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Anti–de Sitter space acts as an infrared cutoff for asymptotically free theories, allowing interpolation
between a weakly coupled small-sized regime and a strongly coupled flat-space regime. We scrutinize the
interpolation for theories in two dimensions from the perspective of boundary conformal theories. We show
that the appearance of a singlet marginal operator destabilizes a gapless phase existing at a small size,
triggering a boundary renormalization group flow to a gapped phase that smoothly connects to flat space.
We conjecture a similar mechanism for confinement in gauge theories.
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Introduction—A striking aspect of quantum field theory
(QFT) is the possibility that a classically marginal coupling
becomes dimensionful at the quantum level, generating an
energy scaleΛ from “nothing.” This induces drastic changes
in the low energy spectrum, particularly evident in examples
like Yang-Mills (YM) theory in four dimensions. Despite
classical expectations of massless excitations, the quantum
theory exhibits a mass gap, a phenomenon yet to be
rigorously proven for YM [1,2].
Studying QFT in the anti–de Sitter space (AdS) [3] offers

a new window into the dynamics through boundary con-
formal correlators [4–15]. The AdS radius (L) acts as a
tunable parameter, enabling interpolation between a weakly
coupled regime (ΛL ≪ 1) and a regimewhere the flat-space
physics is recovered (ΛL ≫ 1) [4,5]. Previous work [16] on
YM in AdS4 discussed an important consequence of the
mass gap: Dirichlet boundary conditions (BC) at ΛL ≪ 1
result in a family of boundary conformal theories, with a
global symmetry mirroring the bulk gauge group and
massless gluons in the bulk spectrum. These BCs cannot
persist at ΛL ≫ 1 due to the mass gap in flat space, hinting
at a confinement transition, the precise mechanism of which
remains elusive. Rephrasing the transition in the language

of CFT could provide a clear target for the conformal
bootstrap [17–19] to prove the mass gap.
Motivated by these ideas, we study two-dimensional

models in AdS2 with a dynamically generated gap; the
OðNÞ nonlinear σ model and the OðNÞ Gross-Neveu (GN)
model, both of which have been studied since the discovery
of asymptotic freedom as toy models for four-dimensional
gauge theories.
As in YM in four dimensions, we find families of BCs

that exist only for small values of ΛL and disappear
at ΛL ≫ 1.
In contrast to YM, in which the boundary theory at

ΛL ≪ 1 is characterized by the presence of a global
symmetry, these examples are characterized by the pres-
ence of exactly marginal operators and an associated
conformal manifold. This is the consequence of a BC that
breaks a continuous global symmetry of the bulk theory,
i.e., the AdS analog of the spontaneous symmetry breaking
(SSB). These BCs must disappear at ΛL ∼ 1 since the
symmetry is unbroken in the flat-space vacuum.
The transitions in these examples can be quantitatively

analyzed using the large N solvability of the theories. In
both cases the transition is due to a boundary operator,
singlet under global symmetries of the boundary theory. It
is irrelevant at weak coupling but becomes marginal at the
transition point, triggering a RG instability.
We start by explaining general properties of these

transitions based on symmetry arguments and anomalies.
We then move to explain the results of the large N analysis.
Tilt operators, boundary conformal manifolds and

transitions—Consider a QFT in AdSdþ1 with a continuous
symmetry G and a boundary condition jB⟫. We let g be the
corresponding Lie algebra and ta its generators. The
symmetry acts on jB⟫ through the topological defects,
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Uα ¼ eiαg
R

⋆j; j ¼
X
a

jata; ð1Þ

mapping jB⟫ to jBg⟫≡UgjB⟫. Generically, jB⟫ is invari-
ant only under a subgroup G⊥ ⊂ G, whose algebra will be
denoted by g⊥. The symmetry predicts the universal bulk-
to-boundary OPE of the bulk conserved current,

