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Abstract. In this paper we introduce a new family of string processing
problems. We are given two or more strings and we are asked to compute
a factor common to all strings that preserves a specific property and has
maximal length. Here we consider two fundamental string properties:
square-free factors and periodic factors under two different settings, one
per property. In the first setting, we are given a string x and we are asked
to construct a data structure over x answering the following type of on-
line queries: given string y, find a longest square-free factor common to
x and y. In the second setting, we are given k strings and an integer
1 < k′ ≤ k and we are asked to find a longest periodic factor common to
at least k′ strings. We present linear-time solutions for both settings. We
anticipate that our paradigm can be extended to other string properties.
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1 Introduction

In the longest common factor problem, also known as longest common substring
problem, we are given two strings x and y, each of length at most n, and we are
asked to find a maximal-length string occurring in both x and y. This is a classical
and well-studied problem in computer science arising out of different practical
scenarios. It can be solved in O(n) time and space [8,15] (see also [18,23]).
Recently, the same problem has been extensively studied under distance metrics;
that is, the sought factors (one from x and one from y) must be at distance at
most k and have maximal length [1,7,21,22,24,25] (and references therein).

In this paper we initiate a new related line of research. We are given two or
more strings and our goal is to compute a factor common to all strings that pre-
serves a specific property and has maximal length. An analogous line of research
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was introduced in [9]. It focuses on computing a subsequence (rather than a fac-
tor) common to all strings that preserves a specific property and has maximal
length. Specifically, in [2,9,16], the authors considered computing a longest com-
mon palindromic subsequence and in [17] computing a longest common square
subsequence.

We consider two fundamental string properties: square-free factors and peri-
odic factors [20] under two different settings, one per property. In the first setting,
we are given a string x and we are asked to construct a data structure over x
answering the following type of on-line queries: given string y, find a longest
square-free factor common to x and y. In the second setting, we are given k
strings and an integer 1 < k′ ≤ k and we are asked to find a longest peri-
odic factor common to at least k′ strings. We present linear-time solutions for
both settings. We anticipate that our paradigm can be extended to other string
properties.

1.1 Definitions and Notation

An alphabet Σ is a non-empty finite ordered set of letters of size σ = |Σ|. In this
work we consider that σ = O(1) or that Σ is a linearly-sortable integer alphabet.
A string x on an alphabet Σ is a sequence of elements of Σ. The set of all strings
on an alphabet Σ, including the empty string ε of length 0, is denoted by Σ∗.
For any string x, we denote by x[i..j] the substring (sometimes called factor)
of x that starts at position i and ends at position j. In particular, x[0..j] is the
prefix of x that ends at position j, and x[i..|x| − 1] is the suffix of x that starts
at position i, where |x| denotes the length of x. A string uu, u ∈ Σ∗, is called a
square. A square-free string is a string that does not contain a square as a factor.

A period of x[0..|x| − 1] is a positive integer p such that x[i] = x[i + p]
holds for all 0 ≤ i < |x| − p. The smallest period of x is denoted by per(x).
String u is called periodic if and only if per(u) ≤ |u|/2. A run of string x is
an interval [i, j] such that for the smallest period p = per(x[i..j]) it holds that
2p ≤ j − i + 1 and the periodicity cannot be extended to the left or right, i.e.,
i = 0 or x[i − 1] �= x[i + p − 1], and, j = |x| − 1 or x[j − p + 1] �= x[j + 1].

1.2 Algorithmic Toolbox

The maximum number of runs in a string of length n is less than n [3], and,
moreover, all runs can be computed in O(n) time [3,19].

The suffix tree ST(x) of a non-empty string x of length n is a compact trie
representing all suffixes of x. ST(x) can be constructed in O(n) time [12]. We can
analogously define and construct the generalised suffix tree GST(x0, x1, . . . , xk−1)
for a set of k strings. We assume the reader is familiar with these data structures.

