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1 Introduction

There are several models for elasto-plastic materials with hardening for which a complete mathematical theory
is available. For this subject we refer to the classical books [22, 23, 25, 26], and papers [13, 14, 24, 28, 29], while
for more recent results and for a review of the literature we refer to [6, 18, 19], and [30]. Recent numerical
and optimization results have been obtained in [7] and [12]. In this paper we study a model for the quasistatic
crack growth in elasto-plastic materials with hardening, where an energetic formulation for elasto-plasticity is
combined with the variational approach to irreversible crack growth. More precisely, we adopt the model of
plasticity with hardening in the small strain regime presented in [27, Section 4.3.1.1]. As for crack growth, we
follow the variational formulation introduced in [17] (see also [4]) and use some tools developed in [9]. In order
to avoid a lot of technical difficulties, We prefer to consider here only the case of antiplane shear. The general
case would require to face a lot of other technical difficulties, using recent results in the literature concerning
the GSBD space (see [8]), but we have not worked out the details.

The reference configuration is a bounded open set Q in RY, d > 2, with Lipschitz boundary, and the crack
is described by a subset I of Q of dimension d — 1. The displacement is a function u:  \ I — R and the corre-
sponding strain is determined by its gradient Vu, which is additively decomposed into an elastic and a plastic
part: Vu = e + p. Asin [27, Section 4.3.1.1], we consider also the scalar isotropic-hardening parameter n: Q — R.

The energetic formulation of our problem is based on the energy used in linearized elasto-plasticity with
hardening and on a dissipation distance depending also on the cracks. The energy is given by

Lol + (rnip) + Zint )
Here and in the rest of the paper the symbols (- |- ) and || - | denote the scalar product and the norm in L?(; RY)
or L%(R), according to the context. In the previous formula a > 0 is the Hooke constant, > 0 determines the
kinematic hardening, y > 0 determines the isotropic hardening, while h € R is a vector reflecting possible cou-
pling between kinematic and isotropic hardening. We assume that |h|> < By, so that the energy satisfies a suit-

a
&e,p,n) = Enen2 +
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able coerciveness condition, which is a standard assumption in the existence theory for this kind of problems
(see [27, Proposition 4.3.1]).
If Ty c I'y, the dissipation distance is given by

D(p2, n2,T2; 01,01, T1) = JR(PZ —p1, N2 - 1) dx + HEXTL\ Ty), 1.2)
Q

where R is a positively one-homogeneous dissipation potential satisfying the usual coerciveness and growth
conditions (see (2.3) below), and 41 is the (d — 1)-dimensional Hausdorff measure. To force the irreversibility
of crack growth, we set D(p2, 02, ['2; p1, N1, 1) = +00if Ty ¢ Ty.

The evolution t — (u(t), e(t), p(t), n(t), I'(t)) of our system in the time interval [0, T] is driven by a time-
dependent Dirichlet boundary condition of the form u(t) = w(t) on 8Q \ T'(t), where w: [0, T] — H(Q) is a pre-
scribed absolutely continuous function. More precisely, a quasistatic evolution ¢ — (u(t), e(t), p(t), n(t), I'(t))
with boundary condition w is a function that satisfies the following conditions:

Condition (GS) (Global stability). For every t € [0, T] we have Vu(t) = e(t) + p(t) in Q \ I'(¢), u(t) = w(t) on
0Q\ I'(t),and
&(e(n), p(t), n(0) < E(&, p, ) + D(p, 7, T; p(t), n(1), L(1))

for every crack I, every hardening parameter A, and every (i, &, p) such that Vit = & + p in @ \ T and &t = w(t)
on oQ\T.

Condition (EDB) (Energy-dissipation balance). For every t € [0, T] we have

t
E(e(t), p(t), n(t)) + Diss(p(-), n(-), T(-); 0, t) = E(e(0), p(0), n(0)) + a j (e()IVin(s)) ds,
0

where Diss(p(-), n(-),T(-);0,t) denotes the dissipation in the interval [0, t] corresponding to the distance D
introduced in (1.2) (see (2.5) below).

The main result of the paper is that, given (uo, eo, po, o, T'o) satisfying condition (GS) at t = 0, there exists a qua-
sistatic evolution with u(0) = uy, e(0) = eg, p(0) = po, N(0) = o, I'(0) = Ty (see Theorem 2.2). To obtain this result,
we use the standard variational approach based on the construction of discrete-time approximate solutions
obtained by solving incremental minimum problems. Then we prove the convergence of these approximate
solutions to a continuous-time quasistatic evolution satisfying (GS) and (EDB). It is not difficult to prove that
a similar result can be obtained if the Dirichlet boundary condition is imposed only on 8pQ \ T'(t), where 9pQ
is a prescribed subset of 0.

In Section 2 we present a detailed description of our model and introduce the function spaces used for
a precise formulation of the problem. In particular, the estimates available for the displacement u lead us to
choose a subspace of the space GSBV(Q) of generalized special functions of bounded variation, for which we
refer to [2, Section 4.5]. Unfortunately, we cannot choose the space H 1@\ I) for the displacement, because there
is no way to guarantee that the set I constructed in the proofs is closed, unless we impose additional unnatural
topological assumptions.

As a consequence of the choice of GSBV(Q) for the displacement, the crack I belongs to the set Rg_1(Q) of
(K1, d — 1)-rectifiable subsets Q (see [15, Definition 3.2.14 (4)]).

In Section 3 we study the incremental minimum problems in detail. A nontrivial issue is the existence of
a solution. This is due to the fact that, while an estimate of the L2-norm of Vu is easily available, there are no
estimates on the L2-norm of the displacement u (nor on any LP-norm), due to the presence of the cracks. For this
reason the compactness theorem in GSBV(Q) by Ambrosio [1] (see also [2, Theorem 4.36]) cannot be applied. To
overcome this difficulty, we rely on a recent result proved in [20], which provides the convergence of a suitable
modification of a minimizing sequence. In this way we obtain the existence of a solution to the incremental
minimum problems. We conclude this section by showing that a solution (us, e, p1, N1, I'1) of an incremental
minimum problem satisfies also

&er, p1,m) < €@, p, 7)) + DB, A, T; p1, N1, T1) 1.3)
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for every crack I', every hardening parameter i, and every (i, &, p) such that Vit =2+ p in Q \ T and &t = uy
onoQ\T.

