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Abstract Oneof themain challenges for life actuaries ismodeling andpredicting the
future mortality evolution. To this end, several stochastic mortality models have been
proposed in literature, starting from the pivotal approach of the Lee–Carter model.
These models essentially use the ARIMA processes to forecast the future mortality
trends. Recently, some research works have shown the adequacy of the deep learning
techniques to improve mortality modeling, obtaining competitive and outperforming
forecasts compared to the ARIMA. The present work focuses on the application of a
recurrent neural network, the Long Short-Term Memory (LSTM), in the Lee–Carter
model framework. The LSTM has an architecture specifically designed to model and
predict sequential data, such as time series, well capturing hidden patterns within
data related to events that may be far from each other. In mortality modeling, this
means that the forecasted mortality rates take into account the hidden features of
the past phenomenon not always adequately captured by the ARIMA. We extend
the approach proposed in Nigriet al. (Risks 7(1), 33 (2019)), performing a point
forecasting of the Lee–Carter time-index through LSTM and deriving the related
prediction interval representing the LSTM’s parameter uncertainty.

Keywords Mortality forecasting · Lee-Carter model · Deep neural networks ·
Parameter uncertainty

1 Introduction

Mortality forecasting is a relevant topic for actuaries and demographers. It has gained
prominence in recent decades due to the rapidity of the life expectancy increases.
The need of accurate forecasting to address longevity risk and adequately pricing the
annuities products has led actuaries towards more sophisticated extrapolative meth-
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ods in a stochastic environment. Most of these models essentially refer to ARIMA
processes, that can be considered the most popular linear models in describing the
future evolution ofmortality. Though these processes are flexible tools in representing
a time series, their linear structure can sometimes constitute a limit, providing esti-
mates not consistent with the real mortality shape. Recently, some research works
have shown the power of deep learning techniques in improving the accuracy of
mortality forecasting. For example, Hainaut [1] used a neural network to identify
the latent factors of mortality, then forecasted by a random walk with drift. Richman
and Wüthrich [2] apply neural networks to extend the Lee–Carter model to multiple
populations, achieving competitive out-of-sample forecasting performance. Nigri et
al. [3] use a recurrent neural network with Long Short-TermMemory (LSTM) archi-
tecture to predict the time-index of the Lee–Carter model, achieving more accurate
predictions compared to the ARIMA models in several countries and for both gen-
ders. The LSTM is designed tomodel and predict sequential data, such as time series,
capturing hidden patterns (both linear and nonlinear) within data. In the field of mor-
tality forecasting, this means predicting mortality rates over time taking into account
features of the past, more or less recent. The present work extends the paper of Nigri
et al. [3], providing an estimation of parameter uncertainty of the LSTM, beside the
point estimate, in the Lee–Carter model. Develop a prediction interval for neural
networks is still a big challenge. At the current state of art, the main contributions
on this topic are from Koshravi [4], Keren et al. [5] and Petneházi [6], but not in the
field of neural networks applied to mortality time series. Our paper provides a new
contribution in this research area. The predictive power of LSTM point estimates is
measured byRootMean Square Error (RMSE) andMeanAverage Error (MAE) in an
out-of-sample test. While the prediction interval resulting from the LSTM parameter
uncertainty is compared to that from ARIMA by a graphical analysis, including the
observed mortality data. The case study refers to Italy.

2 Neural Networks and Parameters Uncertainty

Consider a set of data {y, x}, where y is the target variable and x the n-dimension
vector of independent variables. We aim to identify the relationship between y and x
through a neural network (NN). In a NN, the neuron represents the basic unit receiv-
ing the input that transforms into output. This transformation takes place through the
use of a set of weights, w = {w1,w2, ...}, and activation functions, φ = {φ1,φ2, ...}.
Therefore, denoting fN N the NN function, we assume that: y = fN N (x;w;φ)+ ϵ,
where ϵ is the error term assumed to be i.i.d. with an expected value of zero,
E (ϵi ) = 0 ∀i and E

