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Abstract:We consider the approximation of the inverse square root of regularly accretive operators in Hilbert
spaces. The approximation is of rational type and comes from the use of the Gauss–Legendre rule applied to
a special integral formulation of the fractional power.We derive sharp error estimates, based on the use of the
numerical range, and provide some numerical experiments. For practical purposes, the finite-dimensional
case is also considered. In this setting, the convergence is shown to be of exponential type. The method is
also tested for the computation of a generic fractional power.

Keywords: Fractional Powers, Regularly Accretive Operators, Gaussian Quadrature Rule

MSC 2010: 47A58, 65F60, 65D32

1 Introduction
LetH be a generic Hilbert space with scalar product denoted by ⟨ ⋅ , ⋅ ⟩ and corresponding norm ‖u‖ = ⟨u, u⟩ 12 ,
u ∈ H. Given a linear operator L acting inH, in this work, we are interested in the numerical approximation
ofL− 12 , whereL is assumed to be regularly accretive, that is, associated with a regular sesquilinear form (see
[17] for a background). It is known that such operators are unbounded and satisfy

|ℑ⟨Lu, u⟩| ≤ ηℜ⟨Lu, u⟩, (1.1)

for some η ≥ 0, where the symbols ℑ and ℜ indicate the imaginary and the real part respectively. For a ≥ 0
and β < 1

2 , let
Σβ,a = {z ∈ ℂ : |arg(z − a)| ≤ βπ} (1.2)

be the sector symmetric with respect to the real axis with vertex in a and semiangle βπ. Denoting by F(L) the
numerical range of L, that is,

F(L) = {z ∈ ℂ : z = ⟨u,Lu⟩
⟨u, u⟩ , u ∈ H, u ̸= 0},

referring to (1.1), it is also known that (see [17, Theorem 2.2])

F(L) ⊆ Σ arctan(η)
π ,0.

In this setting, for α ∈ (0, 1), the fractional power is defined by (see [5])

L−αv = sin(απ)
π

∞

∫
0

ς−α(ςI + L)−1v dς, v ∈ H, (1.3)

where I is the identity operator inH.
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Starting from this representation, in this work, we consider some changes of variable that, in the scalar
case, lead to the formula

λ−α = sin(απ)
π

τ1−α(2
1−α
α

α

1

∫
−1

1
2 1
α τ + λ(t + 1) 1α

dt + 2 α
1−α

1 − α

1

∫
−1

1
τ(t + 1) 1

1−α + 2 1
1−α λ

dt), (1.4)

where τ > 0 is a parameter that allows to handle the case in which λ is replaced by an operator L such that
F(L) ⊂ Σβ,a (Section 4). For the approximation of (1.4), we employ the Gauss–Legendre rule. Working with
the n-point formula for both integrals, we implicitly construct a rational form of type

R2n−1,2n(λ) =
p2n−1(λ)
q2n(λ)

, p2n−1 ∈ Π2n−1, q2n ∈ Π2n ,

such that R2n−1,2n(λ) ≅ λ−α. Here and below, we use the symbol ≅ to indicate a generic approximation.
Similar approaches, based on quadrature rules arising from the Dunford–Taylor integral representation

of λ−α, have been considered for instance in [1–4, 7, 8, 21]. Other methods that rely on the best uniform
rational approximations of functions closely related to λ−α have been treated in [11–14]. Methods based on
the parabolic reformulation of fractional diffusion equations have been analyzed in [19, 20]. As pointed out
in [15], they can still be interpreted as rational approximations of λ−α. We also quote here [10] for a very
recent survey. We remark that, except for [7], in all these papers, the basic assumption has been to work with
a self-adjoint operator.

As for the method considered in this paper, in order to properly define the parameter τ appearing in
(1.4), we need to derive accurate error estimates. Unfortunately, this is only possible whenever the integrand
functions are both analytic; indeed, for non-analytic functions, the existing error formulas only describe the
qualitative behavior of the error decay (see e.g. [6], [18, Section 4]). For this reason, in this paper, we study
the error and the proper definition of τ only for α = 1

2 , which ensures that both the integrand functions in
(1.4) are analytic. The analysis developed for the derivation of τ allows to show that, in the operator norm,
the convergence rate is of type (ln n)

2

n4 , where n is the number of quadrature points. We do not claim that the
proposed method is the fastest since, by using an exponential transform in (1.3) and then the trapezoidal
rule, it is possible to achieve an exponential decay for the error, as shown in [7]. Nevertheless, themethod has
some potentials. Indeed, the rate of convergence is independent of the angle of the sector containingF(L) (it
only affects the error constant), the initial convergence is very fast because of the factor 1

n4 , and, in addition,
we have been able to derive a sharp error estimate that allows to select a priori the number of quadrature
points necessary to achieve a certain accuracy.

For practical purposes, still for α = 1
2 , we have also analyzed the behavior of the method in finite dimen-

sion, that is, in the case of bounded sectorial operators LN , showing that the decay of the error is of type
c1
‖LN‖

1
4
exp(−c2

n
‖LN‖

1
8
),

where c1 and c2 are constants depending on the angle of the sector containing F(LN), and ‖ ⋅ ‖ is the spectral
norm. It is interesting to observe that, in the case of LN symmetric and positive definite, the above formula
can be rewritten replacing ‖LN‖with the spectral condition number κ(LN), resulting in a clear improvement
with respect for instance to the Gauss–Jacobi approach [2], where the above formula still holds, butwith ‖LN‖
replaced by ‖LN‖2.

