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• The Self-Organizing Map (SOM) algorithm
operation principle is presented.

• The way of extracting information from
SOM's output features is described.

• The SOM application for disclosing pollu-
tion patterns in the environmental compart-
ments is presented.

• Advice for extracting valuable environmen-
tal information from the model results is
presented.

• Advice on reporting SOMmodel details in a
paper to attain comparability and reproduc-
ibility is presented.
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The evaluation of the spatial and temporal distribution of pollutants is a crucial issue to assess the anthropogenic bur-
den on the environment. Numerous chemometric approaches are available for data exploration and they have been
applied for environmental health assessment purposes. Among the unsupervised methods, Self-Organizing Map
(SOM) is an artificial neural network able to handle non-linear problems that can be used for exploratory data analysis,
pattern recognition, and variable relationship assessment. Much more interpretation ability is gained when the SOM-
based model is merged with clustering algorithms. This review comprises: (i) a description of the algorithm operation
principle with a focus on the key parameters used for the SOM initialization; (ii) a description of the SOM output fea-
tures and how they can be used for data mining; (iii) a list of available software tools for performing calculations; (iv)
an overview of the SOM application for obtaining spatial and temporal pollution patterns in the environmental com-
partments with focus onmodel training and result visualization; (v) advice on reporting SOMmodel details in a paper
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to attain comparability and reproducibility among published papers as well as advice for extracting valuable informa-
tion from the model results is presented.
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1. Introduction

The evaluation of the spatial and temporal distribution of pollutants is an
important issue to assess the anthropogenic burden on the environment.Mod-
ern analytical techniques with a high level of automation allow to process of
many samples for multi-pollutant analysis purposes in a short time interval.
Moreover, real-time or quasi-real-time instruments/sensors allow the collec-
tion of high-frequency data (Chapman et al., 2020; Dupont et al., 2020).
Thus, themostmodern direction in environmental analysis is to gather desired
information fromdata sets of a big-data domain, containing information about
a variety of physio-chemical characteristics (put as variables in column-wise
order) related to each collected sample (put as rows in a data array).

Numerous different chemometric approaches are available for data
mining and they have been applied for environmental health assessment
purposes. The possible multivariate analysis methods available are usually
split into unsupervised and supervised methods. Examples of the former
comprises PCA, HCA, KM, CMB, FA, PMF, HDT, and SOM, while the latter
LDA, PLS, PLS-DA, CART, MLP, KNN, and SIMCA (Dupont et al., 2020;
Govender and Sivakumar, 2020; Hopke, 2015; Mas et al., 2010; Sun
et al., 2020; Ye et al., 2020).

Among the unsupervised methods, the SOM (Kohonen, 1987, 2001) is
an artificial neural network that can be used for exploratory data analysis
and pattern recognition and can handle non-linear problems. Concerning
other unsupervised methods, the SOM is also able to deal with big data
sets with the possibility of visually exploring the outcomes of the model
in versatile 2D maps in which similar samples are mapped close together
on a grid (Vesanto, 1999). The SOM is often used in association with
other algorithms, such as KM, PCA and HCA, for further elaborating its out-
comes. In some applications it is followed by the use of supervisedmethods.
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The SOM, being resistant to missing data as is often the case in environ-
mental studies, was effectively applied by many research groups, however,
according to our best knowledge, none of the comprehensive reviews on
the SOM concerning environmental pollution assessment were published
before except for (Chon, 2011)who focused on the SOMapplied to environ-
mental ecology. Thefirst part of the present review comprises a brief discus-
sion of the SOM's main aspects. A description of algorithm initialization
parameters, as well as suggestions for their choice, are presented. The
SOMoutput features are described, and suggestions for extracting useful in-
formation are included. The SOM peculiarities in comparison with other
multivariate analysis techniques are also discussed. The core of the paper
is driven by the analysis of how the SOMmethod is applied to face the en-
vironmental pollution issue and how the outcomes of the model are used to
achieve the conclusions. Finally, advice on reporting SOMmodel details in
a paper to attain comparability and reproducibility among published pa-
pers as well as advice for extracting valuable information from the model
results is presented.

2. Document selection

We chose the Scopus database for data mining as (Mongeon and Paul-
Hus, 2016) indicated that Scopus has a greater number of indexed journals
than theWebof Science (WoS).Moreover, as explained in (Gavel and Iselid,
2008), 85 % of the WoS sources are also included in Scopus but only 51 %
of Scopus sources are included in the WoS.

Thus to have an overall picture of the use of the SOM tomodel pollutant
distribution in environmental science we searched the Scopus database
(last accessed on 6th December 2021) using the following search parame-
ters: TITLE-ABS-KEY (self AND organizing AND map) AND (pollutant)



Table 1
Number of selected documents split by environmental compartment/s.

Compartment/s N° of publications

Air 24
Sediment 13
Soil 7
Water 31
Water+Sediment 5
Sediment+Soil 2
Water+Sediment+Soil 1
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AND NOT (ecology); DOCTYPE (Article); SUBJAREA (Environmental
Science); PUBYEAR (All years to 2021). As a result of the query 172 entries
were found.

As the focus of this review is the SOMmodeling of pollutant behavior in
the different environmental compartments (air, sediment, soil, water) 83
papers were selected from the above-mentioned list, choosing papers
containing a sufficiently detailed description of the specific application of
the SOM algorithm and possible association with other multivariate tech-
niques as well as the comparison of different data mining approaches. We
discarded (i) publications focused on the presence of pollutants in biota;
(ii) publications containing modeling of matrix physical parameters
without associationwith pollutants, and (iii) publications focused on epide-
miological studies.

The split by different environmental compartment/s of the documents
present in the final list is reported in Table 1.

A brief bibliometric analysis has been performed by mining the meta-
data downloaded from the Scopus website using the bibliometrix package
(Aria and Cuccurullo, 2017) in the R software environment (Team,
2016). Two main results are worth to be highlighted: (i) the publication
Fig. 1. (a) the Self-Organizing Map (SOM) algorithm learning proc
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trend shows an annual growth rate of 19 %; (ii) 68 % of the papers are
spread in the 40 % of the sources (journals), the remaining papers are pres-
ent one for each remaining source. The detail about the results is reported
in the Supplementary Material.

3. Self-organizing map algorithm

The SOM algorithm is part of the neural network family and it can be
used for exploratory data analysis and pattern recognition. The SOM algo-
rithm allows a multivariate analysis of the data using a self-learning ap-
proach. It is an unsupervised technique, and hence none of an a priori
knowledge about data grouping or classification is necessary. The tech-
nique was designed to obtain a nonlinear dimensionality reduction in
which similar samples (inputs) are grouped and mapped together in a bi-
dimensional representation (Kohonen, 2013).

In the following paragraphs, the main aspects of the learning process
and output exploration will be summarized. An extended discussion
about the SOM algorithm features can be found in (Himberg et al., 2001;
Kohonen, 1987, 2001, 2013) and references therein.

3.1. Self-organizing map algorithm learning process

A representation of the algorithm learning process is presented in
Fig. 1a. The experimental data (samples) are represented by a matrix of n-
dimensional input vectors defined by their variable values. The goal is to
obtain a matrix of n-dimensional output vectors, significantly fewer than
the input ones, that is a model of the experimental data and still, represents
its variability and the relationships among the variables. The number of the
output vectors has to be chosen by the user, the details are discussed in par.
3.2. The output vectors are called nodes (or neurons, prototypes, units), and
ess; (b) SOM map visualization (BMU= Best Matching Unit).



Table 2
Description of the main Self-Organizing Map input parameters and output features
and their significance.

Input

Parameter Description Significance and suggestions

Shape of the
map

The shape of the map can be
rectangular, i.e. flat like a sheet,
or toroidal. The latter allows
joining the map edges.

The rectangular shape can lead
to a partial loss of topological
preservation of the experimental
data because the nodes at the
edges have a lower number of
surrounding neighbors compared
to the central ones (Ultsch and
Herrmann, 2007). The toroidal
map shows the same number of
neighbors around all the nodes,
but it is more time-consuming in
terms of calculation and more
challenging to visualize.

Shape of map
nodes

The shape of the map nodes can
be rectangular (also called
“square”) or hexagonal.

The hexagonal shape allows for
having more nearest neighbors
around a node thus it allows
greater topological preservation
of the experimental data
structure (Kalteh et al., 2008).

Number of
nodes

It is the number of modeled
vectors that will be used for rep-
resenting the experimental data.
The number of map nodes has to
be chosen by the user.

The choice of the number of
nodes depends on the level of
compression of the experimental
data that has to be achieved. The
comparison between the number
of samples present in the
experimental data and the
number of nodes is useful to
understand how much the data
have been compressed in the
model. It is usually suggested not
to have too many nodes without
hits (Kohonen, 2013). This
condition can happen if the
number of nodes is too large. On
the other hand, choosing a very
small number of nodes can be
considered similar to applying a
k-means clustering algorithm
because of losing most of the
structural features of the
experimental data (Ultsch and
Herrmann, 2007). Some
heuristic rules are available
(Vesanto, 1999), suggesting a
number of nodes that is five
times the square root of the
number of samples. If the user
needs a more compressed map, it
is suggested to reduce four times
the above-mentioned number
(“small map”). Otherwise, for a
more detailed map, it is
suggested to multiply four times
the above-mentioned number
(“big map”).

