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Abstract
In this article, we propose a mean field game approach for modeling the flows of
excursionists within a network of tourist attractions. We prove the existence of an
equilibriumwithin the network using a balance ordinary differential equation together
with optimality conditions in terms of the value function. We also propose a bi-level
formulation of the problem where we aim at achieving a sustainable-oriented control
strategy in the upper level and at maximizing excursionists’ satisfaction in the lower
level. Our proposedmodel may provide an effective management tool for local author-
ities who deal with the challenging problem of finding an optimal control policy to
the often conflicting objectives of ensuring the maximum excursionists’ satisfaction
while pursuing the highest sustainability benefits.
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1 Introduction

In this paper, we tackle the problem of managing the excursionists’ tours in an art
city with the aim of defining sustainable-oriented control strategies while attaining the
maximum excursionists’ satisfaction.
The success of tours depends on their ability to allow both excursionists and local
authorities to achieve experiential, operational, and political targets [43]. In general,
a touristic area is identified by a set of icon attractions, the so-called primary attrac-
tions, around which tours are conducted. Different kinds of excursionists may follow
different routes within an area depending on their needs and their preferences over the
attractions attributes [13]. The more the needs of excursionists are met along the tour,
the more effective and experiential-based the tour is.
Operational factors can influence the success of a tour. They are concerned with
pragmatic objectives such as safety, timing and route selection, parking, proximity
to transportation lines, and linkages or commercial areas. Traffic congestion and on-
site crowding threaten the success of a tour. Indeed, overcrowded sites or routes have a
negative impact on excursionists’ satisfaction, especially in places with narrow streets
or walkways, since excursionists may be forced to curtail their tours to meet their
planned itinerary time [21].
The literature emphasizes also the importance for authorities of developing and
adopting effective governance strategies for tourism management. The adoption of
itineraries management policies constitutes a strategic factor in the representation of
a tourist area and in influencing the quality of the excursionist experience, the length
of stay, and the resulting economic benefits for a local community. Moreover, gov-
ernments may use tourism strategically to address issues of national significance [17].
Providing a visiting experience of high quality is of extreme importance in today’s
increasingly competitive marketplace [41, 42]. Directing excursionists to the right
places at the right times not only can lead to higher quality visits butmay also shield the
excursionists from the bad aspects of a city from less pleasant areas. Furthermore, an
effective itinerary management policy may also attain the right combination of com-
mercial needs, excursionists’ experiential desires and residents well-being. Indeed,
excursionists’ satisfaction can have also a positive impact on local commercial and
industrial activities by stimulating repeat visits, positive word of mouth recommen-
dations and consequently new customers, reputation enhancement, higher acceptance
of price increases and higher profitability [9, 19, 23, 32].
In this study, we apply the tools of the mean field game theory to support local
authorities to deal with the challenging problem of attaining both the excursionists’
experiential satisfaction and the maximum sustainability benefits. To this end, moving
from the problem in [8], we introduce two theoretical models. The first one describes
the excursionists’ flows in a network that depicts an area of tourist attractions. We
show that this problem can be solved within a mean field scheme and the existence
of an equilibrium of flows is proven. The second one is a bi-level model to define
sustainable-oriented control strategies while attaining the maximum excursionists’
satisfaction.

Mean field game (MFG) theory was introduced in the seminal papers by Lasry
and Lions [29, 30], as well as by Huang et al. [24, 25]. It is a branch of dynamic
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games aiming at modeling complex decision processes involving an infinite number
of agents. Each agent has a small influence on the overall system but is influenced by
the average behavior of other agents, hence the use of mean field terminology.

An MFG model is generally described by a system coupling a transport equation
for the distribution of the agents over time with a Hamilton–Jacobi–Bellman (HJB)
equation governing the value function of a single agent. The solution of the model
is an equilibrium configuration (a mean field equilibrium) in which no agent is inter-
ested in deviating from his/her current route. We herein simplify the evolution of the
agents’ distribution by using a balance ordinary differential equations and considering
optimality conditions in terms of the value function due the presence of discontinuous
exit costs.

The concept ofmean field equilibrium recall the one ofWardrop equilibriumwidely
used in the domain of transportation. The Wardrop equilibrium is a configuration in
which the perceived cost associated to any source-destination path chosen by a nonzero
fraction of agents does not exceed the perceived cost associated to any other path. The
two concepts of equilibrium, however, differ among themselves: in MFG models on
networks, the cost is more comprehensive than in the Wardrop model where the cost
is a function of the edge, and each edge is treated as an aggregate entity. Specifically,
in a Wardrop equilibrium, the cost incurred by an agent on an edge is the travel time
which depends on the agents’ flow. On the other hand, MFG models consider more
general travel costs that depend not only on the agents’ flow but also on their strategies
which are solutions of an optimal control problem.
Very recently, in [35], the reformulation of the MFG problem into a Wardrop one
has been considered and how to recover the MFG solution from the corresponding
Wardrop equilibrium has been showed.

Applications of mean field games are several and cover different fields such as
economics, physics, biology, and network engineering (see, e.g., [1, 5, 12, 22, 28]). In
particular, models for crowd and population dynamics on networks were investigated
by Camilli et al. [10, 11], Cristiani et al. [16], Lachapelle and Wolfram [27] and
Bagagiolo et al. [6–8].

The bi-level model that we propose addresses the often conflicting objectives of
local authorities and excursionists. The former ones aim at defining sustainable-
oriented policy while the latter ones at maximizing their satisfaction [2–4]. We deal
with the problem of selecting an optimal sustainable oriented control strategy at the
upper level of the model, while we describe the excursionists’ search for maximum
satisfaction at the lower level of the model.

The herein adopted definition of sustainability is that declared by theWorld Tourism
Organization (WTO). The WTO states that sustainable tourism can be defined as
“tourism that takes full account of its current and future economic, social, and environ-
mental impacts, addressing the needs of excursionists, the industry, the environment,
and the host communities” [40].
The reminder of this paper is organized as follows. In Sect. 2, we introduce the main
assumptions of the MFG model which is described in Sect. 3. In Sect. 4, we derive
the value function and the corresponding optimal control for the problem at hand.
In Sect. 5, we prove the existence of a mean field equilibrium while, in Sect. 6, we
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consider the bi-level model from a leader/followers perspective. Finally, in Sect. 7, we
draw some conclusions and suggest future research.

2 Assumptions

In this section, we introduce the assumptions underlying our model.
As observed in Introduction, we aim at modeling and controlling the excursionists’
movement within an art city during the daytime. Accordingly, the excursionists’ vis-
iting time is formally defined as the closed interval [0, T ], where T > 0 is the final
horizon. Here, let us recall that: an excursionist, also indicated as day-tripper in the
literature, is a visitor who does not stay overnight and a route is a path chosen by an
excursionist for his/her journey inside the city. We refer to the entrance, the exit, and
the attractions of the city as points of interest POI. The excursionists have to traverse
the entrance POI, respectively, the exit POI, to enter, respectively, to leave, the city.
They have to traverse the remaining POIS to visit the attractions.

We make the following assumptions.

Assumption 1 (Alternative means of transport) Excursionists may follow their route
by a priori choosing atmost between twomeans of transport. The first of the twomeans
(walking) is always available and its velocity is computed minimizing a suitable cost
functional. The second mean may not always be available and its velocity is given
constant.

Assumption 2 (Excursionist predefined routes and orientation)

1. Each excursionist visits the city following a predefined route using a set of prede-
fined means of transport.

2. The excursionists never backtrack along a route.
3. Each excursionist has a predefined orientation toward the means of transport.

InAssumption 2(3), orientationmeans that each excursionist may be either process-
or outcome-oriented. The former kind of excursionists prefers to explore a destination
morewidely by taking indirect routes andwalk slowly to explore the area of attractions
more freely and deeply.Differently, the latterminimizes the transit times between POIs
by using a means of transport such as buses or cars [31].

3 TheModel

In this section, we first model the city as a set A of connected POIs using a directed
network. Then, we describe the excursionists’ movements in terms of the dynamics
of agents that traverse the network edges.

We recall that Assumption 2(3) states that we have two kinds of excursionists that
choose two different types of routes. Hereinafter, we denote by Ξ = {1, 2} the set of
the different kinds of excursionists and, with a little abuse, we use the same of notation
to identify the different types of routes. Accordingly, we write that the excursionists
of type ξ ∈ Ξ (ξ -excursionists for short) follow routes of type ξ .
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Fig. 1 Underlying subnetwork induced by a point of interest

3.1 The Underlying Network

Each POI in A has an entrance and an exit point. Then, we represent the city as
a directed network G = (V , E), where the edgeset V includes a vertex for each
entrance point and each exit point of the POIs in A. We call entrance, respectively,
exit, vertices the vertices corresponding to entrance, respectively, exit, points. The
edgeset E includes, for each POI, a directed edge that joins its entrance vertex with
its exit vertex. The edgeset E includes also, for each ordered pair of POIs and each
means of transport between the two POIs, a directed edge that connects the exit vertex
of the first POI with the entrance vertex of the second POI. We call POI edges the
former kind of edges, connecting edges the second kind of edges. We denote by le the
length of edge e, for e ∈ E . Figure 1 represents the underlying subnetwork induced
by a POI.