Without a rigorous error analysis, we have also considered the use of the Gauss–Legendremethod for the
computation of L−α, with α ̸= 1

2 . The method appears to work rather fine even if, in this case, the choice of
the parameter τ (see (1.4)), which plays a crucial role for the convergence behavior, is empirical.

The paper is organized as follows. In Section 2, we derive the integral representation (1.4) and approx-
imate it by using the Gauss–Legendre rule. In Section 3, we develop the error analysis in the scalar case by
studying the poles of the integrand functions in the complex plane. In Section 4, we generalize the analysis
for regularly accretive operators, by considering the error behavior on the boundaries of the sector contain-
ing the numerical range of the operator. In Section 5, working with bounded operators, we improve the
error estimates previously obtained. Finally, in Section 6, we present some experiments for the general case
of α ∈ (0, 1).



E. Denich and P. Novati, A Gaussian Method for the Square Root of Accretive Operators | 129

2 The Gauss–Legendre Approach
Starting from the integral representation (1.3), we consider the change of variable ς = x−2 (see [8]) that leads
to

λ−α = 2 sin(απ)
π

∞

∫
0

x2α−1

1 + x2λ
dx, λ ∈ ℂ \ (−∞, 0].

Then we split the above integral as follows:

λ−α = 2 sin(απ)
π (

∞

∫
1
√τ

x2α−1

1 + x2λ
dx +

1
√τ

∫
0

x2α−1

1 + x2λ
dx),

where τ ≥ 1 is a certain parameter whose meaning will be explained later. By using the changes of variable

x = 1
√τ

y−
1

2(1−α) and x = 1
√τ

y
1
2α

for the first and the second integral respectively, we have that

λ−α = sin(απ)
π

τ1−α(1α

1

∫
0

1
τ + λy 1

α
dy + 1

1 − α

1

∫
0

1
τy 1

1−α + λ
dy). (2.1)

Finally, for both integrals in (2.1), we apply the change of variable

y = t + 12
and obtain the integral representation (1.4), that is,

λ−α = sin(απ)
π

τ1−α(2
1−α
α

α
I(1)(λ) + 2 α

1−α

1 − α I
(2)(λ)), (2.2)

where

I(1)(λ) :=
1

∫
−1

1
2 1
α τ + λ(t + 1) 1α

dt, I(2)(λ) :=
1

∫
−1

1
τ(t + 1) 1

1−α + 2 1
1−α λ

dt. (2.3)

We remark that representation (2.1) has also been used in [21] as starting point for the construction of other
methods. Using the n-point Gauss–Legendre rule, formula (2.2) is approximated as

λ−α ≅ sin(απ)
π

τ1−α(2
1−α
α

α
I(1)n (λ) +

2 α
1−α

1 − α I
(2)
n (λ)), (2.4)

where
I(1)n (λ) :=

n
∑
j=1
ωj(2

1
α τ + λ(tj + 1)

1
α )−1, I(2)n (λ) :=

n
∑
j=1
ωj(τ(tj + 1)

1
1−α + 2

1
1−α λ)−1, (2.5)

in which tj , ωj, j = 1, . . . , n, are respectively the nodes and the weights of the Gaussian rule. As mentioned
in the introduction, we observe that (2.4) is in fact a rational approximation R2n−1,2n(λ) of λ−α, where

R2n−1,2n(λ) =
p2n−1(λ)
q2n(λ)

, p2n−1 ∈ Π2n−1, q2n ∈ Π2n .

3 General Error Analysis
As mentioned in the introduction, the error analysis is only given for the case α = 1

2 . Let us consider the
transform

ψ(w) = 12(w +
1
w)

, w ∈ ℂ, |w| > 1,
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that conformally maps the exterior of the unit circle onto the exterior of the interval [−1, 1]. This map is
usually called Joukowsky transform. The image of the circle |w| = s, that is,

Ψs = {z ∈ ℂ : z = ψ(seiθ), θ ∈ [0, 2π]},

is an ellipse of the complex planewith foci in±1.We denote byE = {Ψs : s > 1} the family of all these ellipses.
Let f be a generic function analytic in an open set containing [−1, 1]. Let moreover

I(f ) =
1

∫
−1

f (t) dt,

and let In(f ) be its n-point Gauss–Legendre approximation. Following the analysis given in [6], assume that
Ψs ∈ E is such that f is analytic in the interior of Ψs, except for a pair of simple poles t0 and its conjugate ̄t0.
Then

I(f ) − In(f ) ≅ −4πℜ{r(t0 +√t20 − 1)
−2n}, (3.1)

where r is the residue of f at t0 and the root has to be chosen such that S := |t0 +√t20 − 1| > 1. It is important to
observe that S is just the radius of the circle centered at 0 that, through the Joukowsky transform, is mapped
onto the ellipse ΨS ∈ E passing through t0 and ̄t0. Clearly, by (3.1), the rate of convergence grows with S
that, roughly speaking, handles the distance of the poles from the interval [−1, 1]. Having at disposal the
above general result, we can estimate the error of approximation (2.4) by studying separately the poles of
our integrand functions (cf. (2.3))

f (1)(t) = 1
4τ + λ(t + 1)2

and f (2)(t) = 1
τ(t + 1)2 + 4λ

. (3.2)

