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Abstract We describe a diagrammatic procedure to carry out the Grassmann integration in super-Feynman diagrams of 4d
theories expressed in terms of N = 1 superfields. This method is alternative to the well known D-algebra approach. We
develop it in detail for theories containing vector, chiral and anti-chiral superfields, with the type of interactions which
occur in N = 2 SYM theories with massless matter, but it would be possible to extend it to other cases. The main
advantage is that this method is algorithmic; we implemented it as a Mathematica program that, given the description of
a super Feynman diagram in momentum space, returns directly the polynomial in the momenta produced by the Grassmann
integration.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 N = 1 superdiagrams for N = 2 theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 N = 2 SYM theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Factorizing the Grassmann part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 External lines in superdiagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Grassmann integration in superdiagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 D-algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Introducing the θ -diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Diagrams with (anti)chiral superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Diagrams with (internal) vector superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Some θ -diagrammatical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Analyizing an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Ordering issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Superdiagrams with vector or spinor external states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1 External vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Spinors from (anti-)chiral multiplets as external states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Gauginos as external states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Use of the Grassmann integration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjc/
s10052-023-11893-1.

a e-mail: davide.bason@phd.units.it
b e-mail: marco.billo@unito.it (corresponding author)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11893-1&domain=pdf
http://orcid.org/0000-0001-9963-940X
https://doi.org/10.1140/epjc/s10052-023-11893-1
https://doi.org/10.1140/epjc/s10052-023-11893-1
mailto:davide.bason@phd.units.it
mailto:marco.billo@unito.it


892 Page 2 of 45 Eur. Phys. J. C (2023) 83 :892

Appendix A: Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.1 General conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2 Spinorial and grassmannian conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1 Introduction

Supersymmetric field theories have been intensely investigated since their discovery [1–5], for various important reasons
related to their possible phenomenological implications, to their rôle as simplified, highly symmetric theoretical scenarios in
which to shed light on deep properties of QFTs and their enticing connections with advanced mathematical structures. In all
of these directions, the fact that supersymmetry simplifies the perturbative expansion exploiting partial cancellations between
bosonic and fermionic loops has always played an important part.

Supersymmetric theories can be described in terms of superfields [6], which collect the bosonic and fermionic fields that
sit in a given representation of the supersymmetry algebra (a multiplet) within an expansion in terms of Grassmann variables,
usually dubbed with the letter θ . The perturbative expansion when organized in terms of superfields of the correlation functions
is expressed in terms of super Feynman diagrams. These encompass the contributions of all ordinary Feynman diagrams for
the component fields of the various multiplets. The evaluation of super Feynman diagrams requires the integration of their
internal vertices over superspace, i.e. over both their space-time positions and their Grassmann θ coordinates. The Grassmann
integration is essentially an algebraic operation, and poses no conceptual problem. However, from the practical point of view,
it can rapidly become complicated when the order in perturbation theory and/or the number of external points increases. It is
therefore important to develop efficient strategies to tackle it. Often, the space-time dependence of the diagrams is mapped via
Fourier transform to momentum space. In this setting, the result of the Grassmann integration is a polynomial in the external
and the loop momenta.

In this work we focus on four space-time dimensions. The description of theories with N = 1 supersymmetry, i.e., with
four supercharges, in terms of N = 1 superfields is rather simple. In fact N = 1 superfields are often used also for theories
with higher supersymmetry, such as N = 2 theories; in this case, a single N = 2 supermultiplet encompasses more than one
N = 1 superfield. In particular we consider theories that, when decomposed into N = 1 superfields, contain chiral/anti-chiral
and vector superfields. The superpropagators for these superfields and the vertices for typical interactions are standard, see
for instance [7].

A well-known strategy to carry out Grassmann integrations in superdiagrams of this kind was proposed long time ago in
[8] and it is referred to as “D-algebra approach”. Roughly, one eliminates all θ integrations but one. The remaining integrand
comprises a string of spinorial covariant derivatives (usually denoted with the symbol D) which have to be simplified using
the algebraic relations satisfied by the latter.