In light of the above definitions, we observe that the edgeset E is partitioned into
two subsets: the subset E p of POI edges and the subset Ec of connecting edges. In
turn, the subset Ec is partitioned into two subsets Eξ , ξ ∈ Ξ . Each edge in subset
E p models the path followed by an excursionist visiting a POI. Each edge in a subset
Eξ models the path followed by an ξ -excursionist moving from a POI to another POI
using the mean of transport of choice, i.e., by walking if ξ = 1, by bus or car if ξ = 2.
We remark that, for the exit vertex of a POI and the entrance vertex of its subsequent
POI, there always exists an edge in E1 and may exist an edge E2. We say that two
edges are of different type if they do not belong to the same subset E p or E1 or E2.
Hereinafter, we assume that the network G contains no cycles. We denote by o the
entrance vertex of the POI corresponding to the entrance of the city, by d the exit
vertex of the POI corresponding to the exit of the city. We refer to vertices o and d
as to the origin and destination vertices, respectively, of the network G and assume
that any vertex in V can be reached from the origin vertex and the destination vertex
is reachable from any vertex in V . A route r is a path of G that joins the origin vertex
with the destination one, i.e., an ordered subset of consecutive edges in E from o to
d. We denote by Γ the set of all routes and by Γ ξ the subset of routes of type ξ in Γ .
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3.2 Excursionists’Dynamics and Objective Function

We initially introduce the necessary notation. Then, we formalize the excursionists’
dynamics.
Hereinafter, we use the term mass to refer to the number of excursionists as we will
make use of the mass conservation law equation.

Let Aξ be the |E | × |Γ ξ | edge-route incidence matrix with entries

Aξ
e,r =

{
1 if e ∈ r , r ∈ Γ ξ ,

0 otherwise,
(1)

for each ξ ∈ Ξ . In addition, denote the total number of times that an edge belongs to
a route by

Θ =
∑
ξ∈Ξ

∑
e∈E

∑
r∈Γ ξ

Aξ
e,r , with |E | ≤ Θ ≤ |Ξ |(|E | × |Γ |).

Finally, let:

– λξ : [0, T ] → R+ be a function denoting the rate of arrival of ξ -excursionists,
ξ ∈ Ξ , entering the network G in the origin vertex o at time t .

– λ(t) = ∑
ξ∈Ξ λξ (t) be the throughput of the excursionists at time t , i.e., the total

flow of excursionists entering G in o at time t .
– ρ

ξ,e
r : [0, T ] → R+ be a function indicating the mass of ξ -excursionists, ξ ∈ Ξ ,

present on edge e that chose route r when entered G in o.
– ρe

r (t) = ∑
ξ∈Ξ ρ

ξ,e
r (t) be the total mass of excursionists present on edge e at time

t that chose route r when entered G in o.
– ρ(t) be the vector {ρξ,e

r (t), ξ ∈ Ξ, e ∈ r , r ∈ Γ } ∈ R
Θ .

– f ξ,e
r : [0, T ] → R+ be a function indicating the flow of ξ -excursionists, ξ ∈ Ξ ,

leaving edge e that chose route r when entered G in o.
– f er (t) = ∑

ξ∈Ξ f ξ,e
r (t) be the total flow of excursionists leaving edge e at time t

that chose route r when entered G in o.
– f (t) be the vector { f ξ,e

r (t), ξ ∈ Ξ, e ∈ r , r ∈ Γ } ∈ R
Θ .

– uξ,e the velocity at which the ξ -excursionists traverse edge e ∈ E , for ξ ∈ Ξ .
– ũξ,e > 0 be the desired velocity at which the ξ -excursionists would like to traverse
edge e ∈ E p ∪ E1, for ξ ∈ Ξ .

– ve the velocity at which the ξ -excursionists traverse edge e ∈ E2, for ξ = 2.

We recall that Assumption 2(3) states that an excursionist decides the velocity uξ,e

at which he/she traverses an edge e ∈ E p ∪ E1, ξ ∈ Ξ . Differently, he/she cannot
decide the velocity at which he/she traverses an edge e ∈ Eξ , if ξ = 2. In the former
case, the velocity uξ,e is the excursionist control. It is a function uξ,e : [0, T ] →
R+ for e ∈ E p ∪ E1, ξ ∈ Ξ which is measurable and integrable, namely uξ,e ∈
L1(0, T ) for t ∈ [0, T ]. In the latter case, uξ,e = ve = const > 0, that may be
considered as a degenerate control. In both cases, the non-negativity of uξ,e is imposed
by Assumption 2.
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The following conditions describe the dynamics of each ξ -excursionist, ξ ∈ Ξ , on
each edge e ∈ E .
Let xξ,e ∈ [0, le] be the state of each ξ -excursionist, ξ ∈ Ξ , over an edge e =
(νe, κe) ∈ E . Specifically, the value xξ,e(s) is the position of the ξ -excursionist at
time s from the tail vertex νe of e. Then, the controlled dynamics of an excursionist
who entered the edge e ∈ E at time t ∈ [0, T ] is:

ẋξ,e(s) = uξ,e(s) ∀s ∈]t, T ], (2a)

xξ,e(t) = 0, (2b)

where, in particular, uξ,e = ve > 0 if e ∈ E2. Condition (2b) trivially states that a ξ -
excursionist that reaches edge e = (νe, κe) at time t enters e through its tail vertex νe.
The excursionist is inside the edge e as long as 0 ≤ xξ,e(s) ≤ le. He/she reaches the
head vertex κe and exits from e through κe at time τ = min{s > t : xξ,e(s) = le}.
We also note that (2a) describes the state evolution of a hypothetical ξ -excursionist
assumed to be in νe at time t , independently of the fact whether there is actually
someone present at νe at that time.

We refer to the principle byMcDowall [33] to formulate the excursionists’ objective
function. It says: “the excursionists form their judgment [on their visiting experiences]
by comparing their actual experiences with their expectations. If their actual experi-
ences exceed their expectations, they will become satisfied excursionists. If not, they
will be dissatisfied or unhappy".

We assume that every excursionist wants to maximize the satisfaction that he/she
acquires while visiting each POI or equivalently to minimize the cost that he/she
pays at each POI. According to the literature, the satisfaction gained at visiting a POI
depends on the excursionist’s preference for the POI itself [13, 38] and the time spent
in it [20]. Moreover, the overall cost also depends on a congestion cost defined as in
[7] as the pain for an excursionist of being entrapped in a highly congested edge.

With regard to the time spent at visiting thePOIs,we consider the difference between
the actual time spent and the desired time spent for visiting a POI.

We assume that aim of a ξ -excursionist is to minimize the whole cost for traversing
the route r ∈ Γ that he/she has a priori chosen. The cost of traversing each edge e of
the route r depends on the edge type and it can be defined as follows:

J ξ,e(t, uξ,e) = χ{e∈E1}
{∫ T

t
χ{0≤xξ,e(s)≤le}

(
(uξ,e(s))2

2
+ ϕe

( ∑
r̂ : e∈r̂

ρ
ξ,e
r̂ (s)

))
ds

+ χ{0≤xξ,e(T )<le}α1

∑
j∈r ξ

e

l j

}
(3a)

+ χ{e∈E2}

⎧⎪⎨
⎪⎩
∫ T

t
ϕe

⎛
⎝ ∑

r̂ : e∈r̂
ρ

ξ,e
r̂ (s)

⎞
⎠ ds + χ{0≤xξ,e(T )<le}α2

∑
j∈r ξ

e

l j

⎫⎪⎬
⎪⎭

(3b)
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+ χ{e∈E p}
{∫ T

t

(
cξ,1

(uξ,e(s))2

2
+ cξ,2ϕ̃e

⎛
⎝∑

ξ∈Ξ

∑
r̂ : e∈r̂

ρ
ξ,e
r̂ (s)

⎞
⎠

− cξ,3(tanh(s − 1) − 1)

me
+ cξ,4(̃uξ,e − uξ,e(s))2

2

)
ds

+ χ{0≤xξ,e(T )<le}Δ
(
qe +

∑
j∈r ξ

succ(e)

l j

)}
, (3c)

where χ is the characteristic function

χ{condition} =
{
1 if condition holds true,
0 otherwise,

α1 > 0, α2 > 0 and Δ > 0 are constant parameters representing costs per unit of
length; r ξ

e is the shortest route for ξ -excursionists from the tail νe to the destination
d ; qe > 0 is the intangible cost for not having experienced a complete visit of the
attraction, i.e., for not reaching κe; r ξ

succ(e) is the shortest route for ξ -excursionists
from the tail vertex νe′ of the edge e′ following e still in the same route r to reach
the destination d; the constants cξ, j > 0, j ∈ {1 . . . , 4}, express the weights that
the excursionists assign to the different components of the cost depending on their
orientation as well as on other behavioral characteristics, such as if they are more
likely to adapt to an unforeseen/undesirable situation.
The cost of traversing each edge e is made of three parts: (3a)–(3c). The component
(3a) is paid if e ∈ E1. It takes into account: (i.a) the possible hassle of running in
the edge to reach d on time; (ii.a) the pain of being entrapped in a highly congested
edge; (iii.a) the disappointment of not being able to reach d by the final horizon T .
The component (3b) is paid if e ∈ E2. It takes into account: (i.b) the pain of being
entrapped on a crowded mean of transport; (ii.b) the disappointment of not being able
to reach d by T . The component (3c) is paid if e ∈ E p. It takes into account: (i.c)
the hassle of running through the POI; (ii.c) the pain of being entrapped in a highly
crowded POI (highly aggregated tourist crowds have, in fact, a negative effect not only
on the visit experience but also on safety issues); (iii.c) the sightseeing value of the
POI which, for reasons that will be detailed below, we model by using a hyperbolic
tangential function as a saturation function; (iv.c) the difference between the desired
time spent and the actual time spent for the visit of the POI and, finally, (v.c) the
penalty for not leaving the POI within the scheduled time and not having reached d at
time T . We remark that the excursionist’s preference for a POI is implicitly defined in
(iii.c) where different values of the coefficient cξ,3 imply a different level of attraction
assigned by ξ -type excursionists toward a particular POI.

