
Chapter 5
Universal Representation of Dynamic
Frequency Spectra for Canonical
Generalised Quasicrystalline-Generated
Waveguides

Z. Chen, A. K. M. Farhat, and M. Gei

Abstract An effective way to describe the sequence of stop and pass bands in a
one-dimensional phononic waveguide is represented by the ‘flow’ line reported onto
the plot of the relevant π -periodic reduced torus. In this chapter, these concepts are
introduced for silver-mean quasicrystalline-generated elastic waveguides. Results
are obtained for canonical configurations for which the dynamic frequency spectra
are periodic. Application to finite-size waveguides is also illustrated. As the silver-
mean sequence is one of the generalised Fibonacci sequences, the illustrated method
can be easily extended to other quasicrystalline substitution rules.

5.1 Introduction

The study of elastodynamics of the class of two-phase periodic, one-dimensional
waveguideswhose elementary cells are generated throughaquasicrystalline sequence
has recently gained considerable attention. In a couple of early papers, Gei [1] and
Morini and Gei [2] have provided the basic theory underlying the topic and intro-
duced the fundamental tool of Kohmoto’s invariant through which the main features
of the problem can be explained: in particular, recursivity of traces of transmission
matrices that govern the dynamic properties, self-similarity of the frequency spectra
and the determination of the associated scaling factor, etc. The theory has been also
applied to periodic media composed of laminae [3, 4] arranged according to the
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Fibonacci chain (that is a quasicrystalline sequence), to show the capability of these
composites to display negative refraction of antiplane shear waves.

Recently, Gei et al. [5] have defined the concept of canonical configurations for
one-dimensional quasicrystalline-generated periodic waveguides for which, among
several properties, the frequency spectra are periodic being the period a multiple of a
particular frequency—the canonical frequency—that depends on the geometric and
mechanical properties of the constituents of the elementary cell.

A further study [6] has shown how to employ the method of the dynamic flow on
the reduced torus, proposed in elastodynamics by Shmuel andBand [7], to describe in
an universal way the sequence of stop and pass bands for the same type ofwaveguides
introduced in [1, 2]. A relevant application of this approach is that optimisation of
the widths of stop bands becomes a simple graphical exercise when the reduced torus
is adopted.

The goal of this note is to extend the latter concept to the case of silver-mean
quasicrystalline-generated rods that are an example of waveguides obtained through
a generalised Fibonacci sequence.

5.2 Wave Propagation in Silver-Mean Quasicrystalline
Waveguides

We introduce a particular class of infinite, one-dimensional, two-component qua-
sicrystalline phononic rods consisting of a repeated elementary cell in which two
distinct phases, say L and S, are arranged according to the so-called Silver-Mean
sequence, that is an example of generalised Fibonacci sequence. The repetition of
the fundamental cell implies global periodicity along the axis and then the possibility
of applying the Floquet-Bloch technique to investigate the propagation of harmonic
elasticwaves along the longitudinal axis of the rod. Each element of the class, denoted
byFi (i = 0, 1, 2, . . . ), where the index i is the order, is constructed following the
recursive rule

Fi = F 2
i−1Fi−2, (5.1)

where the initial condition is F0 = S and F1 = L (in Fig. 5.1, elementary cells
representingF2,F3 andF4 are sketched). Each cellFi is composed of ñi elements,
where ñi = 2ñi−1 + ñi−2 (i ≥ 2) and ñ0 = ñ1 = 1. The limit ñi+1/ñi for i → ∞
corresponds to the silver-mean ratio (1 + √

2) ∼= 2.414.1

Consider now the geometrical and physical properties of phases L and S. The
lengths of the two elements are indicated, respectively, with lL and lS , while AJ ,
EJ and �J (J ∈ {L , S} here and henceforth) denote cross-section area, Young’s
modulus and mass density per unit volume of each element, respectively. For both

1 In general, all sequences that follow the rule Fi = Fm
i−1Fi−2 (m ≥ 1) are quasicrystalline; see

the discussion in [2].
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Fig. 5.1 Sketch of elementary cells for silver-mean phononic rods whose elements of the sequence
are F2, F3 and F4

segments, we define the displacement function along the rod u(z) and the axial force
N (z) = E Au′(z), where z is the longitudinal coordinate. The governing equation of
longitudinal harmonic axial waves in each phase is

u′′
J (z) + QJ ω2uJ (z) = 0, (5.2)

whereω is the circular frequency and QJ = �J/EJ . The general solution to Eq. (5.2)
is

uJ (z) = CJ sin(
√
QJ ωz) + DJ cos(

√
QJ ωz), (5.3)

where CJ and DJ are constants.
To obtain the dispersion diagram of the periodic rod, displacement and axial force

at the right-hand boundary of the elementary cell, respectively, ur and Nr , have to
be identified in terms of those at the left-hand boundary, respectively, ul and Nl , as