Here we choose not to implement this strategy and remain essentially with the methods originally developed for supergraphs
in [9–13]. There is no doubt that the D-algebra approach is very efficient and since it appeared it has been used in basically
every demanding computation in supersymmetric gauge theories. However, we found that the older approach with multiple
Grassmann integrations of quite simple integrands can be described in diagrammatical terms and performed using a few general
rules. This θ -diagrammatic procedure is algorithmic and we have implemented it in a Mathematica notebook,1 attached to
this paper. With it we are for instance able to compute, in less than a second on a normal laptop, the Grassmann integrations
of a 3-loop diagram that involves six permutations of a 3-vertex with covariant derivatives (see Eq. (4.2)). It is well possible
that also the D-algebra approach can be similarly automated, but to our knowledge this has not been done yet.

A partial version of this approach was already proposed in [14] as an instrument to ease the computation of certain
superdiagrams occurring in N = 2 SYM theories with massless matter. The diagrammatic rules devise in [14], however, did
not allow to treat algorithmically diagrams with self-interaction vertices of the vector superfield. In this work, we generalize
the θ -diagrammatic method so that also applies to such superdiagrams. We also show how to treat diagrams in which all
possible fields, bosonic and fermionic, appear in the external legs.

Our method is quite general. To describe it explicitly, however, we focus on the kind of fields and interactions which
typically occur in the context of N = 2 conformal SYM theories. Thus we consider massless superfields with the type of

1 Our implementation of the algorithm can surely be improved, as we are not expert coders; yet the Mathematica notebook we provide can be used
“out of the box” in the computation of superdiagrams, as we show by some example in the paper. It also serves as a “proof of concept” of the fact
that our approach is indeed fully algorithmic.
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interactions that occur in such theories; for instance, we do not consider vertices with spinorial covariant derivatives acting
on the chiral/anti-chiral superfields. Also, given that in the N = 2 SYM context it is often convenient to study the so called
“difference theory” with respect to N = 4 SYM and in this difference ghost contributions typically cancel out, we do not
consider explicitly diagrams which contain the ghosts. However, the propagator of the ghost superfield has exactly the same
expression as that of chiral superfields, see for instance [15], and their interaction vertices are of the type that can be described
with our method. They can therefore be included without problems, provided that one takes into account in the loops their
flipped statistics.

Our diagrammatic method is most straightforward if we don’t impose the Wess-Zumino gauge, at the price of having to
include higher and higher interaction vertices when we increase the perturbative order. In principle, all such interactions are
manageable within our approach.

This paper is organized as follows. Section 2 describes the type of N = 1 superdiagrams we consider, describing the
relevant Feynman rules and in particular their Grassmann content. Section 3 introduces the basics of the θ -diagram approach
to the Grassmann integrations in superdiagrams. In Sect. 4 we analyze in detail an example. Section 5 generalizes the method
to all possible types of fields in the external legs. In Sect. 6 we describe an implementation of our approach in a Mathematica
code. The code is provided together with an ancillary file, furtherinstructions.pdf, which gives some details not
discussed in the main text.

2 N = 1 superdiagrams for N = 2 theories

We consider supersymmetric theories in d = 4 whose content can be arranged into chiral (or anti-chiral) and vector N = 1
superfields. In our conventions, see Appendix A, the expansion of a chiral superfield has the form

�(x, θ, θ̄ ) = φ(x) + √
2θψ(x) + i(θσμθ̄)∂μφ(x) − θ2F(x)

− i√
2
θ2∂μψ(x)σμθ̄ − 1

4
θ2θ̄2�φ(x) , (2.1)

where φ is a complex scalar, ψ its fermionic partner (a chiral Weyl spinor) and F an auxiliary field. The antichiral superfield
contains φ̄ and the antichiral spinor ψ̄ . For a vector superfield we have

V (x, θ, θ̄ ) = C(x) + iθχ(x) − iθ̄ χ̄ (x) + (θσμθ̄)vμ(x)

+ i

2
θ2(M(x) + iN (x)) − i

2
θ2(M(x) − iN (x))

+ iθ2θ̄ (λ̄(x) + i

2
σ̄ μ∂μχ(x)) − iθ̄2θ(λ(x)