In Section 4 we recall a notion of convergence in R4_1 (Q), called o-convergence, introduced in [21, Definition
6.1] and use its properties to prove the stability of the minimality condition (1.3) with respect to the natural
convergences of e, p1, N1, and to the g-convergence of I';. The proof relies on the jump transfer lemma of
Francfort and Larsen [16, Theorem 2.1], adapted to o-convergence in [21, Theorem 7.4].

In Section 5 we use the results of the previous sections to prove the existence of a solution to the initial
value problem for the quasistatic evolution described by conditions (GS) and (EDB). As usual, we first construct
approximate solutions by solving incremental minimum problems and then prove the convergence of a suitable
subsequence. To this aim we use two variants of Helly’s Theorem, one for functions with bounded variation with
values in separable Hilbert spaces, and one for increasing functions with values in R4-1(Q) endowed with the
o-convergence.

Condition (GS) for the limit functions is obtained thanks to the results of Section 4. The upper energy-
dissipation inequality can be easily obtained by semicontinuity, while the lower energy-dissipation inequality,
which in other papers (starting from the proof of [9, Theorem 3.15]) is obtained by approximating a Lebesgue
integral with suitable Riemann sums, is proved here through an easier argument (see Lemma 5.4).

The corresponding problem in linearly elastic-perfectly plastic materials (without hardening) is much more
difficult. The only result (see [11]), concerns the planar case and is obtained under a constraint: the number of
connected components of the cracks is hounded by a prescribed constant. No result has been proved so far in
dimension d > 2, not even in the antiplane case. In our opinion the main technical obstruction is related to
possible interactions between cracks and concentrated plastic shears.

2 The model and the main result

In this section we present a variational model of a quasistatic crack growth in an elasto-plastic material
with hardening and state the main result of this paper. The model is based on the energetic formulation
for rate-independent processes described in [27]. As explained in the introduction, we consider only the case of
antiplane shear.

We assume that the elastic and plastic strains satisfy e, p € L?(Q; R%), while the scalar isotropic-hardening
parameter satisfies p € L2(Q). The energy &(e, p, n) is defined by (1.1). Since |h|?> < By, there exists vy > 0 such
that |h| < (B - ZVO)%(V - 2\/0)%. This implies that for every r € R?and { € R,

Piap s cn e Yig2 = Bia - 200y~ 2vo) 11l + L1 2 voim? + 127, @D
Since (e, p, n) is quadratic, by (2.1) we have that
& LA RY x L2(Q; RY) x L*(Q) — [0, +00)  is convex. (2.2)

To introduce the dissipation distance, we consider a bounded closed convex set & ¢ RYx R containing (0, 0)
in its interior. The dissipation potential R: R? x R — R is its support function:

R(m,{):= sup (m*m+(*().
(*,{*)€ex

Itiswell known that R is convex and positively homogeneous of degree one. Moreover, it satisfies the inequalities
cr(I7l2 +10)2 < R, O) < Cr(ml* + 142 for every (11, ) € RY x R 2.3)
for suitable constants 0 < cg < Cg. The corresponding functional R: L2(Q;RY) x L2(Q) — [0, +00) is

R(p, ) = jR(p, n) dx.
Q

To describe the contribution of the crack to the dissipation distance, we introduce the set Rg_1(Q) of
(K1 d — 1)-rectifiable subsets Q (see [15, Definition 3.2.14 (4)]) and consider the pseudo-distance 3 on Ra_1(Q)
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defined by
HEUT,\Ty) if Ty < Ty,

+00 otherwise,

H(To,Tq) = {

where H4 ! is the (d - 1)-dimensional Hausdorff measure. The complete dissipation distance in LY(Q; RY) x
L2(Q) x Rq_1(R) is then given by

D(p2, N2, T2; p1, N1, T1) := R(p2 = p1, N2 — N1) + H(T, Ty). (2.4)

Given a time interval [s, t] and three functions p: [s, t] — L2(Q;RY), n:st]— L%(Q),andT: [s, t] —» Rg_1(Q),
the corresponding dissipation is defined by

k
Diss(p(-), 1(-), T(+); s, 1) :=sup ) D(p(ti), n(ts), T(t); p(ti-a), N(ti-1), (i), 2.5
i=1
where the supremum is taken over all k € IN and over all subdivisions s = ty < t; < --- < tx = t.In the same way
we define .
Dissg(p(-), N(-), T(-); s, 8) := sup Y’ R(p(ti) - p(ti-1), N(t) = N(ti-1)). (2.6)
i=1
IfT(-) isincreasing on [s, t],i.e., ['(t1) c I'(72) for every s < 71 < 73 < t, it is clear from (2.4) that

Diss(p(-), (+), T(+); s, t) = Dissg(p(-), N(-), T(-); 5, £) + HN(T(0) \ T(9)), @7

while
Diss(p(-), n(-),T(+);s,t) = +00
if I'(-) is not increasing on [s, t].

To describe the energetic formulation of our evolution problem, it is convenient to consider the displace-
ment u as a function defined £%a.e. in Q, where £¢ denotes the d-dimensional Lebesgue measure. Since u might
have essential discontinuity points on T, it is natural to assume that it belongs to a suitable function space which
allows for discontinuities along (d — 1)-dimensional sets.

We recall that BV(Q) is the space of functions u € L'(Q) whose distributional gradient Du is a bounded
Radon measure on Q with values in R%. The space SBV(Q) of special functions of bounded variation is composed
of all functions u € BV(Q) such that the singular part of Du is concentrated on a set of o-finite J{¢~!-measure.
The space GSBV(Q) of generalized special functions of bounded variation is the set of measurable functions u
whose truncations belong to SBV,.(Q). We refer to [2, Section 4.5] for the details. In particular, we recall that for
every v € GSBV(Q) the approximate gradient Vv is well defined £%-a.e. in Q, the jump set J,, of v is a countably
(K1, d — 1)-rectifiable subset of Q (according to [15, Definition 3.2.14 (3)]), and the trace of v on 9Q is well
defined H?1-a.e. on 8 (see [2, Theorem 4.34]).