The first term inside the integral of (3a) stands for the cost component (i.a). The
second term stands for the congestion cost component (ii.a) and it is characterized by
the congestion function

ϕe : [0,+∞[→ [0,+∞[. (4)
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The last term outside the integral in (3a) stands for the cost component iii.a). Such a
term is equal to the length of the shortest path on the network G from tail νe of edge e
to the destination d, if at the final time T the excursionist is still inside the edge, i.e.,
he/she has not reached the head κe yet; it is equal to zero otherwise. We remark that
an excursionist who is on the head κe of an edge e is considered also on the tail ν′

e,
and hence inside, of a successive edge e′. Then, the final cost paid by an excursionist,
still inside the network G at the final time T , is always equal to the distance from the
tail of his/her current edge to d .
The term inside the integral of (3b) is equivalent to the second term of (3a). The term
outside the integral in (3b) is similar to the corresponding one in (3a).
The first term inside the integral of (3c) stands for the cost component i.c). The second
term, expressed by the congestion function

ϕ̃e : [0,+∞[→ [0,+∞[, (5)

defines the cost component (ii.c); the third term which stands for the cost component
(iii.c),measures the tourists’ emotional experiencewhile visiting thePOI and, as shown
in literature, it changes over time. In particular, it has been observed that tourists’
marginal satisfaction starts to decrease at some point in time. This phenomenon is
referred to as aesthetic fatigue or accumulated satisfaction, and it can be related to
the standard economic assumption of decreasing marginal profit [37]. We model the
above mentioned concept by the hyperbolic tangent function as it naturally models
tourists’ emotional saturation over the duration time of their visit at the same POI.
Tourist start their visit with full of enthusiasm (increasing marginal satisfaction), but
as the time passes, their marginal satisfaction starts to decrease as a consequence of a
prolonged exposition to the same stimuli. Moreover, in our work the above quantity
is scaled down by a factor equal to 1/me, where me is the ticket price that tourists pay
for visiting the POI: the higher the price they pay, the less satisfaction they acquire
from the visit. This latter assumption is justified from evidence in literature which
suggest a negative relationship between the touristic price and the degree of tourists’
satisfaction.

The last term inside the integral in (3c) stands for the cost component (iv.c). It is
proportional to the squared difference between the desired velocity ũξ,e and the actual
velocity uξ,e of the excursionist that traverses the POI. Finally, the last term stands for
the cost component (v.c).

Given (3), we define the cost that the ξ -excursionists would pay along of each route
r at time t ∈ [0, T ] as:

J ξ
r (t) =

∑
e∈r

J ξ,e(tξ,e
r (t), uξ,e

r ). (6)

In (6), uξ,e
r ∈ L1(0, T ), for every e ∈ r , is the optimal control implemented along

the edges by ξ -excursionists who are in the route r . We will prove that this control is
constant and we will show how to compute it in the next section. Moreover, tξ,e

r (t) is
the time instant at which the ξ -excursionist, entering G in the origin o at time t and
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following the route r , reaches νe using the controls uξ,e
r . We take tξ,e

r (t) = ∞ if an
excursionist does not reach e within T and we define J ξ,e(∞, uξ,e

r ) = 0.
Hereinafter, the following assumption on the excursionists’ behavior holds true.

Assumption 3

1. The throughput λ is C1([0, T ]) and λ(t) > 0 for all t ∈ [0, T ]. In particular this
implies that there exist 0 < λ ≤ λ < +∞ such that λ ≤ λ(t) ≤ λ for all t ∈ [0, T ].

2. The initial mass of excursionists is null, i.e., ρ(0) = 0.
3. For every e ∈ E , the congestion cost functions ϕe and ϕ̃e are continuous, bounded

and they only depend on the masses ρ
ξ,e
r and not on the state variable xξ,e.

4. When more than one optimal control is available, excursionists choose the smallest
one.

Assumption 3.2 means that no one is around the network at t = 0, while Assump-
tion 3.3 implies that all excursionists on the same edge at the same time pay the same
congestion cost. Assumption 3.4 implies that excursionists prefer to move slower than
faster when they must choose.
We describe the mass’ evolution of the ξ -excursionists as a conservation law for every
non-destination vertex and outward-directed edge e ∈ r , r ∈ Γ :

ρ̇(t) = H( f (t)), ρ(0) = ρ0, (7)

where the flow t 	→ f (t) is described next and H : RΘ → R
Θ is defined for every

t ∈ [0, T ], by

H ξ,e
r ( f (t)) =

(
λξ (t)Πξ,e

r + f ξ,precr (e)
r (t)

)
− f ξ,e

r (t), ∀ξ ∈ Ξ, ∀r ∈ Γ , ∀e ∈ r ,

(8)

where the function precr (e) returns the edge that precedes e on the route r , if it exists;
f ξ,e
r (t) is the component of the flow vector f (t) that represents the outgoing flow

of ξ -excursionists from the edge e ∈ r at time t ; finally, Π
ξ,e
r is the percentage of

ξ -excursionists entering G in o that choose route r ∈ Γ , if e = (o, κe) ∈ E p is the
edge that traverses the entrance POI, and, hence, it is the first edge of every route;
differently, Πξ,e

r = 0 for all the other edges e ∈ E . Note that Π ∈ R
Θ is a constant

vector because of Assumption 2.
Following Bagagiolo et al. [8] excursionists assess the outgoing flow out of an edge

e at time t assuming a constant traverse time which depends on the type of edge. In
particular, the traverse time is fixed and equal to le/ve if e ∈ E2.
We denote by ω the traverse time in ]0, T ] of an edge e ∈ E p which justifies the
choice of a null optimal control uξ,e

r (t) by a ξ -excursionist. It is the maximum time
such that it is not convenient to traverse the edge e for a ξ -excursionist reaching the
tail vertex of e at any t ∈ [T − ω, T ], as the cost of running through the edge e ∈ E p

to reach d at T is for sure greater than the cost of the disappointment of not being able
to reach d.
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Then, we define the outgoing flow for the edge traversing the entrance POI as:

f ξ,e
r (t) =

{
0 t ∈ [0, ω],
λξ (t − ω)Π

ξ,e
r sign(uξ,e

r [t − ω]) t ∈ [ω, T ]. (9a)

Differently, the outgoing flow for all the other edges e ∈ E p is:

f ξ,e
r (t) =

{
0 t ∈ [0, ω],
f ξ,precr (e)
r (t − ω)sign(uξ,e

r [t − ω]) t ∈ [ω, T ], (9b)

where uξ,e
r [t−ω] ≥ 0 is the constant optimal control implemented by a ξ -excursionist

who, following route r , enters the edge e ∈ E p at time t − ω, and sign(σ ) = 1 if
σ > 0 and sign(σ ) = 0 if σ = 0.
We now denote by k ∈]0, T ] the traverse time for every e ∈ E1 for which the same
considerations given above for the traverse time ω of each e ∈ E p hold. Then, the
outgoing flow for each e ∈ E1 is:

f ξ,e
r (t) =

{
0 if t ∈ [0, k],
f ξ,precr (e)
r (t − k)sign(uξ,e

r [t − k]) if t ∈ [k, T ], (10)

where uξ,e
r [t−k] ≥ 0 is the constant optimal control implemented by a ξ -excursionist

who, following route r , enters the edge ∈ E1 at time t − k. Finally, for e ∈ E2 the
outgoing flow is:

f ξ,e
r (t) =

{
0 if t ∈ [0, le/ve],
f ξ,precr (e)
r

(
t − le

ve

)
if t ∈ [le/ve, T ]. (11)

Remark 3.1 By imposing conditions (9), one gets that an excursionist entering e ∈ E p

at time t −ω estimates the outgoing flow f ξ,e
r (t) by assuming that all the other excur-

sionists who are currently on e and are following the same route r , are implementing
the same controls uξ,e

r [t−ω] as him/her-self. Similar considerations also apply to (10)
and (11). Of course, a more precise formulation of the outgoing flow should consider
the actual value of the control [and not only its sign as in (9)–(10)] and estimate the
actual traverse time (something similar in this direction is made in [6]). Similarly,
the mass ρ that satisfies (7) may be more precisely defined to represent the actual
dynamics of the excursionists.
However, the estimation of flows and masses proposed in this paper may be seen as
an approximation used by a network manager that must elaborate in real time the
information to distribute to the excursionists for strategically controlling the flows.
The analysis of the discrepancy between the approximated flows and masses and the
actual oneswill be considered in future research.Here,we emphasize that the estimated
flows f ξ,e

r , when implemented in (7), ensure that the principle of mass conservation
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is satisfied. For example when ρ0 ≡ 0, the actual total mass present in the network is
the mass entered through the origin:

∑
ξ∈Ξ

∑
e∈E

∑
r : e∈r

ρξ,e
r (t) =

∫ t

0
λ(s) ds ∀ t ∈ [0, T ].

Remark 3.2 Note that for all t ∈ [0, T ] all the components ρ
ξ,e
r of ρ are uniformly

bounded by

0 ≤ ρξ,e
r (t) ≤ K ≡

∫ T

0
λξ (s) ds. (12)

Moreover, by (7)–(11), and by Assumption 3.1, we have that any solution ρ of (7) is
Lipschitz continuous with Lipschitz constant L = 3λ, independently of the optimal
control and of the initial value ρ0.

