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Dear Professor Benjamin, 
 
Your Article, "Polygenic prediction within and between families from a 3-million-person GWAS of 
educational attainment" has now been seen by 3 referees. You will see from their comments below 
that while they find your work of interest, some important points are raised. We are interested in the 
possibility of publishing your study in Nature Genetics, but would like to consider your response to 
these concerns in the form of a revised manuscript before we make a final decision on publication. 
 
To guide the scope of the revisions, the editors discuss the referee reports in detail within the team, 
with a view to identifying key priorities that should be addressed in revision. As you will see from 
these comments, all referees have identified aspects of the analyses and the discussion that need to 
be improved. Some of the claims need to be better supported by additional analyses. Please address 
all referees’ points as thoroughly as possible. 
 
We therefore invite you to revise your manuscript taking into account all reviewer and editor 
comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 
upload a copy of the manuscript in MS Word .docx or similar editable format. 
 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
When revising your manuscript: 
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*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 
referee comment. If no action was taken to address a point, you must provide a compelling argument. 
This response will be sent back to the referees along with the revised manuscript. 
 
*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 
Article format instructions, available 
<a href="http://www.nature.com/ng/authors/article_types/index.html">here</a>. 
Refer also to any guidelines provided in this letter. 
 
*3) Include a revised version of any required Reporting Summary: 
https://www.nature.com/documents/nr-reporting-summary.pdf 
It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 
manuscript goes back for peer review. 
A revised checklist is essential for re-review of the paper. 
 
Please be aware of our <a href="https://www.nature.com/nature-research/editorial-policies/image-
integrity">guidelines on digital image standards.</a> 
 
Please use the link below to submit your revised manuscript and related files: 
 
[REDACTED] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
We hope to receive your revised manuscript within three to six months. If you cannot send it within 
this time, please let us know. 
 
Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 
further. 
 
Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 
direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 
achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 
from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 
information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
We look forward to seeing the revised manuscript and thank you for the opportunity to review your 
work. 
 
Sincerely, 
 
Wei Li, PhD 
Senior Editor 
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Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
This 4th iteration of the GWAS of educational attainment by the SSGAC is a significant upate to the 
previous version mainly in sample size. There are some incremental gains in variant discovery, 
polygenic prediction, and knowledge regarding the genetic architecture of educational attainment. 
Further refinement of direct/indirect components of polygenic score associations is a contribution. 
However, two significant issues in GWAS of educational attainment are only partly addressed. The 
data are there. But more interpretation is needed to realize the potential for impact. 
 
The first issue that requires more attention is the much smaller effect size for the polygenic score in 
Black vs. White HRS participants. The difference in R-squared is roughly an order of magnitude (PDF 
page 7, para 3). Two obvious potential sets of causes of this difference are (1) measurement error 
arising from differences in LD between GWAS SNPs and causal variants in the HRS Black sample vs. 
the White sample; and (2) gene-environment interactions arising from social-environmental 
constraints on phenotypic variance that are different in the HRS Black sample vs. the White sample. In 
past iterations of this GWAS, the authors could be forgiven for navigating around the thorny question 
of the relative contributions of these (and perhaps other) sources of low portability. But now it's time 
to take the question seriously. If these authors want to continue advancing the cause of genetic 
prediction algorithms for human socioeconomic attainments—and validating them in US samples, no 
less—they are going to have to confront the question of why their prediction algorithms work so poorly 
in a specific segment of the population that faces major barriers to socioeconomic attainment. I don’t 
think the authors have to provide a definitive answer. But they have to at least frame the possibilities 
and offer us some kind of analysis. 
Three approaches that could be taken are: 
 
First, the prediction cohorts have been used by other researchers (and some of these authors) to 
study social forces that constrain attainments of Black vs. White Americans. Pick some of these 
dimensions and show us how R2 varies across them within the Black samples of HRS and Add Health. 
Birth cohort, region of birth, as well as more granular features of the environment are all available for 
analysis. 
 
Second, there is certainly heterogeneity in the extent of European ancestry within the samples of 
Black Americans. If portability is all about measurement error, then R2 should scale with genetic 
similarity of the target to the discovery population. Does it? 
 
Third, this group has expended significant effort projecting what gains in polygenic prediction R2 
should look like as GWAS sample sizes increase. An important observation in recent GWAS is that R2 
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gains in Euro-descent samples are somewhat less than expected. What about in non-Euro descent 
samples? (and how does this compare to polygenic scores for stature or BMI?) 
 
 
The second issue is easier to deal with and has to do with the question of what traits genetic 
correlates of educational attainment influence on their way to producing differences in years of 
schooling. Since educational attainment is not a trait, per se, this question has always been in the 
background. Cognitive abilities are certainly a leading candidate. However, it is notable here that 
polygenic prediction R2 values for measurements of cognitive abilities are roughly ½ of those for 
educational attainment phenotypes. A second, more striking observation is that spousal assortment on 
the polygenic score is not well explained by phenotypic assortment on education and cognition, nor is 
it explained by assortment on genetic ancestry features (pdf page 9 para 3). The implication of this 
observation is that GWAS of education are turning up genetic signal for other traits. What might these 
be? There have been several papers on the network of phenotypes linked with the education polygenic 
score beyond cognition and education. What do these papers suggest? 
 
 
A few other, more minor comments: 
 
The treatment of dominance effects in the main text was surprisingly extensive. Given the main result 
is that there is little evidence for dominance effects, this might be shifted to the supplement to make 
space for the issues raised above. 
 
In a twin model, dominance is not distinguished from epistasis. Given the sample size, analysis of 
epistasis seems possible. At least the authors should offer some explanation of why they explore only 
dominance here. 
 
It would be helpful to provide some discussion of how the within-sib GWAS analysis reported here 
relates to the one reported by Howe et al. (2021 BioRxiv), on which a number of these authors are 
also listed as coauthors. 
 
 
 
Reviewer #2: 
Remarks to the Author: 
In the manuscript "Polygenic prediction within and between families from a 3-million-person GWAS of 
educational attainment" Okbay et al. investigate the genetics of educational attainment (EA). The 
authors QC-ed and analyzed the data with care. They use replication samples which validate the initial 
results. They did a good job of looking at possible confounders including stratification, assortative 
mating etc. This paper makes an important contribution to the genetics of EA and its part in the 
ongoing discussion about the “nature of nurture”. But we raise a few moderate issues and several 
minor issues. 
Moderate and more major points: 
First, the authors provide very few, if any, comments on what is a possible route for the indirect effect 
of EA on seemingly unrelated traits. We believe that the authors can at least work in the literature 
that shows that low SES is a significant risk factor in numerous diseases. 
Second, LDscore intercept is notably larger than what we are used to seeing. I think this deserves 
more comments on the possible causes and comparisons with other GWAS (including some of the 
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previous EA GWAS) in terms of lambda 1000. 
Third, while they must have dealt with this elsewhere, is it true that all their data lists total years of 
education or do they get clumped data (8-11 years, finished high school, some college, graduated 
college, etc.). If the latter, how do they deal with different “clumping” of YOE where the meaning of 
the thresholds likely change between samples and across birth cohorts? One of us has fitted multiple 
threshold models in pairs of relatives to such clumped YOE data in a large longitudinal sample 
covering 4 decades where YOE was rising rapidly. The model fitted terribly indicating that the 
“meaning” of the different categories was not constant across birth cohorts. How do they treat 
“technical schools” etc? We searched and were unable to find a discussion of these concerns in their 
material. 
Fourth, given that parental PGIs are the (equal weighted) sum of transmitted and untransmitted 
alleles, can they be more specific about how their “controlling for parental PGI” is or is not equivalent 
to transmitted vs untransmitted analyses of Kong et al? 
Firth, should they be discussing “assortative mating” or “spousal resemblance?” Do they have data on 
spousal correlations at marriage and if not, how can they justify their title? In their analyses of the 
causes of the high correlation, they don’t seem to consider “spousal interaction”, that is that one 
individual’s EA could directly impact on the EA of their spouse by providing financial support, 
encouragement, etc. Doesn’t that possibility merit discussion? 
Minor issues 
On line 162 “relatively weak enrichment” should probably red better as “weaker enrichment”. Re: 
genes highly expressed in glial cells, what (MSigDB) pathway/gene sets they tend to significantly load 
on? 
They should explain in their legend all abbreviations used in their tables. 
What exactly is “social homogamy based on genetic relatedness”? That deserves some explanation in 
the text. 
They write “lead SNPs corresponds to 1.4 weeks of schooling per allele.” While cute, this is hardly a 
sustainable or sensible interpretation. 
They write “Our findings are fully consistent with earlier conclusions: SNP heritability due to the X 
chromosome of 0.4% and (using sex stratified association analyses in the UK Biobank) a male-female 
genetic correlation close to unity (r = 0.94).” Is this correlation just for the X-chromosome or the 
entire genome? 
In figure 3 they use the term “depression.” It appears they mean major depression. It should be listed 
as such as generic “depression” can mean a variety of different things – e.g. self-report current 
symptoms above some cut-point. 
There might not be room, but can they say something about the expected gain in predictive power as 
a function of sample size. Should it be linear as a function of log to base 10 sample size? 
 
 
 
Reviewer #3: 
Remarks to the Author: 
The manuscript by Okbay et al. represents the largest GWAS effort of educational attainment (EA), 
with a 3-million predominantly European ancestry subjects. They reported 3,952 approximately 
uncorrelated genome-wide-significant SNPs. The polygenic score or polygenic index (PGI) explains 12-
16% of EA variation and also other diseases. These results represent the increment advance of the 
previous study conducted by the same group (ref 2) and should be insightful for other large GWAS. 
The manuscript is well written. However, it is a little disappointed about how much biology we can 
learn from this large GWAS effort. Some statistical analyses may need careful investigation. 
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Comments: 
1) The authors isolated the direct and indirect effects of the PGI in the population effect by controlling 
for both parents’ PGIs in a regression model. They estimated 30.9% of the EA direct effect, which is 
significantly smaller than the estimate of 48.9% reported in the Icelandic data (Ref 4). In Discussion, 
they claimed that “much of the predictive power of the EA PGI is not explained by direct effect” (Page 
10). However, it seems the regression approach used in this study is different from the previous 
study. Since parents transmit 50% of their genomes to offspring, adjusting for parents’ PGIs likely 
underestimates the direct effects in this study. Thus, this claim seems unconvinced. It would be more 
reasonable to apply similar analysis approach of Ref 4. 
2) The authors performed assortative mating analysis and tried to answer how much PGI prediction 
power is due to assortative mating. They found that the observed spousal PGI correlation is 
substantially higher than the predicted PGI correlation, which is the product of the spousal phenotype 
correlation and both father and mother’s phenotype and PGI correlations. In Supplementary Table 12, 
father and mother’s phenotype and PGI correlations are missed. There are no standard errors of 
predicted PGI correlations listed. By controlling the ancestry, the spousal PGI correlation is much 
reduced. Furthermore, it is not clear why the spousal phenotype correlation reported in literature is 
much higher than that in the current study (0.412). Therefore, the predicted PGI correlation may be 
underestimated. 
3) In the assortative mating analysis, the residuals of the father’s and mother’s PGIs were calculated 
after regression on their top 20 genetic principal components. Are the top 20 genetic principal 
components sufficient to control the effect by population stratification? 
4) The PGI was calculated by GWAS summary statistics of both males and females. However, it is 
known that gender is associated with EA, also year of birth. Have gender and year of birth and their 
interaction been including in the analysis? It seems more reasonable to calculate male and female 
specific PGIs by using male and female specific summary statistics. Then, the correlation between EA 
and father’s PGI can be less biased than that using father’s PGI calculated using the summary 
statistics of males and females combined. This may be another reason of underestimating predicted 
spousal PGI correlation. The conclusion that “the spousal PGI correlation is far too strong to be 
consistent with assortative mating purely on phenotype” may need additional analysis. 
5) Page 10, line 348. What does gene-environment correlation mean? Does it suggest gene-
environment interaction or something else? 
6) Reference 2 and 8 are the identical. 
 