Ur = T iUl, (5.4)

where U j = [u j N j ]T ( j = r, l) and T i is the 2 × 2 transmission matrix of the cell
Fi . The latter is the result of the productT i = ∏ñi

p=1 T
J ,whereT J is the transmission

matrix relating quantities across a single element that can be found explicitly in
[2]. T i is unimodular (det T i = 1) and follows, from Eq. (5.1), the recursion rule
T i+1 = T i−1T2

i (i > 0), with T0 = T S and T1 = TL .
Periodicity allows the Floquet-Bloch condition to be applied to the problem,

namely Ur = exp(iK )Ul , so that, by combining this with Eq. (5.4), the dispersion
equation

cos K = xi/2 (5.5)

is achieved,where xi = trT i . The solution to Eq. (5.5) provides the complete Floquet-
Bloch spectrum and allows the definition stop-/pass-band pattern of each waveguide
at varying index i . Waves propagate when |xi | < 2, stop bands correspond to the
ranges of frequencies where |xi | > 2, whereas |xi | = 2 characterises standingwaves.
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5.3 Universal Representation of the Frequency Spectrum

To achieve the goal of this article, it is instrumental to introduce the following func-
tions of the circular frequency ω, i.e.

ζS(ω) = lS
√
QSω, ζL(ω) = lL

√
QLω. (5.6)

General recursive relations for the traces of unimodular transfer matrices of gen-
eralised Fibonacci chains have been derived in terms of Chebyshev polynomials of
the first and second kind. Specialising these expressions to the silver-mean case, it
turns out that

{
xi = xi−1ti − xi−2,

ti+1 = xi xi−1 − ti ,
(i ≥ 2), (5.7)

where ti = tr(T i−2T i−1). Through the new set of variables

x̃i = ti+2, ỹi = xi+1, z̃i = xi (5.8)

and its substitution into expression (5.7), the following nonlinear discrete map deter-
mining the evolution of xi and ti is obtained

T : R3 → R
3, T (x̃i , ỹi , z̃i ) = (x̃i+1, ỹi+1, z̃i+1) = (

x̃i ỹ
2
i − ỹi z̃i − x̃i , x̃i ỹi − z̃i , ỹi

)
,

(5.9)
where the initial conditions are given by

z̃0 = x0 = 2 cos ζS, ỹ0 = x1 = 2 cos ζL , x̃0 = t2 = 2 cos ζL cos ζS − β sin ζL sin ζS .

(5.10)
In Eq. (5.10), the impedance mismatch β takes the form

β = A2
L E

2
L QL + A2

S E
2
SQS

AL EL ASES
√
QLQS

. (5.11)

The generic trace xi can be derived through successive iterations of the expressions
in Eq. (5.7) by assuming (5.10) as initial conditions2 which include 2π -periodic
functions of their arguments. Therefore, xi is also a 2π -periodic function of both ζL
and ζS as it is defined through sums and products of functions with the same period.
This implies that we can consider each xi as a function of a two-dimensional torus
of edge length 2π , whose toroidal and poloidal coordinates correspond to ζS and
ζL , respectively. More in detail, the toroidal domain, independent of lL and lS , is
composed of two complementary subspaces that are associated with |xi (ζS, ζL)| < 2
(pass band) and |xi (ζS, ζL)| > 2 (stop band). The two regions are separated by lines in

2 For instance, it turns out that x2 = 2 cos(2ζL ) cos(ζS) − β sin(2ζL ) sin(ζS).
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which |xi (ζS, ζL)| = 2 (standing-wave solution). Themeasures of the two subregions
are univocally determined by the value of β.

Equation (5.5) shows that |xi (ζS, ζL)| is invariant under the transformation

ζS → ζS + nπ, ζL → ζL + mπ (n,m ∈ N), (5.12)

so that the map on the torus can be equivalently represented on a reduced π -periodic
torus (the reduced torus) that is a—flat—square whose edges are still described by
coordinates ζS and ζL , both ranging now between 0 and π .

Examples of stop- and pass-band domains within the corresponding reduced tori
are displayed, for β = 2.5, in Figs. 5.2, 5.3 and 5.5 for cellsF2,F3 andF4, respec-
tively, in particular stop-band regions are coloured in light blue.