Map dimension
ratio

It is the ratio of the grid side
lengths representing the node
mapping. It has to be chosen by
the user.

The most commonly used
method is to consider the square
root of the ratio between the two
largest eigenvalues of the
experimental data (Vesanto and
Alhoniemi, 2000). The use of the
eigenvalues allows to shape the
map mimicking the experimental
data structure.

Map
initialization
matrix

It is the codebook from which
the learning process starts See
Fig. 1(a). It can be built
randomly or based on data
analysis of the experimental
data. In the former method the
weight of nodes is initialized
either by randomly assigning

In general, a random
initialization requires a greater
number of epochs and can lead
to different outcomes for every
run. A “seed” must be set to
attain reproducible results. Data
analysis-based initialization
usually requires a smaller
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the matrix containing the values for each modeled variable in the output
vectors is usually referred to as a codebook. When the calculation is run,
each input vector is presented to the output matrix. Using a “winner-take-
all” selection rule, the algorithm matches the input vector with the more
similar (i.e. less distant) output vector. The latter is called the best matching
unit (BMU). The BMU iteratively updates its values (variable weights) to be
more similar to the input vector using sequential or batch algorithms.More-
over, also the weights of the nodes on the map that are in the neighborhood
of the BMU are simultaneously updated. In this way, the initialized model
“learns” from the experimental data. The learning rate and neighborhood
radius are essential constants in the learning process. There are many learn-
ing rate functions while the linear, inverse of time, and power series are
mostly used in the SOM. The learning rate, as well as neighborhood radius,
are factors that decrease monotonically throughout the learning process to
ensure convergence (Vesanto and Alhoniemi, 2000). Once each input vec-
tor is presented to the output matrix, the first run (epoch) of the process
is finished. Usually, this process has to be iterated several times to obtain
a model that accurately represents the experimental data variability.

The final output matrix is usually represented in a bi- or tri-dimensional
space (Fig. 1b) in which the similar nodes are mapped close together
retaining the inherent topological characteristics of the input vectors.

3.2. The SOM initialization parameters

The choice of dimensions of thefinal SOMmap, i.e. the number of nodes
and the aspect ratio is a key factor for obtaining a goodmodel of the exper-
imental data. A too-small number of nodes can hide some important differ-
ences among the experimental data. On the other hand, a big number of
nodes can lead to a poorly significant difference among adjoining nodes.
The aspect ratio influences the topology preservation of the experimental
data. Other initialization parameters have to be chosen, such as the similar-
ity measure. A list of initialization parameters with a brief description and
suggestions for the user choice is presented in Table 2. In general, the
best way to obtain a good model for a specific purpose is to try different
runs of the algorithm, change one or more parameters, and explore the re-
sults (Clark et al., 2020).

3.3. The SOM outputs

The SOM output visualization allows the user to (i) disclose relation-
ships among experimental variables; (ii) highlight the presence of possible
similarity groups (clusters) in the experimental data; (iii) establish the ap-
propriateness of the selection of the initialization parameters for the spe-
cific problem. In Table 2 a list of the main output parameters of the SOM
is proposed, together with a brief description and suggestions for extracting
useful information from them.

In Fig. 2 a visual representation of the model outcome information ex-
traction in relation to the experimental data (BMUs, hits, quantization er-
rors, see Table 2) is presented.

Fig. 3 depicts the visualization features of the SOMmodel. The compo-
nent planes can be used to visualize possible correlations among the vari-
ables (Skwarzec et al., 2009). The Unified distance matrix (U-matrix) can
be used to identify the possible presence of different clusters in the data
(Ultsch and Lötsch, 2017). Refer to Table 2 for other details.

3.4. Self-organizing map algorithm advantages

The use of the SOM algorithm, with respect to other unsupervised tech-
niques, shows several benefits. First of all, it is a non-linear mapping tech-
nique, and hence this results with two advantages: (i) it can be also
applied to non-normally distributed data, and (ii) it can reveal non-linear
relationships among the variables (Astel et al., 2007). The model output
contains the same number of variables as the input data, therefore the
model interpretation is simpler with respect to other algorithms that pro-
duce new variables related to the experimental ones (i.e. FA, PCA).
4



Table 2 (continued)

Input

Parameter Description Significance and suggestions

small values to the weights or
using the vector weights of
randomly sampled samples from
the experimental data. In the
data analysis method the
initialization matrix is usually
built using the eigenvectors
related to the two largest eigen-
values of the experimental data.
Other methods can be used e.g.
genetic algorithms (Ballabio and
Vasighi, 2012).

number of epochs because it
starts from nodes that already
roughly represent the
experimental data structure.
Moreover with this initialization
method reproducible results are
obtained (if the other SOM
parameters are not changed).

Similarity
measure

It is a measure used to find the
best matching unit (BMU) during
the learning process and adjust
the node values. The most
commonly used is Euclidean dis-
tance (others possibilities are e.g.
sum of squares or Manhattan dis-
tance).

Different similarity measures can
lead to different clustering of the
experimental data on the map.
Special attention should be paid
on high dimensional data sets
with 10 or more variables, where
BMU finding could become
unstable because of negligible
difference in distances between
BMU and experimental samples.

Neighborhood
function

It is the kernel function that
regulates the smoothing process
of the map during the training.
The most commonly used is the
Gaussian function. Other
functions, such as bubble, cut
Gaussian and, Epanechnikov can
be used.

Different functions shape the
final map with different
smoothing, the more the
smoothing the better the map,
but the more the calculation
time. See (Clark et al., 2020) for
details.

Training
algorithm

It is the underlying engine for
building neural network models
with the goal of training features
or patterns from the input data.
In the SOM usually, one of two
algorithms is used: sequential or
batch training algorithm, STA or
BTA, respectively. An STA
constructs the nodes in the SOM
to represent the entire data set
and their weights are optimized
at each iteration step. In BTA,
instead of using a single data
vector at a time, the whole data
set is presented to the map before
any adjustment is made.

(Kohonen, 2013) suggests that
BTA is recommendable for
practical applications, because it
does not involve any
learning-rate parameter, and its
convergence is an order of
magnitude faster.

Learning rate
function

It is a hyper-parameter used to
govern the pace at which the
neural network updates or learns
the value of a parameter
estimate. Can be linear, the
inverse of time and power series.
It decreases over time to enable
convergence.

The learning rate function should
be analyzed experimentally,
however, a linear value is
commonly set as initial.

Neighborhood
radius

It is a distance around the node
that defines a set of BMU
neighborhood nodes that are
adjusted during the training of
the neural network net. It
decreases over time to enable
finer adjustment of the net.

There is no suggested quality
value to refer to, however,
usually a radius higher than 1 is
set for the first phase of the
training net, that is defined as
“rough”. The value is decreased
to one for net “fine” tuning. A
value equal to one means that
only the first BMU neighbors are
updated (Himberg et al., 2001).

Number of
epochs

It is the number of times the
experimental data are presented
to the algorithm to outline the
final map. It has to be chosen by
the user.

The number of epochs has to be
adequate to obtain a map that is
“stable” i.e. substantial changes
are not perceived if the number
of epochs is further increased.
Too many epochs can lead to
overfitting the training data.
Calculating the DME for maps
trained with different number of
epochs can allow the
establishment of the minimum

Table 2 (continued)

Input

Parameter Description Significance and suggestions

number of epochs necessary for
adequately modeling the
experimental data structure
(Ponmalai and Kamath, 2019).
Some heuristic rules are also
available (Vesanto, 1999). It is
suggested to set the number of
epochs as the maximum value
between two and (N/m*10 +
N/m*40)/8 where N = the
number of nodes and m = the
number of samples in the
experimental data.

Output

Feature Description Significance and suggestions

Codebook It is the matrix containing the
values for each modeled variable
in the output vectors (i.e. the
weight of nodes), thus it has the
same number of rows as the nodes
and the same number of columns
as the variables of the experimen-
tal data (Fig. 1a)

It represents the recurrent
variable profiles present in the
experimental data. It also allows
the representation of the
component planes.

Component
plane

A component plane describes the
distribution of the values of a
modeled variable on the map by
different coloring (heatmap). It
represents the weight of the
nodes for a variable only (see
Fig. 3a).

The visual exploration and
comparison of the component
planes allows for the disclosure of
possible relationships among the
variables. Variables that show a
similar distribution of the values
on the map are usually correlated.
Variables that present an opposite
distribution of the values are
usually anti-related.

Unified
Distance
Matrix
(U-matrix)

The U-matrix shows the distances
between the nodes by different
coloring (see Fig. 3b).