4 Optimization and Control

Given a vector mass concentration ρ(t), t ∈ [0, T ], we define the following value
function, representing the optimum cost that ξ -excursionists, entering edge e of route
r at time t , must pay for traversing e:

Vξ,e
r (t) = inf

uξ,e
r ∈L1

{
χ{e∈E1}

{∫ T∧τ

t

⎛
⎝ (uξ,e(s))2

2
+ ϕe

⎛
⎝ ∑

r̂ : e∈r̂
ρ

ξ,e
r̂ (s)

⎞
⎠
⎞
⎠ ds + Φξ,e

r (T ∧ τ)

}

+ χ{e∈E2}

⎧⎨
⎩
∫ T∧τ

t
ϕe

⎛
⎝ ∑

r̂ : e∈r̂
ρ

ξ,e
r̂ (s)

⎞
⎠ ds + F ξ,e

r (T ∧ τ)

⎫⎬
⎭

+ χ{e∈E p : e∈r\{last(r)}}
{∫ T∧τ

t

(
cξ,1

(uξ,e(s))2

2
+ cξ,2ϕ̃e

⎛
⎝∑

ξ∈Ξ

∑
r̂ : e∈r̂

ρ
ξ,e
r̂ (s)

⎞
⎠

− cξ,3(tanh(s − 1) − 1)

me
+ cξ,4 (̃uξ,e − uξ,e(s))2

2

)
ds

+ Ψ ξ,e
r (T ∧ τ)

}
+ χ{e∈E p : e=last(r)}

{
J ξ,e(t, uξ,e

r )
}}

. (13)

In (13), τ is the first exit time from the edge e ∈ E , i.e., τ = min{s ∈]t, T ]: (2)
holds and xξ,e(s) = le} is the time at which the excursionists reach the head of e and
exit from e through κe. In particular, when e ∈ E2 the exit time τ is τ = t+(le/ve) due
to the constant velocity ve to traverse the edge e. Also in (13), function last(r) returns
the last edge of a route r used by ξ -excursionists while the exit costs Φ

ξ,e
r (T ∧ τ),

F ξ,e
r (T ∧ τ) and Ψ

ξ,e
r (T ∧ τ) are given by
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Φξ,e
r (T ∧ τ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Vξ,succr (e)
r (τ ) if τ < T ,

α1

∑
j∈r ξ

e

l j if τ > T ,

min

{
α1

∑
j∈r ξ

e

l j ,Vξ,succr (e)
r (τ )

}
if τ = T ,

(14)

F ξ,e
r (T ∧ τ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Vξ,succr (e)
r (τ ) if τ < T ,

α2

∑
j∈r ξ

e

l j if τ > T ,

min

{
α2

∑
j∈r ξ

e

l j ,Vξ,succr (e)
r (τ )

}
if τ = T ,

(15)

Ψ ξ,e
r (T ∧ τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vξ,succr (e)
r (τ ) if τ < T ,

Δ

(
qe +

∑
j∈r ξ

succ(e)

l j

)
if τ > T ,

min
{
Δ

(
qe +

∑
j∈r ξ

succ(e)

l j

)
,Vξ,succr (e)

r (τ )
}

if τ = T ,

(16)

where succr (e) is the functionwhich returns the edge that follows e on route r followed
by ξ -excursionists.

The value function (13) is recursively and backwardly defined, starting from the
traversing edge of the exit POI, i.e., the edge e such that κe = d. We remark that this
definition is valid as we assumed that networkG has no cycles and hence self-referring
is prevented.
The value function (13) will be reintroduced in Sect. 5, where we study the existence
of a mean field equilibrium.

Note that (14)–(16) are non usual exit costs of (13) and they may be discontinuous
in τ . This fact implies the discontinuity of the Hamiltonian associated to the value
function and/or of the boundary conditions. In this paper, instead of considering dis-
continuous HJB equations, following Bagagiolo et al. [8], we will write optimality
conditions in terms of the value function for the exit time/exit cost problem on each
edge.
The value function (13), which includes the term (uξ,e)2, is upper bounded as an
example, by the cost of deciding to spend all the time interval [0, T ] at the entrance
POI. This fact implies the optimal value of the control uξ,e is upper bounded.Moreover,
(13) does not depend on the position xξ,e of the ξ -excursionists on the edge e ∈ r ,
because, as we will prove in the following, the optimal control of the excursionists
traversing an edge e is a constant controluξ,e

r ≥ 0,whose value is chosenwhen entering
the edges in E p ∪ E1, or fixed to ve when e ∈ E2. This result is a consequence of the
structure of the congestion functions ϕe and ϕ̃e that do not depend on the state position
of the single excursionist.
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We start our analysis by considering an edge e ∈ E p. We consider a ξ -excursionist
leaving the tail νe of e at time t ′ and reaching the head κe of e at time t ′′. Moreover, we
suppose the mass ρ as given, as it will be done in Sect. 5. Under the above hypotheses,
the component

∫ t ′′

t ′
cξ,2ϕ̃e

⎛
⎝∑

ξ∈Ξ

∑
r̂ : e∈r̂

ρ
ξ,e
r̂ (s)

⎞
⎠ − cξ,3(tanh(s − 1) − 1)

me
+ cξ,4

2
(̃uξ,e)2 ds, (17)

of the cost (3c) is given.
We here emphasize some points which follow from the assumptions we imposed and
related to the optimal behavior of the excursionists. The following discussion moves
from the study in [8] with the difference that here the optimal control chosen by the
excursionists is a function of the edge type:

(i) When t ′′ is chosen, Problem (13) reduces to determining the optimal control that

optimize the quantity
∫ t ′′
t ′

(
cξ,1+cξ,4

2 (uξ,e(s))2 − cξ,4ũξ,euξ,e(s)
)
ds of the cost

J ξ,e. The above expression rules out the possibility that an optimal control for
a ξ -excursionist is to remain at νe (i.e, to choose uξ,e

r = 0) for a non-null time
interval and then move later or, similarly, to stop and stay still in an intermediate
point of the edge for a non-null time interval; or to go back and forth along edge
e (as required by Assumption 2).

(ii) The solution to the problem considered in the previous point i) is an optimal
control constant and equal to uξ,e

r = le
t ′′−t ′ . With such a choice of the control, in

(13), it is τ = t ′′ which changes according to the type ξ of excursionist that we
are considering. Indeed, to different values of ξ ∈ Ξ correspond different values
of the constants cξ, j , j ∈ {1, . . . , 4} and hence a different arrival time τ to the
head vertex κe.

(iii) Points (i)–(ii) imply that ξ -excursionists implementing their optimal controls can
neither accumulate on points strictly internal to an edge nor overtake each other
along the edge. As a consequence, if at time t the optimal control is uξ,e

r = 0, and
hence the arrival time is +∞, then uξ,e

r = 0 will be the unique optimal control
from t onward.

(iv) if e ∈ E p is the edge of the exit POI, a control that allows an excursionist to
reach d before T and wait there for a non-null time interval is certainly not
optimal. Indeed, the excursionist would pay the congestion costs in d as well as
the sightseeing value of the POI while waiting in d, in addition to the cost of
running [see the cost (17)].

(v) It is possible that a ξ -excursionist moving from νe at time t ′ may have multiple
alternative optimal controls uξ,e

r and then he/she may choose whether to reach
κe at t ′′1 or at time t ′′2 > t ′′1 . In this case, only ξ -excursionists entering the edge
e at time t ′ may reach κe at a time t ′′ ∈ [t ′′1 , t ′′2 ], since optimally behaving ξ -
excursionists cannot get over each other along the edge e. In this contest, for
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every t ∈ [0, T ], let us define

τ ∗
ξ,e,r (t) = max

{
τ ∈]t, T ] : uξ,e

r ≡ le
τ − t

is optimal

}
, (18)

that is, τ ∗
ξ,e,r (t) is the last time in ]t, T ] atwhich the ξ -excursionist in νemay reach

κe implementing an optimal control. Assumption 3.4 forces the ξ -excursionists
to choose the smallest optimal velocity. Hence, the ξ -excursionists actually arrive
in κe at time τ ∗

ξ,e,r (t), if τ ∗
ξ,e,r (t) exists, otherwise he/she stops in νe indefinitely.

The optimal control implemented by the ξ -excursionist is

uξ,e
r ≡

{
le

τ∗
ξ,e,r (t)−t if τ ∗

ξ,e,r (t
′)exists,

0 otherwise.
(19)

Consider now a ξ -excursionist that, in an edge e ∈ E1, moves from νe at time t ′ and
reaches κe at time t ′′ and, as before, we suppose the mass concentration ρ as given.

The component
∫ t ′′
t ′ ϕe

(∑
r̂ : e∈r̂ ρ

ξ,e
r̂ (s)

)
ds of the cost in (13) can be then assumed as

given, whenever the ξ -excursionist in νe at time t ′ decides to reach κe at time t ′′. The
facts (i)–(iii) and (v) considered before for a ξ -excursionist inside every edge e ∈ E p,
continue to apply also in this case with simple appropriate changes. For example, in
the point (i) when t ′′ is chosen, the only quantity to minimize by the ξ -excursionist

is 1
2

∫ t ′′
t ′ (uξ,e(s))2 ds and hence by (ii) the constant optimal control is uξ,e

r = le
t ′′−t ′ .

Using that control, in (13), it is τ = t ′′. Points (iii) and (v) do not require any change
unless to consider e ∈ E1, while point iv) does not apply since the exit POI does not
include any edge e ∈ E1.

Instead, for a ξ -excursionist moving on an edge e ∈ E2, since the optimal control
is fixed, uξ,e = ve, only some of the above considerations apply. Point (i) continues to
hold. Points (ii) and (v) does not hold since the ξ -excursionist cannot choose his/her
arrival time t ′′ which, in this case, is equal to t ′ + (le/ve). Point (iii) is only partially
satisfied since uξ,e = 0 cannot be an optimal control. Point iv) does not hold since the
exit POI does not include any edge e ∈ E2.

Remark 4.1 Function t 	→ τ ∗
ξ,e,r (t) defined in (18), relative to ξ -excursionists moving

on e ∈ E p ∪ E1, is an increasing function, whenever it exists. Hence it is continuous
almost everywhere and defines the unique optimal control (19).

To simplify notations and statements, hereinafter, we consider a graph G on which
every ξ -excursionist has only four possible routes to reach d starting from o (see
Fig. 2).