The matching statistics capture all matches between two strings x and y [6].
More formally, the matching statistics of a string y[0..|y| − 1] with respect to a
string x is an array MSy[0..|y| − 1], where MSy[i] is a pair (�i, pi) such that (i)
y[i..i + �i − 1] is the longest prefix of y[i..|y| − 1] that is a factor of x; and (ii)
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x[pi..pi + �i − 1] = y[i..i + �i − 1]. Matching statistics can be computed in O(|y|)
time for σ = O(1) by using ST(x) [5,14,15].

Given a rooted tree T with n leaves coloured from 0 to k − 1, 1 < k ≤ n, the
colour set size problem is finding, for each internal node u of T , the number of
different leaf colours in the subtree rooted at u. In [8], the authors present an
O(n)-time solution to this problem.

In the weighted ancestor problem, introduced in [13], we consider a rooted
tree T with an integer weight function μ defined on the nodes. We require that
the weight of the root is zero and the weight of any other node is strictly larger
than the weight of its parent. A weighted ancestor query, given a node v and an
integer value � ≤ μ(v), asks for the highest ancestor u of v such that μ(u) ≥ �,
i.e., such an ancestor u that μ(u) ≥ � and μ(u) is the smallest possible. When T
is the suffix tree of a string x of length n, we can locate the locus of any factor
of x[i..j] using a weighted ancestor query. We define the weight of a node of the
suffix tree as the length of the string it represents. Thus a weighted ancestor
query can be used for the terminal node corresponding to x[i..n − 1] to create
(if necessary) and mark the node that corresponds to x[i..j]. Given a collection
Q of weighted ancestor queries on a weighted tree T on n nodes with integer
weights up to nO(1), all the queries in Q can be answered off-line in O(n + |Q|)
time [4].

2 Square-Free-Preserved Matching Statistics

In this section, we introduce the square-free-preserved matching statistics prob-
lem and provide a linear-time solution. In the square-free-preserved matching
statistics problem we are given a string x of length n and we are asked to con-
struct a data structure over x answering the following type of on-line queries:
given string y, find the longest square-free prefix of y[i..|y| − 1] that is a factor
of x, for all 0 ≤ i < |y| − 1. (For related work see [10].) We represent the answer
using an integer array SQMSy[0..|y| − 1] of lengths, but we can trivially modify
our algorithm to report the actual factors. It should be clear that a maximum
element in SQMS gives the length of some longest square-free factor common to
x and y.

Construction. Our data structure over string x consists of the following:

– An integer array Lx[0..n − 1], where Lx[i] stores the length of the longest
square-free factor starting at position i of string x.

– The suffix tree ST(x) of string x.

The idea for constructing array Lx efficiently is based on the following crucial
observation.

Observation 1. If x[i..n−1] contains a square then Lx[i]+1, for all 0 ≤ i < n,
is the length of the shortest prefix of x[i..n − 1] (factor f) containing a square.
In fact, the square is a suffix of f , otherwise f would not have been the shortest.
If x[i..n − 1] does not contain a square then Lx[i] = n − i.
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We thus shift our focus to computing the shortest such prefixes. We start by
considering the runs of x. Specifically, we consider squares in x observing that
a run [�, r] with period p contains r − � − 2p + 2 squares of length 2p with the
leftmost one starting at position �. Let r′ =�+2p−1 denote the ending position
of the leftmost such square of the run. In order to find, for all i’s, the shortest
prefix of x[i..n − 1] containing a square s, and thus compute Lx[i], we have two
cases:

1. s is part of a run [�, r] in x that starts after i. In particular, s = x[�..r′] such
that r′ ≤ r, � > i, and r′ is minimal. In this case the shortest factor has
length � + 2p − i; we store this value in an integer array C[0..n − 1]. If no run
starts after position i we set C[i] = ∞. To compute C, after computing in
O(n) time all the runs of x with their p and r′ [3,19], we sort them by r′. A
right-to-left scan after this sorting associates to i the closest r′ with � > i.

