1 = g2 = 1, and several exchange anisotropy ratios ∆/J0. (b) J = 1.5J0, where other parameters are
taken as in (a). Magnetization for the cases (c) J = 0.5J0, g1 = 1, g2 = 2; (d) J = 1.5J0, g1 = 1, g2 = 2; (e) J = 0.5J0, g1 = 1,
g2 = 3; and (f) J = 1.5J0, g1 = 1, g2 = 3.

one plateau to another. Numbers in parentheses indicate
the magnetization plateaux normalized with respect to its
saturation value. For example, (0) −→ (1/4) means jump-
ing from the zero plateau to the one-fourth plateau in
the magnetization curve. The magnetization gaps corre-
sponding to the jumps from one-fourth to one-half and
from one-half to the saturation magnetization are quite
evident in Figure 4b.

The results illustrated in Figures 4c and 4d highlight
that the magnetization behavior against temperature for
the case g1 = 1 and g2 = 2 is substantially different from
the case g1 = g2 = 1.

For the more general case g1 = 1 and g2 = ng1 with
n = 1, 2, 3, · · · , each magnetization plateau can be
successfully identified in terms of the considered Landé

g-factors. By inspection we find

{
g1 = 1

g2 = 1
⇒M/Ms =


2
8
3
8
4
8
1
8

≡



α
2 g1

α(g1 + g2)
α
2 g1 + g2

α(g1 + g2)
2(g1 + g2)

α(g1 + g2)
g2

α(g1 + g2)

,

{
g1 = 1

g2 = 2
⇒M/Ms =

{
1
6
2
6

≡


α
2 g1

α(g1 + g2)
g2

α(g1 + g2)

,
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Fig. 4. Temperature dependence of the magnetization M/Ms for several selected magnetic fields and fixed ∆ = −1.5J0, assuming
(a) J = 0.5J0 and g1 = g2 = 1; (b) J = 1.5J0 and g1 = g2 = 1; (c) J = 0.5J0, g1 = 1, and g2 = 2; and (d) J = 1.5J0, g1 = 1,
and g2 = 2.

{
g1 = 1

g2 = 3
⇒M/Ms =


1
8
5
16
3
16

≡



α
2 g1

α(g1 + g2)
α
2 g1 + g2

α(g1 + g2)
g2

α(g1 + g2)

,

(11)

similar expressions could be carried out by increasing n.
In equations (11) it is

α = 2 + [1 + (−1)g1+g2 ].

Figures 3e and 3f illustrate the validity of the results
(11). E.g., in Figure 3e it is shown the magnetization
per saturation against the magnetic field for the situation
g1 = 1 and g2 = 3, where J = 0.5J0. It is clear that there
is magnetization intermediate plateaux at M/Ms = 1/8,
M/Ms = 5/16, and M/Ms = 3/16, in agreement with the
corresponding relationships noted in equation (11).

3.2 Entropy and internal energy

The magnetic field variations of the magnetization near
the ground-state phase boundaries may manifest them-
selves also in unusual behaviors of basic thermodynamic
quantities, so we hereby explore in the following the tem-
perature dependence of the entropy and internal energy
for different magnetic fields.

Figures 5a and 5b show thermal variations of the
entropy at different magnetic fields on a logarithmic scale
for ∆ = −1.5J0, assuming J = 0.5J0 and J = 1.5J0,
respectively. As argued in reference [34] in the absence
of the magnetic field, the residual entropy at J = 0.5J0 is
given by S −→ ln(3) when T −→ 0. By applying a weak
magnetic field (0 < B . 0.2J0) the residual entropy at
J = 0.5J0 decreases such that S < ln(3) when T −→ 0.
When the magnetic field becomes larger than ≈0.2J0, the
system is highly influenced by magnetization one-fourth
and one-half plateaux with residual entropy S −→ 0 when
T −→ 0. For the case J = 1.5J0, even if a weak magnetic
field is applied, the system is dominated by ground-
state phases associated to the one-fourth and one-half
plateaux with residual entropy S −→ 0 when T −→ 0.
Figures 5c and 5d display the internal energy U = f +TS,
for the same set of parameters considered in Figures 5a
and 5b, respectively. Obviously, by applying an external
magnetic field the internal energy remarkably decreases at
low temperatures.