The sequence of stop bands and pass bands of a silver-mean waveguide of any
arbitrary order can be studied by analysing the linear ‘flow’ parametrised by map
(ζS(ω), ζL(ω)) on the reduced torus, where ω is the time-like parameter. Note that in
this parametrisation the lengths of the two phases come into play and contribute to
the inclination of the trajectory together with quantities

√
QJ . Thanks to conditions

(5.12), the ‘flow’ lines are subdivided into ordered sequences of segments within
the reduced torus. The starting point of a segment depends on the final point of
the previous one. As ω > 0, the initial point of each trajectory is the origin. Two
examples of trajectory are the black lines sketched in Figs. 5.2 and 5.3. However, an
additional piece of theory is required to fully capture the information conveyed by
the plots.

Fig. 5.2 Flow lines on the
reduced torus for a canonical
silver-mean phononic rod
whose elementary cell is F2
and β = 2.5. Solid line:
lS/ lL = 1, AS/AL =
1/2, QS/QL = 1 (C1 = 1);
dashed line:
lS/ lL = 2, AS/AL =
1/2, QS/QL = 1 (C3 = 2).
Coloured dots mark the
extremes of the stop bands
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Fig. 5.3 Flow lines on the
reduced torus for a canonical
silver-mean phononic rod
whose elementary cell is F3
and β = 2.5. Solid line:
lS/ lL = 1, AS/AL =
1/2, QS/QL = 1 (C1 = 1);
dashed line:
lS/ lL = 2, AS/AL =
1/2, QS/QL = 1 (C3 = 2)

5.4 Canonical Configurations

In [8], the notions of canonical configuration and canonical frequency for silver-mean
periodic waveguides have been proposed. For the problem analysed in this note, the
most important feature of a canonical waveguide is that the frequency spectrum is
periodic, and the period of the sequence of stop and pass bands matches twice the
canonical frequency (ωC from now on).

A silver-mean canonical waveguide is such when the ratio C = lS/ lL
√
QS/QL

is a rational number, namely

C1 = 1 + 2 j

1 + 2k
or C2 = 1 + 2 j

2q
or C3 = 2q

1 + 2k
( j, k ∈ N, q ∈ N

+),(5.13)

where the separation in three distinct ratios (or families) comes from the detailed
analysis reported in [8]. We note that family no. 1 encompasses odd/odd ratios, while
odd/even and even/odd ratios are associated with family nos. 2 and 3, respectively,
and it is important to remark that indices j , k and q in (5.13) are such that fractions
on the right-hand sides are in the lowest terms.

The corresponding canonical frequencies are

ωC 1 = ωC 3 = π

2lL
√
QL

(1 + 2k), ωC 2 = π

lL
√
QL

q (k ∈ N, q ∈ N
+), (5.14)

where k, q coincide with the analogous indices selected in the relevant condition
among those listed in (5.13).
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The periodicity of the frequency spectrum of canonical waveguides is evident on
the reduced torus as the trajectory becomes, in turn, periodic. This means that at
ω = 2ωC the point of the ‘flow’ coincides with that of coordinate (π, π) and for
ω > 2ωC the trajectory repeats itself starting from the origin. This occurs each time
a frequency multiple of 2ωC is reached.

5.5 Results

The reduced torus in Fig. 5.2 is for an elementary cell constructed adopting F2 and
for the set of parameters AS/AL = 1/2, ES/EL = 1, QS/QL = 1; therefore, the
impedance mismatch parameter is β = 2.5. Two flow lines are sketched—in black—
namely, the solid one is for lS/ lL = 1 whereas the dashed one describes the ratio
lS/ lL = 2; therefore, the former associated rod belongs to the first family of canonical
waveguides (cfr. (5.13)) being C1 = 1 ( j = k = 0), whereas the latter belongs to the
third family (C3 = 2, q = 1, k = 0).

The solid line is the diagonal of the square (reduced torus) and represents
the whole trajectory for the former structure in the interval ω ∈ [0, 2ωC ] (here
lL

√
QLωC = π/2); hence, for frequencies just greater than the threshold 2ωC , the

trajectory runs along the same segment re-starting from the origin. For the latter
canonical configuration, the trajectory in the period [0, 2ωC ] is composed of two
segments (dashed) (where, again, lL

√
QLωC = π/2). In both cases, the point at

which ω = ωC is depicted with a white circle.
For both cases, when at a given frequency the point of the flow lies in the white

region, the frequency itself sits in a pass band; conversely, when the point is in the
light-blue domain, the frequency is in a stop band. The limit of the stop bands is
marked with coloured dots.