As for the function f (1), it is easy to see that the poles are given by

t(1)0,1 = ±2(
τ
λ)

1
2
i − 1 (3.3)

so that t(1)0 = t
(1)
1 . Similarly, for the function f (2), we have

t(2)0,1 = ±2(
λ
τ)

1
2
i − 1, (3.4)

and therefore t(2)0 = t
(2)
1 . By using (3.1), and defining e(i)n (λ) = I(i)(λ) − I

(i)
n (λ), i = 1, 2 (cf. (2.2) and (2.4)), we

obtain
e(i)n (λ) ≅ −4πℜ{r(i)(t

(i)
0 +√(t

(i)
0 )2 − 1)

−2n}.

Since
r(i) = lim

t→t(i)0
(t − t(i)0 )f

(i)(t), i = 1, 2,

by (3.2), (3.3), (3.4), we find

r(1) = 1
4√τ

λ−
1
2 i and r(2) = − 1

4√τ
λ−

1
2 i,

and therefore
|e(i)n (λ)| ≅ 4π|r(i)|S(i)

−2n
=
π
√τ
|λ|−

1
2 S(i)−2n =: Φ(i)(τ, λ), (3.5)

where
S(i) = t

(i)
0 +√(t

(i)
0 )2 − 1

, i = 1, 2. (3.6)

As for the total error
En(λ) =

4√τ
π (

e(1)n (λ) + e
(2)
n (λ)) (3.7)

(cf. (2.2) and (2.4)), we then have the estimate

|En(λ)| ≅ 4|λ|−
1
2 (S(1)−2n + S(2)−2n). (3.8)

In Figure 1, we show the accuracy of the above formula for some values of λ and τ = 2.
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Figure 1: Error and error estimate (3.8) for λ = 10, λ = 5 + 5i, λ = −5 + 10i, from left to right, and τ = 2.

4 Estimates for Operators
LetH be a generic Hilbert space, and let L : H→ H be a regularly accretive operator such that F(L) ⊆ Σβ,1
(see (1.2)). It is known that, for any function f analytic in F(L), it holds

‖f (L)‖H→H ≤ K max
λ∈F(L)
|f (λ)|, (4.1)

where 2 ≤ K ≤ 1 +√2 is the absolute constant studied in [9]. We remark that if L is self-adjoint, then β = 0
and K = 1. As a consequence, since the poles of the approximation R2n−1,2n(λ) are all in ℝ− (cf. (2.4) and
(2.5)), we can consider the bound

‖En(L)‖H→H = ‖L−α − R2n−1,2n(L)‖H→H ≤ K max
λ∈Σβ,1
|λ−α − R2n−1,2n(λ)|.

When studying the behavior of the method applied to λ− 12 for λ ∈ Σβ,1, that is, λ = 1 + ρeiθπ, ρ ≥ 0, |θ| ≤ β, it
is rather evident (and will be confirmed by the following analysis) that, for a fixed ρ, moving θ from 0 to β
causes a progressive slowdown. Further, since λ−α − R2n−1,2n(λ) is analytic in Σβ,1, by themaximummodulus
principle, it is sufficient to consider the scalar error on Γβ = Γ+β ∪ Γ

−
β , where

Γ+β = {z ∈ ℂ : z = 1 + ρe
iβπ , ρ ≥ 0} and Γ−β = {z ∈ ℂ : z = 1 + ρe

−iβπ , ρ ≥ 0}.

Therefore, by using (3.7), we have that

max
λ∈Σβ,1
|λ−α − R2n−1,2n(λ)| = max

λ∈Γβ
|λ−α − R2n−1,2n(λ)| ≤

4√τ
π (

max
λ∈Γβ
|e(1)n (λ)| +max

λ∈Γβ
|e(2)n (λ)|).

At this point, for λ ∈ Γβ, we consider (cf. (3.3) and (3.4)) the maps

χ(1)(λ) := 2( τλ)
1
2
i − 1 and χ(2)(λ) := 2( λτ)

1
2
i − 1,

which define the boundaries of the regions of the poles (with positive imaginary part) of the functions f (1)(t)
and f (2)(t) respectively. These regions are plotted in Figure 2. The symmetry of Γβ with respect to the real
axis leads to the symmetry of χ(i)(Γβ)with respect to the lineℜ(z) = −1. Indeed, for each fixed ρ > 0, the two



132 | E. Denich and P. Novati, A Gaussian Method for the Square Root of Accretive Operators

Figure 2: The regions of the poles (with positive imaginary part) of the functions f (1)(t) (red) and f (2)(t) (yellow) for β = 1
6

and τ = 2, and the ellipses Ψs1 and Ψs2 .

points χ(i)(1 + ρe±iβπ), i = 1, 2, are symmetric with respect to the lineℜ(z) = −1. The ellipse passing through
the onewith the real part greater than−1 is the smallest so that, as already observed, it leads to theworst case
in terms of rate of convergence (cf. (3.1)). Just for clarity, in Figure 2, we also plot the two ellipsesΨs1 , Ψs2 ∈ E
passing through χ(2)(1 + ρe±iβπ), where

s1 = χ
(2)(1 + ρeiβπ) +√(χ(2)(1 + ρeiβπ))2 − 1,

s2 = χ
(2)(1 + ρe−iβπ) +√(χ(2)(1 + ρe−iβπ))2 − 1.