The estimates available for u lead us to formulate the problem in the space GSBV?(Q) defined by

GSBV2(Q) := {v € GSBV(Q) : Vv € L2(; RY), H41(J,) < +oo}

and recall that GSBVZ(Q) is a vector space (see, e.g., [9, Proposition 2.3]). In our model we assume that
u € GSBVZ(Q), that the equality Vu = e + p takes place £%a.e. in Q, and that J, T, where A< B means
HE1(A\B) =0.

The Dirichlet boundary condition is prescribed through a function w € H'(Q), imposing that the traces of u
and w satisfy u = w H% '-a.e.on 9Q \ T.

To simplify the exposition, given I' € R4_1(Q) and w € H'(Q), it is convenient to introduce the set A(T, w)
of admissible pairs defined as the set of (e, p) € L2(2; RY) x L%(Q; R?) such that there exists u € GSBV2(Q) with
the following properties:

Vu=e+p L%ae. ing,

JucT,
u=w H%lae onoQ\T,

where the last equality is intended in the sense of traces.
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We study the evolution problem on the time interval [0, T] with T > 0. The time-dependent boundary con-
dition is given by means of a function t — w(t). We assume that w € AC([0, T]; HY(®)), the space of absolutely
continuous functions from [0, T] with values in H*(Q). We recall that Viv(t) is well defined for £1-a.e. t € [0, T]
and that Viv € L1((0, T); L*(2; R%)) (see [5, Appendix]).

We are now in a position to give the precise definition of a quasistatic evolution for our model in the
framework of the notion of energetic solutions for rate-independent systems.

Definition 2.1. Given w € AC([0, T]; H(Q)), a quasistatic evolution with boundary condition w is a function
t — (e(t), p(t), n(t), T(1)) from [0, T] into L2(Q; RY) x L2(Q; RY) x L%(Q) x R4_1(Q) that satisfies the following
conditions:

»  Global Stability (GS): for every t € [0, T] we have (e(t), p(?)) € AT (t), w(t)) and

E(e(t), p(t), n(0) < E(@, p, ) + D(p, i, T; p(8), n(0), T(1))

for every T' € Rq_1(Q), (2, p) € AT, w(t)), and j € LX(Q),
+ Energy-Dissipation Balance (EDB): the function t — e(t) belongs to L®((0, T); L*(2; R%)) and for every
t € [0, T] we have

t
Ee(t), p(t), n(t)) + Diss(p(-), n(+), I(-);0,t) = E(e(0), p(0), n(0)) + a J (e()IVin(s)) ds.
0

We are interested in the study of the existence of a quasistatic evolution with a prescribed initial condition
(0, Po, N0, To) € L2(Q; RY) x L2(Q; RY) x L4(Q) x Rq_1(Q). From the global stability condition it follows that the
initial data must satisfy

(€0, po) € A(To, w(0)), (2.8)
S(eO) Do, r’O) < E(é’ i)) f’) + D(ﬁ: fl: f) Do, No, I‘0): (29)
for every I' € Rq_1(Q), (&, p) € AL, w(0)), and i € L%(Q).

We are now in a position to state the main result of this paper.

Theorem 2.2. Let w € AC([0, T]; H'(Q)) and let (eq, po, Mo, To) € L*(Q; RY) x L3(Q; RY) x L2(Q) x Ryq_1(Q) be
such that (2.8) and (2.9) hold. Then there exists a quasistatic evolution with boundary condition w such that
(e(o)’ p(O), ’1(0): F(O)) = (eOJ Do, No, FO)

Theorem 2.2 will be proved through the usual variational approach. We first construct a discrete-time approx-
imation by solving incremental minimum problems, then we prove the convergence of these approximate
solutions to a solution according to Definition 2.1.

3 The incremental minimum problem

In this section we study the incremental minimum problems, which have the following general form. Given
po € L2 (Q;RY), ng € L%(Q), Ty € Rg_1(Q), and w; € H'(Q), the problem is to find

(1, 1, 1, T1) € LH(QRY x L@ RY) x LA(Q) x Rg-1(Q)
such that
(e1, p1) € A(T'1, wq),
&(e1, p1, M) + D(p1, N1, T1; Po, N0, To) < E(&, p, ) + DD, i1, T; po, No, To) G.1)
for every I € Rg_1(Q), (&,p) € AT, wy), and i € L*(Q).
To solve this problem it is convenient to express it in terms of the displacement u. In order to deal with the
boundary condition we introduce a bounded open set @' ¢ R? with Lipschitz boundary such that @ c Q' and we

extend po, o, and wy to functions (denoted by the same symbols) belonging to the spaces L2(Q'; R%), L2(Q'), and
H(Q'), respectively. In this way the boundary condition u = wy on 0Q is rephrased as u = w; £L%a.e.in Q' \ Q.
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To express (3.1) in terms of Vu and J,, we introduce the function f: R? x R? x R — [0, +co) defined by

f&n,0:= inf gE&m ), 3.2)

7eR4,eR
where g(&, 7, {, 71, {) = L& -7* + lzille2 +Ch-+ %lflz +R(7t - 1, { - {). By (2.1) we have
&, & 7,0 > S1E - 7l 4 ol + vollT (33)

Since g(¢, 7, ¢, 7, Z ) tends to +oo as |(7, Z )| — oo, the minimum in (3.2) is attained. Moreover, since g is
strictly convex in (7, {), the minimum point is unique. We introduce two functions 77 : R? x R% x R — R? and
{:RYxR? x R — R defined by

7:[27:[(5:,7[, O:
{=l¢Em 0.