Author Rebuttal to Initial comments   
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Decision Letter 

 

16th June 2021 

 

Dear Professor Benjamin, 

 

Your Article, "Polygenic prediction within and between families from a 3-million-person GWAS of 

educational attainment" has now been seen by 3 referees. You will see from their comments 

below that while they find your work of interest, some important points are raised. We are 

interested in the possibility of publishing your study in Nature Genetics, but would like to consider 

your response to these concerns in the form of a revised manuscript before we make a final 

decision on publication. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the 

team, with a view to identifying key priorities that should be addressed in revision. As you will see 

from these comments, all referees have identified aspects of the analyses and the discussion that 

need to be improved. Some of the claims need to be better supported by additional analyses. 

Please address all referees’ points as thoroughly as possible. 

 

We therefore invite you to revise your manuscript taking into account all reviewer and editor 

comments. Please highlight all changes in the manuscript text file. At this stage we will need you 

to upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

… 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review 

your work. 

 

Sincerely, 
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Wei Li, PhD 

Senior Editor 

Nature Genetics 
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Cover Letter 

 

Dear Dr. Li, 

 

Please find enclosed our resubmission of “Polygenic prediction within and between families from 

a 3-million-person GWAS of educational attainment.” We believe that we have addressed the 

most important issues raised by the referees (as well as a number of more minor issues). As you 

noted, some of the referees’ comments are somewhat open-ended/exploratory. The revised 

manuscript reports the results from several new analyses of issues raised in the referee reports. 

 

The main changes we made to the manuscript in response to the referees’ comments are as 

follows. 

 

First, in response to R1’s major comment, we now report calculations of the predictive power of 

the polygenic index in African genetic ancestry individuals that would be expected if the reduction 

relative to European genetic ancestry individuals were entirely driven by allele frequency and 

linkage disequilibrium differences between populations. The observed reduction in predictive 

power is substantially greater than what we calculate. Therefore, we conclude that differences in 

heritability or differences in the true genetic associations across the populations, perhaps due to 

gene-environment interactions, likely contribute to the reduction in predictive power. 

 

Second, in response to R2’s major comment, when we first discuss how we partition the polygenic 

index’s predictive power into direct and other effects, we now mention several pathways (namely, 

parents’ education, socioeconomic status, and behavior) by which indirect parental effects could 

matter for childrens’ educational attainment. 

 

Third, in response to a comment by R3, in our assortative mating analyses we have added a further 

control for population stratification and geography-based social homogamy by residualizing each 

mate pair’s polygenic index on birth coordinates and assessment center in the UK Biobank. We 
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found a reduced correlation between mate pairs’ polygenic indices when adding further controls 

for these geographic factors, indicating that geographic factors not well captured by top genetic 

principal components likely contribute to the high correlation between mate pairs’ educational 

attainment polygenic indices.  

 

In addition to these main changes, we have also made a number of additional, more minor edits, 

most importantly: 

• All referees raised questions about how our within-family analyses related to analyses in 

existing papers (Kong et al. (2018) and Howe et al. (2021)). We have added brief 

explanations in the relevant section of the main text explaining the connections between 

the various analyses, and we now provide more details on the connection to Kong et al. 

(2018)  in the Supplementary Note. 

• Although not requested by referees, we have made two changes in terminology to avoid 

potential confusion. First, we have replaced “ancestry” with “genetic ancestry” to reflect 

the fact that we refer to genetic (rather than self-reported) ancestry throughout the paper. 

Secondly, in our assortative mating analyses we have replaced “spouses” and “spousal” 

with the terms “mate pairs” and “mate pair,” respectively, because the inclusion of these 

pairs in our analysis was not conditional on marital status (but instead based on jointly 

having a genotyped biological child in the sample). 

• In response to a comment by R3, we have added confidence intervals to our predicted 

correlation between mate pairs’ PGIs, computed via bootstrap. Doing so makes it clear that 

the observed correlation between mate pairs’ EA PGIs is statistically distinguishable from 

the correlation predicted under the model of phenotypic assortment. 

• In the original submission, we made an error in reporting the number of mate pairs that 

we used in our mate pair correlation analyses. Specifically, we double-counted genotyped 

mate pairs who had more than one genotyped offspring. This primarily affected the 

analysis in Generation Scotland, where many genotyped parent-sib quads are available. 

We have corrected this in the revised manuscript, revising down the number of genotyped 

spouse pairs in UKB from 894 to 862 and in Generation Scotland from 2964 to 1603. 



6 
 

Correcting this error has resulted in slightly larger standard errors than reported in the 

original submission, but has not changed the point estimates much nor the conclusions of 

the analysis. 

• Although not requested by referees, we explored the predictive power of SBayesR, a newer 

method of constructing polygenic indexes. Since these polygenic indexes have higher 

predictive power than our benchmark polygenic indexes (constructed using LDpred), we 

now report those results as ex post analyses. 

• Also not requested by referees, but because it may be of use in future GWAS as well 

powered as ours, we conducted further analyses comparing COJO versus clumping 

definitions of lead SNPs. These are reported in the Supplementary Note. 

 

For each of the three referee reports, we have enclosed point-by-point responses. 

 

Because almost all of the referee comments asked us to add additional analyses, the resulting 

revised manuscript is roughly 10% longer than the 4,000-word maximum for an Article. In addition 

to reducing the amount of space devoted to the dominance GWAS, we tried to trim the text 

wherever we could without adversely affecting the substance of the paper. Of course, if the 4,000-

word maximum is a hard limit, we will find further ways to cut down the length. 

 

Note that we have also added to the Supplementary Note a Frequency Asked Questions (FAQ) that 

explains, in a less technical way than the paper itself, what the paper finds and how the results 

should—and should not—be interpreted. It is standard practice for major papers by the Social 

Science Genetic Association Consortium to be accompanied by such a FAQ, which we view as 

particularly important for work on the genetics of behavior, given the potential sensitivity of the 

research. In the past, these FAQs were posted online along with the paper (including here: 

https://www.thessgac.org/faqs). While we intend to continue to post the FAQs online, we have 

received the feedback that in order to make sure a FAQ is not overlooked, we should also make it 

available along with the paper on the journal’s website. In order to make that possible, we are 

including the FAQ as a section of the Supplementary Note. 
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Thank you for considering our manuscript. 

 

 

Sincerely, 

 

Daniel Benjamin on behalf of the authors 
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Response to Reviewer #1: 

 

Remarks to the Author: 

 

This 4th iteration of the GWAS of educational attainment by the SSGAC is a significant update to 

the previous version mainly in sample size. There are some incremental gains in variant 

discovery, polygenic prediction, and knowledge regarding the genetic architecture of 

educational attainment. Further refinement of direct/indirect components of polygenic score 

associations is a contribution. However, two significant issues in GWAS of educational 

attainment are only partly addressed. The data are there. But more interpretation is needed to 

realize the potential for impact. 

 

We thank the referee for the positive remarks. 

 

The first issue that requires more attention is the much smaller effect size for the polygenic score 

in Black vs. White HRS participants. The difference in R-squared is roughly an order of magnitude 

(PDF page 7, para 3). Two obvious potential sets of causes of this difference are (1) measurement 

error arising from differences in LD between GWAS SNPs and causal variants in the HRS Black 

sample vs. the White sample; and (2) gene-environment interactions arising from social-

environmental constraints on phenotypic variance that are different in the HRS Black sample vs. 

the White sample. In past iterations of this GWAS, the authors could be forgiven for navigating 

around the thorny question of the relative contributions of these (and perhaps other) sources of 

low portability. But now it's time to take the question seriously. If these authors want to continue 

advancing the cause of genetic prediction algorithms for human socioeconomic attainments—and 

validating them in US samples, no less—they are going to have to confront the question of why 

their prediction algorithms work so poorly in a specific segment of the population that faces major 

barriers to socioeconomic attainment. I don’t think the authors have to provide a definitive 

answer. But they have to at least frame the possibilities and offer us some kind of analysis. 

Three approaches that could be taken are: 
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First, the prediction cohorts have been used by other researchers (and some of these authors) to 

study social forces that constrain attainments of Black vs. White Americans. Pick some of these 

dimensions and show us how R2 varies across them within the Black samples of HRS and Add 

Health. Birth cohort, region of birth, as well as more granular features of the environment are all 

available for analysis. 

 

Second, there is certainly heterogeneity in the extent of European ancestry within the samples of 

Black Americans. If portability is all about measurement error, then R2 should scale with genetic 

similarity of the target to the discovery population. Does it? 

 

Third, this group has expended significant effort projecting what gains in polygenic prediction R2 

should look like as GWAS sample sizes increase. An important observation in recent GWAS is that 

R2 gains in Euro-descent samples are somewhat less than expected. What about in non-Euro 

descent samples? (and how does this compare to polygenic scores for stature or BMI?) 

 

We agree that it is important to understand why predictive power tends to decline when the 

training and target populations differ in terms of genetic ancestry (and that the very large 

reductions in accuracy typically found in African genetic-ancestry validation samples seriously limit 

the utility of currently available PGIs). We appreciate the three concrete and constructive 

suggestions for alternative routes one could try to advance our understanding of these issues. We 

are also grateful to the referee for helpfully framing the question of limited portability in terms of 

two competing hypotheses: (1) differences in allele frequencies and linkage disequilibrium (LD) 

between populations, or (2) differences in environments, leading to differences in heritability 

between populations or differences in causal effects due to gene-environment interactions. (We 

note that gene-gene interactions (epistasis) could also generate differences in marginal causal 

effects between genetic ancestries, but recent findings suggest that epistatic genetic variance 

contributes little to total (broad sense) heritability of human complex traits (Hivert et al., 2021)). 
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We interpreted the referee’s list as ideas about possible ways to shed light on these hypotheses, 

rather than as directives. Ultimately, we decided to conduct a number of analyses in the spirit of 

the second and third suggestions on the referee’s list. Our basic approach is to estimate the 

predictive power observed in individuals of African genetic ancestries and compare it to the 

predictions of a model that was developed to quantify the expected reduction in accuracy if the 

only factors reducing accuracy are differences in allele frequency and LD. In the revised 

manuscript, we report these calculations, which are based on theory developed by Wang et al. 

(2020): 

 

PGIs like ours that are constructed from GWAS in samples of European genetic 

ancestries are generally found to have much lower predictive power in samples 

with other ancestries; for example, on average across phenotypes, estimates of 

relative accuracy (ratio of 𝑅!) in African-genetic-ancestry to European-genetic-

ancestry samples have been 22% (Martin et al., 2019) and 36% (Duncan et al., 

2019). When we used our PGI to predict EduYears in samples with African genetic 

ancestries from the HRS (N = 2,507) and Add Health (N = 1,716), the incremental 

𝑅! was 1.3% (95% CI: 0.6% to 2.2%) and 2.3% (95% CI: 1.1% to 3.7%), implying that 

the relative accuracies for EA in the HRS and Add Health are only 11% and 15%, 

respectively. Using the UKB, we find that the relative accuracy is smaller than would 

be predicted based on population differences in allele frequencies and LD alone 

(Online Methods), and this discrepancy is greater for EA than has been found in 

prior work (Wang et al., 2020) for height, BMI, and six other phenotypes 

(Supplementary Figure 8 and Supplementary Table 5). The remaining reduction in 

predictive power is due to factors including epistasis (although epistatic variance is 

likely small (Hill, Goddard and Visscher, 2008; Hivert et al., 2021)), gene-

environment interactions, and differences between populations in gene-

environment correlations, assortative mating, and environmental variance. 
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We think our findings provide clear evidence that allele frequency and LD differences are 

important sources of non-portability, but that it is unlikely that these factors alone can fully 

account for the reductions in prediction accuracy that tend to be observed empirically. 

 

We describe these analyses in a new section of the Supplementary Note (5.7). Per the referee’s 

suggestion, the revised manuscript also includes a new Supplementary Figure 8 and 

Supplementary Table 5 that compare the observed and predicted losses in prediction accuracy for 

EA to those for the eight phenotypes examined by Wang et al. (which did not include EA). We 

believe these novel analyses have strengthened the paper and thank the referee for suggesting 

them. 