As a consequence, sinceℜ(χ(1)(λ)) ≥ −1 for λ ∈ Γ+β , andℜ(χ
(2)(λ)) ≥ −1 for λ ∈ Γ−β , we have that

max
λ∈Γβ
|e(1)n (λ)| = max

λ∈Γ+β
|e(1)n (λ)| and max

λ∈Γβ
|e(2)n (λ)| = max

λ∈Γ−β
|e(2)n (λ)|.

Therefore, we can finally write

max
λ∈Σβ
|λ−α − R2n−1,2n(λ)| ≤

4√τ
π

max
ρ≥0
(|e(1)n (1 + ρeiβπ)| + |e

(2)
n (1 + ρe−iβπ)|)

≅
4√τ
π

max
ρ≥0
(Φ(1)(τ, 1 + ρeiβπ) + Φ(2)(τ, 1 + ρe−iβπ)), (4.2)

where we have used relation (3.5).

4.1 Error Behavior on Γβ

Experimentally, working with operators with large spectrum, one observes that, in general, the parameter
τ must be chosen quite large to achieve a good rate of convergence. For this reason, from now, we assume
τ ≫ 1. By considering the functions

Φ(1)(τ, 1 + ρeiβπ) and Φ(2)(τ, 1 + ρe−iβπ)

for ρ ≥ 0 (cf. (4.2), (3.5)), it can be observed that, with respect to ρ,Φ(1)(τ, 1 + ρeiβπ) initially grows, reaches
a maximum at a certain ρ⋆ ≫ τ, and then goes to 0 as ρ → +∞. On the other side, Φ(2)(τ, 1 + ρe−iβπ) may
show two kinds of behavior, depending on the angle βπ. In particular, for β ≤ β⋆ (β⋆ ≅ 1

4 ),Φ
(2)(τ, 1 + ρe−iβπ)

is monotone decreasing, whereas for β > β⋆, it initially grows, reaches a maximum at a certain ̄ρ ≪ τ, and
then is monotone decreasing. We refer to Appendix A for the details concerning β⋆. Similar to the analysis
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given in [2], the idea is then to define τ so that

Φ(1)(τ, 1 + ρ⋆eiβπ) = Φ(2)(τ, 1 + ̄ρe−iβπ), (4.3)

where we should set ̄ρ = 0 for β ≤ β⋆.

Remark 1. The reason why we impose (4.3) is that, numerically, one observes that (cf. (4.2))

Φ(1)(τ, 1 + ρeiβπ) + Φ(2)(τ, 1 + ρe−iβπ) ≅ max
ρ≥0
(Φ(1)(τ, 1 + ρeiβπ), Φ(2)(τ, 1 + ρe−iβπ)).

4.1.1 Approximation of ρ⋆
Inwhat follows,weuse the symbol∼ to relate functions asymptotically equal in theusual sense. Since ρ⋆ ≫ 1,
in order to study the function Φ(1)(τ, 1 + ρeiβπ), we first consider the approximation

t(1)0 = 2(
τ

1 + ρeiβπ
)

1
2
i − 1 ∼ 2( τρ)

1
2
ei

π
2 (1−β) − 1, ρ →∞. (4.4)

As a consequence, for the term S(1) (see (3.5) and (3.6)), we have the following result.

Proposition 1. It holds

S(1) ∼ 1 +√2Cβ(
τ
ρ)

1
4
, ρ →∞, (4.5)

where
Cβ = √2 cos(

π
4 (β + 1)). (4.6)

Proof. Assuming that ρ ≫ τ, by (3.6), (4.4) and using the first order approximation

√1 + x = 1 + x2 + O(x
2) for x → 0, (4.7)

we can write

S(1) ∼

2( τρ)

1
2
ei

π
2 (1−β) − 1 +√4( τρ)e

iπ(1−β) − 4( τρ)
1
2
ei π2 (1−β)


∼

−1 + 2i( τρ)

1
4
ei

π
4 (1−β)


= √[−1 +√2( τρ)
1
4
(sin( β4π) − cos(

β
4π))]

2
+ 2( τρ)

1
2
(sin( β4π) + cos(

β
4π))

2

∼ √1 + 2√2( τρ)
1
4
(cos( β4π) − sin(

β
4π)),

which leads to (4.5) because

cos( β4π) − sin(
β
4π) =
√2 cos(π4 (β + 1)).