It allows the identification of
possible cluster separation of the
data. The U-matrix can be
imagined as a mountain-valley
representation (Ultsch and Lötsch,
2017) in which the mountains
represent greater distances thus
they indicate the separation
between possible clusters of data.

Best
Matching
Unit
(BMU) list

Each experimental vector is
associated in terms of similarity
to a node (BMU). This list
contains the number of a node
which each sample is associated
with.

Experimental data samples that
are associated to the same BMU
can be considered generally very
similar to each other and
represented by the vector weights
of the BMU. Nevertheless, as the
algorithm is forced to associate
each sample to a node, also a
possible outlier sample is
associated to a BMU. Thus the
level of similarity between the
sample and the BMU has to be
verified by checking the related
quantization error. On the other
hand, a node may be a BMU of
none of the samples.

Hits The hits represent the number of
samples associated with each
node (see Fig. 2).

The hits distribution on the map,
together with the U-matrix, allows
identifying possible sample
grouping.

Quantization
error list

The quantization error represents
the difference in similarity
between a sample and its BMU
(see Fig. 2). The more the error
the less the similarity. This list
contains the error associated to
each sample in relation to its
BMU.

Basic statistics can be applied to
the list for evaluating the error
value distribution. Relatively high
error values (e.g. higher than the
95th percentile or 98th percentile
(Licen et al., 2019)) can show the
presence of possible outlier
samples.

Quantization
error of the
map (QE)

The QE corresponds to the
average of the quantization error
list. It is a measure of the quality

The QE usually decreases as the
number of nodes increases. There
is no suggested quality value to
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Table 2 (continued)

Output

Feature Description Significance and suggestions

of the map. refer to, but it can be used for
comparing different maps
obtained from the same dataset.
See (Clark et al., 2020) for details.

Topographic
error (TE)

The TE represents the degree of
topology preservation with
respect to the experimental data.
It is a measure of the quality of
the map.

The TE usually increases as the
number of nodes increases. There
is no suggested quality value to
refer to, but it can be used for
comparing different maps
obtained from the same dataset.
See (Clark et al., 2020) for details.

Distribution
matching
error
(DME)

It is an estimation of the
convergence of the probability
distribution of the SOM nodes on
the training data. It is a measure
of the quality of the map (Yin and
Allinson, 1995).

The Kolmogorov-Smirnov (KS)
test is performed for each variable
and the DME is the proportion of
variables that fail the test. The KS
test has two main advantages: it is
a non-parametric test and it can be
applied for comparing series with
a different number of elements
such as the experimental data and
the codebook. See (Ponmalai and
Kamath, 2019) for more details.
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The visualization of the output produces a high-dimensional data pro-
jection in a bi-dimensional space while retaining the topological structure
of the input data, thus mapping together similar samples (Wienke et al.,
1995). This feature allows the extraction of meaningful information also
from large and complex data (Licen et al., 2020a). For comparison, when
analyzing large datasets using techniques such as PCA, the graphical repre-
sentation of the results has to be optimized using density scatterplots for
allowing visual exploration.

Another advantage of the SOM algorithm is that it is relatively resistant
tomissing data (Astel et al., 2007). During the learning process, the similar-
ity measure can be also calculated for sample vectors containing missing
values, because the corresponding variables are selectively excluded from
the calculations (Clark et al., 2020). Moreover, the SOM algorithm can be
successfully used for a posteriori estimation of missing values as shown in
Folguera et al. (2015)who reported an application concerning environmen-
tal datasets.

The SOM algorithm is also able to deal with data noise (Ponmalai and
Kamath, 2019; Vesanto, 1999). This feature is particularly important
when modeling data recorded by instruments. The positive side effect of
this aspect is that the model in not affected too much by outliers (Muñoz
and Muruzábal, 1998; Vesanto, 1999). A variable noise reduction needs a
two-step optimization that is represented in the SOM algorithm by the
Fig. 2. Hits and quantization error extraction re
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joined use of a vector quantization algorithm and a neighborhood function
(Yin, 2008). The weight of the nodes that are updated during the learning
process can be considered local averages of the data, thus similar sample
vectors except for the noise are associated to the same node. For the above-
mentioned property a two-step clustering that applies SOM followed by KM
ismore effective in terms of computational time and clustering quality than
applying KM only (Misra et al., 2020).

The SOM shows an easy way to identify possible outliers. The outliers
can be either isolated in a single node showing a high distance from the
neighbor nodes or they can be scattered onto the map (Muñoz and
Muruzábal, 1998). Outlier detection can be achieved by inspecting the
quantization error values, for example establishing a threshold above
which the related experimental data have to be checked (Licen et al., 2019).

3.5. Available software and tools

Several software and tools are available for performing the SOM calcu-
lation. The most used in the reviewed papers were: the SOM toolbox
(Vesanto and Alhoniemi, 2000) forMATLAB environment and the kohonen
package (Wehrens and Buydens, 2007; Wehrens and Kruisselbrink, 2018)
that works in the R environment (Team, 2016). Some studies used Kohonen
and CPANN toolbox (Ballabio and Vasighi, 2012) for MATLAB environ-
ment. Few studies used Statistica Neural Networks, SPSS, Australian
SiroSOM® software, Statistica 8.0.

Although not present in the reviewed papers, among the tools prepared
in R environment, it is worth adding to the list some recent packages:
(i) SOMbrero package (Olteanu and Villa-Vialaneix, 2015) which provides
methods for handling numerical data, contingency tables, and dissimilarity
matrices and a GUI for training and visualization; (ii) somoclu package
(Wittek et al., 2017), which is a general toolbox for training SOMswith sup-
port for cluster and GPU computations, and interfaces to Python, MATLAB
and R; (iii) SOMEnv package (Licen et al., 2021) which is based on the
kohonen package (Wehrens and Kruisselbrink, 2018) with embedded
Vesanto heuristic rules (Vesanto and Alhoniemi, 2000) and a GUI for train-
ing and visualization of SOM, with some features dedicated to high fre-
quency data elaboration; (iii) aweSOM package (Boelaert et al., 2021)
which is based on kohonen package (Wehrens and Kruisselbrink, 2018)
and has a GUI for training and visualization of the SOM on numeric, cate-
gorical or mixed data. For a comparison of the tools see Table 3.

4. The SOM application to pollutant profiling in environmental com-
partments

The general scheme of the SOM method application covered by the re-
viewed papers is proposed in Fig. 4. As a rule, the data were pre-processed
using a normalization technique and then the SOM-basedmodelwas run. In
presentation (BMU= Best Matching Unit).



Fig. 3. (a) Self-Organizing Map, component planes, and (b) Unified distance matrix (U-matrix) representation.
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numerous studies variables different from pollutants were also considered,
such as meteorological factors, land use, matrix physical properties, dis-
tances from possible pollution sources, etc. These variables were used ei-
ther for model training or improving model interpretation as covariates.
In several papers, the SOM was used for data dimensionality reduction
and the output matrix (codebook) underwent a 2nd level abstraction using
another multivariate technique for revealing possible clusters in the sam-
ples. Some studies reported on the independent use of different multivari-
ate techniques applied to the data and related results in comparison with
SOM model outcomes.

The number of processed samples spanned from a few dozen to tens of
thousands, the latter usually in the case of data recorded by high-frequency
instruments. The dimensionality of environmental monitoring data sets
could differ from 1D when only pollutants and sampling stations (sites)
were included to 2D or 3D in data sets where time (seasons), depth, or cer-
tain fractions of the investigated environmental compartment were consid-
ered. The SOM has the ability to represent models for each dimension
(time, depth) in 2D and 3D data sets. This “unfolding” provides an opportu-
nity for the creation of SOM-based models such as “time vs pollutants” for
each site or “depth vs pollutants” for each site.

In Table 4 a list of all the discussed papers is presented. Information
about the environmental compartment, considered variables, combined
multivariate techniques, and the scope of the study are reported. The papers
are listed by environmentalmatrix and by thefirst author. As regards the air
compartment the papers were grouped according to the use of meteorolog-
ical data in the model building: (Set 1) studies that considered pollutant
data only; (Set 2a) studies using both pollutant and meteorological data
as training data; (Set 2b) studies using meteorological data as training
data, and pollutant concentrations as associated data; (Set 2c) studies
7

using pollutant concentrations as training data, and meteorological data
as associated data.

In the following paragraphs, the paper content is discussed focusing on:
(i) the different ways of extracting information from themodel, with special
attention to visualizationmethods; (ii) the coupling of SOMwith a 2nd level
abstraction technique; (ii) the comparison to othermultivariate analyses in-
dependently applied to the experimental data. Finally, approaches related
to different applications, such as single/multi-component compartments
and spatial/temporal variations, are discussed.