 

While we also think it would be interesting to pursue some of the other avenues proposed by the 

referee, we have elected not to do so here. In most cases, the issue is data constraints. For 

example, we considered comparing SNP heritabilities across the European- and African-genetic-

ancestry samples, but because the African genetic-ancestry sample available to us is small, the 

confidence interval for the SNP heritability estimate in the African-genetic-ancestry sample would 

be too wide to be informative. Similarly, we do not have access to a dataset that would enable 

well-powered analyses of how the predictive power of our PGIs varies across individuals of African 

genetic ancestries with different socioeconomic status. Of course, in the event that our paper is 

published, we anticipate that researchers with access to more suitable data sets will use our 

summary statistics to pursue these questions in greater depth. 

 

The second issue is easier to deal with and has to do with the question of what traits genetic 

correlates of educational attainment influence on their way to producing differences in years of 

schooling. Since educational attainment is not a trait, per se, this question has always been in the 

background. Cognitive abilities are certainly a leading candidate. However, it is notable here that 

polygenic prediction R2 values for measurements of cognitive abilities are roughly ½ of those for 

educational attainment phenotypes. A second, more striking observation is that spousal 

assortment on the polygenic score is not well explained by phenotypic assortment on education 
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and cognition, nor is it explained by assortment on genetic ancestry features (pdf page 9 para 3). 

The implication of this observation is that GWAS of education are turning up genetic signal for 

other traits. What might these be? There have been several papers on the network of phenotypes 

linked with the education polygenic score beyond cognition and education. What do these papers 

suggest? 

 

We agree with the referee that the question of which traits explain the relationship between the 

EA PGI and EA has always been in the background, and several of our results—especially our 

findings on mate-pair assortment—make this question especially salient. In response to the 

referee’s comment, we undertook a literature review of the papers linking the EA PGI to 

phenotypes other than cognition and education. The most relevant papers we found are: 

 

Reference Phenotypes 

de Zeeuw et al. (2014) 

https://onlinelibrary.wiley.com/doi/full/10.1002/ajmg.b.32254 

attention deficit 

hyperactivity disorder 

(ADHD) 

Belsky et al. (2016) 

https://journals.sagepub.com/doi/pdf/10.1177/09567976166430

70 

occupational choices, 

mobility, planfulness, 

self-control, 

interpersonal skills 

Krapohl et al. (2016) 

https://www.nature.com/articles/mp2015126.pdf 
behavioral problems 

Marioni et al. (2016) 

https://www.pnas.org/content/pnas/113/47/13366.full.pdf  
parental longevity 

Mõttus et al. (2017) 

https://journals.sagepub.com/doi/full/10.1177/09567976177190

83 

openness, neuroticism 

Belsky et al. (2018) social-class mobility 
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https://www.pnas.org/content/115/31/E7275 

Jansen et al. (2018) 

https://acamh.onlinelibrary.wiley.com/doi/abs/10.1111/jcpp.127

59 

behavioral problems 

Niemi et al. (2018) 

https://www.nature.com/articles/s41586-018-0566-4 

neurodevelopmental 

disorders 

Wertz et al. (2018) 

https://journals.sagepub.com/doi/full/10.1177/09567976177445

42 

criminal record 

Avinun (2019) 

https://www.biorxiv.org/content/10.1101/727552v2.full 
SES, depression 

Comes et al. (2019) 

https://www.nature.com/articles/s41398-019-0547-x 
cognitive performance 

Ding et al. (2019) 

https://www.sciencedirect.com/science/article/pii/S0277953619

30543X 

cognitive decline 

Ding, Barban and Mills (2019) 

https://www.sciencedirect.com/science/article/pii/S0091743519

303421 

allostatic load in later 

life 

Elliott et al. (2019) 

https://academic.oup.com/cercor/article/29/8/3496/5095370 
brain size 

Huibregtse et al. (2021) 
https://academic.oup.com/psychsocgerontology/article/76/1/173/5541

633  

frailty in later life 

Smith-Woolley, Selzam and Plomin (2019)  

https://psycnet.apa.org/fulltext/2019-16539-001.html 

openness, 

conscientiousness, 

agreeableness 

Verhoef et al. (2019) ADHD 
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https://www.nature.com/articles/s41398-018-0324-2 

Zeng et al. (2019) 

https://pubmed.ncbi.nlm.nih.gov/31170283/ 

risk for coronary artery 

disease 

Barth, Papageorge and Thom (2020) 

https://www.journals.uchicago.edu/doi/full/10.1086/705415 

wealth accumulation, 

risk tolerance 

Breinholt and Conley (2020) 

https://www.nber.org/papers/w28217 

cognitively stimulating 

parenting behavior 

during early childhood 

Judd et al. (2020) 

https://www.pnas.org/content/117/22/12411.short 

cognitive and brain 

development 

Mitchell et al. (2020) 

https://www.sciencedirect.com/science/article/pii/S1053811920

301786 

cortical measures 

Papageorge and Thom (2020) 

https://academic.oup.com/jeea/article/18/3/1351/5677507?login

=true 

SES, labor earnings, 

non-routine analytic 

tasks 

Salvatore et al. (2020) 

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14815 

alcohol, nicotine and 

cannabis use disorders 

Wertz et al. (2020) 

https://srcd.onlinelibrary.wiley.com/doi/full/10.1111/cde329 
parenting 

Bolyard and Savelyev (2021) 

https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3397735 

health in young 

adulthood 

Li et al. (2021) 

https://www.tandfonline.com/doi/full/10.1080/19485565.2020.1

869919 

obesity 

Liu et al. (2021) 

https://link.springer.com/article/10.1007/s40865-021-00166-8 

adolescent criminal 

justice involvement 

Warrier et al. (2020) autism 
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https://www.medrxiv.org/content/10.1101/2020.07.21.20159228

v1 

 

Most plausibly, among the phenotypes we did not already mention in the paper, assortative 

mating on various personality traits and on socioeconomic status could contribute to the high 

mate-pair EA PGI correlation. Accordingly, following the referee’s suggestion, in the revised 

manuscript we have added to the Results section on assortative mating a more explicit mention 

of what these phenotypes may be: 

 

This remainder is due to assortment on phenotypes correlated with the EA PGI 

other than EA, cognitive performance, and vocabulary—possibly including various 

personality traits (Belsky et al., 2016; Mõttus et al., 2017; Smith-Woolley, Selzam 

and Plomin, 2019) —and sources of social homogamy other than genetic ancestry 

captured by the top 40 PCs—possibly including geographic location at courtship 

age (Abdellaoui et al., 2019; Laidley, Vinneau and Boardman, 2019), socioeconomic 

status, and social class (Belsky et al., 2018). 

 

A few other, more minor comments: 

 

The treatment of dominance effects in the main text was surprisingly extensive. Given the main 

result is that there is little evidence for dominance effects, this might be shifted to the supplement 

to make space for the issues raised above. 

 

In the revised manuscript, we streamlined the discussion about the dominance results further, 

cutting several sentences. We believe we have reduced the length to the minimum necessary to 

convey what analyses we conducted and what their conclusions were. 

 

Three main factors account for the originally submitted manuscript’s fairly extensive treatment of 

the dominance results: 
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(i) dominance features prominently in many variance decompositions published in the 

behavior genetics (twin) literature;  

(ii) as far as we are aware, ours is the first large-scale GWAS of dominance deviations; 

(iii) the analysis plan was worked out before commencing the empirical data analysis. 

 

While we think these are good reasons for not relegating all the discussion of our dominance 

GWAS to the Supplementary Note, we also agree with the referee that in the originally submitted 

manuscript, the treatment of dominance appeared disproportionate relative to the results. We 

hope the referee finds that we strike a more reasonable balance in the revised manuscript. 

 

In a twin model, dominance is not distinguished from epistasis. Given the sample size, analysis of 

epistasis seems possible. At least the authors should offer some explanation of why they explore 

only dominance here. 

 

We fully agree with the referee about the confounding between dominance and other non-

additive genetic sources of variation in the classical twin design. In particular, dominance is fully 

confounded with additive-by-additive (AxA) effects in the classical twin design because both have 

a full-sibling correlation of ¼. In contrast, other components, such as additive-by-dominance and 

dominance-by-dominance, have smaller full-sibling correlations: 1/8 and 1/16, respectively. (See 

Table 7.2 in Lynch and Walsh (1998) for an overview of coefficients for different components of 

genetic covariance between various types of relatives that includes those referenced above.) 

Therefore, we focus our response on the detection of AxA effects and variance in GWAS. 

 

There are two reasons we did not pursue AxA effects in our study. The first is lack of power of 

detection, both for specific SNP pairs and for overall variance explained by the AxA component. 

The second is logistical and computational constraints. We now elaborate on these issues. 
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Regarding power, existing theory and evidence indicates that for complex phenotypes, non-

additive effects are likely to explain a much smaller fraction of variance than additive effects (Hill, 

Goddard and Visscher, 2008). Moreover, theory implies that when the effects of individual SNPs 

are smaller, the phenotype is likely to be more nearly additive (because dominance and AxA are 

both second-order effects)—leading us to expect these theoretical arguments to have substantial 

bite for EA. The theoretical reasons why AxA effects are expected to be small are similar to those 

for why dominance effects are expected to be small. Moreover, across 70 complex phenotypes in 

the UK Biobank (not including EA), Hivert et al. (2021) estimated that dominance and AxA effects 

both explain a small fraction of variance. Therefore, our prior was that AxA and dominance effects 

are likely to have small effect sizes on the same order of magnitude. However, holding constant 

the effect size, our power to detect AxA effects is far smaller than our power to detect dominance 

effects. 

 

First, consider power for estimating the effects of specific SNP pairs. For detecting dominance 

effects, a p-value threshold of 5x10-8 can be justified on similar grounds as 5x10-8 for detecting 

additive effects, namely, as a Bonferroni-corrected significance threshold for a type-I error rate of 

0.05 with ~1 million independent SNPs. Applying the same logic for detecting AxA effects, 

however, requires a much smaller p-value threshold; there are "10
"

2
& ≈ 5 × 10## independent 

pairs of SNPs, implying a Bonferroni-corrected significance threshold of $.$&
&×#$!!

= 10(#). 

Therefore, holding constant the effect size, we therefore expected to have far less power for 

detecting AxA effects than dominance effects. 

 

Next, consider power for estimating the overall fraction of variance explained by AxA effects. To 

estimate this from SNP data, the most practical method is that of Hivert et al. (2021). Once again, 

power is much lower for estimating the fraction of variance explained by AxA effects than for that 

explained by dominance effects. Moreover, it is extremely unlikely that we could use data from 

23andMe for this analysis (see below). Since we do not have access to the individual-level data 

from most of the cohorts in Okbay et al. (2016), our main sample available would therefore be the 

UK Biobank. This is the same sample analyzed by Hivert et al. (2021), who found that they were 
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underpowered for estimating the fraction of variance explained by AxA effects for any specific 

phenotype. Thus, we would almost surely also be underpowered for EA. 

 

For generating the AxA summary statistics we would need for either type of analysis, we faced 

logistical and computational constraints. Both estimating the effects of specific SNP pairs and using 

Hivert et al.'s (2021) method of estimating the fraction of variance due to AxA effects would 

require a GWAS on AxA effects. With 10 million SNPs in a GWAS, an AxA GWAS requires "10
*

2
& ≈

5 × 10#) statistical tests, which is like running a standard 10-million-SNP GWAS on 5 million 

phenotypes. Such a large GWAS in a sample the size of 23andMe’s would require specialized 

hardware and software (e.g., based upon GPUs). 23andMe is generally reluctant to approve 

projects which require non-standard analyses and extensive computational resources. Thus 

23andMe, which provided the largest sample size for the dominance and additive GWASs, would 

almost surely need to be excluded from these analyses. It would be an enormous effort to organize 

the ~70 cohorts other than 23andMe and UKB that contributed to Okbay et al. (2016) and Lee et 

al. (2018), and even if they had the analytical resources for the analyses, they would be reluctant 

to participate given the high cost and low expected payoff. We would therefore most likely need 

to rely solely on the UKB, which would compound the power challenges explained above. 

 

In the revised manuscript, we now end the paper with: “even larger samples will enable other 

analyses that have not yet been adequately powered, such as estimating differences in SNP effect 

sizes across phenotypes or populations and estimating the fraction of variance explained by 

epistatic interactions (Hivert et al., 2021).” 