Note that 0.54 ≅ √1 − √22 < Cβ ≤ 1 for 0 ≤ β <
1
2 (Cβ = 1 for β = 0). At this point, we look for the local maxi-

mum of the approximation (see (3.5))

Φ(1)(τ, 1 + ρeiβπ) ∼ π
√τ

ρ−
1
2 [1 +√2Cβ(

τ
ρ)

1
4
]
−2n
=: g(1)(τ, ρ), (4.8)

where we have also used |(1 + ρeiβπ)− 12 | ∼ ρ− 12 . By solving

d
dρ
ρ−

1
2 [1 +√2Cβ(

τ
ρ)

1
4
]
−2n
= 0,

after some computations, we obtain
̂ρ = 4C4βτ(n − 1)

4 ≅ ρ⋆. (4.9)
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4.1.2 Approximation of ̄ρ
For β > β⋆, the maximum of Φ(2)(τ, 1 + ρe−iβπ) can be approximated by considering the ellipse ΨsT ∈ E tan-
gent to the curve χ(2)(Γ−β ). This is because the corresponding sT represents the slowest convergence rate
by (3.5). Let ρT be such that χ(2)(1 + ρTe−iβπ) is the tangent point (Figure 3). Since the computation of ρT
involves the solution of a fourth-degree equation, we consider an approximation arising from geometrical
evidences. We first look for the ellipse Ψs0 ∈ E (s0 > sT) passing through the point χ(2)(1) = 2

√τ i − 1. Hence,
we need to solve, with respect to s and φ,

1
2(se

iφ +
1
seiφ
) =

2
√τ

i − 1,

or equivalently,
{{{
{{{
{

1
2(s cosφ +

1
s
cosφ) = −1,

1
2(s sinφ −

1
s
sinφ) = 2

√τ
.

After some computations, we find that the solution (s0, φ0) is such that

sinφ0 = √
2
τ
√√1 + τ − 1, (4.10)

cosφ0 = −√1 −
2
τ
(√1 + τ − 1),

with π
2 < φ0 < π, and

s0 =
√2

√√1 + τ − 1
+

1

√1 − 2
τ (√1 + τ − 1)

. (4.11)

The idea is to approximate ̄ρ by looking for the other intersection between Ψs0 and χ(2)(Γ−β ) (see again Fig-
ure 3). In particular, we need to solve, with respect to ρ, the equation

1
2(s0e

iφ +
1

s0eiφ
) = 2(1 + ρe

−iβπ

τ )
1
2
i − 1.

Setting for simplicity a = s0 + 1
s0 and b = s0 −

1
s0 , the above equation leads to the system

{{{
{{{
{

(1 + 12a cosφ)
2
−
1
4b

2 sin2 φ = −4
τ(

1 + ρ cos(βπ)),

b sinφ(1 + 12a cosφ) =
4
τ
ρ sin(βπ).

Substituting

(1 + 12a cosφ)
2
=
16
τ2
ρ2 sin2(βπ)
b2 sin2 φ

in the first equation, we obtain

16
τ2
ρ2 sin2(βπ)
b2 sin2 φ

−
1
4b

2 sin2 φ + 4
τ
(1 + ρ cos(βπ)) = 0,

from which, after some computations, we find the solution

̃ρ = τb
2 sin2 φ

8 sin2(βπ)
[− cos(βπ) ±√1 − 16 sin

2(βπ)
τb2 sin2 φ

].

By using (4.10) and (4.11), we have that

b2 = (s0 −
1
s0
)
2
=

8
√1 + τ − 1

∼
8
√τ

, τ →∞.
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Figure 3: Geometrical interpretation of the local maximum of Φ(2)(τ, 1 + ρe−iβπ) and its approximation by ρ0 for β = 5
12

and τ = 1000.

Using again (4.7), we find

̃ρ ∼ τ
1
2 sin2 φ
sin2(βπ)

[− cos(βπ) ± (1 − sin2(βπ)
τ 1

2 sin2 φ
)].

Since the angle φ is still unknown and its computation requires again the solution of a fourth-degree equa-
tion, by taking the positive solution, we assume that (cf. (4.10))

sin2 φ ≅ sin2 φ0 ∼
2
τ 1

2

to finally obtain the rough approximation

̃ρ ≅ ρ0 :=
1 − cos(βπ)
1 + cos(βπ) = tan

2(
βπ
2 ). (4.12)

Experimentally, we observe that 0 ≤ ρ0 < ̃ρ and that χ(2)(1 + ρ0e−iβπ) for large τ is close to the tangent point
independently of β. Therefore, we use ρ0 as an approximation of ̄ρ. As for the term S(2) in (3.6), we have the
following result.

Proposition 2. For ρ = ρ0 and β > β⋆, we have

S(2) ∼ 1 +√2Gβτ−
1
4 , τ →∞,

where
Gβ = √Dβ −√A−β , (4.13)

with
Dβ = (1 + 2ρ0 cos(βπ) + ρ20)

1
4 , (4.14)

A−β =
−1 − ρ0 cos(βπ) +√1 + 2ρ0 cos(βπ) + ρ20

2 . (4.15)

Proof. First of all, for ρ = ρ0, we have that

t(2)0 =
2
√τ
(1 + ρ0 cos(βπ) − iρ0 sin(βπ))

1
2 − 1 = 2

√τ
(i√A+β +√A

−
β) − 1,

where

A+β =
1 + ρ0 cos(βπ) +√1 + 2ρ0 cos(βπ) + ρ20

2
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and A−β as in (4.15). Now, defining Dβ := (1 + 2ρ0 cos(βπ) + ρ
2
0)

1
4 and using (4.7) for large τ,

S(2) =


2
√τ
(i√A+β +√A

−
β) − 1 +√

4
τ (
A−β − A

+
β + 2i√A

−
βA
+
β) −

4
√τ
(√A−β + i√A

+
β)


∼

−1 +√− 4

√τ
(√A−β + i√A

+
β)


=

−1 −
√2
τ 1

4

√−√A−β + Dβ + i
√2
τ 1

4

√√A−β + Dβ


= √1 + 2
τ 1

2
(−√A−β + Dβ) +

2√2
τ 1

4

√−√A−β + Dβ +
2
τ 1

2
(√A−β + Dβ)

∼ √1 + 2
√2
τ 1

4

√Dβ −√A−β .