4.1. Information extraction from the SOM model

After training, the SOM outcomes were explored for identifying similar
samples. The visualization of the hits as sample names depicted on the SOM
map was often used. This method allows to assess of sample grouping and
finding qualitative correlations with sample categories (site, collection
time, depth) (Carrillo et al., 2021; Geng et al., 2021; Jiang et al., 2021; Ki
et al., 2017; Liu et al., 2019; Noh et al., 2016; Olkowska et al., 2014;
Tudesque et al., 2008; Zhu et al., 2020). This method cannot be applied if
the number of samples is too large. In the latter case, the nodes were
depicted with a size proportional to the number of hits (Åkesson et al.,
2015; Hossain Bhuiyan et al., 2021; Licen et al., 2019; Orak et al., 2020;
Pandey et al., 2015). The comparison between the hits and the component
planes easily reveals the most polluted samples. In some papers, the weight
of the nodes was drawn on the SOMmap by use of pie charts (Chang et al.,
2020; Ladwig et al., 2017; Liao et al., 2020; Tsuchihara et al., 2020). The
afore-mentioned visualization is useful because it collects a variety of infor-
mation in one figure, but it is not applicable if the number of nodes is more
than one hundred because the figure could be scarcely readable.



Table 3
Description of the main available software tools for calculating and visualizing Self-Organizing Map models.

Tool SOM toolbox
(Vesanto and
Alhoniemi, 2000)

Kohonen and CP-ANN
toolbox (Ballabio and
Vasighi, 2012)

kohonen package (Wehrens and
Buydens, 2007; Wehrens and
Kruisselbrink, 2018)

SOMbrero package
(Olteanu and
Villa-Vialaneix, 2015)

somoclu library
(Wittek et al.,
2017)

SOMEnv
(Licen et al.,
2021)

aweSOM
(Boelaert
et al., 2021)

Software
environment

MATLAB MATLAB R software R software Multiplatform
(Python, R
software, MATLAB)

R software R software

Shape of the
map

Rectangular or
toroidal

Rectangular or toroidal Rectangular or toroidal Rectangular Rectangular or
toroidal

Rectangular Rectangular

Shape of the
nodes

Rectangular or
hexagonal

Rectangular Rectangular or hexagonal Rectangular or
hexagonal

Rectangular or
hexagonal

Hexagonal Hexagonal

Number of
nodes

Heuristic rules
available

User choice User choice User choice User choice Heuristic
rules
available

User choice

Map
dimension
ratio

Heuristic rules
available

Squared maps only
(ratio = 1)

User choice User choice User choice Heuristic
rules
available

User choice

Codebook
initialization

Random, random
samples,
eigenvalues based

Random, eigenvalues
based, genetic algorithm

Random or user choice Random, random
samples, eigenvalues
based

Random,
eigenvalues based

Eigenvalues
based

Random,
eigenvalues
based

Similarity
measure

Euclidean Euclidean Sum of squares, Euclidean,
Manhattan, Tanimoto

Euclidean, maximum,
Manhattan, Canberra,
Minkowski,
Letremy

Euclidean Euclidean Sum of
squares

Neighborhood
function

Bubble, gaussian,
cut-gaussian,
Epanechnikov

Gaussian Bubble, gaussian Gaussian, Letremy Bubble, gaussian Bubble,
gaussian

Bubble

Number of
epochs

Heuristic rules
available

User choice User choice User choice User choice Heuristic
rules
available

User choice

Training
algorithm

Sequential or batch Sequential or batch Sequential or batch Sequential Batch Batch Sequential

Neighborhood
radius

Default values or
user choice

Default values or user
choice

Default values or user choice Default values or user
choice

Default values or
user choice

Default
values or
user choice

Default
values or user
choice

Graphical User
Interface
(GUI)

No Yes No Yes No Yes Yes

User choicesFlowchart

Fig. 4.General scheme of the Self-Organizing Map (SOM)method flowchart (left) and corresponding possible user choices (right). The elements surrounded by dashed lines
are optional (KM = k-means clustering analysis; HCA = hierarchical cluster analysis; PCA = principal component analysis; PMF = positive matrix factorization; FA =
factorial analysis).
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Different techniques were used for finding possible correlations among
the variables: (i) visual exploration of the component planes (Alvarez-
Guerra et al., 2008; Carafa et al., 2011; Lee et al., 2019; Wang et al.,
2020); (ii) a correlation matrix evaluation and comparison with SOM out-
put (Dai et al., 2018; Guo et al., 2020; Xiao et al., 2021); (iii) the inspection
of the loading plot obtained by an independent PCA approach and compar-
ison with SOM output (Guo et al., 2020; Kebonye et al., 2021; Lee et al.,
2021; Noh et al., 2016); (iv) the application of the SOM algorithm on the
transposed codebook (Cheng et al., 2017; Rogowska et al., 2014;
Tobiszewski et al., 2010; Tsakovski et al., 2010b); (v) the use of Spearman
correlation coefficient (Åkesson et al., 2015). The (i) approach is straight-
forward and thus, especially useful when comparing SOMmodels obtained
by different runs starting from the same input data. The (ii) and (iii)
methods are interesting since they compare the results of different indepen-
dent techniques. The (iv) and (v) approaches are convenient for disclosing
non-linear relationships among the variables.

4.2. Second-level abstraction

Several studies presented a combined approach using SOM and KM al-
gorithms, some studies used HCA, and a few studies used PCA.

Regarding KMor HCA, as a rule, the cluster split was shown on the SOM
map by bold lines or different colors for visual comparison to component
planes. None of the studies tried different clustering methods applied to
the codebook. The preferred way was to use one clustering method on
the codebook and compare the results to a clustering method applied to
the experimental data. An analysis of the possibly different information
mined using diverse clustering algorithms applied to the codebook would
be interesting, especially considering the easy way of representation of
the cluster split on the SOM map. Two studies used fuzzy-KM (Lee et al.,
2019; Orak et al., 2020). The use of the latter is interesting because it allows
assigning the nodes to more than one cluster, thus highlighting spatial or
temporal transition “states” that are usually present in complex matrixes.

The variable profiles of the clusters were shown by different plots such
as bar plots (Astel and Małek, 2008; Chen et al., 2016; Tsakovski et al.,
2009), boxplots (Astel et al., 2016; Guo et al., 2020; Khedairia and
Khadir, 2012; Licen et al., 2020b; Yang et al., 2012), radar plots (Amiri
and Nakagawa, 2021; Kim et al., 2019; Nakagawa et al., 2020;
Tsuchihara et al., 2020). In some of the papers, the statistical difference
among the clusters was assessed by significance tests, such as Kruskal–
Wallis test (Astel et al., 2016; Chea et al., 2016; Olkowska et al., 2014;
Torres-Martínez et al., 2021; Tsakovski et al., 2010b), Mann-Whitney test
(Lee et al., 2019; Li et al., 2020a; Skwarzec et al., 2012), ANOVA (Carafa
et al., 2011; Dai et al., 2018; Li et al., 2020b). The use of a significance
test can confirm the reliability of the grouping and highlight the cluster
differences.

PCA was applied to the codebook for different scopes. In (Carafa et al.,
2011) a biplot obtained by PCA was used to identify the variables that em-
phasize the differences among clusters previously obtained by applying
HCA to the codebook. (Yu et al., 2021) applied PCA to the transposed code-
book for identifying the variables that highlighted the differences among
the SOM map areas thus inferring a clustering rule based on the specific
effects of the variables on the water quality.

4.3. Comparison of the SOM outcomes to different multivariate analyses

Multivariate techniques diverse from SOM were applied to the
experimental data either for adding complementary information or for
comparison with SOM outcomes. When utilizing different multivariate
techniques, it is preferable to display the applied method in a flowchart
for elucidating the different scopes. Some examples are reported in
(Alvarez-Guerra et al., 2011; Chang et al., 2020; Cheng et al., 2017;
Kebonye et al., 2021; Wesolowski et al., 2006; Yang et al., 2012; Yu et al.,
2021; Zhu et al., 2020).

Some studies used PCA for assessing variable correlation (see par. 4.1).
Several studies assessed the source apportionment to be compared with
9

SOM clustering. They used PMF (He et al., 2021; Hossain Bhuiyan et al.,
2021; Li et al., 2021; Li et al., 2020b; Tao et al., 2017; Wang et al., 2020),
FA (Chen et al., 2016; Jampani et al., 2018; Kumar et al., 2021; Wang
et al., 2015b), and PCA (Dai et al., 2018; Mao et al., 2021; Noh et al.,
2016). (Yang et al., 2012) used HCA and LDA before the SOM to analyze
the whole dataset characteristics aiming to set the optional clustering pat-
tern in spatial and temporal ways separately. Using the SOM and KM, the
clustering obtained by HCA was validated and visualized on the SOMmap.

In the following paragraphs, the studies reporting a performance com-
parison between the SOM and other multivariate techniques are presented.