By the uniqueness of the minimizer and the continuity of g, the functions 7 and ¢ depend continuously on
(&, m, ), since the limit of minimizers is a minimizer. This implies that the function f is continuous.
Taking 77 = 0 and ¢ = 0 in (3.2), we obtain from (2.3) that

fE 7,0 < JIe + R(-m,~0) < 518 + Callal +1g)1, G4

(7, ) is a minimizer of g(§, 71, {,-,-) e {

while by (3.3) we deduce that there exists o > 0 such that

fE&, 7, 0) = uolél*. 3.5)
By (3.3) and (3.4) we have

18- 7E ™ OF + Vol 7, OF + vol{(E,m, OF < 18 + Crlal? + 161,
from which we infer that there exists a constant Ag > 0 such that
|7(&, 7, Ol + 136, 7, Ol < Molél + Ao(It] + 14D 2. (3.6)
By (2.1) the function (71, {) — glfrl2 +Ch-ar+ %lf |2 + R(77 — 11, { — {) is convex. Hence we can conclude that
& f§,m,0) isconvexin RY for every (7, {) € R x R. 3.7)

We consider the auxiliary problem

min [ AV po. o) dx+ KOG\ o), 39)
ueGSBV*(Q') i
u=w; Llae in@\Q @

and study the existence of a solution.

Theorem 3.1. Let py € L2(Q';RY), ng € L%(Q"), Ty € Rq_1(Q), and wy € H(Q'). Then there exists a solution to
problem (3.8).

Proof. Let (ux)x be a minimizing sequence for (3.8). By (3.5) we can apply [20, Theorem 3.1] with Ex and hx
therein given by
Ex(v) = j Vo2 dx + HO1(J,) and Ry = wy
Q
for every k € IN. We obtain a subsequence (not relabelled), modifications (yx)x of (ux)k, and a function u such
that the following conditions hold:

Viou € GSBVA(Q) and yr=u=w; £L%aeinQ'\Q, 3.9)
vk —u L%ae.inQ, (3.10)

Vyx — Vu and Vui — Vuweakly in L3(Q'; RY), (3.11)
HEY(J, nA) < liggf%d‘luyk NnA) foreveryopensetA c Q', (312)

Jlim H Ty \ Ju) = 0. (3.13)
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In [20, Theorem 3.1] inequality (3.12) is proved only for A = Q'. The result for an arbitrary A in (3.12) follows from
Ambrosio’s compactness theorem ([2, Theorem 4.36]) applied to GSBV?(A). Inequality (3.13) can be obtained by
a slight modification of the arguments used in [20]. Indeed, a careful inspection of the proof of (7) (i)-(ii) in
[20, Theorem 3.2] allows us to replace (9) (ii) with the estimate ﬂ{d‘l(jv \ Ju) < Cy0 for the functions u and v
and the constants Cy; and 6 in [20, Corollary 3.3]. This leads to the inequality }Cd‘l(]yk \Ju,) < % instead of
(34) (i) in [20, Theorem 3.8].

By the convexity of £ — f(&, po(X), no(x)) for L3 xin Q' (see (3.7) and by (3.11) we have

jf(Vu, Po, No) dx < lilgn inf Jf(Vuk,po, no) dx. (3.14)
Q Q'

Since H41(Ty) < +oo0, for every € > 0 there exists a compact set K c Ty such that HEYTH\K) < €. By (3.12)

and (3.13) we have
HEYJ\To) < K1y \ K) < lim inf HEYJy, \K) < lim inf HEY(Jy, \ To) + &
—00 —00
Passing to the limit as € — 0, we obtain
HEL(J, \ Tp) < lim inf HEY(Jy, \ To).
—00

Recalling that (ux)x is a minimizing sequence, this inequality together with (3.9) and (3.14) shows that u is
a minimizer of (3.8). O

Given a solution u; of (3.8) we set

p1 = (Vu1, po, o), €1 :=Vus - p1, N1 i={(Vur, po, o), T1:=Ju, UTo. (315

Then p1, e1 € L2(Q';RY) and n1 € L%(Q') by (3.6), while Ty € Rg_1(Q).
We now prove that (eq, p1, 01, I'1) solves the minimum problem (3.1).

Theorem 3.2. Let uq be a solution of (3.8) and let e1, p1, N1, I'1 be defined by (3.15). Then (eq, p1, N1, I'1) is a solution
to the minimum problem (3.1).

Proof. Condition (p1, 1) € A(I'1, wy) is satisfied by definition. To prove the minimality, we fix [ € Rg_1(Q) with
I'5 T, (&,p) € A(T,w1), and i € L%(Q). Let it € GSBV?(Q) be such that Vit = ¢+ p L%-ae. in Q, J; < T, and
it = wy H%1-a.e. on 0Q \ I'. We now extend i, &, p, i to Q' by setting it := w1, & := Vwq — po, P := Po, 0 := No
in Q' \ Q. Then it € GSBV?(Q'), hence by (3.8) we obtain

| v, po. oy dx + 31, \To) < [ A8 po, o) dx 4 31\ T,
Q Q

which gives
| A1, po, o) dx 4 3¢, \To) < [ AV po, o) dx + 34T \ To)
Q Q

By the definition (3.2) of f and (3.15) the previous inequality gives

a
5 test ax+ & [ ipatdx [naps dx X [inatt s [ R: = po, 1 - o) dx 3671, \1o)
2 2 2 2 B
a . o P o o N _
< EJlelzdx+'§lelzdx+J/7h-pdx+%J|q|2dx+JR(p—po,n—no)dxHHd YJa \ To).
2 2 B 2 B

Since 4 1(J,, \ To) = H41(T'y \ Tp) and H41(J; \ To) < H4 (T \ Ty), the previous inequality gives

E(elaply ’)1) + D(pl: n1, rl;pO) No, rO) < S(éaﬁa fl) + D(p) fly f) Do, o, FO),

thus proving that (e1, p1, 01, I'1) is a solution to the minimum problem (3.1). O
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In the proof of Theorem 2.2 we shall use also the property of the solution of (3.1) provided by the following
proposition.