Finally, using again (4.7) and defining
Gβ := √Dβ −√A−β ,

we obtain the result.

We notice that A−β = 0, Dβ = 1 and therefore Gβ = 1 for β = 0. By using the above proposition and

|1 + ρ0e−iβπ| = √1 + 2ρ0 cos(βπ) + ρ20 = D
2
β

(cf. (4.14)), we obtain (see (3.5))

Φ(2)(τ, 1 + ρ0e−iβπ) ∼
π
√τDβ
(1 +√2Gβτ−

1
4 )−2n =: g(2)(τ, ρ0). (4.16)

4.2 The Optimal Value for τ

Working with approximations (4.8)–(4.9) and (4.16), in order to find a nearly optimal value for τ, we impose
the condition

g(1)(τ, ̂ρ) = g(2)(τ, ρ0). (4.17)

Remark 2. For 0 ≤ β ≤ β⋆, we should replace g(2)(τ, ρ0) by g(2)(τ, 0) in (4.17). Anyway, since ρ0 ≲ 0.17 for
0 ≤ β ≤ β⋆ ≅ 1

4 , we still workwith (4.17) because this choice does not influence the results. Observemoreover
that (4.12) luckily gives the correct value ρ0 = 0 for β = 0.

Equation (4.17) leads to

τ− 12
2C2β(n − 1)2

(1 + 1
n − 1)

−2n
=

1
Dβ
(1 +√2Gβτ−

1
4 )−2n .

Since
(1 + 1

n − 1)
−2n
∼ e−2, (4.18)

after some computation, we rewrite the above equation as

ln(τ−
1
4 ) + ln(

D
1
2
β

√2Cβe(n − 1)
) = −n ln(1 +√2Gβτ−

1
4 ).

Let us denote byW(x) the Lambert-W function, for which x
W(x) = e

W(x) holds. By using

ln(1 +√2Gβτ−
1
4 ) ∼ √2Gβτ−

1
4 , τ ≫ 1,
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we have that an approximated optimal value for τ is given by

̄τ =
D2
β

4C4βe4(n − 1)4
exp(4W(Hβn(n − 1))), (4.19)

where
Hβ :=

2eCβGβ

D
1
2
β

.

Note that, by (4.6), (4.13), (4.14), (4.15), we have Hβ = 2e for β = 0.
In Algorithm 1, we summarize the steps necessary to implement the method.

Algorithm 1. For any given n,
(1) set τ = ̄τ by using (4.19) if α = 1

2 and empirically for α ̸= 1
2 ;

(2) compute nodes and weights of the Gauss–Legendre rule;
(3) calculate the approximated value of L−α by using (2.4) and (2.5).

4.3 Asymptotic Expression of the Global Error

By substituting expression (4.19) in (4.9), we obtain

̂ρ =
D2
β

e4
exp(4W(Hβn(n − 1))). (4.20)

Since, for large x,W(x) ∼ ln x − ln(ln x) (see [16]), we have that

exp(4W(Hβn(n − 1))) ∼ [
Hβn2

ln(Hβn2)
]
4
,

and thus

̂ρ ∼
D2
β

e4
[

Hβn2

ln(Hβn2)
]
4
. (4.21)

Now, since ̂ρ rapidly grows with n, as pointed out in Remark 1, we can estimate the global error as

‖En(L)‖ ≅ 4K ̂ρ−
1
2 S(1)−2n , (4.22)

where K is the absolute constant introduced in (4.1). Finally, substituting (4.21) in the above expression and
using again approximation (4.18), after some computation, we find

‖En(L)‖ ≅ 4K[
ln(Hβn2)
2eCβGβ

]
2
n−4. (4.23)

We remark that, in the above formula, the angle of the sector βπ asymptotically only affects the error constant
so that the rate of convergence is independent of β.

Example 1. In order to test the behavior of the method, we consider a diagonal test matrix with a very large
spectrum. In particular, we define

L = diag(1, 1 + ρ1eiβπ , 1 + ρ1e−iβπ , . . . , 1 + ρNeiβπ , 1 + ρNe−iβπ),

where
ρi := 10xi , x = (0, 0.1, 0.2, . . . , 16)T .