4.3.1. PCA
(Veses et al., 2014) aimed to determine the spatial distribution of heavy

metals and total PAHs in a river basin. The sediment sample classification
provided by PCA was not as useful as the one provided by the SOM, reveal-
ing itself as a powerful tool to be integrated with the first steps of sediment
quality assessments. The authors prepared a useful summary table for pre-
senting the benefits and drawbacks of the use of the two statistical analyses
for the specific scope of the study. (Gontijo et al., 2021) analyzed the sedi-
ment content of humic and fulvic acids in an artificial reservoir. The authors
found that both techniques could be efficiently used to cluster data and in-
terpret results. However, they highlighted the advantages of SOM over
PCA, such as the visualization features and the capability to retain data to-
pology and deal with noisy andmissing data. (Xiao et al., 2021) calculated a
SOMmodel considering samples collected both in the wet and dry seasons.
A PCA model was obtained for each season. Both approaches allowed
identifying anthropogenic and natural sources. The SOM approach proved
to be effective because it presented meaningful results even if the season
were processed together. In (Amiri and Nakagawa, 2021) two separate
SOM-based models were built using data collected during the dry and wet
seasons, respectively in a coastal aquifer. The SOMoutput enabledmore ac-
curate clustering without overlaps with respect to PCA.

4.3.2. HCA
(Yotova et al., 2018) focused on toxic elements present in soil and their

phytoavailability in an industrial area with copper mining factories and
smelters. Both HCA and SOM provided similar grouping of the sampling
sites. The SOMwas able to discriminate some specific sites with intermedi-
ate pollution characteristics. (Jampani et al., 2018) analyzed groundwater
physicochemical properties in long-term wastewater irrigated systems.
HCA was used for variable clustering and the results were compared to
the SOM component planes. The SOM gave insight into some variable be-
havior that was misinterpreted by HCA.

4.3.3. HCA and KM
(Lu et al., 2006) used SOM followed by KM to classify the PM10

distribution in Taiwan and identify “air-quality basins” with different im-
pacts. Geometric means and geometric standard deviations in each of the
five air-quality basins were found significantly different from each other
for the SOMmethod by the Waller–Duncan k-ratio t-test. The grouping ob-
tained by HCA and KM was less reliable. (Pearce et al., 2014) elaborated
eight years of daily multi-pollutant concentrations collected at different
monitoring stations in Atlanta identifying daily recurrent patterns. The out-
comeswere comparedwith KMandHCA finding consistent results but with
the SOM adding more insight into between-class relationships.

4.3.4. HCA and PCA
(Alvarez-Guerra et al., 2008) independently mined a sediment dataset

both with HCA and PCA. They concluded that the powerful visualization
tools of the SOM facilitated the task of establishing an order of priority be-
tween the groups of sites depending on their need for further investigations
or remediation actions in subsequent management steps. (Vignati et al.,
2013) study dealt with heavy metal contamination in sediments. SOM re-
sults confirmed the information obtained by HCA and PCA. SOM allowed
a better overview of how the different sediment characteristics were
reflected across the sites. (Yotova et al., 2021) proposed an approach



Table 4
List of reviewed papers and main information therein.

Document Environmental
compartment/s

Sampling dimensions 2nd level
abstraction

Independent
multivariate technique/s

Pollutant/s and other variables Main objective

(Alvarez-Guerra et al., 2011) Air (Set1) 2D (stations, years) KM – NO2, SO2, PM10, O3, CO, NOx Classification of Spanish air quality monitoring
stations

(Gulson et al., 2007) Air (Set1) 2D (stations, years) – – Elements in PM2.5, Pb isotopes Fingerprint identification of different sources of
PM2.5 in rural and urban sites in Australia

(Lu et al., 2006) Air (Set1) 2D (stations, seasons) KM HCA PM10 Classification of the seasonal and spatial
distribution of PM10 in Taiwan

(Neme and Hernández, 2011) Air (Set1) 2D (stations, years) – – NO2, NO, O3, SO2, CO, Pb, PM2.5, PM10 Assessment of the correlation and evolution of
pollutant patterns during eight years in Mexico
City

(Pearce et al., 2016) Air (Set1) 2D (stations, years) – – CO, NO2, NOx, O3, SO2, PM2.5 Characterization of the spatial distribution of
pollutants in Atlanta (Georgia)

(Tsakovski et al., 2012b) Air (Set1) 1D (stations) KM PCA inorganic trace elements, ionic species, OC, EC, PAHs, azarenes (in
PM10)

Identification of different pollution sources in
Krakow (Poland)

(Wesolowski et al., 2006) Air (Set1) 2D (stations, years) – PCA, MLP NO2, SO2, PM, PAHs Analysis of seasonal pollution patterns in Gdansk
(Poland) and comparison

(Astel et al., 2013) Air (Set2a) 2D (stations, seasons) KM – BTEX, meteorological data Assessment of multi-year spatial and temporal
variations of pollutant signatures in Trieste(Italy)

(de Oliveira et al., 2019) Air (Set2a) 2D (stations, years) KM – NO2, CO, CO2, O3, meteorological data Identification of spatial and daily variation of air
pollution signatures in Sao Paulo (Brazil)

(Nathan and Lary, 2019) Air (Set2a) 1D (stations) – – Hydrocarbons, meteorological data Identification and regional scale distribution of
pollutant patterns from different sources in Texas

(Zhong et al., 2017) Air (Set2a) 2D (stations, years) KM – Fluoride in PM, meteorological data Assessment of the spatial distribution of pollution
level and inhalation exposure of fluoride near a
mining and smelting facility in China

(Crawford et al., 2016) Air (Set2b) 2D (stations, years) – – PM2.5 (H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,
Br, Pb therein), meteorological data

Identification of multi-year synoptic weather types
related to different pollutant concentrations in the
Sidney Region (Australia)

(Khedairia and Khadir, 2012) Air (Set2b) 2D (stations, years) KM MLP NO, CO, O3, PM10, NOx, NO2, SO2, meteorological data Identification of typical meteorological conditions
in an Algeria region and their relation to pollutant
concentrations

(Jiang et al., 2016) Air (Set2b) 2D (stations, years) – – O3, meteorological data Identification of synoptic weather types related to
ozone concentration exceedances in Sidney
(Australia)

(Liao et al., 2020) Air (Set2b) 2D (stations, seasons) – – PM2.5, meteorological data Assessment of multi-year spatial and temporal
variation of PM2.5in dry-season related to synoptic
circulation types in the Pearl River Delta Region
(China)

(Bougoudis et al., 2014) Air (Set2c) 2D (stations, years) – ML-ANN O3, NO, NO2, CO, SO2, meteorological data Assessment of multi-year air quality clusters, with
extreme pollution events identification in Attica
region (Greece)

(Chang et al., 2020) Air (Set2c) 2D (stations, years) – BPNN PM2.5, meteorological data Assessment of spatio-temporal variations of PM2.5

concentration profiles in northern Taiwan
(Romanić et al., 2018) Air (Set2c) 2D (stations, seasons) – – PCBs, OCPs, meteorological data Assessment of seasonality variation of pollutant

patterns in Zagreb (Croatia)
(Licen et al., 2018) Air (Set2c) 1D (stations) KM – Odor, benzene, H2S, CO, meteorological data Identification of pollution events related to

industrial sources at a residential site in Trieste
(Italy)

(Licen et al., 2019) Air (Set2c) 2D (stations, years) KM – PM size fractions, PM10, meteorological data Identification of the PM size fraction pattern of
different industrial sources at two residential sites
in Trieste (Italy)

(Licen et al., 2020a) Air (Set2c) 2D (stations, years) KM – PM size fractions, PM10, meteorological data Multi-annual variation of PM size fraction pattern
of industrial sources at a residential site in Trieste
(Italy)

(Licen et al., 2020b) Air (Set2c) 1D (stations) KM – odor, TVOC, meteorological data Assessment of the pollution pattern profiles of
different industrial sources in Viggiano (Italy)
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(Pearce et al., 2014) Air (Set2c) 2D (stations, years) – – CO, NO2, NOx, O3, SO2, PM2.5, meteorological data Multi-year analysis of pollution day types in
Atlanta (Georgia) for developing a multipollutant
metric of air quality

(Wu et al., 2017) Air (Set2c) 2D (stations, years) – – PM2.5, meteorological data Assessment of annual cycle spatial distribution of
PM2.5 concentration signatures in East Asia

(Alvarez-Guerra et al., 2008) Sediment (estuaries) 1D (stations) KM HCA, PCA TOC, As, Cr, Cu, Fe, Mn, Ni, Pb, Zn, PAHs, ecotoxicity Identification of spatial pollutant patterns and
relation with sediment physical properties (Spain)

(Arias et al., 2008) Sediment (dock) 3D (stations, depth,
fractions)

– – Cu, Co, Mn, Ni, Cr, Pb, Zn, Fe, Mg, Ca, K, Na Assessment of metal contamination and relation
with their mobility in the matrix (Spain)