Accordingly, for every ξ ∈ Ξ , the corresponding set of routes is Γ =
{r1, r2, r3, r4} where r1 = (e0, e1, e3, e8, e11), r2 = (e0, e2, e5, e7, e9, e10, e11),
r3 = (e0, e1, e3, e4, e5, e7, e9, e10, e11), r4 = (e0, e1, e3, e6, e9, e10, e11).
However, all the results proved in the following continue to be valid for any directed
acyclic networks such that any vertex can be reached from the origin o and the desti-
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Fig. 2 The graph topology used in the paper

nation d is reachable from any vertex. Moreover, from now on we denote by

u = {uξ,e
r [·] : ξ ∈ Ξ, e ∈ r , r ∈ Γ , uξ,e

r [·] ≥ 0},

the controls’ vector, and we do not report the arguments
∑

r̂ : e∈r̂ ρ
ξ,e
r̂ and

∑
ξ∈Ξ∑

r̂ : e∈r̂ ρ
ξ,e
r̂ whenever they are not strictly necessary. Finally, we characterize the

positions of excursionists by the edge-route pair (e, r) ∈ E × Γ to mean that the
excursionists are on edge e following route r .
A ξ -excursionist standing at νe11 at time t ∈ [0, T [, for the edge-route pairs
(e11, r),∀ r ∈ Γ , has two possible choices: either staying at νe11 indefinitely or mov-
ing to reach the destination d exactly at time T . Accordingly, the candidate constant
optimal controls to be chosen at time t are:

uξ,e11
r ,1 [t] ≡ 0, uξ,e11

r ,2 [t] ≡ le11/(T − t). (20)

Hence, given the cost functional (3), we obtain the following structure for the value
function (13):

Vξ,e11
r (t) = min

{
Δqe11 + cξ,4

2
(̃uξ,e11)2 ,

cξ,1

2

(le11)
2

T − t

+ cξ,4

2

(
ũξ,e11 − le11

T − t

)2

(T − t)

}

+
∫ T

t

(
cξ,2ϕ̃e11 − cξ,3(tanh(s − 1) − 1)

me11

)
ds. (21)

Consider a ξ -excursionist at νe for the pairs
(e, r) ∈ {(e8, r1), (e10, r2), (e10, r3), (e10, r4)} at time t ∈ [0, T ]. If e ∈ E1 then the
excursionist has two possible choices: either staying at νe indefinitely or moving to
reach κe at a certain time τ ∈]t, T ]. Consequently, he/she has to choose between the
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following two kinds of candidate constant optimal controls:

uξ,e
r ,1[t] ≡ 0, uξ,e

r ,2[t] ≡ le/(τ − t). (22)

If e ∈ E2 the ξ -excursionist can not sit still at νe nor decide the velocity to reach κe.
In fact, he/she uses a mean of transport and the travel time is (le/ve). In particular, we
get a value function whose value depends on whether the arrival time t + (le/ve) is
less than or greater than the final horizon T :

Vξ,e
r (t) = χ{e∈E1} min

{
α1(le + le11) +

∫ T

t
ϕe ds,

inf
τ∈]t,T ]

{
1

2

(le)2

τ − t
+

∫ τ

t
ϕe ds + Vξ,e11

r (τ )

}}

+ χ{e∈E2}
{∫ T∧

(
t+ le

ve

)
t

ϕe ds + χ{t+ le
ve

<T }Vξ,e11
r

(
t + le

ve

)
+ χ{

t+ le
ve

>T
}α2(le + le11)

+ χ{
t+ le

ve
=T

} min

{
Vξ,e11
r

(
t + le

ve

)
, α2(le + le11)

}}
. (23)

A ξ -excursionist standing at νe9 at time t for the pairs (e9, r), r ∈ {r2, r3, r4}, may
choose between staying in νe9 or reaching κe9 at time τ ∈]t, T ]. Accordingly, the
candidate constant optimal controls are:

uξ,e9
r ,1 [t] ≡ 0, uξ,e9

r ,2 [t] ≡ le9/(τ − t); (24)

the associated value function is:

Vξ,e9
r (t) = min

{
Δ(qe9 + le10 + le11) + cξ,4

2
(̃uξ,e9)2

+
∫ T

t

(
cξ,2ϕ̃e9 − cξ,3(tanh(s − 1) − 1)

me9

)
ds ,

inf
τ∈]t,T ]

{
cξ,1

2

(le9)
2

τ − t
+ cξ,4

2

(
ũξ,e9 − le9

τ − t

)2

(τ − t)

+
∫ τ

t

(
cξ,2ϕ̃e9 − cξ,3(tanh(s − 1) − 1)

me9

)
ds + Vξ,e10

r (τ )

}}
. (25)

A ξ -excursionist at νe at time t for the pairs (e, r) ∈ {(e6, r4), (e7, r2), (e7, r3)},
has two possible choices when the considered edge belongs to E1: either staying at
νe indefinitely or moving to reach κe at a certain time τ ∈]t, T ]. Accordingly, the
candidate constant optimal controls are, respectively:

uξ,e
r ,1[t] ≡ 0, uξ,e

r ,2[t] ≡ le/(τ − t). (26)
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If instead e ∈ E2, the same arguments as in (23) hold (and, of course, they also holds
for the other value functions associated to edges in E2). The associated value function
is:

Vξ,e
r (t) = χ{e∈E1} min

{
α1

(
le +

11∑
j=9

le j

)
+

∫ T

t
ϕe ds,

inf
τ∈]t,T ]

{
1

2

(le)2

τ − t
+

∫ τ

t
ϕe ds + Vξ,e9

r (τ )

}}

+ χ{e∈E2}
{∫ T∧

(
t+ le

ve

)
t

ϕe ds + χ{
t+ le

ve
<T

}Vξ,e9
r

(
t + le

ve

)

+ χ{
t+ le

ve
>T

}α2

(
le +

11∑
j=9

le j

)

+ χ{
t+ le

ve
=T

} min

{
Vξ,e9
r

(
t + le

ve

)
, α2

(
le +

11∑
j=9

le j

)}}
. (27)

A ξ -excursionist standing at νe5 at time t for the pairs (e5, r), r ∈ {r2, r3}, may
choose between staying in νe5 or reaching κe5 at time τ ∈]t, T ]. Accordingly, the
candidate constant optimal controls are:

uξ,e5
r ,1 [t] ≡ 0, uξ,e5

r ,2 [t] ≡ le5/(τ − t); (28)

the associated value function is:

Vξ,e5
r (t) = min

{
Δ
(
qe5 + le7 +

11∑
j=9

le j

)
+ cξ,4

2
(̃uξ,e5)2

+
∫ T

t

(
cξ,2ϕ̃e5 − cξ,3(tanh(s − 1) − 1)

me5

)
ds ,

inf
τ∈]t,T ]

{
cξ,1

2

(le5)
2

τ − t
+ cξ,4

2

(
ũξ,e5 − le5

τ − t

)2

(τ − t)

+
∫ τ

t

(
cξ,2ϕ̃e5 − cξ,3(tanh(s − 1) − 1)

me5

)
ds + Vξ,e7

r (τ )

}}
.

(29)

Analogous arguments to (27) hold for computing Vξ,e4
r3 (t) when a ξ -excursionist is

standing at νe4 . The candidate constant optimal controls are:

uξ,e4
r3,1

[t] ≡ 0, uξ,e4
r3,2

[t] ≡ le4/(τ − t); (30)
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the value function is:

Vξ,e4
r3 (t) = χ{e4∈E1} min

{
α1

⎛
⎝ ∑

e∈r3\{e0,e1,e3}
le

⎞
⎠ +

∫ T

t
ϕe4 ds,

inf
τ∈]t,T ]

{
1

2

(le4)
2

τ − t
+

∫ τ

t
ϕe4 ds + Vξ,e5

r3 (τ )

}}

+χ{e4∈E2}
{∫ T∧

(
t+ le4

ve4

)
t

ϕe ds + χ{
t+ le4

ve4
<T

}Vξ,e5
r3

(
t + le4

ve4

)

+χ{
t+ le4

ve4
>T

}α2

( ∑
e∈r3\{e0,e1,e3}

le

)

+χ{
t+ le4

ve4
=T

}min

{
Vξ,e5
r3

(
t + le4

ve4

)
, α2

( ∑
e∈r3\{e0,e1,e3}

le

)}}
. (31)

A ξ -excursionist standing at νe3 at time t and following a route r ∈ {r1, r3, r4} may
choose between staying in νe3 or reaching κe3 at a certain τ ∈]t, T ]. Hence, the
candidate constant optimal controls are:

uξ,e3
r ,1 [t] ≡ 0, uξ,e3

r ,2 [t] ≡ le3/(τ − t); (32)

the associated value function is:

Vξ,e3
r (t) = min

{
Δ

(
qe3 +

∑
j∈r ξ

succ(e3)

l j

)
+ cξ,4

2
(̃uξ,e3)2

+
∫ T

t

(
cξ,2ϕ̃e3 − cξ,3(tanh(s − 1) − 1)

me3

)
ds ,

inf
τ∈]t,T ]

{
cξ,1

2

(le3)
2

τ − t
+ cξ,4

2

(
ũξ,e3 − le3

τ − t

)2

(τ − t)

+
∫ τ

t

(
cξ,2ϕ̃e3 − cξ,3(tanh(s − 1) − 1)

me3

)
ds + Vξ,e

r (τ )

}}
, (33)

where:
(i) if r = r1 then Vξ,e

r (τ ) = Vξ,e8
r1 (τ ); ii) if r = r3 then Vξ,e

r (τ ) = Vξ,e4
r3 (τ ); iii) if

r = r4 then Vξ,e
r (τ ) = Vξ,e6

r4 (τ ).
Similarly to (31) we consider a ξ -excursionist standing at νe2 to compute Vξ,e2

r2 (t).
The candidate constant optimal controls for e2 ∈ E1 are:

uξ,e2
r2,1

[t] ≡ 0, uξ,e2
r2,2

[t] ≡ le2/(τ − t); (34)
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the associated value function is:

Vξ,e2
r2 (t) = χ{e2∈E1} min

{
α1

( ∑
e∈r2\{e0}

le

)
+

∫ T

t
ϕe2 ds,

inf
τ∈]t,T ]

{
1

2

(le2)
2

τ − t
+

∫ τ

t
ϕe2 ds + Vξ,e5

r2 (τ )

}}

+ χ{e2∈E2}
{∫ T∧

(
t+ le2

ve2

)
t

ϕe2 ds + χ{
t+ le2

ve2
<T

}Vξ,e5
r2

(
t + le2

ve2

)

+ χ{
t+ le2

ve2
>T

}α2

( ∑
e∈r2\{e0}

le

)

+ χ{
t+ le2

ve2
=T

} min

{
Vξ,e5
r2

(
t + le2

ve2

)
, α2

( ∑
e∈r2\{e0}

le

)}}
. (35)

A ξ -excursionist standing at νe1 at time t and following a route r ∈ {r1, r3, r4} may
choose between staying in νe1 or reaching κe1 at a certain τ ∈]t, T ].