Let us consider now g1 = 1 and g2 = 2. Figures 6a
and 6b show the entropy as a function of the temper-
ature on the logarithmic scale for the case when these
different g-factors are considered. By inspecting Figure
6a and comparing it with Figure 5a, one can observe
a non-trivial difference in the entropy behavior versus
temperature when an external magnetic field is applied.
For more clarity, if we focus on the three selected mag-
netic fields B = {0.2J0, 0.4J0, 0.6J0} we realize that,
independent of the ratio J/J0, the entropy behaves in a

https://epjb.epj.org/
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Fig. 5. (a) Entropy of the spin-1/2 Ising–Heisenberg Cairo
pentagonal model as a function of the temperature for sev-
eral fixed values of the magnetic field B/J0 at fixed coupling
constant J = 0.5J0. (b) The same as in panel (a), but with
J = 1.5J0. Panels (c) and (d) illustrate the temperature depen-
dence of the internal energy for the same selected magnetic
fields and fixed values of other parameters as in panels (a) and
(b), respectively. In all panels, it is assumed fixed anisotropy
∆ = −1.5J0 and g1 = g2 = 1.

remarkably different way from the case g1 = g2 = 1. As
depicted in Figures 6c and 6d, the internal energy has
been increased at low temperatures.

3.3 Specific heat

Let us now examine the effects of exchange coupling J/J0

and the magnetic field B/J0 on the temperature depen-
dence of the specific heat for anisotropy ∆ = −1.5J0.
We display in Figure 7a the specific heat of the model
under consideration as a function of the temperature
for several fixed values of the magnetic field by sup-
posing J = 0.5J0 and g1 = g2 = 1. The blue solid line
marked with hexagons represents the specific heat curve
for J = 0.5J0 and ∆ = −1.5J0 when B = 0. In Figure
7a, one can see that the specific heat exhibits a double-
peak when B = 0. When the magnetic field increases,
two maxima of the double-peak gradually merge together
and make a single peak at higher temperature, see for
instance the red dashed line marked with cycles corre-
sponding to B = 0.2J0. With a further increase of the
magnetic field (B & 0.2J0), an anomalous Schottky type
maximum arises at higher temperatures (green dashed line
marked with hexagons). Comparison between Figures 7a
and 3a shows that the existence of the double-peak in the
specific heat curve denotes the magnetization zero plateau
in magnetization curve. Therefore, one can conclude that
the spin-1/2 Ising–Heisenberg Cairo pentagonal model is
in the AFM state when a double-peak is observed in the
specific heat curve. The appearance of a single Schottky-
peak nearby the critical magnetic field B ≈ 0.3J0 (when
M/Ms = 1) indicates that the system is in the FPS.
Remarkably, a small change in the height of the first peak

Fig. 6. (a) Entropy of the spin-1/2 Ising–Heisenberg Cairo
pentagonal model as a function of the ratio T/J0 for several
fixed magnetic fields and J = 0.5J0. (b) The same as in (a),
but with J = 1.5J0. In (c) and (d), we plot the temperature
dependence of the internal energy of the model for the same
selected magnetic fields and the same fixed values of other
parameters as in (a) and (b), respectively. In all panels, ii is
∆ = −1.5J0, and g1 = 1 and g2 = 2.

at low temperature, T ≈ 0.1J0, is accompanied with the
magnetization jump from the zero plateau to the one-
fourth plateau, see the evolution of specific heat from the
red dashed line marked with cycles to the gold dotted
line marked with diamonds illustrated in Figure 7a. In
fact, the height of the first peak gradually increases as the
magnetic field increases, then slightly decreases for the
magnetic field interval 0.2J0 . B . 0.3J0.

To gain further insight into the effects of the coupling
constant J/J0 on the specific heat, let us also examine
the specific heat behavior of the spin-1/2 Ising–Heisenberg
Cairo pentagonal model for different values of J/J0, which
can be of particularly interest especially when the model
is in the presence of a tunable magnetic field. We have
depicted in Figure 7b the typical dependences of the spe-
cific heat on the temperature or several magnetic fields,
assuming J = 1.5J0, ∆ = −1.5J0 and g1 = g2 = 1. The
interesting point from this figure is that the specific heat
does not show the single Schottky-peak for range B .
0.7J0. The particular double-peak temperature depen-
dence is observed whose peaks discontinuously change in
height upon increasing the magnetic field. The rise and
fall of the height of first peak appeared at lower tempera-
tures is accompanied with the presence of magnetization
plateaux.