⋆jaðx; yÞ ∼ τaðxÞ þ � � � ta ∈ g=g⊥; ð2Þ

where x and y parametrize the boundary and the radial
directions of AdS, respectively, and τa’s are called the
boundary tilt operators. Generalizing the arguments of [20],
we can show, using AdS isometries, that τa’s are exactly
marginal. See the Supplemental Material [21]. Turning them
on, one obtains a boundary conformal manifold MG=G⊥
encoding the SSB of G to G⊥ in the bulk. Unlike usual
conformal manifolds encountered in CFTs, all points in
MG=G⊥ are physically equivalent, as they are related by the
action of the G symmetry [30,31].
One might expect MG=G⊥ to exist at any ΛL as the

symmetry G does. This turns out to be incorrect. We found
that a marginalG⊥-singlet operator appears in the boundary
spectrum at ΛL ∼ 1. One can show under rather general
assumptions that this leads to the disappearance of the BC
and triggers the RG flow [32,33]. (A similar mechanism for
the screening of conformal line defects was recently
discussed in a series of works [34–36].) This boundary
transition generates bulk mass gap, for which we found two
scenarios (see Fig. 1): (a) Continuous (“second-order”)
transition: MG=G⊥ shrinks to zero size, merging into a
G-preserving BC. The BCFT data, as well as the bulk mass
gap, change continuously across the transition point. This
happens in the OðNÞ σ model. (b) Discontinuous (“first-
order”) transition: At finite size, MG=G⊥ becomes unstable
and undergoes a transition. In this case, the BCFT data jump
discontinuously. It is sometimes possible to argue for a
discontinuous transition based on mixed anomaly, which
forbids the merger of BCs with different symmetries. This
happens in the GN model.
Large N examples—We now study two large N exam-

ples with a boundary phase transition and a dynamical bulk

mass generation. The examples cover both scenarios
described above.
OðNÞ sigma model: Consider the 2d OðNÞ σ model,

whose effective action at large N is given by

S ¼
Z

1

2
ð∂ϕÞ2 þ σ

�
ϕ2 −

N
g2

�
þ Ntr log ½−□þ 2σ�: ð3Þ

In flat space, the vacuum preserves OðNÞ symmetry and
ϕi’s acquire massM ∼ Λ ¼ μe−ð2π=g2Þ. By contrast, in AdS2
the model has a weakly coupled SSB phase with N − 1

massless Goldstone fields [5] and a VEV hϕii ¼ ffiffiffiffi
N

p
Φi,

with ðΦÞ2 ¼ −ð1=2πÞ logðΛLÞ. This does not contradict the
Coleman-Mermin-Wagner theorem [37,38] as AdS space
comes with a natural IR regulator.
Boundary conditions. Imposing the Dirichlet BC

ϕij
∂AdS ¼ Φi in the SSB phase, one obtains a boundary

theory with a conformal manifoldMOðNÞ=OðN−1Þ ≡MSN−1 .
Goldstone modes can be seen explicitly by expanding ϕi

around the VEV Φi ¼ Φni:

ϕi ¼ ð
ffiffiffiffi
N

p
Φþ ρÞni þ πi; π · n ¼ 0: ð4Þ

The tilt operators τi ¼ ∂yπ
i parametrize the tangent space

TSN−1 and arise from the pullback of the bulk OðNÞ
current. [Concretely the OðNÞ current is jijμ ¼ ϕ½i

∂μϕ
j�,

using the small y expansion ϕi ¼ Φi þ y∂yϕi we find that

nij
ij
y ¼ Φ∂yπ

j.] The presence of MSN−1 ensures that the
bulk Goldstone modes remain massless.
By contrast the OðNÞ-singlet BC Φi ¼ 0 corresponds to

the standard symmetry-preserving phase, with the mass gap
Σ being the VEVof the σ field. It exists for ΛL ≥ 1

4
and all

the way to the flat space limit ΛL ≫ 1. See Fig. 2 for a
graphical representation.
These two BCs merge at ΛL ¼ 1 where the radius of

MSN−1 shrinks to zero. The merger is signaled by the
appearance of a marginal boundary operator σ̂ on MSN−1 ,
the lightest scalar in the σ bulk-to-boundary OPE. In
addition to these two BCs, the model has Neumann
boundary conditions, which exist only at small ΛL. Their
physics is described in the Supplemental Material [21].
Details. We now provide some details. We begin by

studying the bulk phase structures following [5]. Minimizing
the effective potential gives the gap equations