Proposition 3.3. Let (e, p1, N1, I'1) be a solution to the minimum problem (3.1). Then
&(ex, p1, M) < €@, p, ) + DD, 7, T3 p1, 1, T1) (3.16)
for every T € Rg_1(Q), (&, p) € AT, wy), and i € L*(Q).
Proof. Itis enough to observe that
D(P, 1, T; po, o, To) = D(p1, N1, T1; po, No, To) < DB, 1, T; p1, 11, T1)
by the triangular inequality. O

4 A notion of convergence for cracks and stability of minimizers

In this section we recall a notion of convergence for cracks introduced in [21] and use its properties to prove the
stability of condition (3.16) (see Theorem 4.5).

Let R4_1(Q") be the set of (341, d — 1)-rectifiable subsets of Q’, see [15, Definition 3.2.14 (4)]. Let U(Q') be
the space of functions u € SBV(Q') with values in {0, 1} and let A(Q') be the collection of all open subsets of Q.
Given a sequence (T'y)x in Rg_1(Q"), let Hy: U(Q) x A(Q) — [0, +00) be defined by

Hie(w, A) = HT((Ju \ Ti) N A). @1
It is known that a subsequence, not relabelled, has the property that Hx(-, A) I-converges with respect to the
strong topology of L1(Q') to a functional 3((-, A) of the form
H(u, A) = I h(x, v) dH! 4.2)
JunA
for some function h: @ x R¢ — [0, +00).
Definition 4.1 (0-convergence). Let (T'x)x be a sequence in Ry 1(Q') and let T' € R4_1(Q"). We say that I'y o-con-

verges to T in Q' if for every A € A(Q') the functionals Hy( -, A) defined by (4.1) I-converge with respect to the
strong topology of L(Q') to the functional (-, A) given by (4.2) and if T is the unique rectifiable set such that

h(x,vr(x)) =0 for K% '-ae.xeT
and such that for every I’ € R4_1(Q") we have
h(x,vr(x)) =0 for H% lae.x eI’ = TI'CL.
The following proposition summarizes the basic properties of g-convergence.

Proposition 4.2. Let (Tx)x be a sequence in Ry_1(Q"). Then:
(@) (Compactness) If (HY(T)))k is bounded, then there exist a subsequence, not relabelled, and asetT € Rg_1(Q')
such that
I'x o-convergesin Q' toT.

(b) (Semicontinuity) If Tk o-converges in Q' to T, then
HTU (T NA) < lim inf HEY T N A) 4.3)
—00

for every open subset A of Q.
(c) (Stability) If Tx o-converges in Q' to T and (Tx)x is a sequence in Rq_1(Q") such that H4(TxATx) — 0, then
'y o-converges in Q' toT.

Proof. Property (a) is proved in [21, Proposition 6.3]. Under the assumption of (b) we observe that Ty N A
o-converges in A to I'nA for every open set A c Q. Therefore (4.3) follows from [21, Proposition 6.3] if
liminfy_eo HE Tk N A) < +00 and is trivial otherwise. Property (c) is proved in [21, Remark 6.2]. O
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The following proposition presents the main property of g-convergence. According to [9, Definition 2.6], we say
that a sequence (ux)x converges to u weakly in GSBV3(Q') if ux, u € GSBVA(Q'), ux — u L%a.e.in @', Vuy — Vu
weakly in L2(Q"; RY), and (% (J,, )k is bounded in R.

Proposition 4.3. Let (Tx)x be a sequence in Rg_1(Q') that o-converges in Q' to T € Rg_1(Q'). Let (uy)x be
a sequence in GSBVZ(Q') with ux — u weakly in GSBV3(Q") and H%1(J,, \ Tx) — 0. Then J,,  T.

Proof. 1f, in addition, uyx € BV(Q') n L>°(Q') and (uy)x is bounded in L*®(Q'), then the result follows from
[21, Proposition 6.8]. The general case can be obtained by truncation, arguing as in [9, Proposition 4.6]. O

In the proof of the stability result for (3.16) a crucial role is played by the following theorem which extends the
jump transfer argument introduced in [16, Theorem 2.1].

Theorem 4.4 (Jump transfer in GSBV?). Let (I'x) be a sequence in Rq_1(Q) a-convergingin Q' toT € R4_1(Q) and
let v € GSBV(Q'). Then there exists a sequence (Vi)k in GSBV2(Q') such that

vk=v L%aeinQ'\Q, (4.4)

vk —» v L%aeinQ’, (4.5)

Vv — Vv strongly in L*(Q'; RY), (4.6)

lif{n sup H1(Jy, \ Tk) < HELJ, \ ). 4.7
—00

Proof. 1f,in addition, v € BV(Q'), then the result follows from [21, Theorem 7.4]. In the general case we conclude
arguing as in [9, Theorem 5.3]. O

We are now ready to prove the stability result for (3.16).

Theorem 4.5 (Stability of minimizers). Let (ex)x, (Px)x, (Ni)ks (Tk)k, (Wk)k be sequences in L%(Q; RY), L2(Q; RY),
LY(Q), Rg-1(Q), and H(Q), respectively. For every k € IN we suppose that (ex, px) € A(Tx, wi) and

E(ex, Pk, NK) < E(&, P, /) + D(P, A, T; pr, Nies Tk) (4.8)

forevery T € Rg_1(Q), (&, p) € AT, wk), and ij € L%(Q). Assume that

ex — e weakly in L*(Q; R%), 4.9)
px — p weakly in L*(Q; RY), (4.10)
Nk —n weakly in L*(Q), (4.11)
Iy o-convergesin Q' toT, (4.12)
wx — w  strongly in HY(Q). (4.13)

Then (e, p) € AT, w) and
&e,p,n) <&@ p, ) +DP, 0, T;p,n,T)

forevery T € Rg_1(Q), (&, p) € A(T, w), and i € L*(Q).
To prove the theorem we use the following lemma.