 

It would be helpful to provide some discussion of how the within-sib GWAS analysis reported here 

relates to the one reported by Howe et al. (2021 BioRxiv), on which a number of these authors are 

also listed as coauthors. 

 

Howe et al. (2021) used siblings to estimate direct effects of individual SNPs, not PGIs. In this 

paper, we do not perform a within-sib GWAS: we use siblings and trios to estimate the direct and 
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population effects of PGIs, similar to previous analyses by Kong et al. (2018), Selzam et al. (2019), 

and Willoughby et al. (2019), as we now highlight in the first paragraph of the Results subsection 

on ‘Within-family Analyses’ in the revised manuscript. Our goal is to estimate how much of the 

PGI’s predictive power is due to direct effects. We also highlight that this is different from 

estimating the total contribution of the direct effects of genome-wide SNPs, for which summary 

statistics from within-family GWAS (such as by Howe et al. (2021)) could be used: 

 

Our next set of analyses, like related prior work (Kong et al., 2018; Selzam et al., 

2019; Willoughby et al., 2019), aim to isolate the component of the PGI’s predictive 

power that is due to direct effects (Kong et al., 2018; Walsh and Lynch, 2018): 

causal effects of an individual’s genetic material on that individual. When controls 

for both parents’ PGIs are included, we refer to the coefficient from a regression of 

an individual’s phenotype on the individual’s PGI as the direct effect of the PGI; 

when those controls are omitted, we refer to it as the population effect. (The 

regression controlling for parental PGIs gives an equivalent estimate of the direct 

effect of the PGI as a regression on PGIs constructed from transmitted and non-

transmitted parental alleles (Kong et al., 2018); see Supplementary Note.) The 

population effect captures the sum of the direct effect, indirect effects from 

relatives (e.g., genetic influences on parents’ education, socioeconomic status, and 

behavior), other gene-environment correlation (i.e., correlation between 

genotypes and environmental exposure, with population stratification being one 

possible cause), and a contribution from the genetic component of the phenotype 

that would be uncorrelated with the PGI under random mating but becomes 

correlated with the PGI due to the linkage disequilibrium between causal alleles 

induced by assortative mating (Supplementary Note) (Kong et al., 2018; Howe et 

al., 2021). Since the PGI is constructed from summary statistics that partly reflect 

indirect effects and other gene-environment correlation, estimating the direct 

effect of the PGI is different from estimating the total contribution of direct effects 

of SNPs (Trejo and Domingue, 2018; Fletcher et al., 2021), for which relatedness 
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disequilibrium regression (Young et al., 2018) or summary statistics from within-

family GWAS (Howe et al., 2021) could be used. 
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Response to Reviewer #2: 

 

Remarks to the Author: 

 

In the manuscript "Polygenic prediction within and between families from a 3-million-person 

GWAS of educational attainment" Okbay et al. investigate the genetics of educational 

attainment (EA). The authors QC-ed and analyzed the data with care. They use replication 

samples which validate the initial results. They did a good job of looking at possible confounders 

including stratification, assortative mating etc. This paper makes an important contribution to 

the genetics of EA and its part in the ongoing discussion about the “nature of nurture”. But we 

raise a few moderate issues and several minor issues. 

 

We thank the reviewer for the positive remarks. 

 

Moderate and more major points: 

 

First, the authors provide very few, if any, comments on what is a possible route for the indirect 

effect of EA on seemingly unrelated traits. We believe that the authors can at least work in the 

literature that shows that low SES is a significant risk factor in numerous diseases. 

 

We agree that it would be valuable to comment more on possible routes for the indirect effects 

of EA on seemingly unrelated phenotypes. We also agree that the indirect effects may have 

connections with the literature that shows that low SES is a significant risk factor in numerous 

diseases. Indeed, for that reason, we refer to that literature in the first sentences of the paper:  

 

Educational attainment (EA) is an important dimension of socioeconomic status 

that features prominently in research by social scientists, epidemiologists, and 

other medical researchers. EA is strongly related to a range of health behaviors and 

outcomes, including mortality (Marioni et al., 2016). 
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 In the revised manuscript, we now also give examples of routes for indirect effects from 

parents when first explaining our within-family analyses: 

 

The population effect captures the sum of the direct effect, indirect effects from 

relatives (e.g., genetic influences on parents’ education, socioeconomic status, and 

behavior), other gene-environment correlation (i.e., correlation between 

genotypes and environmental exposure, with population stratification being one 

possible cause), and a contribution from the genetic component of the phenotype 

that would be uncorrelated with the PGI under random mating but becomes 

correlated with the PGI due to the linkage disequilibrium between causal alleles 

induced by assortative mating (Supplementary Note) (Kong et al., 2018; Howe et 

al., 2021). 

 

Before we turn to the novel analyses we ran, it is useful to clarify the key difficulty we encountered 

when we brainstormed about ways to make further progress on the indirect effects. 

Fundamentally, it is challenging to robustly identify indirect genetic effects using the data available 

to us. Our within-family analysis allows us to isolate the component of the predictive power of the 

PGI that is due to direct effects, but the remainder of the predictive power is due to some 

combination of indirect effects, other gene-environment correlation, and assortative mating. We 

believe our study provides clear evidence that these factors are jointly important, but cleanly 

separating out the contributions of these different factors is challenging without multi-

generational data, which would allow for unbiased estimation of parental indirect genetic effects. 

We worked hard trying to make further progress, while at the same time being vigilant to avoid 

overinterpreting our results.  

 

The referee’s comment spurred us to conduct an additional analysis that makes some effort in the 

desired direction. Specifically, we started with our regression of 13 phenotypes on an individual’s 

PGI and the individual’s parents’ PGIs in Generation Scotland. We then added three controls to 

these regressions: parental EA, parental cognitive performance, and parental vocabulary test 
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score. We examined to what extent adding these controls reduced the coefficient on the parents’ 

PGIs. For this analysis, we used the sample of 2,964 individuals in Generation Scotland with both 

parents genotyped (we could not use UKB because it does not have the relevant phenotypic data 

on parents). The results are shown in the below figure. The green and orange bars, respectively, 

show the average coefficient of the mother’s and father’s PGIs without and with the parental 

phenotype controls. The white bars are the differences between the green and orange bars. For 

each estimate, the 95% confidence interval is shown. 

 

 

 

Reductions in the coefficient on the parents’ PGIs are visible for three phenotypes: an individual’s 

own EA, own cognitive performance, and own vocabulary test score. These are the only three 

reductions that reach statistical significance at the stringent statistical significance threshold of P 

< 0.005/13 = 0.0004 (this includes a Bonferroni correction for 13 phenotypes, starting from a 

more-stringent-than-conventional threshold of 0.005 rather than 0.05), based on a two-sided Z-

test. 

 

These results are consistent with the possibility that indirect parental effects operate, at least in 

part, through factors relating to parental education and cognition. However, we ultimately 

decided against including these new results in the paper due to space constraints and 

interpretational challenges. First, as already noted, the coefficient on the parental PGI cannot be 

interpreted as the indirect effect. Second, the results could be reconciled with any of the other 
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possible interpretations of the coefficient on the parental PGI. For example, the results are 

consistent with population stratification driving the correlation between the parental PGI and the 

individual’s phenotypes. 

 

Of course, if the referee and editor feel that we should include these results in paper, we will 

readily do so. If we do add them, we will of course convey the interpretational challenges. 

 

In the revised manuscript, we do cite related evidence by Kong et al. (2018), Selzam et al. (2019), 

and Willoughby et al. (2019). These papers conducted analyses similar to the above—testing 

whether the coefficient on the parental PGI is reduced when additional controls are added to a 

regression of an individual’s phenotype on the individual’s PGI and the parental PGsI—but their 

control variables differed from ours (e.g., Kong et al. and Selzam et al. controlled for parental SES, 

rather than parental EA, parental cognitive performance, and parental vocabulary test score). Like 

in our analysis, these papers found that the coefficient on the parental PGI is indeed reduced, but 

we similarly feel that these results are difficult to interpret. Thus, we cite these papers in order to 

highlight that our empirical strategy follows theirs:  

 

Our next set of analyses, like related prior work (Kong et al., 2018; Selzam et al., 

2019; Willoughby et al., 2019), aim to isolate the component of the PGI’s predictive 

power that is due to direct effects (Kong et al., 2018; Walsh and Lynch, 2018): 

causal effects of an individual’s genetic material on that individual. 

 

Second, LDscore intercept is notably larger than what we are used to seeing. I think this deserves 

more comments on the possible causes and comparisons with other GWAS (including some of the 

previous EA GWAS) in terms of lambda 1000. 

 

We were also struck by the unusually large intercept at first. But it turns out that it is roughly of 

the magnitude that one should expect based on the unusually large sample size of our GWAS. All 

else equal, the LDSC intercept should increase as the GWAS sample size increases (Bulik-Sullivan 
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et al., 2015). A GWAS with a sample size of 3 million individuals—much larger than people are 

used to seeing—is therefore expected to produce an intercept larger than people are used to 

seeing.  

 

More precisely, the expected intercept from an LD score regression is equal to 𝑁𝑎 + 1, where 𝑁 

is the sample size of the GWAS and 𝑎 is the contribution of confounding biases (such as population 

stratification) to the 𝜒! statistics from the GWAS. The intercept by itself is not a useful diagnostic 

of the amount of bias in the underlying GWAS (Loh et al., 2018). The share of inflation in test 

statistics due to bias can be measured by the ratio of the intercept minus one (which is an estimate 

of 𝑁𝑎) to the mean 𝜒! statistic minus one. We should expect this ratio to be approximately 

invariant to the GWAS sample size. And in practice, it has remained roughly stable across the 

various iterations of our EA GWASs. 

 

For example, the ratio was 5% in our previous large-scale GWAS of EA (Lee et al., 2018), compared 

to 7% in the current study. It is also in the same ballpark as the ratio of 6% reported in the largest 

GWAS of height published to date (Yengo et al., 2018). In the revised manuscript, we now remark 

explicitly about the similarity of this ratio between the current GWAS results and those of Lee et 

al. (2018): “According to the LD score regression (Bulik-Sullivan et al., 2015) intercept (1.66), 

confounding accounts for 7% of the inflation, similar to previous GWAS of EA (Lee et al., 2018)…” 

 

(We interpret the referee’s reference to 𝜆#$$$ as a request to compare the inflation in the 𝜒! 

statistics in a way that adjusts for sample size, as we did above. To the best of our knowledge, the 

𝜆#$$$ was developed to facilitate comparability of results from case-control studies with different 

numbers of cases and/or controls. Moreover, unlike the LD score intercept, it does not distinguish 

between confounding biases and inflation that is due to true polygenic signal.) 

 

Third, while they must have dealt with this elsewhere, is it true that all their data lists total years 

of education or do they get clumped data (8-11 years, finished high school, some college, 

graduated college, etc.). If the latter, how do they deal with different “clumping” of YOE where 
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the meaning of the thresholds likely change between samples and across birth cohorts? One of us 

has fitted multiple threshold models in pairs of relatives to such clumped YOE data in a large 

longitudinal sample covering 4 decades where YOE was rising rapidly. The model fitted terribly 

indicating that the “meaning” of the different categories was not constant across birth cohorts. 

How do they treat “technical schools” etc? We searched and were unable to find a discussion of 

these concerns in their material. 

 

The data included in the GWAS meta-analysis come from over 70 datasets from at least 16 

countries (16 is the number assuming the 23andMe data come only from countries represented 

also by other cohorts). Often, even cohorts from the same country used different survey questions 

to measure EA. Across datasets, the number of response options for the survey question ranged 

from 4 to 20, with a mean of 7.7 options (see Lee et al. (2018), Supplementary Table 22 and 

Supplementary Table 24 Panel A). Datasets with a large number of options require little clumping 

(as in the Estonian Biobank), but usually the data are clumped into a smaller number of options 

(as in 23andMe and the UK Biobank, which have 6 and 7 response options, respectively). 