2. s is part of a run [�, r] in x and i∈ [�, r]. This implies that if i≤r−2p+1 then
a square starts at i and we store the length of the shortest such square in an
integer array S[0..n − 1]. If no square starts at position i we set S[i] = ∞.
Array S can be constructed in O(n) time by applying the algorithm of [11].

Since we do not know which of the two cases holds, we compute both C
and S. By Observation 1, if C[i] = S[i] = ∞ (x[i..n − 1] does not contain a
square) we set Lx[i] = n − i; otherwise (x[i..n − 1] contains a square) we set
Lx[i] = min{C[i], S[i]} − 1.

Finally, we build the suffix tree ST(x) of string x in O(n) time [12]. This
completes our construction.

Querying. We rely on the following fact for answering the queries efficiently.

Fact 2. Every factor of a square-free string is square-free.

Let string y be an on-line query. Using ST(x), we compute the matching
statistics MSy of y with respect to x. For each j ∈ [0, |y| − 1], MSy[j] = (�i, i)
indicates that x[i..i + �i − 1] = y[j..j + �i − 1]. This computation can be done
in O(|y|) time [5,15]. By applying Fact 2, we can answer any query y in O(|y|)
time for σ = O(1) by setting SQMSy[j] = min{�i, Lx[i]}, for all 0 ≤ j ≤ |y| − 1.

We arrive at the following result.

Theorem 3. Given a string x of length n over an alphabet of size σ = O(1),
we can construct a data structure of size O(n) in time O(n), answering SQMSy

on-line queries in O(|y|) time.

Proof. The time complexity of our algorithm follows from the above discussion.
We next show the correctness of our algorithm. Let us first show the cor-

rectness of computing array Lx. The square contained in the shortest prefix of
x[i..n − 1] (containing a square) starts by definition either at i or after i. If
it starts at i this is correctly computed by the algorithm of [11] which assigns
the length of the shortest such square in S[i]. If it starts after i it must be the
leftmost square of another run by the runs definition. C[i] stores the length of
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the shortest prefix containing such a square. Then by Observation 1, Lx[i] is
computed correctly.

It suffices to show that, if w is the longest square-free substring common to
x and y occurring at position ix in x and at position iy in y, then (i) MSy[iy] =
(�, ix) with � ≥ |w| and x[ix..ix + � − 1] = y[iy..iy + � − 1]; (ii) w is a prefix of
x[ix..ix +Lx[ix]−1]; and (iii) SQMSy[iy] = |w|. Case (i) directly follows from the
correctness of the matching statistics algorithm. For Case (ii), since w occurs at
ix and w is square-free, Lx[ix] ≥ |w|. For Case (iii), since w is square-free we
have to show that |w| = min{�i, Lx[i]}. We know from (i) that � ≥ |w| and from
(ii) that Lx[ix] ≥ |w|. If min{�i, Lx[i]} = �, then w cannot be extended because
the possibly longer than |w| square-free string occurring at ix does not occur in
y, and in this case |w| = �. Otherwise, if min{�i, Lx[i]} = Lx[ix] then w cannot
be extended because it is no longer square-free, and in this case |w| = Lx[ix].
Hence we conclude that SQMSy[iy] = |w|. The statement follows. ��

The following example provides a complete overview of the workings of our
algorithm.

Example 4. Let x = aababaababb and y = babababbaaab. The length of a
longest common square-free factor is 3, and the factors are bab and aba.