The square matrix L is of dimension (2N + 1) × (2N + 1), with N = 161, and it is clearly normal so that F(L)
is the convex hull of the spectrum, that is, the triangle with vertex at 1, 1 + 1016eiβπ, 1 + 1016e−iβπ. In Fig-
ure 4, we plot the error together with estimate (4.23) and the error of the sinc quadrature approximation
implemented as in [7, formula (2) and Remark 3.1, with s+ = 0] for some values of β. Here and below, we
always consider the spectral norm of the error. In Table 1, we also show the corresponding values assumed
by τ and ̂ρ relative to the rightmost plot of Figure 4 (β = 5

12 ).
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Figure 4: Example 1 – error, error estimate (4.23) and error of the sinc quadrature for the computation of L− 12 .
Different values of β are considered.

n 10 25 40 55 70 85 100

τ 1.0E02 1.1E03 4.2E03 1.1E04 2.3E04 4.1E04 6.8E04
̂ρ 4.1E05 2.2E08 6.0E09 5.7E10 3.1E11 1.3E12 4.0E12

Table 1: Example 1 – values of τ and ̂ρ for β = 5
12 .

5 The Case of Bounded Operators
Consider the case of a bounded sectorial operator LN with numerical range contained in

Σβ,1,ρN = {z ∈ ℂ : z = 1 + ρeiθπ , |θ| ≤ β, 0 ≤ ρ ≤ ρN}, β < 12 .

Before starting, we need to remember that the local maximum ρ⋆ of Φ(1)(τ, 1 + ρeiβπ) grows approxima-
tively like n8

(ln n)4 (see (4.20)). Therefore, there exists ̄n such that ρ⋆ > ρN for n > ̄n. As a consequence, for
ρ⋆ ≤ ρN , estimate (4.23) is still valid becauseΦ(1)(τ, 1 + ρ⋆eiβπ) ≥ Φ(1)(τ, 1 + ρNeiβπ), and hence we have to
solve (4.17) to approximate the solution of (4.3). On the other side, for ρ⋆ > ρN , the bound can be improved
because ρ⋆ falls outside [0, ρN]. Similar to the analysis given in [2], for ρ⋆ > ρN , the optimal value for τ can
be approximated by solving

g(1)(τ, ρN) = g(2)(τ, ρ0). (5.1)

Proposition 3. For 1 ≪ τ ≪ ρN , the solution of (5.1) is approximated by

̂τ = (−
ρ

1
4
N

8√2Cβn
ln(√

ρN
Dβ
) +√(

ρ
1
4
N

8√2Cβn
ln(√

ρN
Dβ
))

2
+
Gβ
Cβ
ρ

1
4
N)

4
. (5.2)

Proof. Using relations (4.8) and (4.16), equation (5.1) becomes

ρ−
1
2

N [1 + Cβ√2(
τ
ρN
)

1
4
]
−2n
=

1
Dβ
(1 +√2Gβτ−

1
4 )−2n . (5.3)

Using the approximations

1 + Cβ√2(
τ
ρN
)

1
4
≅ exp(Cβ√2(

τ
ρN
)

1
4
) (5.4)
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and
1 +√2Gβτ−

1
4 ≅ exp(√2Gβτ−

1
4 ),

we rewrite equation (5.3) as

ρ
1
4n
N exp(Cβ√2(

τ
ρN
)

1
4
) = D

1
2n
β exp(Gβ√2τ−

1
4 ).

Therefore,

τ
1
2 +

ρ
1
4
N

4Cβ√2n
ln(√

ρN
Dβ
)τ

1
4 −

Gβ
Cβ
ρ

1
4
N = 0.

By solving this equation and taking the positive solution, we obtain the result.

We observe that, by (5.2), for n → +∞, we have

(
̂τ

ρN
)

1
4
= −

1
4√2Cβn

ln(√
ρN
Dβ
) +√(

1
4√2Cβn

ln(√
ρN
Dβ
))

2
+
Gβ
Cβ
ρ−

1
4

N

= −
1

4√2Cβn
ln(√

ρN
Dβ
) +√

Gβ
Cβ
ρ−

1
8

N + O(
1
n2
).

Using (4.22), (4.5), (5.4) in order and the above result, for n > ̄n, we obtain

‖En(LN)‖ ≅ 4ρ
− 12
N (1 +√2Cβ(

̂τ
ρN
)

1
4
)
−2n

≅ 4ρ−
1
2

N exp(−2√2Cβn(
̂τ

ρN
)

1
4
)

≅ 4ρ−
1
4

N D−
1
2

β exp(−2√2√GβCβnρ
− 18
N ). (5.5)

Note that√GβCβ = 1 for β = 0.
In order to derive an estimate of ̄n, we impose ̂ρ = ρN , where ̂ρ is as in (4.20). We obtain the equation

exp(W(2eCβ(n − 1)n)) = eρ
1
4
N ,

and therefore
W(2eCβ(n − 1)n) = ln(eρ

1
4
N).

SinceW(z1) = z2 if and only if z1 = z2ez2 , it follows that

̄n ≅
ρ

1
8
N
√2Cβ
(ln(eρ

1
4
N))

1
2 ≅

ρ
1
8
N(ln ρN)

1
2

2√2Cβ
. (5.6)

In Algorithm 2, we summarize the steps necessary to implement the method in the case of a bounded
operator.

Algorithm 2. For any given n,
(1) compute ̄n as in (5.6);
(2) ∙ α = 1

2 : if n < ̄n, set τ = ̄τ (see (4.19)); otherwise, set τ = ̂τ (see (5.2));
∙ α ̸= 1

2 : set τ empirically;
(3) compute nodes and weights of the Gauss–Legendre rule;
(4) calculate the approximated value of L−αN by using (2.4) and (2.5).