Finally, the specific heat has a Schottky-type maxi-
mum at higher temperature and for large magnetic fields
B & 0.7J0, revealing the model is in a FPS. Another inter-
esting thing is that the Schottky-type maximum appears
for magnetic fields quite larger than the case J = 0.5J0.
This phenomenon indicates the existence of a magne-
tization intermediate plateau at one-half of saturation
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Fig. 7. The specific heat of the spin-1/2 Ising–Heisenberg Cairo pentagonal model as a function of the temperature for several
values of the magnetic field B/J0: (a)J = 0.5J0, ∆ = −1.5J0, and g1 = g2 = 1; (b) J = 1.5J0, ∆ = −1.5J0, and g1 = g2 = 1;
(c) J = 0.5J0, ∆ = −1.5J0, g1 = 1, and g2 = 2; and (d) J = 1.5J0, ∆ = −1.5J0, g1 = 1, and g2 = 2.

magnetization for the case J = 1.5J0. Consequently, when
the coupling constant J/J0 take larger values, the single
Schottky peak occurs for magnetic fields larger than the
ones for J = 0.5J0. This scenario is in agreement with the
width alterations of intermediate 1/2−plateau, as shown
in Figure 2b.

For completeness, Figure 7c shows the specific heat ver-
sus temperature for a number of selected magnetic fields,
assuming ∆ = −1.5J0, J = 0.5J0, g1 = 1, and g2 = 2. It is
clear that the Schottky maximum appears at lower mag-
netic field and higher temperature intervals. By increasing
J/J0, as reported in Figure 7d, the distance between the
peaks of the double peak structure increases and the sin-
gle maximum arises at considerably lower magnetic fields
(B & 0.4J0) with respect to the case when g1 = g2 = 1.

4 Conclusions

In this paper, we have investigated the thermodynamic
and magnetic properties of the spin-1/2 Ising–Heisenberg
Cairo pentagonal model in the presence of an external tun-
able magnetic field. The magnetization process, entropy,
internal energy and the specific heat of this model have
been studied by means of the solution obtained within
the transfer-matrix formalism. The possibility of having
different Landé g-factors was considered.

We showed that the magnetization exhibits interme-
diate plateaux at zero, one-fourth and one-half of the
saturation magnetization when the same Landé g-factors
are assumed for the nodal Ising spins and dimer spins.
The width of these plateaux depends on the both the
isotropic and anisotropic Heisenberg exchange couplings
considered for the dimers. By decreasing the anisotropic
exchange coupling, the magnetization intermediate one-
fourth and one-half plateaux gradually appear. Increasing
the isotropic coupling constant results in widening the
width of one-half plateau and decreasing the width of
one-fourth one. The magnetic field variations considerably
affect the entropy and the internal energy when the
temperature goes to zero. When different g-factors are
considered, different intermediate plateaux are obtained.
We also observed a substantial change in entropy behavior
and internal energy of the model. We focused on the case
in which the ratio between the Landé g-factors is an inte-
ger, and it would be interesting to consider in the future
both the more general case in which the ratio is a ratio-
nal number and the situation in which the g-factors are
incommensurable.

It has been already shown that in the absence of mag-
netic field the specific heat curve of the model manifests
a visible double-peak structure [34]. Here, we have shown
that turning on and varying the magnetic field and the
isotropic coupling constant can remarkably modify the
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shape and the temperature position of this double-peak.
One of the most interesting result we found is provided
by the magnetic field dependence of the specific heat,
for which the rises and falls of the first peak are well in
agreement with the entity of magnetization plateaux. We
concluded that one can recognize the lowest-energy eigen-
state of the model by investigating the evolution of first
peak of the double-peak. With a further increase of the
magnetic field, the first peak gradually disappears and a
single Schottky peak is created at higher temperatures.
This single Schottky peak indicates that the model is in
the fully polarized phase. As a result, varying the exchange
interactions between dimer spins and selecting different
Landé g-factors have notable effects on the specific heat
behavior versus temperature.

Finally, we mention that it would be interesting to
consider more general configurations in which spin-1/2
Ising–Heisenberg Cairo pentagonal chains are connected,
starting from the case in which they are merged as a Y -
junction with a variable leg, a geometry which has been
considered for XX and Ising quantum spin models [57–59].
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