 

Dealing with differences in measures, as well as differences in the meaning of EA across countries 

and birth cohorts, has been a major challenge for GWAS meta-analyses of EA from the very 

beginning. In the first large-scale GWAS of EA (Rietveld et al., 2013), our approach was to map 

country-specific educational categories onto the United Nation’s 1997 International Standard 

Classification of Education (ISCED), and the approach we ultimately settled on was developed in 

consultation with data providers and researchers familiar with the education systems and 

qualifications in countries with at least one GWAS cohort. The work was overseen by the Social 

Science Genetic Association Consortium principal investigators and an education researcher 

specializing on cross-country comparability of educational qualifications (Professor Roelande 

Hofman). 

 

Because we were concerned about potential non-linearity in the relationship between genotypes 

and EA, we studied a binary phenotype, college completion, in addition to a continuous 
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phenotype, years of education. In subsequent GWAS of EA, we have continued to use the 1997 

ISCED scale to harmonize the years-of-education phenotype. As we explain in Supplementary Note 

section 1.1 of Okbay et al. (2016), we decided to de-emphasize the college completion phenotype 

before that paper was completed: 

 

… the original plan treated EduYears [the years-of-education phenotype] and 

College [the college completion phenotype] symmetrically whereas throughout the 

manuscript, we treat EduYears as the primary variable and de-emphasize College. 

After circulation of the Analysis Plan to our cohorts, a paper was posted on bioRxiv 

showing that the genetic correlation between the two measures is very high, with 

the point estimate suggesting a perfect genetic correlation (Bulik-Sullivan et al., 

2015). Previously, we had considered as plausible the possibility that College would 

have better power for detecting associations at the upper end of the distribution 

of EduYears. However, since College is constructed by dichotomizing EduYears, the 

very high genetic correlation suggests that the College phenotype is for all intents 

and purposes merely a coarsening of the EduYears phenotype. 

 

This interpretation was borne out in the Okbay et al. (2016) results; as noted in their 

Supplementary Note section 1.6.2: “Overall, the results [for College] are similar to those from the 

EduYears analyses, but with higher P-values (consistent with the hypothesis that the College 

variable is a noisier measure of educational attainment than the EduYears variable).” We therefore 

dropped the college completion phenotype in Lee et al. (2018). 

 

Our approaches to the issues raised by the referee’s comment have been to try to do the best we 

can given data and logistical constraints. We do not have access to individual-level data from the 

vast majority of the 70+ cohorts included in the meta-analysis, and cohort analysts could typically 

run only two specifications for GWAS (partly because of constraints build into the software that 

was used, such as Plink): ordinary least squares (OLS) and logistic regression. Later meta-analyses 

built on the results from earlier meta-analyses, and we could not re-run the GWAS that had already 
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been conducted. The largest contributor to our current meta-analysis, 23andMe, is extremely 

reluctant to run non-standard analyses (including anything that deviates from OLS or logistic 

regression) because their software is optimized for these analyses and their analyst time is very 

limited. 

 

We agree with the referee that these issues are important, and we have tried to study them and 

improve our measurement of EA where possible. For example, in Lee et al. (2018, Supplementary 

Note section 3), we analyzed the genetic correlations (and SNP heritabilities) across different 

measures, countries, and cohorts. In the current paper, as described in Supplementary Note 

section 1, we improved our coding of years of education in the UK Biobank in this GWAS relative 

to our coding in previous GWAS. 

 

In the current paper, instead of reporting how EA was coded in each of the cohorts in the GWAS 

meta-analysis, in (the slightly revised) Supplementary Note section 2.2.2. (“Phenotypes”), we refer 

the reader to the appropriate table to find information about how EA was coded within the paper 

where the GWAS for that cohort was initially reported: 

 

As in our prior work, we analyze the EduYears phenotype obtained by mapping the 

highest level of education that a respondent achieved to an International Standard 

Classification of Education (ISCED) category and then imputing a years-of-

education equivalent for each ISCED category (see Supplementary Note section 

1.1.1 for the ISCED to years-of-education mapping). The phenotype measurement 

and distribution for the 23andMe cohort and the updated UKB GWAS (see Section 

1) are summarized in Panel B of Supplementary Table 15. For analogous 

information on the remaining cohorts, see Supplementary Tables 17 and 1.3 in Lee 

et al. and Okbay et al., respectively. 

 

The exception is for the UK Biobank cohort, where we devote section 1 of the Supplementary Note 

to explaining the phenotype coding, since we changed it relative to earlier GWAS. 
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Fourth, given that parental PGIs are the (equal weighted) sum of transmitted and untransmitted 

alleles, can they be more specific about how their “controlling for parental PGI” is or is not 

equivalent to transmitted vs untransmitted analyses of Kong et al? 

 

Kong et al. (2018) regress an individual’s phenotype on the individual’s PGI and a PGI constructed 

from the non-transmitted parental alleles, and they subtract the coefficient on the non-

transmitted parental PGI from the coefficient on the transmitted PGI to estimate the direct genetic 

effect. In the current paper, we instead regress an individual’s phenotype on the individual’s PGI, 

controlling for parental PGI. These two approaches are equivalent, as we now explain. 

 

The mother and the father have four alleles at each site in the genome, two of which are 

transmitted to the offspring and two of which are not transmitted. Let 𝑃𝐺𝐼+,-(/) denote the sum 

of maternal and paternal PGIs. This is therefore the sum of the individual’s PGI (calculated from 

the sum of transmitted alleles), denoted 𝑃𝐺𝐼/, and the non-transmitted parental PGI, denoted 

𝑃𝐺𝐼/12: 𝑃𝐺𝐼+,-(/) = 𝑃𝐺𝐼/ + 𝑃𝐺𝐼/12. Consider the regression model for the individual’s phenotype, 

𝑌/, corresponding to the regression approach in the current paper: 

 

𝑌/ = 𝛿𝑃𝐺𝐼/ + 𝛼𝑃𝐺𝐼+,-(/) + 𝜖/ 	
 

Because 𝑃𝐺𝐼+,-(/) = 𝑃𝐺𝐼/ + 𝑃𝐺𝐼/12 ,	we can rewrite this regression equation to correspond to the 

approach in Kong et al.: 

 

𝑌/ = (𝛿 + 𝛼)𝑃𝐺𝐼/ + 𝛼𝑃𝐺𝐼/12 + 𝜖/ .	
 

Note also that the estimate of the direct effect in Kong et al. is (𝛿 + 𝛼) − 𝛼, which equals 𝛿, the 

estimate of the direct effect in the current paper. We have added a new Supplementary Note 

section 7.2 that makes this relationship to the method of Kong et al. explicit.  
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In our analysis of trios, we use the regression with parental PGIs rather than the (statistically 

equivalent) Kong et al. approach because the latter requires an additional step of determining 

parent-of-origin of alleles, which is both computationally costly and could introduce error.  

 

Unlike in Kong et al., in addition to our analysis of trios, we also use genetic differences between 

siblings to estimate the direct genetic effect (see Supplementary Note section 9 for a derivation 

of the method in terms of an explicit model). As in the trios analysis, the sibling analysis exploits 

the random segregation of genetic material during meiosis to identify the direct genetic effect. 

Conceptually, the main difference is that the approach that uses genetic differences between 

siblings can be biased when indirect genetic effects from siblings are present. However, a recent 

analysis in the UK Biobank found that indirect genetic effects from siblings are likely to be 

negligible for the EA PGI (Kong, Benonisdottir and Young, 2020). Therefore, this is unlikely to 

explain why our estimate of the fraction of the PGI’s predictive power due to direct effects is 

smaller than Kong et al.’s. Instead, our finding is likely due to a stronger influence of indirect 

genetic effects, population stratification, and assortative mating in the UK and Sweden (where our 

samples are from) than in Iceland (where Kong et al.’s sample is from). It is notable that Iceland 

has a very low level of income inequality, with one of the lowest Gini coefficients in the OECD 

(https://data.oecd.org/inequality/income-inequality.htm), and much lower than in the UK. 

 

To concisely mention these issues, we have added a parenthetical comment to the first paragraph 

of the Results section of “Within-Family analyses”: “(The regression controlling for parental PGIs 

gives an equivalent estimate of the direct effect of the PGI as a regression on PGIs constructed 

from transmitted and non-transmitted parental alleles (Kong et al., 2018); see Supplementary 

Note.)” In addition, we have added a new section 7.2 to the Supplementary Note that explains the 

equivalence. 

 

Firth, should they be discussing “assortative mating” or “spousal resemblance?” Do they have data 

on spousal correlations at marriage and if not, how can they justify their title? In their analyses of 

the causes of the high correlation, they don’t seem to consider “spousal interaction”, that is that 



31 
 

one individual’s EA could directly impact on the EA of their spouse by providing financial support, 

encouragement, etc. Doesn’t that possibility merit discussion? 

 

These are fair points that came up during numerous discussions as we were working on the paper. 

Before addressing the referee’s comment, we note that we changed our language about 

“spouses” to “mates” throughout the paper because our data come from identifying genotyped 

pairs of individuals who jointly have a genotyped biological child in the same dataset. However, in 

the remainder of the response to the referee’s comment, we mostly revert to the language of 

“spouses” because the referee’s comment pertains to spouse pairs, and most of the mate pairs in 

our data are likely to be spouses. 

 

We agree with the referee that for characteristics that vary over time, the distinction between 

spousal resemblance and assortative matching may be important. In our setting, we think the 

concern applies mostly to BMI, a phenotype for which it seems plausible that spousal interaction 

effects through shared meals and other shared lifestyles could cause convergence after the 

marriage. For height, cognitive performance, and educational attainment (usually completed prior 

to marriage) we find it less plausible that spousal interactions would substantially impact 

resemblance, even though we find it plausible that interaction effects are not exactly zero (at least 

not for cognitive performance and educational attainment). Furthermore, interaction effects, if 

they exist, almost certainly increase spousal resemblance, and therefore increase the predicted 

correlation between mate pairs’ EA PGIs, so spousal interactions cannot explain why the mate-

pair EA PGI correlation is higher than predicted under the model of phenotypic assortment.  

 

In analyses inspired by the referee’s query, we used a data set covering the entire Swedish 

population to estimate spousal EA correlations by year since marriage. Specifically, the data are 

merged from two administrative sources: the Longitudinal Integrated Database for Labour Market 

Research (LISA) for education and family identifiers, and the Total Population Register (RTB) for 

information on marital status and dates of marriages/divorces (Ekbom, 2011). For all heterosexual 

couples who got married in Sweden between 1990 and 2000, we have annual information about 
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the highest educational qualification of both spouses for at least fifteen years after the marriage. 

Although it barely matters for the estimates, we restrict the sample to only those who have stayed 

married for at least 15 years in order to keep the sample roughly the same across the different 

time points. Here are our estimates of the spousal phenotypic correlation for each t years after 

marriage (t = 0 is the year of marriage): 

 

Years after marriage Spousal EA correlation S.E. Number of spouse pairs 

0 0.476 0.002 192353 

1 0.476 0.002 199721 

2 0.482 0.002 202150 

3 0.484 0.002 203251 

4 0.485 0.002 203331 

5 0.487 0.002 202548 

6 0.487 0.002 201124 

7 0.487 0.002 198887 

8 0.487 0.002 196169 

9 0.484 0.002 192508 

10 0.481 0.002 186973 

11 0.480 0.002 180806 

12 0.480 0.002 172962 

13 0.481 0.002 163647 

14 0.483 0.002 150168 

15 0.487 0.002 129759 

 

In this data, the spousal phenotypic correlation increases only very slightly over the 15 years 

subsequent to marriage. Unfortunately, analogous analyses for BMI or cognitive performance are 

not possible in this data set since those variables are not measured annually in the Swedish 

administrative records. 
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In the revised manuscript, we have added text discussing this to the Online Methods section on 

‘Assortative mating analyses’: “We note that we use the correlation in phenotypes measured in 

mate pairs after they paired up, which could be inflated if mate pairs influence each other, leading 

to greater phenotypic similarity than at the time of pairing. This would have the effect of predicting 

a higher mate pair PGI correlation than if we had used phenotypes from the time of pairing.” 

 

Minor issues 

 

On line 162 “relatively weak enrichment” should probably red better as “weaker enrichment”. Re: 

genes highly expressed in glial cells, what (MSigDB) pathway/gene sets they tend to significantly 

load on? 