Example 2. In order to test the method for sectorial bounded operators, we first consider the same operator
of Example 1 but with

x = (0, 0.1, 0.2, . . . , 4)T

so that ρN = 104 and N = 41. In Figure 5, the error and estimate (5.5) are plotted for different values of β.
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Figure 5: Example 2 – error and error estimate (5.5) for the computation of L− 12 . Different values of β are considered.
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Figure 6: Example 3 – error for the computation of L−
1
2

N .

Example 3. As a more realistic example, we also consider the discretization using central differences of the
operator

Lu = −u + cu, c ≥ 0,

on [0, 1]with Dirichlet boundary conditions. We have taken N = 200 equally spaced interior points. By mov-
ing the constant c, we change the angle βπ of the sector containing F(LN), where LN is the discretization
matrix. In Figure 6, we plot the errors for c = 0 (β = 0), c = 30 (β = 0.44) and c = 200 (β = 0.49). It is inter-
esting to observe that the method is a bit faster for c ≫ 0. This is due to the position of the eigenvalues of
smallest modulus that move away from 0 for growing c. With large c, we also notice an improvement of the
attainable accuracy, and the reason lies in the conditioning of LN that reduces by increasing c.
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Figure 7: Error for the computation of L−α, L as in Example 1 with β = 1
6 , for different values of α.
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Figure 8: Error for the computation of L−αN , LN as in Example 3 with c = 30, for different values of α.

6 Experiments for α ≠ 1
2

While all the analysis is restricted to the case of α = 1
2 , we remark that themethodworks rather fine alsomore

generally for L−α, 0 < α < 1. Working with the operator defined in Example 1, in Figure 7, we compare the
behavior of the method for α = 0.75 and α = 0.9 with respect to the case α = 0.5, using the value of τ given
by expression (4.19). Unfortunately, this choice does not work well for α < 0.5.

Moreover, in Figure 8, we consider the operator of Example 3, with c = 30, and apply the method also
for α = 0.25 and α = 0.75. By Algorithm 2, we have empirically set τ = ̄τ5 (τ = ̂τ5 ) for α = 0.25 and τ = 3 ̄τ

2
(τ = 3 ̂τ

2 ) for α = 0.75, where ̄τ is defined in (4.19) and ̂τ in (5.2).Weobserve that, for α ̸= 0.5, the error initially
decreases with a rate of convergence similar to the case α = 0.5 and then shows a progressively slow down.
This is due to the fact that, since for α ̸= 0.5, we do not have accurate error estimates, we are not able to
suitable define τ. Anyway, as a general indication, one should take τ = c ̄τ (τ = c ̂τ), with c < 1 for α < 0.5
and c > 1 for α > 0.5. We point out, however, that, even without an optimal choice, the method appears to
be initially quite fast (Figure 8) so that it can be fruitfully used in applications requiring moderate accuracy.
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7 Conclusions
Wehave studied an unexplored Gaussian approach for the computation of the inverse square root of regularly
accretive operators. The method exhibits a very fast initial convergence, and its rate is independent of the
angle of the sector containing the numerical range. We have derived sharp error estimates that can be used
for an a priori selection of the number of quadrature points necessary to achieve a prescribed accuracy. We
have shown that the method can also be used for a generic fractional power, but in this general situation, the
parameter τ needs to be defined empirically.

A Approximation of β⋆
Let Ψs0 ∈ E be the ellipse passing through the point 2

√τ i − 1 (cf. (4.11)). The value β
⋆, such that the function

Φ(2)(1 + ρe−iβπ) possesses a local maximum for β > β⋆, is the one for which Ψs0 is also tangent to the curve
χ(2)(Γ−β⋆ ) at

2
√τ i − 1 (Figure 3). In order to compute β⋆, we consider the tangents at 2

√τ i − 1 to the ellipse and
to the curve, and impose them to have the same slope. Before starting, we need to derive the semi-width γ
and the semi-height δ of the ellipse. By geometrical evidence, we have that

δ = ℑ{12(s0e
i π2 +

1
s0
e−i

π
2 )} =

1
2(s0 −

1
s0
) (A.1)

and γ2 = δ2 + 1. At this point, we remind that the slope of the tangent at 2
√τ i − 1 to the ellipse is

m = − δ
2

γ2
ℜ( 2√τ i − 1)

ℑ( 2√τ i − 1)
=

δ2

δ2 + 1
(
√τ
2 ) ∼

√τ
2 +√τ

∼ 1, τ → +∞, (A.2)

where we have used (A.1) and
s0 −

1
s0
∼

4
√2

τ−
1
4 ,

which comes from (4.11). Now, it is not difficult to show that the angle between the tangent to the curve
χ(2)(Γ−β ) at

2
√τ i − 1 and the line ℑ(z) = 2

√τ is given by 1
2 (π − 2βπ). Hence, in order to find an approximation

of β⋆, by (A.2), we impose the condition

tan[π2 (1 − 2β)] = 1

that leads to β⋆ ∼ 1
4 as τ → +∞.
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