(
ϵiϵ j

)
= 0 ∀i ̸= j . The optimal weights, ŵ, are obtained by

minimizing a given loss function, L
(
y, ŷ

)
, with ŷ = fN N (x; ŵ;φ), during the train-

ing phase of the NN. The resulting estimate ŷ represents a point estimation of the
mean in the regression problem and depends on the realization x to which the esti-
mate of weights, ŵ, is linked. Therefore, it does not provide any information on the
uncertainty given by ŵ. However, by considering the input as a random variable,

2



whose possible realizations determine the weights in the NN, we can measure the
uncertainty of the NN estimator around the point estimation. The uncertainty of the
NN estimator and the related prediction intervals, is obtained by bootstrap, a well-
known technique following an ensemble scheme, so that a set of NNs is able to
produce a point estimate that is generally less biased respect of a single NN ([4] and
[6]). The scheme is the following:

a. We train the NN to identify the best performing hyperparameter configuration for
the input data. This represents the best NN architecture.

b. From the training set, we generate B bootstrap samples,
{
y(b), x(b)

}
,where b =

1, . . . , B.
c. For each bootstrap sample b, using the same NN architecture as at step a, we

obtain B point estimates characterized by newweights but same hyperparameters:
ŷ(b) = fN N

(
x(b); ŵ(b);φ

)
, b = 1, . . . , B. We build the prediction intervals on

these estimates.

3 The Neural Network Lee–Carter Model

In the Lee–Carter (LC) model, as proposed by Brouhns et al. [7], the logarithm of
the central death rate,mx,t is the central death rate at age x in year t , is described by:

log(mx,t ) = αx + βxκt (1)

whereαx is the average age-specific pattern ofmortality,βx is the pattern of deviations
from the age profile as κt varies, andκt is the time index describing mortality trend.

Themodel assumes a Poisson distribution for the numbers of deaths and is subject
to the constraints,

∑
x βx = 1 and

∑
t κt = 0.

In the traditional LC formulation κt is usually modeled by an ARIMA process. In
this paper, we use a one-order autoregressive approach and describe κt by a LSTM
neural network (see Nigri et al. [3] for a detailed description of LSTM applied to κt ).
Denoting by fLST M the LSTM, the Lee–Carter time-index is modeled by:

κt = fLST M(κt − 1;w;φ)+ ϵt (2)

The NN training, as described in Sect. 2, produce the following estimate:

κ̂t = fLST M(κt − 1; ŵ;φ) f or t = t1, . . . , tτ (3)

where the optimal weights ŵ are obtained by minimizing the Mean Squared Error
(MSE) loss function, MSE = 1

tτ − t1

∑tτ
t= t1

(
κt − κ̂t

)2. The forecasted values of k̂t are
then estimated by:

κ̂t = fLST M(κ̂t − 1; ŵ;φ) f or t = tτ+1, . . . , ts
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Therefore, the time series
{
κ̂tτ+h

}s − τ

h= 1 is the point prediction provided by the LSTM.

The accuracy of prediction is measured according to the RMSE =
√∑ts − tτ

T = tτ +1(κT − κ̂T )2

ts − tτ

and MAE =
∑ts − tτ

T = tτ +1|κT − κ̂T |
ts − tτ

.

4 Estimation of Prediction Intervals with Parameter
Uncertainty

The parameter uncertainty is incorporated in the forecasting using the Poisson boot-
strap proposed by Brouhns et al. [8]. Therefore, following the step b in Sect. 2, we
generate B bootstrap sample of the number of deaths from a Poisson distributionwith
parameter equal to the observed number of deaths: D(b)

x,t ∼ Poisson(Dx,t ), with b =
1, . . . , B, where, according to the Lee–Carter model, Dx,t = Ex,t ·

(
α̂x + β̂x κ̂t

)
,

with Ex,t are the exposure to risk. For each bootstrap sample, we obtain the param-
eters’ estimate α̂(b)

x , β̂(b)
x and κ̂

(b)
t , where κ̂

(b)
t − 1 represent the LSTM input and κ̂

(b)
t

the associate target. Hence, the latter is linked to the former by the LSTM function,
fLST M , for each bootstrap sample.