(Chen et al., 2016) Sediment (coastal) 1D (stations) – HCA, FA TS, TN, TP, Eh, TOC, Cu, Pb, Zn, Cd, Cr, Hg, As Assessment of the spatial distribution of heavy
metal contamination in surface sediment (China)

(Dai et al., 2018) Sediment (lake) 2D (stations, depths) KM PCA Cr, Cu, Cd, Pb, Zn Assessment of the geoaccumulation patterns of
pollutants (China)

(Gontijo et al., 2021) Sediment (reservoir) 1D (stations) – PCA Humic and fulvic acids, isotopes Identification of the origin and quality of
sedimentary organic matter (Brazil)

(Ladwig et al., 2017) Sediment (lakes) 2D (stations, depths) – PCA, KM K, Ca, Ti, Rb, Zr, Sr, Mn, Fe, Cr, Cu, Zn, Pb Identification of the evolution of pollutant patterns
related to lake management history (Germany)

(Li et al., 2020b) Sediment (river,
suspended particulate
matter)

2D (stations, years) KM PMF PAHs Assessment of the influence of anthropogenic
activities on pollutant spatial and temporal
patterns (Central Europe)

(Rogowska et al., 2014) Sediment (coastal) 2D (stations, depth) KM – Cd, Co, Cr, Cu, Fe, Hg, Mg, Mo, Ni, Pb, V, Zn, PAHs, PCBs Evaluation of the pollution pattern and ecotoxicity
due to a Second World War shipwreck (Poland)

(Tsakovski et al., 2009) Sediment (lake) 1D (stations) KM – Cr, Cu, Ni, V, Fe, Al, Li, Cd, Pb, As, Hg, PAHs, PCBs, pesticides Assessment of relationship between pollutant
spatial distribution and ecotoxicity (Poland)

(Tsakovski et al., 2012a) Sediment (lagoon) 2D (stations,
compartments)

KM – Zn, Cu, Mn, Pb, Cd Assessment of the relationship between heavy
metal spatial distribution and ecotoxicity (Spain)

(Veses et al., 2014) Sediment (river) 1D (stations) KM PCA Cd, Cu, Ni, Pb, Zn, Hg, As, Cr, PAHs Assessment of freshwater sediment quality in a
large area (Spain)

(Vignati et al., 2013) Sediment (river) 2D (stations, years) KM PCA, HCA Cd, Co, Cr, Cu, Ni, Pb, V, Zn, TiO2, Fe2O3, MnO, CaCO3, TOC Identification of the spatial and temporal patterns
of pollutants (Romania/Ukraine)

(Wang et al., 2015a) Sediment (river) 1D (stations) KM FA, PMF PAHs Assessment of pollutant pattern spatial
distribution and relation with health risk (Taiwan)

(Wang et al., 2020) Sediment (lake) 2D (stations, years) KM PMF Cr, Mn, Ni, Cu, Zn, As, Cd, Hg, Pb Assessment of anthropogenic sources of heavy
metals (China)

(Carrillo et al., 2021) Sediment/soil
(biological reserve
wetland)

2D (stations, seasons) – PCA, HCA Cu, Cd, Co, Mo, Ni, V, As, Ba, Pb, Zn, Cr Assessment of the spatial distribution of
contamination and ecological risk index levels
(Ecuador)

(Cheng et al., 2017) Sediment/soil
(reservoir catchment)

1D (stations) KM – As, Cd, Cr, Cu, Mn, Ni, Pb, Zn, soil depth Identification of pollutant patterns related to
flooded levels and land-use types in Manwan
(China)

(He et al., 2021) Soil (surface and
subsurface soil of
different land uses)

2D (stations and
depths)

KM PMF Cd, Cr, Cu, Pb, Zn Evaluation of the spatial distribution and sources
of toxic elements and relation with land use
(China)

(Hossain Bhuiyan et al., 2021) Soil (agricultural top
soil)

1D (stations) KM PMF Fe, Mn, Cr, Co, Ni, Cu, Zn, As, Pb, Cd Identification of sources and spatial pattern of
pollutants in agricultural soils (Bangladesh)

(Kebonye et al., 2021) Soil (topsoil near a
mine)

1D (stations) KM, PCA – Cd, As, Pb, Sb, Zn, oxidizable carbon, pH Mapping of pollutant hotspots in soils near a
Pb\\Ag ore mine (Czech Republic)

(Li et al., 2021) Soil (topsoil near a
lead- smelting
factory)

1D (stations) KM PMF Pb, Zn, Cu, As, Cr, Mn, Ni, Fe Assessment of pollutant patterns in a residential
area near a factory (China)

(Tao et al., 2017) Soil (topsoil at the
regional scale)

1D (stations) – PMF PAHs Identification of the spatial distribution and
sources of PAHs in northern China

(Yang et al., 2014) Soil (topsoil at the
regional scale)

1D (stations) – – Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, and Mn Identification of different environmental quality
categories and anomaly detection (China)

(Yotova et al., 2018) Soil (topsoil near
industrial areas)

1D (stations) HCA – As, Cd, Cr, Cu, Mn, Ni, Pb, Zn, pH, TOM, CaCO3 Assessment of the spatial distribution of
contaminants in an industrial area and relation to
phytoavailability (Bulgaria)

(Åkesson et al., 2015) Water (groundwater) 1D (stations) PCA – pesticide pollution degree, well filter, water age group, redox state,
aquifer confinement, aquifer type, land use

Evaluation of pesticide patterns in public supply
wells in Sweden

(continued on next page)
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Table 4 (continued)

Document Environmental
compartment/s

Sampling dimensions 2nd level
abstraction

Independent
multivariate technique/s

Pollutant/s and other variables Main objective

(Amiri and Nakagawa, 2021) Water (groundwater) 2D (stations, seasons) KM PCA Mg2+, Ca2+, K+, Na+, NO3
−, SO4

2−, Cl−, F−, HCO3
−, CO3

2−, pH,
TDS, Eh, EC, Al, As, B, Br, Ba, Rb, Si, Sr, U, Zn

Assessment of spatiotemporal variations of
groundwater quality in a coastal aquifer (Iran)

(Astel and Małek, 2008) Water (rainfall) 2D (stations, years) KM PCA Cl−, NO3
−, SO4

2−, F−, NH4
+, Na+, K+, Ca2+, Fe2+, Mg2+, Mn2+,

Zn2+
Characterization of pollution sources using rainfall
sampling (Poland)

(Astel et al., 2016) Water (coastal lakes) 2D (stations, years) KM – SAL, WT, DO, Chl-a, pH, Cond., BOD, COD, Cl−, Br−, NO2
−, NO3

−,
PO4

3−, SO4
2−, Na+, K+, Ca2+, Mg2+, NH4

+, Ni, Cu, Zn, Fe, Mn
Spatiotemporal variation of pollutant patterns in
intermittently open-closed coastal lakes in Poland

(Carafa et al., 2011) Water (river) 1D (stations) HCA, PCA – PAHs, pesticides, BTEX, NH4
+, As, Ba, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb,

Sb, Se, Zn
Assessment and spatial distribution patterns of
water toxicity (Spain)

(Chea et al., 2016) Water (river) 2D (stations, seasons) HCA – WT, Cond., TSS, pH, DO, Na+, K+, Ca2+, Mg2+, Cl−, SO4
2−, HCO3

−,
NO3

−, TP, COD, total ammonia
Assessment of spatial variability of water quality
in the Mekong Basin (Asia)

(Geng et al., 2021) Water (lake) 2D (stations, years) KM – pH, COD, BOD, NH3, TP, TN Assessment of the difference in water quality
between urban and suburban rivers (China)

(Guo et al., 2020) Water (lakes) 2D (stations, years) HCA PCA WT, WD, SD, Cond., DO, pH, Tur, Cl−, ALK, TH, TP, TN, N-NH4,
N-NO3, Chl-a, TSS, COD, Cu, Zn, As, Ni, Cd, Pb, Co, Cr, Mn, Fe, Al

Assessment of water quality and pollutant
contamination and relation to eutrophication of
three lakes in China

(Jampani et al., 2018) Water (groundwater) 2D (stations, years) – FA, HCA pH, Cond., DO, HCO3, H2SO4, Cl−, Mg2+, Ca2+, F−, PO4
3−, NO3

−,
TDS, SO4

2−, Na+, K+
Assessment of multi-annual water pollution levels
in a river basin in China

(Jiang et al., 2021) Water (river) 1D (stations) KM – TDS, Mg2+, Ca2+, K+, Na+, NH4
+, NO3

−, SO4
2−, Cl−, F−, HCO3

−,
CO3

2−, As, Mn, Fe, V, Cu
Assessment of the difference in water quality
between urban and suburban rivers (China)

(Ki et al., 2017) Water (river) 2D (stations, years) – – pH, DO, EC, BOD, COD, TOC, TN, TP, SS Identification of water pollution hotspots in a
tributary river network (South Korea)

(Lee et al., 2019) Water (groundwater) 1D (stations) fuzzy- KM – pH, Eh, DO, Cond., Na+, K+, Ca2+, Mg2+, Cl−, NO3
−, SO4