 

We thank the referee for the improvement in wording, which we have implemented. 

 

We investigated the overlap between the genes annotated as astrocyte, oligodendrocyte, and 

neuron respectively in the Cahoy et al. (2008) dataset and the gene sets employed in the Panther 

Overrepresentation Test (http://geneontology.org/). (We used Panther rather than the MSigDB 

enrichment tool (https://www.gsea-msigdb.org/gsea/msigdb/annotate.jsp) because the latter 

imposes a maximum number of genes in the input list that was exceeded by the astrocyte gene 

set.) We selected the GO (biological process, molecular function, cell compartment) and Reactome 

gene sets for overlap testing because these gene sets are also present in MSigDB and have proven 

useful in our previous work (Okbay et al., 2016; Lee et al., 2018). We selected Fisher’s exact test 

to detect the enrichment and FDR < 0.05 as our significance criterion. We downloaded the results 

for each combination of Cahoy et al. (2008) input list and Panther gene set; we can readily provide 

these results if requested. Here we try to provide a fair summary. 

 

Many queries produced a long list of significant results with no clear overall interpretation. This 

was particularly true when the target gene sets were GO molecular function and Reactome. Text 
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searches of most tabulated results, however, did produce straightforward support for the validity 

of the input list. 

 

The astrocyte input list enriches a number of GO biological processes defined by astrocytes: 

negative regulation of astrocyte differentiation (5.43-fold enrichment, P < 0.002), regulation of 

astrocyte differentiation (4.32-fold enrichment, P < 2 ⋅ 10–4), astrocyte development (3.08-fold 

enrichment, P < 0.003), and astrocyte differentiation (3.04-fold enrichment, P < 4 ⋅ 10–4). It also 

enriches a number of processes defined by glial cells: negative regulation of glial cell 

differentiation (3.88-fold enrichment, P < 0.001), regulation of glial cell proliferation (3.36-fold 

enrichment, P < 0.002), glial cell differentiation (2.68-fold enrichment, P < 7 ⋅ 10–8), and glial cell 

development (2.64-fold enrichment, P < 2 ⋅ 10–5). The astrocyte input list also enriches the GO 

cellular compartments astrocyte projection (5.55-fold enrichment, P < 5 ⋅ 10–5) and glial cell 

projection (3.56-fold enrichment, P < 6 ⋅ 10–4). The former represents the second largest 

enrichment in this query. 

 

The oligodendrocyte input list enriches a number of GO biological processes defined by 

myelination, including myelin assembly (5.77-fold enrichment, P < 7 ⋅ 10–5), axon ensheathment 

in central nervous system (5.45-fold enrichment, P < 3 ⋅ 10–4), axon ensheathment (4.71-fold 

enrichment, P < 7 ⋅ 10–14), and myelination (4.57-fold enrichment, P < 6 ⋅ 10–13). These results are 

among the most strongly enriched in this query. The input list also enriches processes defined by 

oligodendrocytes: oligodendrocyte development (4.51-fold enrichment, P < 6 ⋅ 10–6) and 

oligodendrocyte differentiation (4.04-fold enrichment, P < 3 ⋅ 10–7). Among the top GO cellular 

compartments enriched by the oligodendrocyte input list are compact myelin (6.05-fold 

enrichment, P < 7 ⋅ 10–4) and myelin sheath (4.6-fold enrichment, P < 7 ⋅ 10–7). 

 

The neuron input list enriches gene sets, including those in the GO molecular function and 

Reactome categories, that are clearly and predominantly defined by neuronal function.  
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We have not included these results in the paper because they represent validation of a data source 

already in wide use (Cahoy et al. (2008) has 2688 citations in Google Scholar, while Finucane et al. 

(2018) has 385). We view them as outside the scope of the paper. However, if the referee and 

editor feel that we should include these results in the paper, we will readily do so. 

 

They should explain in their legend all abbreviations used in their tables. 

 

We have carefully gone through all legends and double-checked that all abbreviations are now 

defined. 

 

What exactly is “social homogamy based on genetic relatedness”? That deserves some 

explanation in the text. 

 

We thank the reviewer for highlighting the need for better explanation here. In the revised 

manuscript, we now write: “Not all forms of social homogamy generate a mate-pair PGI correlation 

(Reynolds, Baker and Pedersen, 2000), but social homogamy that is related to genetic ancestry—

for example, due to geographic proximity that tracks genetic structure in the population—will do 

so if there are components of genetic ancestry correlated with the PGI.”  

 

They write “lead SNPs corresponds to 1.4 weeks of schooling per allele.” While cute, this is hardly 

a sustainable or sensible interpretation. 

 

The purpose of the original sentence was to convey a rough sense of the distribution of effect sizes 

of our lead SNPs. The referee’s comment prompted us to make some edits to the text to ensure 

that. our point comes across more clearly. Before we turn to the edits, it may be useful to start 

with a brief summary of what we intended to say. 

 

We know from past experiences that some readers find it helpful when we supplement 

information about the effect sizes expressed as an R2 or a standardized regression coefficient with 
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unstandardized regression coefficients. Readers who wish to gauge the effect of an additional copy 

of the reference allele of some lead SNP on years of schooling could in principle obtain the 

information from posted summary statistics. However, there are two complications: 

 

1. Since the lead SNPs were selected using a process that filters on a p-value threshold, the 

estimated coefficients will generally be overestimates (due to the so-called winner’s curse). 

 

2. The estimated effect sizes provide the effect of an additional reference allele on EduYears 

measured in standard-deviation units. The standardized effect sizes are easier to work with in 

meta-analysis, but we have found that many readers find unstandardized effect sizes more 

intuitive. 

 

Supplementary Note section 2.2.6 describes how we generated the winner’s-curse adjusted 

estimates of the unstandardized effects of our lead SNPs. 

 

The referee’s comments prompted us to edit the sentence so that it now reads: 

 

Adjusted for the winner’s curse, we find that the effects of our lead SNPs are 

consistently quite small. On average, an additional copy of the reference allele of 

the median SNP is associated with 1.4 weeks of schooling more schooling: the 

effects at the 5th and 95th percentiles (in absolute value) are 0.9 and 3.5 weeks, 

respectively (see Supplementary Note for details on these calculations). 

 

We hope this alternative phrasing, which avoids causal language when describing the coefficient, 

is an improvement. 

 

They write “Our findings are fully consistent with earlier conclusions: SNP heritability due to the X 

chromosome of 0.4% and (using sex stratified association analyses in the UK Biobank) a male-
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female genetic correlation close to unity (r = 0.94).” Is this correlation just for the X-chromosome 

or the entire genome? 

 

In the revised manuscript, we have clarified that this genetic correlation refers only to the X 

chromosome: “a male-female genetic correlation on the X chromosome close to unity...”  

 

(We did not run sex-stratified analyses for the autosomal meta-analysis because there is 

compelling evidence from our prior work that the male-female genetic correlation for EduYears is 

close to one. For example, Okbay et al.'s (2016) data yields an estimate of 0.98 (S.E. = 0.029).) 

 

In figure 3 they use the term “depression.” It appears they mean major depression. It should be 

listed as such as generic “depression” can mean a variety of different things – e.g. self-report 

current symptoms above some cut-point. 

 

Thanks for pointing this out. We have made this change.  

 

There might not be room, but can they say something about the expected gain in predictive power 

as a function of sample size. Should it be linear as a function of log to base 10 sample size? 

 

The originally submitted manuscript did not have a Methods section. In the revised manuscript, 

we now state in the Methods section: 

 

We calculate the expected prediction accuracy of the EA PGI using a generalization 

of de Vlaming et al. (2017). In the Supplementary Note section 5.5, we show that 

the expected coefficient of determination, R2, can be expressed as the following 

function of the discovery sample size, N: 

 𝐸(𝑅!) = 3
45#/1

,  
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where the parameters A and B are functions of the SNP heritabilities in the 

discovery and prediction samples, the genetic correlation between the samples, 

and the effective number of SNPs included in the PGI. 

 

More details are in the Supplementary Note section 5.5. 
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Response to Reviewer #3: 

 

Remarks to the Author: 

 

The manuscript by Okbay et al. represents the largest GWAS effort of educational attainment 

(EA), with a 3-million predominantly European ancestry subjects. They reported 3,952 

approximately uncorrelated genome-wide-significant SNPs. The polygenic score or polygenic 

index (PGI) explains 12-16% of EA variation and also other diseases. These results represent the 

increment advance of the previous study conducted by the same group (ref 2) and should be 

insightful for other large GWAS. The manuscript is well written.  

 

We thank the reviewer for the positive remarks. 

 

However, it is a little disappointed about how much biology we can learn from this large GWAS 

effort. Some statistical analyses may need careful investigation. 

 

The referee is right to remark that for this iteration of our GWAS, there was a shift of emphasis 

toward family-based and assortative mating analyses. This reorientation was the result of some 

lengthy internal deliberations. We ultimately agreed that, in light of the threefold increase in 

sample size relative to the previous GWAS (Lee et al., 2018), it made sense for us to prioritize 

analyses: (i) identifying novel associations and constructing, evaluating and disseminating more 

predictive PGIs, (ii) conducting novel and informative analyses of mate-pair assortment processes 

(e.g., testing if mate-pair PGI resemblance is consistent with assortment on phenotype) and (iii) 

conducting better-powered analyses of family-based data (e.g., assessing how much of the overall 

predictive power of our PGI for various phenotypes is due to direct effects). In our previous GWAS 

(Lee et al., 2018), we conducted a comprehensive battery of biological annotation analyses. For 

the current paper, we reran one of those analyses—stratified LD score regression—and found that 

the results were generally very similar (albeit more precise). This similarity indicates to us that if 

we had run more bioinformatics pipelines, a likely outcome is that most of the analyses would 
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have produced only marginal new insights. Ultimately, we feel that our decision to focus on other 

analyses was justified, but we appreciate that decisions about how to resolve these sorts of 

tradeoffs are inherently subjective. No matter what is ultimately decided, there will always be 

some readers who would have preferred a somewhat different focus.  

 

Comments: 

1) The authors isolated the direct and indirect effects of the PGI in the population effect by 

controlling for both parents’ PGIs in a regression model. They estimated 30.9% of the EA direct 

effect, which is significantly smaller than the estimate of 48.9% reported in the Icelandic data (Ref 

4). In Discussion, they claimed that “much of the predictive power of the EA PGI is not explained 

by direct effect” (Page 10). However, it seems the regression approach used in this study is 

different from the previous study. Since parents transmit 50% of their genomes to offspring, 

adjusting for parents’ PGIs likely underestimates the direct effects in this study. Thus, this claim 

seems unconvinced. It would be more reasonable to apply similar analysis approach of Ref 4. 

 

The reviewer is correct that we use a different method than the method applied in Kong et al. to 

infer the direct effect of a PGI. Kong et al. regress an individual’s phenotype on the individual’s PGI 

and a PGI constructed from the non-transmitted parental alleles, and they subtract the coefficient 

on the non-transmitted parental PGI from the coefficient on the transmitted PGI to estimate the 

direct genetic effect. In the current paper, we instead regress an individual’s phenotype on the 

individual’s PGI, controlling for parental PGI. These two approaches are equivalent, as we now 

explain. 

 

The mother and the father have four alleles at each site in the genome, two of which are 

transmitted to the offspring and two of which are not transmitted. Let 𝑃𝐺𝐼+,-(/) denote the sum 

of maternal and paternal PGIs. This is therefore the sum of the individual’s PGI (calculated from 

the sum of transmitted alleles), denoted 𝑃𝐺𝐼/, and the non-transmitted parental PGI, denoted 

𝑃𝐺𝐼/12: 𝑃𝐺𝐼+,-(/) = 𝑃𝐺𝐼/ + 𝑃𝐺𝐼/12. Consider the regression model for the individual’s phenotype, 

𝑌/, corresponding to the regression approach in the current paper: 
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𝑌/ = 𝛿𝑃𝐺𝐼/ + 𝛼𝑃𝐺𝐼+,-(/) + 𝜖/ 	
 

Because 𝑃𝐺𝐼+,-(/) = 𝑃𝐺𝐼/ + 𝑃𝐺𝐼/12 ,	we can rewrite this regression equation to correspond to the 

approach in Kong et al.: 

 

𝑌/ = (𝛿 + 𝛼)𝑃𝐺𝐼/ + 𝛼𝑃𝐺𝐼/12 + 𝜖/ .	
 