Hence, the candidate constant optimal controls for e1 ∈ E1 are

uξ,e1
r ,1 [t] ≡ 0, uξ,e1

r ,2 [t] ≡ le1/(τ − t); (36)

the associated value functions are:

Vξ,e1
r (t) = χ{e1∈E1} min

{
α1

( ∑
e∈r\{e0}

le

)
+

∫ T

t
ϕe1 ds,

inf
τ∈]t,T ]

{
1

2

(le1)
2

τ − t
+

∫ τ

t
ϕe2 ds + Vξ,e3

r (τ )

}}

+ χ{e1∈E2}
{∫ T∧

(
t+ le1

ve1

)
t

ϕe1 ds + χ{
t+ le1

ve1
<T

}Vξ,e3
r

(
t + le1

ve1

)

+ χ{
t+ le1

ve1
>T

}α2

( ∑
e∈r\{e0}

le

)

+ χ{
t+ le1

ve1
=T

} min

{
Vξ,e3
r

(
t + le1

ve1

)
, α2

( ∑
e∈r\{e0}

le

)}}
. (37)

A ξ -excursionist standing at νe0 at time t for the pairs (e0, r), ∀r ∈ Γ , may choose
between staying in νe0 or reaching κe0 at time τ ∈]t, T ]. Accordingly, the candidate
constant optimal controls are:

uξ,e0
r ,1 [t] ≡ 0, uξ,e0

r ,2 [t] ≡ le0/(τ − t); (38)
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the associated value function is:

Vξ,e0
r (t) = min

{
Δ

(
qe0 +

∑
j∈r ξ

succ(e0)

l j

)
+ cξ,4

2
(̃uξ,e0)2

+
∫ T

t

(
cξ,2ϕ̃e0 − cξ,3(tanh(s − 1) − 1)

me0

)
ds ,

inf
τ∈]t,T ]

{
cξ,1

2

(le0)
2

τ − t
+ cξ,4

2

(
ũξ,e0 − le0

τ − t

)2

(τ − t)

+
∫ τ

t

(
cξ,2ϕ̃e0 − cξ,3(tanh(s − 1) − 1)

me0

)
ds + Vξ,e

r (τ )

}}
. (39)

In (39) if r = r1 then Vξ,e
r (τ ) = Vξ,e1

r1 (τ ); if r = r2 then Vξ,e
r (τ ) = Vξ,e2

r2 (τ ); if r = r3
then Vξ,e

r (τ ) = Vξ,e1
r3 (τ ); finally, if r = r4 then Vξ,e

r (τ ) = Vξ,e1
r4 (τ ).

Before ending this section, we prove the Lipschitz continuity of the above defined
value functions. This is a result that will turn useful in the next section.

Proposition 4.1 Let the mass vector ρ be given continuous and Assumption 3 hold.
Then, every value function V ξ,e

r : [0, T ] → R, for all ξ ∈ Ξ and for all e ∈ r , r ∈ Γ ,
defined by (21)–(39) is Lipschitz continuous, with Lipschitz constant independent of
ρ.

Proof Assumption 3.3 implies that there exist two positive constants k1, k2 such that,
for every 0 ≤ t1 ≤ t2 ≤ T , it always holds:

∣∣∣∣∣∣
∫ t2

t1
ϕe

⎛
⎝ ∑

r̂∈Γ : e∈r̂
ρ

ξ,e
r̂ (s)

⎞
⎠ ds

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥ϕe

⎛
⎝ ∑

r̂∈Γ : e∈r̂
ρ

ξ,e
r̂ (·)

⎞
⎠
∥∥∥∥∥∥∞

|t2 − t1|

≤ k1 |t2 − t1| ≤ k1T . (40)

∣∣∣∣∣∣
∫ t2

t1
ϕ̃e

⎛
⎝∑

ξ∈Ξ

∑
r̂∈Γ : e∈r̂

ρ
ξ,e
r̂ (s)

⎞
⎠ ds

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥ϕ̃e

⎛
⎝∑

ξ∈Ξ

∑
r̂∈Γ : e∈r̂

ρ
ξ,e
r̂ (·)

⎞
⎠
∥∥∥∥∥∥∞

|t2 − t1|

≤ k2 |t2 − t1| ≤ k2T . (41)

Moreover, by the formulation of the sightseeing value as a hyperbolic tangent, there
exists a positive constant k3 such that, for every 0 ≤ t1 ≤ t2 ≤ T , it always holds

∣∣∣∣
∫ t2

t1
(tanh(s − 1) − 1) ds

∣∣∣∣ ≤ ‖tanh(· − 1) − 1‖∞ |t2 − t1| ≤ k3 |t2 − t1| ≤ k3T .

(42)
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Now, take the edge e11 for every r ∈ Γ and consider Vξ,e11
r as defined in (21). It

appears that it is of the form

Vξ,e11
r (t) = cξ,1

2

(le11)
2

T − t
+ cξ,4

2

(
ũξ,e11 − le11

T − t

)2

(T − t)

+
∫ T

t

(
cξ,2ϕ̃e11 − cξ,3(tanh(s − 1) − 1)

me11

)
ds,

only if T − max{h′, h′′} ≤ t ≤ T − min{h′, h′′} with h′, h′′ > 0 independently of r ,
of ρ and of the control (see Appendix 1). By making use of conditions (41) and (42),
we obtain that all the components of the value functions Vξ,e11

r in (21) are Lipschitz
continuous and equi-bounded.

Proceeding backwards, let us consider Vξ,e
r (t) given by (23). We focus on the first

part of (23) which involves edges in E1 and consider the term minimized with respect
to τ ∈]t, T ]. As before there exists h > 0 independent of ρ, of controls and of
t ∈ [0, T ] such that, for any t, whenever the value of Vξ,e

r (t) is defined by the value
of

inf
τ∈]t,T ]

{
1

2

(le)2

τ − t
+

∫ τ

t
ϕe ds + Vξ,e11

r (τ )

}
,

then the minimizing values τ belongs to [t + h, T ]. Differently, the value of Vξ,e
r (t)

is certainly defined by the value of

α1(le + le11) +
∫ T

t
ϕe ds,

when t + h > T . Hence, for every t , we can consider the function:

ψ t : [t + h, T ] → R, τ 	→ 1

2

(le)2

τ − t
+

∫ τ

t
ϕe ds + Vξ,e11

r (τ ).

By (40) and the Lipschitz continuity of Vξ,e11
r follows that ψ t is Lipschitz continuous

for every t , with Lipschitz constant M > 0 independent of t and ρ. Analogously, due
to (40), we have that the following inequalities hold for 0 ≤ t1 < t2 ≤ T , and for
τ ∈ [t2 + h, T ], with M > 0 and again independent of t and of ρ:

∣∣ψ t1(τ ) − ψ t2(τ )
∣∣ ≤ 1

2

∣∣∣∣ (�e)
2

τ − t1
− (�e)

2

τ − t2

∣∣∣∣ +
∫ t2

t1
ϕe ds

≤ 1

2

(�e)
2

h2
|t1 − t2| + k1|t1 − t2| = M |t1 − t2|.

Let τ1, τ2 be two points of minimum for ψ t1 and ψ t2 , respectively. We get

ψ t1(τ1) − ψ t2(τ2) ≤ ψ t1(τ2) − ψ t2(τ2) ≤ M |t1 − t2|.
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Fig. 3 Fixed point scheme ρ u f H(f) ρ′

If τ1 ≥ t2 + h, we then get

ψ t2(τ2) − ψ t1(τ1) ≤ ψ t2(τ1) − ψ t1(τ1) ≤ M |t1 − t2|.

If instead, t1 + h ≤ τ1 < t2 + h, then we get

ψ t2(τ2) − ψ t1(τ1) = ψ t2(τ2) ± ψ t2(t2 + h) ± ψ t1(t2 + h) − ψ t1(τ1) ≤ 2M |t1 − t2|.

All the above inequalities imply the Lipschitz continuity of Vξ,e
r in (23) for e ∈ E1,

with Lipschitz constant independent of ρ. Let us now focus on the second part of (23)
that holds for edges e ∈ E2. It is again Lipschitz continuous with Lipschitz constant
independent of ρ because of (40) and the Lipschitz continuity of Vξ,e11

r . In conclusion,
Vξ,e
r in (23) is Lipschitz continuous for every e ∈ E1∪E2. The Lipschitz continuity of

the value functions in (25)– (39), with Lipschitz constant independent of ρ, is achieved
proceeding as before in a backward way. ��

5 Existence of a Mean Field Equilibrium

In this section, we prove the existence of a mean field equilibrium for ρ over the
network G depicted in Fig. 2. We proceed in two steps. As a first step, we let L(w)

be the Lipschitz constant of a function w and consider as a space to look for a fixed
point:

S =
{
w : [0, T ] → R+ : L(w) ≤ L̃, |w| ≤ K

}Θ

, (43)

the Cartesian product Θ times of the space of Lipschitzian functions with Lipschitz
constant not greater than L̃ and overall bounded by K , where L̃ is a constant and K
is defined in Remark 3.2. Space S is convex and compact with respect to the uniform
topology.
As a second step, we look for a fixed point of the function ψ : S → S, with
ρ 	→ ρ′ = ψ(ρ) where ρ′ is obtained carrying out the next steps (see diagram in
Fig. 3):

1. given the mass ρ the optimal control u is derived through (21)–(39);
2. the optimal control u is used to compute the flow vector f through (9)–(11);
3. the mass vector ρ′ is derived from f through (7) by first computing H through (8).