Lemma4.6. Lete € L2 (Q;RY), p € L2(;RY), n € L*(Q), T € Rg_1(Q), and w € H(Q). The following conditions
are equivalent:
(@ (e,p) € A(T,w) and
&(e,p, n) <&@, p, 1)+ D@, 7, T;p,n,T) (4.14)
for every T € Rg_1(Q), (&, p) € AL, w), and i € L*(Q).
(b) (e,p) € A(I,w) and

0 < a(el®)+ 18l +BpI) + L 1pIP + (kD) + (Thp) + H1p) + i) + LA +R(p, )+ 30 P\T) (19

forevery T € Rg_1(Q), withT 5T, (&, p) € A(T,0), and ij € L*(Q).
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Proof. (a)= (b) Let T € Rg_1(Q), with T 3T, (&,p) € A(T,0), and fj € L2(Q). DefineI' =T, é=e+8,p=p+é,
il = n + i, and observe that (&, p) € A(T, w). Substituting in (4.14) and using the definition of & and D, we obtain
(4.15). The proof of the other implication is similar. O

Proof of Theorem 4.5. Since (ex, px) € A(T'k, wi) for every k € IN there exists uy € GSBV2(Q) such that

Vuyg = ex + Pk £lae.inQ, (4.16)
Jue €Tk, (4.17)
we =wr H%l-ae onoQ\ k. (4.18)

We extend wy and w to Q' in such a way that wy € HY(Q'), w € HY(Q'), and wxy — w strongly in H*(Q'). More-
over, we extend uy to Q' by setting uy := wy in Q' \ Q and observe that uy € GSBV2(Q') and that by (4.17) and
(4.18) the jump of the extension in Q' satisfies J,, € I'k.

By (4.9) and (4.16) we deduce that (Vuy)x is bounded in L(Q/; RY). Since also 9(‘1‘1(] ) 1s bounded, we can
apply [20, Theorem 3.1] and obtain a subsequence (not relabelled), modifications (yx)x of (ux)k, and a function u
satisfying (3.9)-(3.13), with wq replaced by w. Applying Proposition 4.3, we conclude that J,  T,henceJ, N Q C T
andu = won dQ \ T in the sense of traces. By (3.11), (4.10), and (4.11) we obtain that Vu = e + p £%a.e.in Q, which
together with the previous remarks gives (e, p) € A(T, w).

Letus fixT' € Rg_1(Q) withT 5T, (8, p) € A(T,0),and ij € L2(Q). Then there exists a function ¥ € GSBVZ(Q)
such that

\Y
Js €T,
=0 onaQ\T.
We extend ¥ to Q' \ Q by setting ¥ := 0 on Q' \ Q and observe that ¥ € GSBV?(Q'). By the Jump Transfer Theo-
rem 4.4 there exists a sequence (x)x in GSBV?(Q') which satisfies (4.4)-(4.7). We define & := Vix — p and
T := Tx U Jy,. Then & — & strongly in L*(Q; RY) by (4.6), and (&, p) € A(T'k, 0) for every k.
Using the implication (a) = (b) in Lemma 4.6, from (4.8) we deduce that

+p L%ae. in Q,

<
Il
)

0 < atexlen) + S1enl? + BilD) + D1pI + (hip) + hipe) + (ip)
+yld) + LRI + (B, )+ 3615, \ T

for every k. Passing to the limit as k — oo and using (4.7) we obtain

B
2
+ YR + TIRIE + R(B, )+ 3415\ .

0 < alele) + 5 I2l* + B(plp) + 5 IBI + (NAIB) + (Rhip) + (RAIP)

Since J; ¢ T, from this inequality we obtain (4.15). The conclusion follows from the implication (b) = (a) in
Lemma 4.6. |

5 Proof of Theorem 2.2

In this section we prove Theorem 2.2. We use the standard procedure based on the construction of discrete-time
approximate solutions obtained by solving incremental minimum problems. To this end for every k € N we
consider a subdivision 0 = ¢% < ¢} <--- < tf = T of [0, T] such that

{n;ﬂ;(t}( -t -0 G1)
<i<

ask — oo.
Given w € AC([0, T]; H(®)) and (eg, po, No, To) € L2(Q; RY) x L%(Q; RY) x L2(Q) x R4_1(Q) satisfying (2.8)
and (2.9), the values of the approximate solutions at times tﬁ( are defined in the following way. For every k € IN
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we set ek = ey, pk = po, r]k = N, and l"k = T'o. Then, for i i= kwe define ek, pk, nk, and l“l inductively as
a solution to (3.1) with ey, po, no, o, and wy replaced by ek , pk , r]k - Fl 1 and w(t}), respectlvely.

A crucial role in the proof of Theorem 2.2 is played by the followmg energy estimate for the discrete-time
approximate solutions.

Lemma 5.1 (Discrete energy estimate). There exists a sequence ax — 0+ such that
i S
el Pl ) + Y DW M vl o T ) < Eeo, po. o) + @ Z(d V(&) - Vw(t ) +ax  (52)
j=1 Jj=1
foreveryk e Nandeveryl <i<k.

Proof Let us fix k and i. For every 1<j<i we take T —I‘k ,e: —ej +Vw(t )—Vw(t ) D= p]k ,
i=n k as competitor in the minimum problem satisfied by (e’k, p’k, q’k, k) and we obtain the 1nequa11ty

€€ i M) + DWh Mo Tis P 5 1 5 T4 )
e ol + alvw(d) - vw(d, ) + %uw(t’;) —vw (DI

Summing this inequalities for 1 < j < i, we obtain (5.2) with

Q

k
=Y IVt - Vw(d HIP < My sup IVw(tl) - Vw (& I,
:1 1<]<

l\J

where My == ¢ Y5, [Vw(t]) - Vw(¢, ") Since w € AC([0, T); H'(2)), by (5.1) we conclude that ax — 0+. [

The discrete energy estimate proved in the previous lemma leads to the following a priori estimate for the
discrete-time approximate solutions.

Lemma 5.2 (A priori estimate). There exists C > 0 such that
lell® + Il + Il + HE(T)) < € (5.3)
foreveryk e Nand1<i<k.
Proof. Let My := maX1§i§k(||e§(||z + IIPZH2 +InkI?). From (5.2) and the coerciveness (2.1) we obtain that there
exists a constant Cy > 0 such that
k
. . . _ . i i i—1
el + 1P l? + Il + HEN T\ To) < Co Y. Nl IVw(t)) = Vw(t) ). (5.4)
j=1

Since w € AC([0, T]; H}(Q)), there exists a constant C; > 0 such that
Z IVw(t}) - Yw(t, Hllzzome < C1

for every k € N, hence
. . . 1
legl® + Ipgl? + I li* < CoCrMy

for every 1 < i < k. Taking the supremum with respect to i, we obtain that My < C(Z] Ci. Taking into account (5.4),
we now deduce that 3%*(T}) < CA€% + 3(4-1(Tp), which concludes the proof. O

To prove the global stability condition (GS) in Definition 2.1 we observe that the approximate solutions satisfy a
discrete-time version of the same property.