Note also that the estimate of the direct effect in Kong et al. is (𝛿 + 𝛼) − 𝛼, which equals 𝛿, the 

estimate of the direct effect in the current paper. We have added material to Supplementary Note 

Section 7 that makes the comparison to the method of Kong et al. explicit.  

 

In our analysis of trios, we use the approach we do rather than the (statistically equivalent) Kong 

et al. approach because the latter requires an additional step of determining parent-of-origin of 

the offspring’s alleles, which is computational costly and could introduce error. 

 

Unlike in Kong et al., in addition to our analysis of trios, we also use genetic differences between 

siblings to estimate the direct genetic effect (see Supplementary Note section 9 for a derivation 

of the method in terms of an explicit model). As in the trios analysis, the sibling analysis exploits 

the random segregation of genetic material during meiosis to identify the direct genetic effect. 

Conceptually, the main difference is that the approach that uses genetic differences between 

siblings can be biased when indirect genetic effects from siblings are present. However, a recent 

analysis in the UK Biobank found that indirect genetic effects from siblings are likely to be 

negligible for the EA PGI (Young et al., 2020). Therefore, this is unlikely to explain why our estimate 

of the fraction of the PGI’s predictive power due to direct effects is smaller than Kong et al.’s. 

Instead, our finding is likely due to a stronger influence of indirect genetic effects, population 

stratification, and assortative mating in the UK and Sweden (where our samples are from) than in 

Iceland (where Kong et al.’s sample is from). It is notable that Iceland has a very low level of income 

inequality, with one of the lowest Gini coefficients in the OECD 

(https://data.oecd.org/inequality/income-inequality.htm), and much lower than in the UK. 
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To concisely mention these issues, we have added a parenthetical comment to the first paragraph 

of the Results section of “Within-Family analyses”: “(The regression controlling for parental PGIs 

gives an equivalent estimate of the direct effect of the PGI as a regression on PGIs constructed 

from transmitted and non-transmitted parental alleles (Kong et al., 2018); see Supplementary 

Note.)  

 

2) The authors performed assortative mating analysis and tried to answer how much PGI 

prediction power is due to assortative mating. They found that the observed spousal PGI 

correlation is substantially higher than the predicted PGI correlation, which is the product of the 

spousal phenotype correlation and both father and mother’s phenotype and PGI correlations. In 

Supplementary Table 12, father and mother’s phenotype and PGI correlations are missed. There 

are no standard errors of predicted PGI correlations listed. By controlling the ancestry, the spousal 

PGI correlation is much reduced. Furthermore, it is not clear why the spousal phenotype 

correlation reported in literature is much higher than that in the current study (0.412). Therefore, 

the predicted PGI correlation may be underestimated. 

 

We thank the referee for highlighting these omissions in the previous Supplementary Table 12, 

which is Supplementary Table 14 in the revised manuscript. We have now added correlations 

between PGI and phenotype for both fathers and mothers. We did not originally include standard 

errors of predicted PGI correlations because it was not clear how to calculate them. In response 

to the referee’s comment, we calculated these standard errors by bootstrapping over mate pairs. 

We now report these standard errors in the table and in the main text, and we display the 

confidence intervals of the predicted correlation in Figure 5. We note that the standard errors for 

the predicted correlations are generally small: for example, the predicted correlation for EA is 

0.031 with a standard error of 0.004. This is clearly statistically distinguishable from the observed 

correlation of 0.175 with a standard error of 0.020.  
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The referee is correct that the mate-pair EA correlation reported in our study is on the low end of 

typical estimates in the literature, which are sometimes as large as 0.6. However, much of the 

literature focuses on U.S. samples. The samples we use for our assortative mating analyses are 

from the U.K. For comparison with our estimate in our revised analysis (0.430, S.E. = 0.017), we 

were able to obtain two estimates of assortative mating on EA from nationally representative UK 

samples. In the literature, we found an estimate of 0.45 from the UK Household Longitudinal 

Study: Understanding Society (Hugh-Jones et al., 2016), for which we estimate a standard error of 

0.026 (using the approximation formula ?(1 + 𝑟!/2)/(𝑁 − 3) from Bonett and Wright (2000, 

p.23)). Because we have access to relevant data from the English Longitudinal Study of Ageing, we 

also calculated the mate pair correlation there: 0.513 (S.E. = 0.018). Relative to these estimates, 

we view ours as only slightly lower.  

 

In the Online Methods of the revised manuscript, we have added a sentence to indicate that the 

correlation in our sample is close to that from a nationally representative UK sample: “Although 

the UK Biobank is not a representative sample, the correlation between mate pairs’ educational 

attainments in our sample (0.430, S.E. = 0.017) is not very different from those in representative 

UK samples: very close to the correlation of 0.45 estimated by Hugh-Jones et al. (2016) and only 

somewhat smaller than we estimate (0.513, S.E. = 0.018) in the English Longitudinal Study of 

Ageing (Steptoe et al., 2013) (we used the 3470 mate pairs identified in the harmonized ELSA data 

from the Gateway to Global Aging (g2aging.org) and our updated UK Biobank coding of EduYears).”  

 

In response to the referee’s specific concern about our conclusion that “the observed spousal PGI 

correlation is substantially higher than the predicted PGI correlation,” we note that even if the 

mate-pair EA correlation in our sample were different from a nationally representative sample, 

this would not explain why the mate-pair EA PGI correlation is higher than predicted under a model 

of phenotypic assortment. If the model of phenotypic assortment is correct in our sample, then 

the mate-pair EA PGI correlation should follow the prediction based on the mate-pair phenotypic 

correlation in our sample. However, the mate-pair EA PGI correlation is much higher than the 
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prediction, taking into account both the uncertainty in the prediction and the observed mate-pair 

PGI correlation.  

 

3) In the assortative mating analysis, the residuals of the father’s and mother’s PGIs were 

calculated after regression on their top 20 genetic principal components. Are the top 20 genetic 

principal components sufficient to control the effect by population stratification? 

 

Controlling for the top 20 genetic principal components (PCs) is unlikely to fully control for 

population stratification. In the revised manuscript, we expanded the set of controls to the top 40 

genetic PCs. The results are largely unchanged. However, we do not believe that simply controlling 

for more PCs can eliminate all effects of population stratification because, even when the PCs are 

estimated in a sample as large as the UKB, the higher order PCs are essentially just noise (see 

https://www.youtube.com/watch?v=B7ub92OLw1g). Moreover, aside from the issue of 

estimation error in the PCs, it is unlikely that we could ever fully control for geographic variation 

in the PGI using PCs constructed from common variants (Zaidi and Mathieson, 2020). 

 

In the revised manuscript, we therefore attempted to go beyond geographic factors captured by 

PCs by taking advantage of the availability of north and east birth coordinates and the assessment 

center records in the UKB. (Unfortunately, these variables are not available in the other dataset 

we use for these analyses, Generation Scotland.) In the Online Methods, we explain how we used 

these variables: 

 

In UKB, north and east birth coordinates in the UK (Data Fields 129-130) were 

recorded, in addition to the center where individuals were assessed (Data Field 54). 

To further assess the impact of geographic factors on the correlation between mate 

pairs’ EA PGIs, we added north and east birth coordinates and the product of north 

and east birth coordinate, along with assessment center coded as a categorical 

variable, as regressors to the regression of the EA PGI onto EA and principal 

components in the UKB. 
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In the main text section ‘Assortative mating analyses’, we now discuss the results of this analysis 

(which we have added to what is now Supplementary Table 14): 

 

After residualizing the EA PGI on 40 principal components (PCs) of the genomic 

relatedness matrix in addition to EA, we find that the mate-pair PGI correlation falls 

to 0.091 (S.E. = 0.021). This implies that some, but not most, of the mate-pair PGI 

correlation is due to assortment on genetic ancestry captured by the PCs (or some 

factor correlated with the PCs). In the UKB, further adjustment for birth coordinates 

and the center where participants were assessed (Online Methods) resulted in a 

slight reduction of the correlation between mate pairs’ PGIs (Supplementary Table 

14), suggesting that geographic factors not captured by the top 40 PCs also 

contribute to the high mate-pair EA PGI correlation. 

 

To summarize, any adjustment for geographic factors and population structure is likely to be 

imperfect and incomplete. Our analyses indicate that both population structure captured by the 

top 40 PCs and other geographic factors contribute to the high mate-pair EA PGI correlation. 

However, a substantial correlation between the mate pairs’ EA PGIs remains after accounting for 

PCs and educational and cognitive phenotypes, the origin of which we can only speculate about. 

We propose “assortment on phenotypes correlated with the EA PGI other than EA, cognitive 

performance, and vocabulary—possibly including various personality traits (Belsky et al., 2016; 

Mõttus et al., 2017; Smith-Woolley, Selzam and Plomin, 2019)—and sources of social homogamy 

other than genetic ancestry captured by the top 40 PCs—possibly including geographic location at 

courtship age (Abdellaoui et al., 2019; Laidley, Vinneau and Boardman, 2019), socioeconomic 

status, and social class (Belsky et al., 2018)” as plausible possible explanations that we do not have 

the data to assess. Nevertheless, our results raise important questions about the processes of 

assortative mating, rejecting the commonly assumed model of phenotypic assortment and 

assortment on cognitive phenotypes as sufficient explanations. We anticipate that our results will 
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help spur future work that seeks to find the other factors that explain the correlation between 

mate pairs’ EA PGIs.  

 

4) The PGI was calculated by GWAS summary statistics of both males and females. However, it is 

known that gender is associated with EA, also year of birth. Have gender and year of birth and 

their interaction been including in the analysis?  

 

The cohort-specific GWASs controlled for sex, year of birth, and their interaction. In the revised 

manuscript, we have now clarified this. In the explanation of the additive GWAS, we now write: 

“All analyses were conducted in samples of European genetic ancestries with controls for sex, year 

of birth, their interaction, and genetic principal components and applied a uniform set of quality-

control procedures (see Supplementary Note for a comprehensive description).” 

 

It seems more reasonable to calculate male and female specific PGIs by using male and female 

specific summary statistics.  

 

We acknowledge that our originally submitted manuscript should have given some justification for 

our procedures. 

 

Given our aims, we think there are two compelling arguments—one empirical and one 

theoretical—for our approach of relying on pooled summary statistics. 

 

The empirical argument is that we have compelling evidence from prior work that the genetic 

correlation of EA across men and women is essentially one. We conducted sex-stratified 

association analyses in first two iterations of our EA GWAS (Rietveld et al., 2013; Okbay et al., 

2016). In the Okbay et al. data, we estimated that the genetic correlation in EA across men and 

women is 0.98 (S.E. = 0.029), which is very close to, and not statistically distinguishable from, unity. 

We subsequently abandoned sex-stratified analyses since it was clear that any differences, if they 

exist, are tiny. Any degradation in predictive power due to imperfect genetic correlation between 
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males and females would be negligible in our setting and dwarfed by the degradation in predictive 

power one gets from halving the sample size of the underlying GWAS (which is effectively what 

happens when constructing sex-stratified PGIs). 

 

The theoretical argument is that in Fisher’s classical biometrical-genetic model, the genetic 

correlation between males and females is unity by assumption. Given our goal of testing a 

prediction that comes out of a model that assumes perfect genetic correlation, it is appropriate to 

construct PGIs that are aligned with the underlying theory. 

 

In the Online Methods of the revised manuscript, we explain that we do not have summary 

statistics from analyses run separately in males and females and explain why: 

 

We did not run sex-stratified analyses for the autosomal meta-analysis because 

there is compelling evidence from our prior work that the male-female genetic 

correlation for EduYears is close to one. For example, the Okbay et al. (2016) data 

yields an estimate of 0.98 (S.E. = 0.029). 

 

Then, the correlation between EA and father’s PGI can be less biased than that using father’s PGI 

calculated using the summary statistics of males and females combined. This may be another 

reason of underestimating predicted spousal PGI correlation. The conclusion that “the spousal PGI 

correlation is far too strong to be consistent with assortative mating purely on phenotype” may 

need additional analysis. 