Note that a suitable constant L̃ exists such that the function ψ maps S into itself.
Indeed, by construction, ψ(ρ) must satisfy (7) and hence, by Remark 3.2 we can take
as Lipschitz constant L̃ = 3λ.

Definition 1 Let ψ be the function described above. Then a mean field equilibrium is
a total mass ρ ∈ S such that ρ = ψ(ρ).
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Nowwe prove the continuity of the functionψ so that Brouwer fixed-point theorem
can be applied and amean field equilibrium exists. As a convenience to the readers, we
report the statement of the Brouwer fixed-point theorem: Every continuous function
from a convex compact subset S of a Euclidean space to S itself has a fixed point.

Lemma 5.1 The function ψ : S → S is continuous.

Proof We show that for every sequence {ρn} ⊂ S and every ρ ∈ S such that ρn → ρ

uniformly, we get ψ(ρn) → ψ(ρ) uniformly. We divide the proof into two steps.
Step 1) Consider the value functions V ξ,e

r ,n and V ξ,e
r , for every ξ ∈ Ξ and every e ∈

r , r ∈ Γ defined by (21)–(39). These two value functions are associated, respectively,
to the choices ofmassesρn andρ in the congestion cost vectorsϕ = {ϕe : e ∈ E1∪E2}
and ϕ̃ = {ϕ̃e : e ∈ E p}, where each entry of ϕe and ϕ̃e has as an argument the sum of
the suitable entries of ρn and ρ, respectively. The value functions V e,ξ

r ,n and V e,ξ
r are

equi-bounded and equi-Lipschitz in time and, by Proposition 4.1, they continuously
depend on the relative components of ρn , ρ, respectively. Since ρn → ρ uniformly,
then V ξ,e

r ,n → V ξ,e
r uniformly in [0, T ], for all ξ and for all e ∈ r .

For every fixed t , let un[t] and u[t] be the corresponding constant optimal controls
used by the ξ -excursionists for traversing at time t a given edge e in a given route r
(these last indexes are not displayed for the easy of notation), with the corresponding
optimal arrival time τ∗

n (t), τ ∗(t) [see (19)]. Recall that the optimal arrival time is
defined only for edges e ∈ E p ∪ E1, since for e ∈ E2 the optimal control is a priori
fixed as well as the arrival time. By compactness, there exists a real number ut such
that, at least for a subsequence, un[t] → ut . By the convergence of the value functions
and, consequently, of the minimizing expressions in (21)–(39) (when e ∈ E p ∪ E1),

we have that the constant ut is an optimal constant control used by the ξ -
excursionists for traversing, at time t , the edge e, as part of the route r , with the
given limit mass ρ. By Remark 4.1, if t is a continuity point of τ ∗(·), then the only
optimal control for the limit problem when e ∈ E p ∪ E1 is u[t] ≡ le

τ∗(t)−t , and hence

the limit is independent of the subsequence. If e ∈ E2 the only optimal control for the
limit problem is u[t] ≡ ve which is also independent of the subsequence. Again by
Remark 4.1 relative to edges e ∈ E p ∪ E1, and by definition of the optimal control
for e ∈ E2, we then get that the sequence of optimal control functions un[·] almost
everywhere converges to the limit optimal control u[·]. By the dominated convergence
theorem it then converge in L1(0, T ).

Step (2) Consider the optimal controls un[·] and u[·] introduced in Step (1). Given
the throughput λ for every t ∈ [0, T ] and the constant vector Π , we can compute the
corresponding flows f n and f as in (9)–(11).
We now want to prove that f n → f in L1(0, T ). To this end, is enough to show that
sign(un[·]) → sign(u[·]) in L1(0, T ) for e ∈ E p ∪ E1, while for e ∈ E2 there is
nothing to prove due to the a priori fixed optimal control and (11).
By the optimization procedure (20)–(39) follows that each ξ -excursionist when enters
an edge e = (νe, κe) ∈ E p ∪ E1 decides either to stop or to keep a constant control
strictly greater than zero, which allows the excursionist to reach the head vertex κe
within time T . Then, any control u[·] > 0 is lower bounded by a constant le

T > 0 (for
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every e ∈ E p ∪ E1 in a given route r ). As a consequence if un[·] → u[·] > 0, we
have u[·] ≥ le

T > 0. Hence, sign(un[·]) → sign(u[·]) = 1.
Differently, if un[·] → u[·] = 0, by the limit definition follows that from a certain
n onward un[·] < le

T and hence, by its optimality, un[·] = 0 which in turn implies
that sign(un[·]) → sign(u[·]) = 0. Therefore we have proven the almost everywhere
convergence of signs from which, by the dominated convergence theorem, follows
the convergence in L1(0, T ). Then we can compute (edge by edge) ψ(ρn) and ψ(ρ)

integrating the mass conservation (7):

ψ(ρn(t)) = ρn(0) +
∫ t

0

(
λ(s)Π + f prec,n(s)

)
ds −

∫ t

0
f n(s) ds, (44a)

ψ(ρ(t)) = ρ(0) +
∫ t

0

(
λ(s)Π + f prec(s)

)
ds −

∫ t

0
f (s) ds. (44b)

Using all the previous arguments in the points (1) and (2) we have proven that the
right hand side of (44a) converges to the right hand side of (44b), and hence that
ψ(ρn(t)) → ψ(ρ(t)) for every t ∈ [0, T ] and also uniformly, being them equi-
bounded and equi-Lipschitz because belonging to S. Hence, by Brouwer fixed point
theorem, the map ρ → ψ(ρ) has a fixed point which is the mean field equilibrium. ��
Remark 5.1 Note that the existence of a mean field equilibrium continues to be valid
for any directed acyclic network, since both the value function (13) and the subsequent
discussion on the optimal controls were given in general without considering any par-
ticular network structure. At the end of page 16, we decided to consider a specific
network only to simplify notations and to have an explicit expression of the optimality
conditions in term of the value function for the exit cost problem on each edge. There-
fore, the result of Lipschitz continuity, Proposition 4.1, holds for every recursively and
backwardly defined value function under the assumption of no cycle in the network
and such that any vertex can be reached from the origin o and the destination d is
reachable from any vertex. Consequently also Lemma 5.1 is still verified.

Remark 5.2 The presented results can be easily generalized to a directed acyclic net-
work with multiple origins and multiple destinations. Suppose we are given a network
G, a set of origins O and a set of destinations D and recall that we assume that each
excursionist follows a predefined route (see Assumption 2.1). Let ri ∈ Γi be the
generic (oi , di )-route with origin oi ∈ O and destination di ∈ D.

The following standard trick reduces the problem with multiple origins and desti-
nations to the our problem with a single origin and a single destination.

Initially, we add a new “super-origin” ō and a new “super-destination”d̄ nodes to G
. Then, we create an edge (ō, oi ) from the super-origin to every oi ∈ O, and an edge
(di , d̄) from every di ∈ D to the super-destination. These edges have zeros costs and
lengths. In this way, we have transformed network G in a new single origin - single
destination network. Finally, we extend every route ri with an initial edge (ō, oi ) from
the super-origin to the origin of ri and a final edge (di , d̄) from the destination of ri to
the super destination. In this way, each agent excursionist is requested to follow a new
route from a same super-origin to the same super-destination. However, the new route
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in practice overlaps the excursionist’s original route ri as the excursionist traverses
the added edge in no time and paying no cost.

6 Bi-level Optimization

In this section, we propose a bi-level optimization problem where the upper level
addresses the problem of selecting an optimal sustainable oriented control strat-
egy, while the lower level describes the excursionist flows in the assumption that the
excursionists optimize their satisfaction within the visiting experience. The optimal
sustainable control strategy for the whole set A of connected POI is taken following
tourism sustainability criteria at destination level [2–4]. The World Tourism Orga-
nization states that the sustainable tourism can be defined as “tourism that takes full
account of its current and future economic, social and environmental impacts, address-
ing the needs of excursionists, the industry, the environment and host communities”
[40]. In our model, we refer to the European Tourism System of Indicators for Sustain-
able Management at Destination Level (ETIS). This is actually also consistent with
what results from Sardianou et al. [36] where the authors, through a summary of the
literature, assert that sustainable tourism development must focus on the four pillars:
the economic, the environmental, the social, and the cultural ones. This framework
seem also to validate the perspectives at a local level on the main benefits and costs of
tourism on residents’ subjective well-being [14, 34]. Then, we propose the following
bi-level optimization problem:

maximize
λ(·) Q(Oec, Oenv, Oso)

subject to argmin
u

J (·), (45)

where Q is the overall sustainability function which depends on three sub-
sustainability objectives, i.e., respectively, the economic, the environmental, and the
sociocultural, and J is the vector of costs paid by the excursionists on all the routes
r ∈ Γ , i.e, J (·) = {J ξ

r (·) : ξ ∈ Ξ, r ∈ Γ } with J ξ
r (·) as in (6).

In particular, we consider the problem in (45) from a leader/followers perspective.
The leader, in our case the local authorities or the network manager, would like to
control the throughput λ(t), for every t ∈ [0, T ], to obtain the maximum gain from
the visit of the POIs and, at same time, to ensure the best possible experience both at
the socio-cultural and the environmental level. The optimal value of λ(t) indicates to
the local authorities which is the best throughput that they should encourage through,
e.g., advertisement but possibly also coordinating the schedules of the different means
of transport, such as trains, coaches, cruise ships, that take the excursionists to the
city.