LSTM prediction intervals

Each b bootstrap sample of κ̂
(b)
t is modeled by a LSTM using the best architec-

ture identified during the training and the same loss function, and re-optimizing the
weights:

κ̂
(b)
t = fLST M(κ

(b)
t − 1; ŵ(b);φ) f or t = t1, . . . , tτ (4)

While, the forecasted values are:

κ̂
(b)
t = fLST M(κ̂

(b)
t − 1; ŵ(b);φ) f or t = tτ+1, . . . , ts (5)

Therefore, the time series
{
κ̂
(b)
tτ+h

}s − τ

h= 1
is the b point prediction provided by the LSTM,

for b = 1, . . . , B. The prediction interval is then defined by setting an α% percentile
on the bootstrap distribution:

[
f LowLST M , f

Up
LST M

]
: Prob

(
f LowLST M ≤ kt ≤ f Up

LST M

)
= 1 − α

where f LowLST M = fLST M

(
κ̂
(b)
tτ+h

; ŵ(b);φ
)(α)

and f Up
LST M = fLST M

(
κ̂
(b)
tτ+h

; ŵ(b);φ
)(1− α)

are the lower and upper bound of the interval, respectively.
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ARIMA prediction intervals

Assuming that the time series κ̂
(b)
t is modeled by a generic ARIMA(p,d, q), where

p is the autoregressive order, d the degree of differencing, and q the order of the
moving-average model:

▽d⋆

κ
(b)
t = δ(b) +

p⋆∑

i= 1

φ
(b)
i ▽d⋆

κ
(b)
t − 1 + ϵt +

q ⋆∑

j= 1

θ
(b)
j ϵt − j

The parameters δ(b), φ(b) and θ (b) are estimated for each b bootstrap sample, without

changing the ARIMA model (p, d, q ). In this case,
(
κ̂
(b)
tτ+h

)(α)

and
(
κ̂
(b)
tτ+h

)(1− α)

are
the lower and upper bound of the interval, respectively.

5 Numerical Application

The model is implemented for Italy considering the period 1950–2014 and ages
0–100. Data are taken by the Human Mortality Database. The dataset is split into
training and testing set, following the rule 80% train (in-sample: 1950–2001) and20%
test (out-of-sample: 2002–2014). The model accuracy is assessed through an out-
of-sample test. The parameters of the best ARIMA models are (p, d, q ) = (0, 2, 3)
for males (AIC = 240.43 and BIC = 248.08) and (p, d, q ) = (0, 1, 1) for females
(AIC = 277.73 and BIC = 283.53). The LSTM hyperparameters stemming from a
fine tuning procedure. A grid search algorithm is implemented investigating a subset
of the hyperparameter space, discretized and bounded coherently with the sample
size. Table1 shows the best tuned values of LSTM hyperparameters.

Table2 shows the performance of LSTM and ARIMA in terms of RMSE and
MAE for Italy, by gender.

Figure1 shows the prediction intervals for κt obtained by LSTM and ARIMA,
using B = 1000 bootstrap samples.

In conclusion, we observe a higher capacity of the LSTM to capture nonlinear
trends respect to the ARIMAmodels. This is particularly evident in the case of Italian

Table 1 LSTM hyperparameters
Hyperparameter Males Females

Activation function ReLu ReLu

Recurrent function TanH TanH

N. Hidden Layer 1 1

N. Units 97 162

Epochs 2 1
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Table 2 RMSE and MAE Italy
Measure Males Females

LSTM ARIMA LSTM ARIMA

RMSE 4.264 6.526 4.189 4.020

MAE 3.707 6.022 3.315 3.412

Fig. 1 κt with 5 and 95% prediction intervals, Italian males (left panel) and females (right panel):
LSTM vs ARIMA

males. Our results highlight the high accuracy provided by LSTM in terms of point
forecasting and, at the same time, the greater parameter uncertainty respect to the
case of ARIMA, especially for Italian females. This evidence, stemming from the
bias-variance tradeoff principle, lays the foundation to continue investigating NNs
parameter uncertainty in the field of mortality forecasting.
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