ΣΦi ¼ 0; Φ2 −
1

g2
þ tr

�
1

−□þ 2Σ

�
¼ 0: ð5Þ

A SSB solution requires Σ ¼ 0. Using the regulated AdS2
propagator [5] we absorb the divergence of the trace in the
definition of the regulated coupling 1=g2reg. Introducing the

dynamically generated scale Λ ¼ μe−2π=g
2
reg we find

(a) (b)

FIG. 1. Two scenarios for the phase transition. (a) Continuous
transition. (b) Discontinuous transition.
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Φ2 ¼ −
1

2π
logðΛLÞ; ð6Þ

Φ2 should be interpreted as the radius of MSN−1 . The
spectrum of the σ bulk-to-boundary OPE is extracted from
the poles of the AdS propagator

hσðx1Þσðx2Þi ¼ −
1

2

Z
∞

−∞
dν

1

BðνÞ þ 2Φ2

ν2þ1
4

Ωνðx1;x2Þ; ð7Þ

where BðνÞ¼ð1=2πÞ½ðψðiν=2þ3=4Þþψð−iν=2þ3=4Þþ
logð4Þþ2γÞ=ðν2þ 1

4
Þ� is the 2D bubble function, and γ

is Euler’s constant. See Ref. [5] or the Supplemental
Material [21]. The dimensions of the lightest (σ̂) and the
second lightest (σ̂2) operator are shown in Fig. 3. At
ΛL ¼ 1, σ̂ hits marginality and decouples from the spec-
trum. The decoupling can be seen in the bulk-to-boundary
OPE coefficient b2σ̂σ , given by the residue of the pole of (7).
Near the transition point (Φ ¼ 0) it reads

b2σ̂σ ¼
144

π2
Φ2 þOðΦ4Þ: ð8Þ

After the transition bσ̂σ becomes imaginary, showing that the
SSB BC becomes a complex BCFT [39].
The OðNÞ-singlet BC (Φi ¼ 0) can be analyzed sim-

ilarly. The Breitenlohner-Freedman (BF) bound in two
dimensions is m2L2 ≥ − 1

4
. Since the mass of ϕi is 2Σ, this

BC exists only for 2Σ ≥ − 1
4
that is ΛL ≥ 1

4
.

At ΛL ¼ 1
4
, the solution merges with the Neumann BC

discussed in the Supplemental Material [21], which con-
tinues to ΛL ≪ 1, see Fig. 3. If we instead increase ΛL, the
dimension of σ̂ intersects with that of σ̂2 of the SSB BC at
ΛL ¼ 1, leading to a continuous interpolation of the two
BCs. Continuing further, it reproduces the known flat
space results at ΛL ≫ 1. As σ̂ is always irrelevant, the
OðNÞ-singlet BC is stable all the way to the strong coupling
regime.
Gross-Neveu model: The second example is the Gross-

Neveu model, with the large N effective action

S ¼
Z

ψ̄ i=∇ψ i þ σψ̄ iψ
i −

N
2g

σ2 − Ntr log ½=∇þ σ�; ð9Þ

ψ i (i ¼ 1;…; N) being N Dirac fermions. At finite g, in
addition to ð−1ÞF, the model has a symmetry:

G ¼ Oð2NÞV × ZFL
2 : ð10Þ

ZFL
2 is left-moving fermion parity acting by ψ i → γ3ψ

i and
σ → −σ:G contains aZA

4 axial symmetry, generated byZFL
2

together with a discrete Oð2NÞV rotation sending ψ → iψ .
The axial symmetry thus acts as

ψ i → iγ3ψ i; σ → −σ: ð11Þ

In flat space, ZA
4 is spontaneously broken to ZF

2 by a σ
condensate, which gives a mass to the Dirac fermions [40].
Boundary conditions. This model also has two natural

BC’s, which preserve either the vector Oð2NÞV or the axial
ZA

4 see Fig. 4. The two cannot be preserved at the same time
due to the mixed anomaly:

I ¼ πi
Z

AA ∪ c1ðFVÞ: ð12Þ

ZA
4 -preserving BCs exist at weak coupling. They read, in

Weyl components [ψ ¼ ðχL; χRÞt and ψ̄ ¼ ðχ�R;−χ�LÞ�:

jA; η⟫∶ ðχ�LÞi ¼ eiηðχRÞi: ð13Þ

These preserve an ½OðNÞ × ZA
4 �=ZF

2 symmetry. [The OðNÞ
symmetry comes from an UðNÞ� symmetry of the free
theory, which acts on the Weyl components as χL → UχL
and χR → U�χR. The intersection of this group with the
vector Oð2NÞV gives OðNÞ.] The real scalar η∈ ½0; 2πÞ
parametrizes an S1 submanifold ofMA