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a a b a b a a b a b b

C[i] 5 6 5 4 3 5 5 4 3 ∞ ∞
S[i] 2 4 4 6 ∞ 2 4 ∞ ∞ 2 ∞
Lx[i] 1 3 3 3 2 1 3 3 2 1 1

j 0 1 2 3 4 5 6 7 8 9 10 11

y[j] b a b a b a b b a a a b

MSy[j] (4,2) (5,1) (4,2) (5,6) (4,7) (3,8) (2,9) (3,4) (2,0) (3,0) (2,1) (1,2)

SQMSy[j] 3 3 3 3 3 2 1 2 1 1 2 1

3 Longest Periodic-Preserved Common Factor

In this section, we introduce the longest periodic-preserved common factor prob-
lem and provide a linear-time solution. In the longest periodic-preserved common
factor problem, we are given k ≥ 2 strings x0, x1, . . . , xk−1 of total length N and
an integer 1 < k′ ≤ k, and we are asked to find a longest periodic factor common
to at least k′ strings. We represent the answer LPCFk′ by the length of a longest
factor, but we can trivially modify our algorithm to report an actual factor. Our
algorithm, denoted by lPcf, works as follows.

1. Compute the runs of string xj , for all 0 ≤ j < k.
2. Construct the generalised suffix tree GST(x0, x1, . . . , xk−1) of x0, x1, . . . , xk−1.
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3. For each string xj and for each run [�, r] with period p� of xj , augment GST
with the explicit node spelling x[�..r], decorate it with p�, and mark it as a
candidate node. This can be done as follows: for each run [�, r] of xj , for all
0≤j <k, find the leaf corresponding to xj [�..|xj |−1] and answer the weighted
ancestor query in GST with weight r−�+1. Let aGST be this tree.

4. Mark as good the nodes of aGST having at least k′ different colours on the
leaves of the subtree rooted there.

5. Return as LPCFk′ the string depth of a candidate node in aGST which is also
a good node, and that has maximal string depth (if any, otherwise return 0).

Theorem 5. Given k strings of total length N on alphabet Σ = {1, . . . , NO(1)},
and an integer 1 < k′ ≤ k, algorithm lPcf returns LPCFk′ in time O(N).

Proof. Let us assume wlog that k′ = k, and let w with period p be the longest
periodic factor common to all strings. By the construction of aGST (Steps 1-4
of lPcf), the path spelling w leads to a good node nw as w occurs in all the
strings. We make the following observation.

Observation 6. Each periodic factor with period p of string x is a factor of
x[i..j], where [i, j] is a run with period p.

By Observation 6, in all strings, w is included in a run having the same
period. Observe that for at least one of the strings, there is a run ending with
w, otherwise we could extend w obtaining a longer periodic common factor.
Therefore nw is both a good and a candidate node. By definition, nw is at string
depth at least 2p and, by construction, LPCFk′ is the string depth of a deepest
such node; thus |w| will be returned by Step 5.

As for the time complexity, Step 1 [3,19] and Step 2 [12] can be done in O(N)
time. Since the total number of runs is less than N [3], Step 3 can be done in
O(N) time using off-line weighted ancestor queries [4], and the size of the aGST
is still in O(N). Step 4 can be done in O(N) time [8]. Step 5 can be done in
O(N) by a post-order traversal of aGST. ��

The following example provides a complete overview of the workings of our
algorithm.

Example 7. Consider x = ababbabba, y = ababaab, and k = k′ = 2. The runs
of x are: r0 = [0, 3], per(abab) = 2, r1 = [1, 8], per(babbabba) = 3, r2 = [3, 4],
per(bb) = 1, and r3 = [6, 7], per(bb) = 1; those of y are r4 = [0, 4], per(ababa) = 2
and r5 = [4, 5], per(aa) = 1. Figure 1 shows aGST for x, y, and k = k′ = 2.
Algorithm lPcf outputs 4 = |abab|, with per(abab) = 2, as the node spelling
abab is the deepest good one that is also a candidate.

4 Final Remarks

We introduced a new family of string processing problems. The goal is to com-
pute factors common to a set of strings preserving a specific property and having
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Fig. 1. aGST for x = ababbabba, y = ababaab, and k = k′ = 2.

maximal length. We showed linear-time algorithms for square-free and periodic
factors. We anticipate that our paradigm can be extended to other string prop-
erties.
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