The literature on tourism has examined the relationship between consumer satisfac-
tion and expenditure. Satisfaction appears to produce both direct and indirect positive
impacts on expenditure. As regards the direct impacts, a positive relationship between
customer satisfaction and its willingness to pay is proven in [23] and, more recently in
[19]. The influence on the expenditure on ancillary services, such as museums, shows,
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entertainment, guided excursions, exerted by the overall satisfaction is shown in [18].
Satisfaction with the landscape also positively affects excursionists’ expenditures on
accommodation, internal transport, food and beverage. This last fact suggests that
landscaping maintenance policies may impact positively the economic variable.
As regards the indirect impact, the literature reveals that satisfaction stimulates repeat
visits, positive recommendations and thereby new customers, reputation enhancement,
higher acceptance of price increase, and consequently overall higher profitability [26].
In light of the above considerations, let us now introduce possible structures for the
components of Q in (45). We can formulate the economic component as:

Oec =
∫ T

t
λ(s)

∑
ξ∈Ξ

∑
r∈Γ

J ξ
r (s) ds, (46)

where J ξ
r is the actual cost faced by the ξ -excursionists on r .

To define the two other dimensions in (45), i.e., environmental and sociocultural, we
refer to the concept of Tourism Carrying Capacity (TCC). Although there are several
definitions in literature on the subject, they all refer to the capacity of a system to
endure despite adverse tourism impacts. More in detail, in [15], TCC is defined as a
“…certain threshold level of tourism activity beyond which there will occur damage
to the environment, including natural habitats.”
TheWorld Tourism Organization (UNWTO) defines three levels at which TCC can be
addressed [39]: ecological, psychological, and sociocultural. Each one of them per-
mits to estimate the allowable level of utilization of a tourist area while attaining the
primary objective of preserving, respectively, the environment, the quality of tourism
experiences, and the way of life of local people, their culture and traditions. Follow-
ing the above considerations and regarding the environmental objective in (45), we
introduce the following index:

π̃ ξ,e = α̃eSe

Bξ,e
, ∀ e ∈ E p, (47)

where π̃ ξ,e denotes the estimated allowed ξ -capacity (i.e., the number of ξ -type excur-
sionists) of the POI, Se is the total POI surface area, α̃e is a correction coefficient
whose value range depends on the characteristics and on the level of vulnerability
of the given POI and, finally, Bξ,e denotes the normative/benchmark area per ξ -type
excursionist. The value Bξ,e corresponds to the best target value for attaining either
the desired excursionists’ experiential satisfaction or the area preservation. Concern-
ing (47), excursionist stakeholders and network managers would want to set different
thresholds of Bξ,e, for every e ∈ E p, with respect to the different types of excur-
sionists in Ξ . For example, one would want to set a lower level of Bξ,e for the first
type of excursionists, i.e., the ones who prefer walking, with the effect of reducing
the environmental impacts of tourism transport/mobility. The objective of the network
manager would be that of minimizing the distances between the estimated capacities
of the POIs and the actual number of excursionists visiting them, i.e.,
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Oenv = ηenv

⎛
⎝∑

ξ∈Ξ

∑
e∈E p

∫ T

0

(
π̃ ξ,e −

∑
r : e∈r

ρξ,e
r (s)

)2
ds

⎞
⎠ , (48)

where every distance is expressed as a squared difference between the desired and the
actual value and ηenv is a penalty parameter.
Concerning the third objective in (45), we apply the same methodology as in (48), i.e.,
we minimize the difference between the sociocultural capacity of a given route r ∈ Γ

and the actual number of excursionists following it. Here the attainment target is that
of controlling the social pressure, i.e., the proportion of excursionists out of the total
number of residents. The network manager is then interested in knowing the carrying
capacity on a social level as:

�̃ξ
r = βr Rr

Fξ
r

, (49)

where �̃
ξ
r is the allowed sociocultural capacity for route r ∈ Γ with respect to ξ -type

excursionists, βr is a correction coefficient whose value rangemight depend, for exam-
ple, on the residents feeling towards excursionists, Rr is the number of residents along
r and Fξ

r is the normative/benchmark number of residents per ξ -type of excursionists.
Moreover, from (49), as it holds the condition �̃ = ∑

ξ∈Ξ

∑
r∈Γ �̃

ξ
r , the network

manager can estimate the carrying capacity for the whole network. Then, he/she can
monitor if the actual mass of excursionists is greater than the allowed one. In this
framework, the objective would be that of minimizing the differences between the
ideal social capacity of routes and the actual number of excursionists following them,
i.e.:

Oso = ηs

⎛
⎝∑

ξ∈Ξ

∑
r∈Γ

∫ T

0

(̃
�ξ
r −

∑
e∈r

ρξ,e
r (s)

)2
ds

⎞
⎠ , (50)

where again, we use the squared differences and ηs is a penalty parameter.
In the view of (48) and (50), it is worth stressing that if on one hand tourism devel-
opment contributes to economic growth, on the other hand, it also leads to massive
problems such as overcrowding and over-tourism. A way to cope with these phenom-
ena is to implement efficient and effective strategies formanaging tourist attractive sites
within a sustainable development framework. In this context, a quantitative approach
based on the TCC principle might be used not only as a control policy to limit excur-
sionists’ flows but also as a dynamic tool to improve the quality of the excursionists’
tours.
According to all stated above, the optimization problem faced by either the local
authorities or network managers can be formulated as

maximize Q = ζ1O
ec − ζ2O

env − ζ3O
so

subject to argmin J (·), (51)
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where ζi=1,2,3 are weights applicable depending on which objective the authorities or
the network managers consider more important for achieving their target.

7 Conclusions and Future Developments

In this paper, we have presented some theoretical results that can justify a mean
field game approach to model the flows of excursionists visiting the POIs of the
historical centers of art cities. We prove the existence of an equilibrium of flows
within the network andwe also propose and formalize a bi-level optimal control model
which addresses the often conflicting objectives of defining a sustainable-oriented
policy by the local authorities while excursionists aim at maximizing their satisfaction.
Specifically, the model upper level addresses the problem of selecting an optimal
sustainable oriented control strategy, while its lower level describes the excursionist
flows in the assumption that the excursionists’ satisfaction can be expressed in terms
of the minimization of an appropriate cost function. The contribution of this study is
to propose a theoretical framework for developing new models and methods based on
the mean field theory that can support local authorities to deal with the challenging
problem of finding the total excursionists’ experiential satisfaction while attaining the
maximum sustainability benefits.
Future research must be focused on some issues that have to be addressed before being
able to apply the theoretical approach proposed in this paper in the practice.

A first issue is that the number of routes increases exponentially with the number
of POIs. However, in the practice, this exponential increase may not occur. Indeed,
historical centers usually present very few main attractions, e.g., the cathedral or the
mainmuseum, and the excursionists’ routes typically pivot around themain attractions
and a few minor ones. As an example, it is the authors’ experience that: excursionists
of the city of Venice very rarely visit more than 5 or 6 POIs; the number of tickets sold
each day to visit the main two attractions is usually much greater than the number of
tickets sold to visit all the other POIs.

A second issue is that we assume that the network G has no oriented cycles and its
“physical” entrance and exit points are different. In the practice, there may be oriented
cycles, although it is reasonable to assume that no route visits the same POI twice.
Moreover, physical entrance and exit points of the network may coincide, e.g., with
the main gate of the town medieval walls.

A final issue is related to a numerical algorithm that implements the approach
presented in Sect. 5 to determine a fixed point for the excursionists’ mass ρ. Indeed,
we proved the existence of a fixed point by Brouwer Theorem. However, this theorem
does not provide information about the speed of convergence to the fixed point of an
algorithm based on the fixed point scheme described in Fig. 3. Such a question requires
further investigation and experimentation.
In addition, a numerical algorithm cannot deal with continuous time functions. As an
example, it can assess only approximately the value of the continuous time vectorial
function ρ(t), by sampling the time and, e.g., assuming fixed the values of ρ(t)within
the sampling period. Obviously, on the one hand, the higher the sampling frequency,
the better the approximation ofρ. On the other hand, the higher the sampling frequency,
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the greater is the computational burden which adds up to a possible slow convergence
of the algorithm.
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Appendix

The function Vξ,e11
r as defined in (21) is of the form

Vξ,e11
r (t) = cξ,1

2

(le11)
2

T − t
+ cξ,4

2

(
ũξ,e11 − le11

T − t

)2

(T − t)

+
∫ T

t

(
cξ,2ϕ̃e11 − cξ,3(tanh(s − 1) − 1)

me11

)
ds, (52)

only if

Δqe11 + cξ,4

2
(̃uξ,e11)2 ≥ cξ,1

2

(le11)
2

T − t
+ cξ,4

2

(
ũξ,e11 − le11

T − t

)2

(T − t),

from which we get

(T − t)

(
1 − cξ,4(̃uξ,e11)2(T − t) − 2cξ,4ũξ,e11le11

2Δqe11 + cξ,4(̃uξ,e11)2

)
≥ (cξ,1 + cξ,4)l2e11

2Δqe11 + cξ,4(̃uξ,e11)2
.

(53)

Considering the first factor of the left hand side of (53), we get that

t ≤ T − (cξ,1 + cξ,4)l2e11
2Δqe11 + cξ,4(̃uξ,e11)2

≤ T − h′,

with h′ > 0 independent of r , on ρ and of the control. If instead, we analyze the
second factor of the left hand side of (53) we have

t ≥ T − le11(−le11(cξ,1 + cξ,4) + 2cξ,4ũξ,e11) + cξ,4(̃uξ,e11)2 + 2Δqe11
cξ,4(̃uξ,e11)2

≥ T − h′′,

(54)

with h′′ independent of r , on ρ and on the control. If in (54) h′′ > 0 then Ve11,ξ
r has

the shape of (52) only if T −max{h′, h′′} ≤ t ≤ T −min{h′, h′′}. If, instead, h′′ ≤ 0
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then Ve11,ξ
r is not defined as in (52) but rather by (see (21)):

Vξ,e11
r (t) = Δqe11 + cξ,4

2
(̃uξ,e11)2 +

∫ T

t

(
cξ,2ϕ̃e11 − cξ,3(tanh(s − 1) − 1)

me11

)
ds.
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