Oð2NÞ=OðNÞ, whose tilt

FIG. 3. Dimensions of operators in the boundary spectrum of
the bulk σ. Black lines are the lightest (σ̂) and the second lightest
(σ̂2) operators in the SSB BC and the orange line is the lightest
operator (σ̂) in the OðNÞ-singlet one. The blue line is for the
Neumann BC.

FIG. 2. The boundary conformal manifolds for OðNÞ-
breaking and OðNÞ-preserving boundary conditions in the
OðNÞ sigma model.
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operators include the pullback of the Uð1ÞV current. In this
BC, σ is not allowed to condense and the bulk fermions
remain massless.
Oð2NÞV vector-preserving BCs are given by

jV;�⟫∶ ðχLÞi ¼ �ðχRÞi; ð14Þ

These are the BCs associated with SSB of the axial
symmetry. For each BC (�), there are two physically
distinct solutions to the gap equation. One of them
(“Neumann-like”) exists only at small ΛL while the other
(“Dirichlet-like”) continues to the flat-space limit ΛL ≫ 1.
Here we focus on the Dirichlet-like jV;�⟫D leaving the
other jV;�⟫N to the Supplemental Material [21]. The two
Dirichlet BC’s jV;�⟫D are exchanged by the axial
symmetry.
The dimensions of the lightest operator σ̂ in the bulk σ

OPE in these BC’s are given in Fig. 5. In addition, there is a

“shadow” of ZA
4 preserving BC, denoted by gjA; η⟫. At

ΛL ≪ 1, it arises from deforming jA; η⟫ by a double-trace
operatorOσ ¼ σ̂2.As usual in the double-trace deformation at

largeN [41–43], the dimensions of σ̂ in jA; η⟫ and gjA; η⟫ are
related by Δσ̂ → 1 − Δσ̂.
The BCs jA; η⟫ and gjA; η⟫ merge at ΛL ¼ ðe−γ=4Þ.

At the merger, the double-trace operator Oσ becomes
marginal, triggering a RG flow whose endpoint we con-
jecture to be the vector-preserving BC, jV;�⟫D. This
transition is discontinuous and the BCFT data jump across
the transition, as the axial and vector-preserving BCs
cannot merge due to mixed anomaly (12) [44,45].
BKT transition. Abelian bosonization sheds new light

on the transition. The bosonized theory is an N-component
compact scalar Xi with a potential for the T-dual coordinate
X̃ [46,47]:

V ∼ g
X
i≠j

cos
�
2X̃i

�
cos

�
2X̃j

�
: ð15Þ

The chiral symmetry is mapped to the Zw
4 winding

symmetry preserved by the potential. Since the fermion
bilinear becomes an operator carrying two units of winding
charge, its condensation correspond to proliferation of

vortices, i.e., it describes an AdS analog of the
Berezinskii-Kosterlitz-Thouless (BKT) transition.
Details. Let us provide some details. The gap equation

reads

Σ
g
þ tr

�
1

=∇þ Σ

�
¼ 0: ð16Þ

In the Supplemental Material [21] we show that
tr
	ð1==∇Þ
 ¼ 0 with the jA; η⟫ BC, by computing the

propagator. As a result the gap equation admits the axial
symmetry preserving solution Σ ¼ 0.
This BC is stable at ΛL ≪ 1 [48] and its boundary

spectrum can be read off from the propagator of σ:

Nhσðx1Þσðx2Þi ¼ −
Z

∞

−∞
dν

1

g−1 − BAðνÞ
Ωνðx1;x2Þ; ð17Þ

where the bubble function BAðνÞ is computed in the
Supplemental Material [21] from the spectral transform
of the square of the propagator tr½1==∇2�. This calculation
involves a regularization that requires us to trade g with the
scale Λ.
As shown in Fig. 5, the dimension of σ̂ decreases

monotonically from 1 as we increase ΛL. At
ΛL ¼ ðe−γ=4Þ, it hits the BF bound Δ ¼ 1

2
, making

Oσ ¼ σ̂2 marginal at large N. We conjecture that this
triggers the RG flow to jV;�⟫D. In the proposed scenario,
the operator σ̂2 which preserves the axial symmetry triggers
a flow to a BCwhich breaks it. This can happen in boundary
conformal theories, as is well known in the RG flow
from the special to the extraordinary BCFTs of the Ising
model [49], triggered by aZ2 preserving boundary operator.