2−, HCO3
−,

SiO2

Assessment of water quality in a complex urban
groundwater network (South Korea)

(Lee et al., 2021) Water (groundwater) 2D (stations, years) HCA PCA NO3
−, pH, SO4

2−, Cl−, F−, Al, Mn, Pb, Zn, Fe, As, Cu, turbidity Assessment of the land use effect on shallow
groundwater contamination (South Korea)

(Li et al., 2020a) Water (groundwater) 2D (station, 2
campaigns)

KM – TDS, pH, K+, Na+, Ca2+, Mg2+, NH4
+, HCO3

−, Cl−, SO4
2−, NO3

−, F−,
Fe2+, Mn, CO2

Evaluation of spatiotemporal variation of
groundwater quality in Beijing (China)

(Mao et al., 2021) Water (groundwater) 1D (stations) KM PCA Ca2+, Mg2+, Cl−, Na+, K+, HCO3
−, NH4

+, NO3
−, Fe, Mn, pH, Eh Identification of spatial air quality patterns and

nitrogen pollution (China)
(Nakagawa et al., 2020) Water (groundwater) 2D (station, 2

campaigns)
HCA – Fe, Mn, dissolved SiO2, NO2

−, NO3
−, SO4

2−, Cl−, F−, Na+, K+, Mg2+,
Ca2+, pH

Assessment of the earthquake effect on the
groundwater quality (Japan)

(Noh et al., 2016) Water (artificial
reservoir)

2D (stations, years) KM PCA WT, DO, Cond., pH, Chl-a, SPM, DOC, SO4
2−, NO3

−, Hg species, TN,
TP

Identification of the correlation between the Hg
species variation and specific water quality levels
in artificial reservoirs South Korea

(Olkowska et al., 2014) Water (river) 2D (station, seasons) KM – pH, Cond., F−, Cl−, Br−, NO2
−, NO3

−, SO4
2−, PO4

3−, Li+, Na+, NH4
+,

Mg2+, Ca2+, Be, Co, Cu, Mo, Ag, Cd, Sb, Tl, Pb, U, Ba, B, V, Zn, Cr,
As, Se, Mn, Al, Ni, Sn, Cs, Rb, Sr, formaldehyde, PAHs, PCBs, TOC,
COD

Evaluation of the impact of heavy industry and
heat and electricity production on water quality
(Poland)

(Orak et al., 2020) Water (river) 2D (stations, years) fuzzy-KM – NH3, NO3
−, NO2

−, PO4
3−, DO, BOD, T Identification of water quality classes (Turkey)

(Souid et al., 2020) Water (groundwater) 1D (stations) HCA – pH, SAL, Cond., TDS, HCO3
−, F−, Cl−, Br−, NO3

−, NO2
−, SO4

2−, Na+,
K+, Ca2+, Mg2+, Li+

Identification of salinization processes in
groundwater in Jerba Island (Tunisia)

(Tobiszewski et al., 2010) Water (river) 1D (stations) KM – WT, PAHs, chlorinated solvents, NO3
−, PO4

3−, SO4
2− Identification of pollution sources and their spatial

patterns (Poland)
(Torres-Martínez et al., 2021) Water (coastal wells) 2D (stations and

depths)
KM – T, pH, DO, total dissolved solids (TDS), and EC, Ca2+, Mg2+, Na+,

K+, HCO3
−, Cl−, NO3

−, SO4
2−, isotopes

Determination of nitrate and sulfate pollution
sources and transformation related to seawater
intrusion (Mexico)

(Tsakovski et al., 2010a) Water (river) 2D (stations, years) – – pH, DO, oxidation ability, BOD, COD, dissolved matter,
non-dissolved matter, Cl−, SO42−-S, NH4

+-N, NO3
−-N, Fe2+

Identification of spatial and temporal water
quality (Bulgaria)

(Tsakovski et al., 2010b) Water (runoff) 1D (stations) KM – PAHs, PCBs, Zn, Cl−, NO3
−, SO4

2−, Na+, NH4
+, K+, Ca2+ Assessment of pollution sources of contamination

in runoff water from roofs (Poland)
(Tsuchihara et al., 2020) Water (groundwater) 1D (stations) HCA – Mg2+, Ca2+, K+, Na+, NO3

−, SO4
2−, Cl−, 222Rn, isotopes Identification of groundwater recharge sources

(Japan)
(Tudesque et al., 2008) Water (river) 2D (stations, years) HCA – Cond., BOD, DO, pH, SM, T, Cl−, NO3

−, NO2
−, SO4

2−, PO4
3−, HCO3

−,
Na+, NH4

+, K+, Ca2+, NH3

Assessment of water quality changes in a river
basin during three decades (France)

(Wang et al., 2015b) Water (river) 1D (stations, years) KM FA pH, DO, BOD, COD, TSS, NH3-N, Cd, Pb, Cr, Cu Identification of spatiotemporal variation of
pollutants in dependence of natural and
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combining the SOM technique with the WQI. The three factors of WQI cal-
culated for each water river sample were used for building the model. The
SOM showed comparable results to both techniques, but the SOM provided
better separation of the sampling stations according to the water quality
classes. Furthermore, the HCA dendrogramwas overcrowded, thus difficult
to interpret. On the contrary, the hits plotted on the SOMmap were easily
readable. (Pandey et al., 2015) considered the pollutant exchange between
water and sediment in a river in the proximity of several different industrial
sources. The output analysis proved that SOM was more efficient in the
characterization of the spatiotemporal distribution of pollutants and source
identification.

4.3.5. Supervised artificial neural networks
In some air quality studies, the SOM results were compared with super-

vised methods based on artificial neural networks. (Wesolowski et al.,
2006) used SOM for confirming MLP results and found very good agree-
ment in sample classification by season. (Khedairia and Khadir, 2012)
used SOM followed by KM for identifying clusters representing different
meteorological classes. Then the authors used MLP for modeling the rela-
tionship between air pollutant concentrations and meteorological parame-
ters within each cluster. (Bougoudis et al., 2014) usedML-ANN to assess the
SOM reliability finding a correct classification of above 80% andmisclassi-
fication issues for severe pollutant events. (Chang et al., 2020) used SOM to
identify high pollutant events and BPNN for predicting the events. They
found that the prediction of high pollution events was less effective without
previously classifying the samples by SOM.

4.4. Single-compartment studies

4.4.1. Spatial studies
Most of the studies aiming to assess the spatial distribution of pollutants

was focused on sediment and soil compartments, while only a few of them
concerned air or water ecosystems.

The clustering results were generally used for identifying gradients of
contamination in the investigated area and possible hotspots. In some stud-
ies the sample classification was reported on the corresponding points in a
geographical map by different symbols or colors (Carafa et al., 2011; Cheng
et al., 2017; He et al., 2021; Hossain Bhuiyan et al., 2021; Lee et al., 2019;
Mao et al., 2021; Nathan and Lary, 2019).

As a rule, the whole experimental dataset was used for SOM training.
This approach has the advantage that one or some sample categories such
as site distances or collection depth are usually hidden to the SOM algo-
rithm. Thus, observing the classification proposed by themodel and consid-
ering the known categories, the reliability of the SOM model can be
assessed.

Alternatively, some papers presented specific dataset splitting accord-
ing to the scope of the study. In (Tao et al., 2017) the distribution of
PAHs in surface soil was examined. The SOMwas applied both to the abso-
lute concentration PAH dataset and to the proportion of each PAH to the
total content. The former model was used to classify the samples, the latter
was used to detect possible different sources. (Jiang et al., 2021) collected
samples of two tributaries of the same river, one that crosses an urban
area and the other in a suburban area. A single SOM model for each tribu-
tary was built to independently detect sources that affected water quality.
The purpose of (Rogowska et al., 2014) was to determine the possible ef-
fects of a shipwreck on marine sediment contamination both by heavy
metals and POPs. Moreover, ecotoxicity tests were performed. A SOM-
based model was built using all the collected data for a first exploration
of the site and pollutant distribution, then a SOM-based model was built
separately for each level of the sediment core. The comparison among the
models' outcomes allowed the identification of the pollutant spatial pat-
terns and the most impacted areas as well as to interpret of the ecotoxicity
data. (Licen et al., 2019) collected PM fractions data at twomonitoring sites
near an industrial facility and built an independent SOM model coupled
with KM for each site. The approach allowed identifying similar and differ-
ent sources impacting the sites aswell as the background air profile. Several
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studies used Piper or trilinear diagrams for characterizing water samples
however, only two of them plotted the cluster classification obtained by
SOM onto the diagram for a combined interpretation (Mao et al., 2021;
Tsuchihara et al., 2020). The latter can give more insight into water class
classification because it adjoins the results of two different techniques in
a single figure. (Tsuchihara et al., 2020) also plotted on a geographical
map hexadiagrams representing groundwater characteristics colored by
cluster split. Moreover, the cluster assignment in graphs representing the
specific isotopic ratios for identifying the sources that affected groundwater
quality was highlighted. (Dai et al., 2018) collected surface and core sedi-
ments for assessing the relation in heavy metal content at different depths.
The cluster obtained were represented in terms of the geo-accumulation
index for eachmetal at each depth. The relations among the concentrations
at different depths were obtained by exploring the distances among the cor-
responding nodes on the SOM map. (Tsakovski et al., 2009) built a SOM-
based model using pollutant concentrations in lake sediments. Mortality
and ecotoxicity indexes were not an input for the model but they were plot-
ted mimicking a SOM heatmap according to the sample assigned to the
nodes. In this way, the accordance and relationship between the pollutant
distribution and the indexes were reliably assessed.