Remark 5.3. By Proposition 3.3 the quadruple (e}'{, p}'(, r)};, F}'() satisfies
E(el, Pl nl) < (@, P, 1) + DB, 0, T; pl, 0l TL)
for every I' € Ra_1(Q), (&, p) € AT, w(t})), and i € L*(Q).
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Proof of Theorem 2.2. Let e}'(, pﬁ{, r]}'(, and F}'{ be defined as at the beginning of this section. For every k € IN and
every t € [0, T] we consider their piecewise constant interpolations defined by

e(®) = e, pr®:=pits M@=t Te® =T wi(®) = wt )

forevery ¢ e [t!, t)for1 < i<k andt e [, ti] fori= k.
Note that t — T'x(¢) is increasing, (ex(t), px(t)) € A(Tk(t), wi(t)), and by Remark 5.3 we have

E(ex(t), pi(t), ni(t)) < €@, p, ) + D(P, A, T; pr(0), ni(0), Tk(2))

for every I' € Rg_1(Q), (&, p) € AT, wi(t)), and i € L%(Q).
By (5.3) we obtain that there exists C > 0 such that

lex(OI? + kI + kI + HEXTK(D) < € (5.5)

for every k € N and every ¢ € [0, T].
Recalling (2.5)-(2.7), by (5.2) it follows that there exists a sequence by — 0+ such that

t
&(ex(t), pr(t), nk(t)) + Dissp(pk, Ni; 0, ) + HEL(Tk(t) \ To) < E(eo, Po, No) + @ j(ek(T)IVW(T)) dt +br (5.6)
0

for every k € N and every ¢ € [0, T].

Since Vw e L((0, T); L3(Q; R%)), by (5.5) and (5.6), we obtain that there exists a constant My > 0 such
that Dissg(px, Nk; 0, T) < My for every k € IN. By (2.3) this implies that the functions ¢t — px(t) and t — ng(t)
from [0, T] into L%(Q; RY) and L%(Q), respectively, have equibounded variation. By Helly’s Theorem for func-
tions of bounded variation with values in a separable Hilbert space (see, for instance, [3, Theorem 1.126])
there exist a subsequence, not relabelled, and two functions p: [0, T] — L%(Q; RY) and n:[0,T] —» L%(Q) with
Dissgr(p, 11; 0, T) < Mg, such that for every t € [0, T],

pr(t) — p(t) weakly in L?(Q; RY), (5.7)
ni(t) — n(t) weakly in L%(Q). (5.8)

The arguments used in [10, Theorem 6.3] and [9, Theorem 4.8] lead to a variant of Helly’s theorem for increas-
ing functions with values in R4-1(Q) endowed with o-convergence. More precisely, the bound on HEYTw(8)
in (5.5) implies that there exist a subsequence, not relabelled, and an increasing function I': [0, T] — Re-1(Q)
such that

T'x(t) o-converges to I'(t) for everyt € [0, T].

Letusfix ¢ € [0, T]. By (5.5) there exist a subsequence (ex; (1)), dependingon ¢, and a function e* ¢ L%(Q; RY)
such that
ex,(t) — e*  weakly in L*(Q; RY).

By Theorem 4.5 we obtain that (e*, p(t)) € A(I'(t), w(¢t)) and
(e, p(t), n(t)) < &, p, ) + D, i, T; p(t), n(t), T(1)) (5.9

for every I' € Rq_1(Q), (&, p) € AT, w(t)), and i € L*(Q).
By taking p = p(t), i = n(t), and T' = I(¢) in (5.9) we obtain

le*I* < fle])? (5.10)

for everye e L2(Q; RY), such that (e, p(t)) € A(L(t), w(d)).

We claim that there exists a unique function e* € L?(Q;R%) such that (e*, p(t)) € A(I(t), w(t)) and (5.10)
holds. Indeed, if e, satisfies the same properties, then [le*| = |e. |, and if e* and e, do not coincide Lige.inQ,
then the function é := %e* + %e* satisfies (&, p(t)) € A(L(t), w(t)) and, by strict convexity, [|&]*> < |le*||?, which
contradicts the minimality of e* and proves the claim.
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This uniqueness property implies that for every t € [0, T] there exists e(t) € L%(; RY) such that the whole
sequence satisfies
ex(t) — e(t) weakly in L3(Q; R%). (5.11)

This shows that the function ¢ — e(¢) from [0, T] into L2(Q; RY) is weakly measurable, i.e., t — (e(t), g) is mea-
surable for every g € L%(Q;RY). Consequently, t — e(t) from [0, T] into LY(Q;RY)is strongly measurable. Recall-
ing (5.5), this proves that e € L®(0, T; L%(Q; R%)).

Moreover, by (5.9) we have (e(t), p(t)) € A(L'(¢), w(t)) and

E(e(t), p(t), n(t) < &, p, ) + D(p, 0, T; p(8), (1), T(¢)) (5.12)

for every [e Ra1(Q), (e, p) € A(T, w(t)), and fj € L*(Q). This proves condition (GS) in Definition 2.1.
We now prove condition (EDB). By the convexity of € (see (2.2)) and the weak convergence of the functions
(see (5.7), (5.8), and (5.11)) for every ¢t € [0, T] we have

&(e(®), p(0), (1) < lilgrirolf E(ex(0), pr(t), ni(0)). (5.13)

For every subdivision 0 =ty < t; < --- < t,; = t we have

Y R(p(t)) - p(tica), n(ts) - n(tia)) < lim inf Y R(px(ti) = pi(tion), ni(ti) = Nr(tiz))
i=1 =1

< ligior(}f Dissg(pk(+), nk(-);0, t).
Passing to the supremum over all subdivisions, we obtain
Dissr(p(-),n(-);0,t) < “,{‘Lg}f Dissg(pk(-), nk(-);0,t) foreveryt € [0, T]. (5.14)
By Proposition 4.3 we have
HENL() \ To) < lim inf HEH(Tr(0) \ To). (5.15)
By (5.11) for every 7 € [0, T] we have
(ex(DIVW(7)) — (e(7)[VW(7)).