Figure5.3 reports the same information (all parametersmatch those of the previous
figure), but the reduced torus is for an elementary cell F3. It is clear now that the
distribution of stop and pass bands is remarkably different as the light-blue subregions
are in a greater number with respect to that in Fig. 5.2. This makes more involved the
computation of the number of stop bands for any canonical configuration associated
with the same value of β; however, the reduced torus proved to be an exceptional tool
to understand how the sequence of stop and pass bands evolves for a given canonical
configuration in a period. As a further example showing the increasing complexity
for high-order elementary cells, the reduced torus for F4 is sketched in Fig. 5.5.

In order to give the reader an additional insight into the diagrams illustrated in
Figs. 5.2 and 5.3, we consider two finite waveguides composed of six elementary
cells F2 and F3, respectively. They join two semi-infinite, identical outer media
whose elastic properties match those of phase L (the common schematic is depicted
in Fig. 5.4a)). We expect the system to be able to transmit (resp. reflect) a signal
whose frequency belongs to a pass band (resp. stop band). To this end, transmission
coefficient Tc and reflection coefficient Rc = 1 − Tc can be calculated following the
method presented in [9]. The reflection coefficients for the two problems at hand
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Fig. 5.4 Reflection of axial waves in a finite-sized silver-mean phononic waveguide (β = 2.5 in
all analysed cases): a schematic of the device; b plot of the reflection coefficient Rc for elemen-
tary cell F2 (lS/ lL = 1, AS/AL = 1/2, QS/QL = 1,C1 = 1) for a dimensionless frequency
in the interval [0, 2 lL√

QLωC ]; c plot of Rc for elementary cell F2 (lS/ lL = 2, AS/AL =
1/2, QS/QL = 1,C3 = 2) in the interval [0, 2 lL√

QLωC ]; d plot of Rc for elementary cell F3
(lS/ lL = 1, AS/AL = 1/2, QS/QL = 1,C1 = 1) in the interval [0, 2 lL√

QLωC ]

are displayed in Fig. 5.4. On the one hand, for cellF2, the whole—dimensionless—
frequency domain [0, 2 lL√QL ωC ] represented in Fig. 5.2 is analysed in Fig. 5.4b
and c for the two length ratii. On the other hand, Fig. 5.4d describes the case of cell
F3 (Fig. 5.3) with lS/ lL = 2. Note that the two peaks in Fig. 5.4c are more distant
from each other than those in Fig. 5.4b and this is consistent with the information
obtained following the two flow lines in Fig. 5.2.

In all diagrams, it is evident that Rc approaches 1 (i.e. total reflection) in the
frequency ranges that correspond to stop bands, thus confirming that the model of
infinite, periodic waveguide provides an excellent estimation of frequencies at which
waves cannot propagate. Only for the two outer stop bands of Fig. 5.4d the match is
not very good because six cells in the finite-size waveguide are not enough as it is
well known that narrow stop bands require a high number of elements to be correctly
captured by such a waveguide. For the same reason, the function Rc(ω) is oscillatory
and not null in the corresponding pass bands.

In closing the section, a natural question may arise when thinking about the
reduced-torus representation: what is the key information conveyed by the white and
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Fig. 5.5 Reduced torus for a
canonical silver-mean
phononic rod whose
elementary cell is F4 and
β = 2.5

light-blue regions in the square when the structure is ‘non-canonical’, namely when
C is irrational? In this case, the spectrum is not periodic, the flow lines are ‘open’ and
cover ergodically the whole square at increasing frequency. Consequently, the flow
trajectories on the torus consist of an infinite number of parallel segments which,
in turn, cover the whole square domain. Therefore, for the frequency spectrum, we
can define the ‘stop-band density’ that is given by the ratio between the area of the
light-blue subdomain and that of the square, i.e. π2. Since the measure of stop-band
domain is determined only by the parameter β, which is independent of the ratio
lS/ lL , for non-canonical bars the stop-band density does not depend on the ratio
between lengths of the phases (Fig. 5.5).

5.6 Conclusions

Through the adoption of the silver-mean Fibonacci sequence, we have extended to
generalised quasicrystalline-generatedwaveguides themethod to represent the layout
of stop and pass bands by flow lines on the square domain of the reduced torus.
The reduced torus is an effective graphical way to display pass-band and stop-band
regions for a set of configurations sharing the same impedance mismatch parameter.
Specific results reported in the note are given for canonical configurations, for which
the frequency spectra are periodic; as a consequence, the relevant trajectories on the
reduced torus at varying frequencies are periodic and are composed of a finite number
of segments. For non-canonical configurations, the trajectories cover ergodically the
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whole domain and it can be shown that the stop-band density does not depend on
the ratio between lengths of the phases. Finite-size waveguides are also studied and
the values of the reflection coefficient confirm the reliability of the Floquet-Bloch
method. The tool of the reduced torus can be profitably employed for optimisation
problems such as maximisation of the widths of stop bands.
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