FIG. 4. Maximally symmetric boundary conformal manifolds
for the GN model.

FIG. 5. Dimensions of σ̂ for jV;�⟫D (orange), jA; η⟫ (black),

and gjA; η⟫ (green) in the GN model.
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The bubble function BVðνÞ for jV;�⟫D has been
computed in [5], which we review in the Supplemental
Material [21]. From this, one can check that σ̂ in jV;�⟫D is
always above marginality, ensuring its stability, see Fig. 5.
Conjecture for Yang-Mills theory—Based on our find-

ings, we now conjecture a mechanism for confinement of
SUðNÞ YM in AdS4. At ΛL ≪ 1, the Dirichlet BC leads to
SUðNÞ boundary conserved currents Jμ. We first restate
three scenarios, proposed in [16], for the disappearance of
this BC at ΛL ∼ 1, from the perspective of boundary
conformal theories: (1) Higgs (continuous): An operator
Oadj in the adjoint representation of SUðNÞ hits margin-
ality, leading to a multiplet recombination ∂μJμ ∼Oadj and
giving anomalous dimension to Jμ. The leading candidate
for Oadj is JμJμjadj. (2) Decoupling (continuous): The two-
point function of Jμ vanishes and Jμ’s decouple from the
spectrum. (3) Tachyon (discontinuous): A scalar operator
hits the BF bound, destabilizing the BC. Scenario 1 seems
improbable as mentioned in [16], due to the difference of
numbers of states between multigluons and glueballs.
Scenario 2, sharing a decoupling feature with the OðNÞ
model, is plausible, but the postdecoupling BC remains to
be clarified. Scenario 3 faces the issue that the operator
becomes marginal (All scalar operators at ΛL ≪ 1 are
irrelevant.) before it hits the BF bound, triggering the RG
flow earlier [33].
We propose an alternative: (4) Marginality: A scalar

operator Osing singlet under SUðNÞ becomes marginal,
triggering the RG flow to the Neumann BC. The leading
candidate for Osing is trðJμJμÞ. The transition in this
scenario could be either continuous or discontinuous. If
continuous, Dirichlet and Neumann BC’s smoothly merge,
implying the decoupling of Jμ. (This is because there are no
counterparts in the Neumann BC at ΛL ∼ 1; e.g., all gluon
states are massive, having higher Δ.) This can be seen as a
refined version of scenario 2.
However, we think that a discontinuous transition is

more likely. This can be argued, for example, if we consider
YM with gauge group SUð4Þ=Z2 or SO(6). These have
Ze

2 × Zm
2 one-form symmetry with mixed anomaly

I ¼ πi
Z

Be ∪ βðBmÞ: ð18Þ

Similar to the GN example, Dirichlet and Neumann BCs
preserve different symmetries (Zm

2 andZe
2) and their merger

is forbidden by the ‘t Hooft anomaly (18).
Discussion—We initiated the study of strong coupling

effects in AdS through the lens of boundary conformal
theories. The key signature is the appearance of singlet
marginal operators, leading to a transition from gapless to
gapped phases. There are countless avenues for future
explorations: (1) We relied on large N techniques but
believe finite N effects do not change the conclusion. It
is also interesting to explore alternatives, e.g., the conformal

bootstrap, semiclassics, and resurgence [50]. (2) In the O(3)
sigma model, the mass generation can be understood
through the proliferation of instantons [51]. It is interesting
to perform similar analysis in AdS and understand the
interplay between semiclassical saddles and the stability of
BCs. (3) Also interesting is to test our conjecture on
confinement in YM. In particular, if the transition is
discontinuous, one can use the current two-point function
hJJi to parametrize the AdS radius, and see if solutions to
the conformal bootstrap stop existing at nonzero hJJi. In
practice, more inputs [than the existence of SUðNÞ currents]
might be needed and a key question is to figure them out.
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