4.4.2. Spatiotemporal studies
Most studies aiming to assess the spatial distribution of pollutants was

focused on air and water compartments, while only a few of them con-
cerned soil or sediments. The SOM model was used to disclose spatial pat-
tern in a similar way respect to the studies discussed in par. 4.4.1.

Typically, the whole experimental dataset was used for SOM training,
thus the time component was hidden to the SOM algorithm. Thus, observ-
ing the classification proposed by the model and considering the known
date/time of sample collection, the reliability of the SOMmodel in the iden-
tification of temporal patterns can be assessed. Several approaches for de-
tecting temporal patterns in the data were used. Visualization techniques
are usually preferred because they highlight information better than a
table or a text description. In the following lines, the main visualization
types found in the selected documents are presented.

Several papers annotated years (Geng et al., 2021; Yotova et al., 2021;
Yu et al., 2021), months (Astel et al., 2013; Wesolowski et al., 2006; Yang
et al., 2012), or seasons (Liu et al., 2019) on the SOM map. In (Licen
et al., 2018, 2020a; Tudesque et al., 2008; Yu et al., 2021) the temporal evo-
lution of representative compartment classes was visualized using arrow
trajectories on the SOM map. (Crawford et al., 2016; Jiang et al., 2016;
Liao et al., 2020; Wang et al., 2015b) presented the spatiotemporal varia-
tion of compartment classes in a combined visualization on a geographical
map. (Olkowska et al., 2014) showed the distribution of the hits in clusters
for different seasons in separate SOMmaps. (Chea et al., 2016) represented
the wet-dry season variation by boxplot of cluster profiles. In (Orak et al.,
2020; Yang et al., 2012) the temporal variation in relation to clusters was
depicted by scatter plots. (Chang et al., 2020) proposed a SOM map with
nodes displaying a representation of yearly, seasonal, and daily scale pollut-
ant concentrations presented by different types of graphs (bar plot, pie
chart). (Pearce et al., 2014) represented on the SOM map the percentage
of samples represented by each BMU according to years and season for
assessing the differences in pollutant characterization when compared
with the component planes. (de Oliveira et al., 2019) collected pollutant
and meteorological data by using an equipped vehicle driven along five
main urban roads of a Brazilian city. The SOMmodelwas used for assessing
variable correlations coupled to the recorded spatial positions of the vehicle
during the trips for identifying the more impacted areas.

Few studies split the experimental data before SOM training. In (Amiri
and Nakagawa, 2021) two separate models were built using data collected
in a coastal aquifer during the dry and wet seasons, respectively. The ob-
tained clusters were visualized on separate geographical maps for high-
lighting the temporal differences in water classes between the seasons. In
(Li et al., 2020a) two SOM-basedmodels were built dividing the groundwa-
ter samples into separated datasets according to the monitoring year. The
possible different cluster classification of the same sampling site were
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explored for assessing water quality evolution over time. In (Licen et al.,
2020a) particle counter data were collected for three years at an industrial
site and a SOM-based model was separately built for each year. The com-
parison allowed following the evolution of the cluster profiles over time ac-
cording to the changes in the management of the plant.

In most studies, a min-max or z-score normalization was applied. A dif-
ferent method was proposed by (Alvarez-Guerra et al., 2011) who used
“limit value quotients” (LVq) i.e. the quotients obtained by dividing the pol-
lutant concentration by its corresponding limit value present in the current
legislation. In the study, the authors used the SOM coupledwith KM to clas-
sify regulated pollutant distribution recorded by the Spain station network
and foster air quality management in identified critical areas. (Nakagawa
et al., 2020) aimed to assess the differences in groundwater quality before
and after an earthquake. A concentration ratio was calculated by dividing
the variable concentration measured just after the earthquake by an esti-
mated concentration using 5-year data before the earthquake. The concen-
tration ratio was used as input to the SOM calculations to evaluate the
earthquake-induced effects on groundwater chemistry.

4.5. Multi-compartment studies

Few studies reported multi-compartment analysis. Most of them pro-
posed awater/sediment combined analysis. Two illustrated a soil/sediment
analysis and one a water/soil/sediment analysis.

(Liu et al., 2019) aimed to assess the main physicochemical factors that
can affect the benthic community in a river basin. Thewhole water and sed-
iment dataset was used to build the SOM model and, a separate model for
the data regarding the benthic community was built as well. The SOM
model on compartment data proved to be very effective in site classifica-
tion. The comparison between the models was useful for identifying the
water and sediment pollutants affecting the benthic community. (Pandey
et al., 2015) considered the pollutant exchange between water and sedi-
ment in a river in the proximity of several different industrial sources. All
the samples were used to build the SOM model. The SOM proved to be
more efficient in the characterization of the spatial and temporal (monthly)
distribution of pollutants and source identification than conventional che-
mometric tools (PCA and HCA). (Kim et al., 2019) studied a river estuary
and its inner and outer bays. They collected physicochemical data for the
water compartment and heavy metal data for the sediment one for each
sampling site. The data were used together for building the model. The
sites were clustered and reliable results were obtained in association with
the spatial distribution of fish populations. (Kumar et al., 2021) analyzed
the heavy metal content of water and sediments in a river. A SOM-based
model was built for each compartment. The comparison of the component
planes and the distribution of the sites on the SOMmap were used for clas-
sifying the degree of pollution at each site. (Skwarzec et al., 2012) identi-
fied regions and seasons of increased inflow of radionuclides in two river
catchments optimizing the radiochemical monitoring network. The SOM
algorithm allowed the grouping of the sampling sites and following their
evolution according to the sampling time for assessing hotspots and radio-
nuclides sources.

(Cheng et al., 2017) proposed a SOM model built from a dataset com-
posed of toxic metals content of soil (inundated and not-flooded) and sedi-
ment samples. The authors decided to test the SOM classification
capabilities by feeding the algorithm with the whole dataset. The obtained
model was effective in detecting site classification and variable correlation.
Then, a model for each category was built. The latter was necessary to dis-
close severely polluted areas for the different categories that were not
pointed out by the first model. (Carrillo et al., 2021) built a separate SOM
model for each compartment (sediment and soil). The results indepen-
dently obtained were compared. This method allowed the identification
of the most impacted sites.

(Olawoyin et al., 2013) was the only study concerning three compart-
ments. The authors analyzed river delta samples of water, soil, and sedi-
ments for assessing the possible effects of petrochemical plants. A SOM
model was built separately for each category of variables and area. The
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outcomeswere compared both for variable behavior and sampling site clas-
sification. The SOMvisualization capabilities allowed highlighting of zones
of priority that might require additional investigations.

5. Conclusions

The SOM allows obtaining proper data classification without previous
knowledge about the data (Simeonova et al., 2010) and it shows useful ad-
vantages with respect to other popular chemometric tools (Astel et al.,
2007) as described in par. 3.4. Much more interpretation ability is gained
when the SOMmodel is merged with clustering algorithms and assessment
of the cluster's significance. The SOMoutputs can be easily visualized on 2D
dimensions to identify data patterns and relationships among variables
describing complex systems in various environmental compartments.
Moreover, while the SOMmodel is poorly affected by outliers, it is a useful
method to detect and visualize them (Muñoz and Muruzábal, 1998;
Muruzábal and Muñoz, 1997).

To date, several free software tools are available. Thus, this review aims to
encourage researchers who have to deal with environmental pollution issues
to use SOM for environmental pollution spatial and temporal distribution as-
sessment. Since every study presented in a paper has to be reproducible, we
suggest, as a guide for the authors, to: (i) clearly describe the SOM input
dataset (number of samples, number of variables and, the data unfolding as
described in par.4); (ii) clarify the data pretreatment used (min-max normali-
zation, Z-score, log-scaling, other); (iii) list the choice/value of all the input pa-
rameters presented in Table 2; (iv) make explicit the software and tools that
have been used for calculation; (v) useflowcharts for explaining howdifferent
multivariate techniques were employed in the study.

Moreover we recommend to take advantage of the exploration of all the
outputs for extracting valuable information, as illustrated in Table 2.
Finally, we encourage the users to try different visual representations for
emphasizing the spatiotemporal variations of pollutants in the environmen-
tal compartments.
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