By (5.5) we can apply the Dominated Convergence Theorem and we obtain
t t
j(ek(r)wwm) dr - J(e(r)wwm) dr. (5.16)
0 0
Passing to the limit in (5.6), by (5.13)—(5.16) we obtain
t
E(e(t), p(t), (1) + Dissp(p(-), N(-); 0, t) + H(T(2) \ To) < E(eq, po, o) + @ J(e(f)lvw(r)) dr (6.17)
0

for every ¢ € [0, T].

To prove the opposite inequality, we use the following lemma, which can be interpreted as a weaker form of the
approximation of a Bochner integrable function f by means of suitable Riemann sums. Given ¢ > 0, let
sﬁ{ = %t foreveryke Nandi=0,1,...,k. (5.18)

Rather than subdividing the interval [0, t] by means of these points, for every s € (0, s}() we subdivide it by
means of the points

0 ._ i ol . k+1 _
Ts =0, Tys =Sk =S fori=1,...,k Tys = b (5.19)
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and for every s we consider the piecewise constant functions fX obtained from f on this subdivision. It turns
out that the mean value f* of fX with respect to s approximates f strongly in L.

Lemma 5.4. Let X be a Banach space, let t > 0, let sﬁ( and T;'( < be defined by (5.18) and (5.19), let f: [0, t] — X be a
Bochner integrable function, let f¥: (0, t] — X be the piecewise constant function defined by

fsk(r) f(Tks) forre(rks,rks] i=1,...,k+1

and let f¥: [0, t] — X be the Bochner integrable function defined by

1
k

f"(r) = é Ifsk(r) ds foreveryt € [0, t].
0

S

Then .
lim [ 1@ - A0l de = 0. (520)
—00 0
Proof. If sk <7< sk for somei € {1, ..., k — 1}, an elementary change of variables gives
T Si T S;.<
sifk(r) = J flo+ si) do + Jf(o) do = J (flo + s}{) - flo)) do + J flo)do. (5.21)
S;:l T S;:l S;:l

If s’,fl <T< s’,ﬁ = t, the same argument gives

k

T Sk T Sk
s}(fk(r) = J flt)do + J flo)do = J (ftty - flo)) do + J flo) do. (5.22)
si—l T SZ 1 Sl]: 1
Let f [0, t] — X be the piecewise constant function defined by
st
7o) = j fio) do
k st
forie{l,...,k}and sk <T< sk It is known (see, for instance, [5, Appendix]) that
: k
lim [ 1F(@) - o)l de =o0. (5.23)
0
From (5.21) and (5.22) we deduce that
Si
@ -F @l = < j Ift +s) - flo)lx do
k st
1fsk <T< skforsomei e€{l,...,k -1}, while
sk
14 - F llx < s— | 170 - folxdo

k k-1

k

if s’,ﬁ‘l <7< s’; = t. Integrating these inequalities with respect to 7 and adding with respect to i, we obtain

k-1 k
Sk Sk

t
j 170 - F (Dl de < j Ifio +sL) - flo)lx do + j Ift) - flo)lx do.
0 0

k-1
Sk
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By the continuity in L' of translations and by the absolute continuity of the integral, from this inequality

we obtain
t

. —k
Iim [ 1@ -F @l dr =0,
0
which, together with (5.23), gives (5.20). O

Proof of Theorem 2.2 (continuation). We fix t € (0, T]. For every k € N let sﬁ{ and Tﬁ{’s be defined by (5.18)
and (5.19). For every s € (0, s}() let e’s{: [0, t] — L2(Q; R?) be the piecewise constant function defined by

eX(r) = e(r};’s) for 7 e (T;:l, T;(’s], i=1,... k+1
and let e: [0, t] — L%(Q; RY) be the Bochner integrable function defined by

1
Sk

e"(r) = sil J e’s‘(r) ds foreveryrt € [0, t].
ko

By Lemma 5.4 we have
t

lim J lek(t) - e(7)|l d7 = 0.
k—o00
0
Givenk e N,s € (0,s}),and i € {1,..., k + 1}, we use (5.12), with ¢ = T};sl = e(r};,s) - Vw(r}})s) + VW(Tf(fsl),
b = p(T ), i = n(t}, ), and T = T(z ), obtaining
E(e(Tie ), (T ), (T D) < Ee(Th ), P(Th ), 1(Th ) + RD(T) ) = P(Tic D, 1(Th ) = N(Th0))
N j_cd—l(r(f[;'{,s) \ r(T;:sl)) - a(e(r;'(’s)WW(T;(,s) - VW(T}'{,;))
a i i
+ EHVW(T;QS) - Vw (T IR
Summing fori=1,...,k+ 1, we obtain

€(e(0), p(0), N(0)) < E(e(t), p(t), N(1) + Dissp(p(-), N(-); 0, t) + H(T(1) \ To)

o (5.24)
—-a J (eS(DIVW(T)) dT + ex(w, t),
0
where .
a ; i .
ex(w, t) := o sup [Vw(t) o) - VW(TL,sl)II J V(D] dz.
s€(0,s}) o
Since w e AC([0, T]; H1(Q)), we have
klim ex(w, t) = 0. (5.25)

Taking the mean value for s € (0, si), from (5.24) we obtain

€(e(0), p(0), N(0)) < E(e(t), p(t), N(1)) + Dissg(p(-), N(-); 0, t) + H(T (1) \ To)

t
-a J (eX(7)|V(1)) dT + ex(w, 1).
0

Passing to the limit as k — oo, from Lemma 5.4 and from (5.25) we obtain the inequality opposite to (5.17), thus
concluding the proof of condition (EDB) in Definition 2.1. O
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