 

Our understanding of the referee’s concern is as follows: by calculating the father’s PGI and 

mother’s PGI using the summary statistics of males and females combined, the mate-pair PGI 

correlation is biased relative to what it would be if the PGIs were calculated using sex-specific 

summary statistics. If our understanding is correct, then we expect that the direction of bias would 

be toward zero, since both the father’s PGI and mother’s PGI that we use are measured with error 
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relative to the correct PGIs. Assuming we have not misunderstood the referee’s concern, we 

therefore think this bias would go in the wrong direction for explaining our finding. 

 

We apologize for any confusion caused and hope the responses to the items above (“The PGI was 

calculated…” and “It seems more reasonable…”) do a better job explaining our analyses and 

justifying the conclusions we draw from them. The bottom lines are that our analyses controlled 

for sex and year of birth and that the male-female genetic correlation is close to one. Therefore, 

the bias from using the summary statistics of males and females combined will be negligible.  

 

5) Page 10, line 348. What does gene-environment correlation mean? Does it suggest gene-

environment interaction or something else? 

 

In the revised manuscript, we now define this term when we first use it: “The population effect 

captures the sum of the direct effect, indirect effects from relatives (e.g., genetic influences on 

parents’ education, socioeconomic status, and behavior), other gene-environment correlation 

(i.e., correlation between genotypes and environmental exposure, with population stratification 

being one possible cause), and a contribution from the genetic component of the phenotype that 

would be uncorrelated with the PGI under random mating but becomes correlated with the PGI 

due to the linkage disequilibrium between causal alleles induced by assortative mating 

(Supplementary Note) (Kong et al., 2018; Howe et al., 2021). 

  

6) Reference 2 and 8 are the identical. 

 

We thank the referee for catching this error, which is now fixed. 
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Decision Letter, first revision: 
 
 Our ref: NG-A57578R 
 
4th Nov 2021 
 
Dear Dr. Benjamin, 
 
Thank you for submitting your revised manuscript "Polygenic prediction within and between families 
from a 3-million-person GWAS of educational attainment" (NG-A57578R). It has now been seen by 
the original referees and their comments are below. The reviewers find that the paper has improved in 
revision, and therefore we'll be happy in principle to publish it in Nature Genetics, pending minor 
revisions to comply with our editorial and formatting guidelines. 
 
If the current version of your manuscript is in a PDF format, please email us a copy of the file in an 
editable format (Microsoft Word or LaTex)-- we can not proceed with PDFs at this stage. 
 
We are now performing detailed checks on your paper and will send you a checklist detailing our 
editorial and formatting requirements soon. Please do not upload the final materials and make any 
revisions until you receive this additional information from us. 
 
Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 
any questions. 
 
Sincerely, 
 
Wei 
 
Wei Li, PhD 
Senior Editor 
Nature Genetics 
New York, NY 10004, USA 
www.nature.com/ng 
 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have addressed my comments 
 
 
Reviewer #2 (Remarks to the Author): 
 
This dense paper is useful for beginning to understand the genetics of educational attainment (EA) 
and its influence on a raft of other traits, some of which might appear as unexpected a-priori. In our 
original review we stated “there is sufficient novelty, especially in their analysis of dominance – where 
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the results are rather remarkable, but also in the prediction of disease risk, direct vs indirect effects, 
and assortment to warrant publication in NG”. Their thoughtful revision provides further support for 
our prior opinion. The authors have done an excellent job of responding to our concerns and we 
recommend publication. This review was done jointly by Kenneth S. Kendler MD and Silviu-Alin 
Bacanu PhD. 
 
 
Reviewer #3 (Remarks to the Author): 
 
I appreciate the authors' responses. I am satisfied with authors' responses. 
 
Almost 2/3 of samples included in this study were obtained from 23andMe. However, their summary 
statistics are not available except by contacting 23andMe. Current GWAS summary statistics are either 
publicly available or can be obtained through dbGaP etc. The study can make further important 
contribution to the research community if the summary statistics are more accessible. 
 

Author Rebuttal, first revision: 
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Response to Reviewer #3: 

 

Remarks to the Author: 

 

Almost 2/3 of samples included in this study were obtained from 23andMe. However, their 

summary statistics are not available except by contacting 23andMe. Current GWAS summary 

statistics are either publicly available or can be obtained through dbGaP etc. The study can make 

further important contribution to the research community if the summary statistics are more 

accessible. 

 

We agree entirely that it is imperative that researchers do everything in their power to make the 

23andMe summary statistics accessible to other researchers. 

 

As we noted in our correspondence with the editor, the principal difficulty we face, along with all 

other researchers who work with 23andMe data, is that 23andMe’s Data Agreement prohibits 

researchers from posting summary statistics for more than 10,000 SNPs per published paper (the 

restriction does not apply to any analyses that exclude 23andMe subjects altogether). The 

ostensible purpose of this rule is to safeguard the privacy of 23andMe study subjects. Since we 

share the referee’s sentiment that 10K is overly conservative, we have raised the issue with our 

collaborators at 23andMe on a few occasions, but the answer has always been that the 

restriction is non-negotiable and a requirement from their legal department. Like all other 

published papers that use 23andMe data, dozens of which have appeared in Nature Genetics, we 

therefore try to our best to make the data accessible, subject to this constraint. 

 

In practice, this boils down to: 

 

1. Sharing full SNP-level summary statistics from all major GWAS meta-analyses with 

23andMe excluded (but all other cohorts included). 



2 
 

2. Sharing summary statistics for as many SNPs as we can (10K) from the paper’s major 

analyses that include 23andMe study subjects. 

3. Explaining 23andMe’s data access procedures to researchers who wish to access the 

complete, quality-controlled 23andMe summary statistics. Researchers who wish to 

access full summary statistics from any analyses that includes 23andMe can do so by (i) 

applying for permission from 23andMe to access the data (ii) meta-analyzing the 

23andMe summary statistics with the summary statistics from (1) that we will make 

public. 

 

The current draft of the paper lays out the issues in the Data Availability Statement: 

 

...We provide association results for all SNPs that passed quality-control filters in 
autosomal, X chromosome, and dominance GWAS meta-analyses that excludes 
the research participants from 23andMe. SNP-level summary statistics from 
analyses based entirely or in part on 23andMe data can only be reported for up to 
10,000 SNPs. For the complete dominance GWAS meta-analysis, which includes 
23andMe, clumped results for the 1,000 SNPs with the smallest P values are 
provided. For the complete autosomal and X chromosome GWAS meta-analyses, 
respectively, clumped results for the 8,618 and 141 SNPs with P < 10-5 are 
provided; this P value threshold was chosen such that the total number of SNPs 
across the analyses that include data from 23andMe does not exceed 10,000. The 
full GWAS summary statistics from 23andMe will be made available through 
23andMe to qualified researchers under an agreement with 23andMe that 
protects the privacy of the 23andMe participants. Please visit 
https://research.23andme.com/collaborate/#dataset-access/ for more 
information and to apply to access the data. 

 

The paragraph quoted above explains why some of the data cannot be made public -- namely, 

the restriction from 23andMe -- and it provides information about how to access the non-public 

data by providing a URL to the web portal that researchers must use to apply for 23andMe data 

access. We believe this is the best we can do given our constraints. Based on our 

correspondence with the editor, we hope that is acceptable. 
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Dear Dr. Benjamin, 
 
I am delighted to say that your manuscript "Polygenic prediction of educational attainment within and 
between families from genome-wide association analyses in 3 million individuals" has been accepted 
for publication in an upcoming issue of Nature Genetics. 
 
Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 
style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 
publishing options for your paper and our Author Services team will be in touch regarding any 
additional information that may be required. 
 
After the grant of rights is completed, you will receive a link to your electronic proof via email with a 
request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 
this deadline, please inform us at rjsproduction@springernature.com immediately. 
 
You will not receive your proofs until the publishing agreement has been received through our system. 
 
Due to the importance of these deadlines, we ask that you please let us know now whether you will be 
difficult to contact over the next month. If this is the case, we ask you provide us with the contact 
information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 
and who will be available to address any last-minute problems. 
 
Your paper will be published online after we receive your corrections and will appear in print in the 
next available issue. You can find out your date of online publication by contacting the Nature Press 
Office (press@nature.com) after sending your e-proof corrections. Now is the time to inform your 
Public Relations or Press Office about your paper, as they might be interested in promoting its 
publication. This will allow them time to prepare an accurate and satisfactory press release. Include 
your manuscript tracking number (NG-A57578R1) and the name of the journal, which they will need 
when they contact our Press Office. 
 
Before your paper is published online, we shall be distributing a press release to news organizations 
worldwide, which may very well include details of your work. We are happy for your institution or 
funding agency to prepare its own press release, but it must mention the embargo date and Nature 
Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 
Office have any enquiries in the meantime, please contact press@nature.com. 
 
Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 
in the print or electronic media, until the embargo/publication date. These restrictions are not 
intended to deter you from presenting your data at academic meetings and conferences, but any 
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enquiries from the media about papers not yet scheduled for publication should be referred to us. 
 
Please note that <i>Nature Genetics</i> is a Transformative Journal (TJ). Authors may publish their 
research with us through the traditional subscription access route or make their paper immediately 
open access through payment of an article-processing charge (APC). Authors will not be required to 
make a final decision about access to their article until it has been accepted. <a 
href="https://www.springernature.com/gp/open-research/transformative-journals"> Find out more 
about Transformative Journals</a> 
 
<B>Authors may need to take specific actions to achieve <a 
href="https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs"> 
compliance</a> with funder and institutional open access mandates.</b> For submissions from 
January 2021, if your research is supported by a funder that requires immediate open access (e.g. 
according to <a href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S 
principles</a>) then you should select the gold OA route, and we will direct you to the compliant 
route where possible. For authors selecting the subscription publication route our standard licensing 
terms will need to be accepted, including our <a href="https://www.springernature.com/gp/open-
research/policies/journal-policies">self-archiving policies</a>. Those standard licensing terms will 
supersede any other terms that the author or any third party may assert apply to any version of the 
manuscript. 
 
Please note that Nature Research offers an immediate open access option only for papers that were 
first submitted after 1 January, 2021. 
 
If you have any questions about our publishing options, costs, Open Access requirements, or our legal 
forms, please contact ASJournals@springernature.com 
 
If you have posted a preprint on any preprint server, please ensure that the preprint details are 
updated with a publication reference, including the DOI and a URL to the published version of the 
article on the journal website. 
 
To assist our authors in disseminating their research to the broader community, our SharedIt initiative 
provides you with a unique shareable link that will allow anyone (with or without a subscription) to 
read the published article. Recipients of the link with a subscription will also be able to download and 
print the PDF. 
 
As soon as your article is published, you will receive an automated email with your shareable link. 
 
You can now use a single sign-on for all your accounts, view the status of all your manuscript 
submissions and reviews, access usage statistics for your published articles and download a record of 
your refereeing activity for the Nature journals. 
 
An online order form for reprints of your paper is available at <a 
href="https://www.nature.com/reprints/author-
reprints.html">https://www.nature.com/reprints/author-reprints.html</a>. Please let your coauthors 
and your institutions' public affairs office know that they are also welcome to order reprints by this 
method. 
 



 
 

 

11 
 

 

 

If you have not already done so, we invite you to upload the step-by-step protocols used in this 
manuscript to the Protocols Exchange, part of our on-line web resource, natureprotocols.com. If you 
complete the upload by the time you receive your manuscript proofs, we can insert links in your article 
that lead directly to the protocol details. Your protocol will be made freely available upon publication of 
your paper. By participating in natureprotocols.com, you are enabling researchers to more readily 
reproduce or adapt the methodology you use. Natureprotocols.com is fully searchable, providing your 
protocols and paper with increased utility and visibility. Please submit your protocol to 
https://protocolexchange.researchsquare.com/. After entering your nature.com username and 
password you will need to enter your manuscript number (NG-A57578R1). Further information can be 
found at https://www.nature.com/nprot/. 
 
 
Sincerely, 
 
Wei Li, PhD 
Senior Editor 
Nature Genetics 
New York, NY 10004, USA 
www.nature.com/ng 