+ i

2
σμ∂μχ̄(x)) + 1

2
θ2θ̄2(D(x) − 1

2
�C(x), (2.2)

where vμ is the connection for a gauge group G, λ and λ̄ are the the (anti)chiral parts of the gaugino and D a real auxiliary
field; they all carry indices in the adjoint of G. The remaining fields can be fixed exploiting the supersymmetric gauge
transformation

V → V + �gauge + �̄gauge, (2.3)

where the parameter �gauge is itself a chiral superfield. A typical choice is the Wess–Zumino gauge, that exploits this
invariance to set C, M, N and χ to zero, while retaining the usual gauge freedom with parameter 2Im φgauge. The Wess–
Zumino gauge choice does not commute with supersymmetry transformations, though, and we will not impose it; thus we
retain supersymmetry explicit, at the price of keeping the full fledged expression (2.2) of the vector superfield and having
more terms in the action.

We consider theories in which the group G is in general non Abelian, and the chiral superfields are charged, i.e. transform
in some representation R – in general reducible – of G. We also include the possibility of cubic chiral or anti-chiral vertices.
For the sake of simplicity, we do not include other types of interactions among the matter fields, but the method we propose
can be generalized in this sense.
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Fig. 1 Superpropagators for
the N = 2 gauge action

2.1 N = 2 SYM theories

As we already remarked in the introduction, the initial idea of the method we describe here was put forward in the context of
N = 2 SYM theories with matter [14]. The fields of these theories can be organized, with respect to anN = 1 supersymmetry
subalgebra, into vector and (anti)-chiral superfields with the type of interactions we mentioned above. Indeed the degrees of
freedom of the N = 2 vector multiplet can be encoded in a vector superfield V plus a chiral superfield �, both in the adjoint
of the gauge group G. The components of an N = 2 matter hypermultiplet can instead be arranged in two chiral superfields,
Q and Q̃, transforming in conjugate representations of G.

The pure gauge action can be written in the N = 1 superspace as follows:

Sgauge =
∫
d4x d4θ Tr

[
1

8g2

(
WαW

αδ2(θ̄) + h.c.
)

−ξ

4
D2(V )D̄2(V )

∣∣∣∣
ξ=1

+ 2e−2gV �̄e2gV�

]
, (2.4)

where g is the bare gauge coupling and

Wα = −1

4
D̄2(e−2gV Dα(e2gV )),

W̄α̇ = −1

4
D2(e2gV D̄α̇(e−2gV )). (2.5)

This action is given in the Fermi–Feynman gauge (ξ = 1), but we did not write the ghost-antighost part since it is not needed
in order to explain our algorithm.2 Expanding up to order g2 and taking the colour trace we have

Sgauge =
∫
d4x d4θ

[
−V a�V a + �̄a�a

+ g f abc
(

i

4
(D̄2(DαV a))V b(DαV

c) + 2i�̄aV b�c
)

+ g2 f abe f ecd
(

−1

8
V a(DαV b)(D̄2V c)(DαV

d)

− 2�̄aV bV c�d
)

+ O(g3)

]
. (2.6)

From this action one can derive Feynman rules in terms of superpropagators and supervertices. Note that every vertex carries
a superspace integration; one can as usual trade the vertex positions for the momenta running in the diagram, and remain with
a

∫
d4θi integral in the i-th vertex. The Feynman rules in momentum space, understanding these Grassmann integrals at each

vertex, are displayed in Figs. 1 and 2.
Note that the cubic and quartic vector vertices contain spinorial derivatives; see Appendix A.2, in particular Eq. (A.50),

for our conventions and notations. Thus in Fig. 2 a covariant derivative placed on one leg in which a momentum p flows out
of the vertex is to be understood as Dα = ∂α − pαα̇θ̄ α̇ . These covariant derivatives are among the chief sources of algebraic
complications in carrying out the Grassmann integrations in the superdiagrams. Our approach, that will be discussed in Sect.

2 Their propagators can be inserted with the function CP and their vertices with the function GV, as shall be explained in Sect. 6.
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Fig. 2 Vertex rules for the
N = 2 gauge action, up to order
g2

Fig. 3 Superpropagators for
the N = 2 hypermultiplets

3.5, associates these covariant derivatives to the vector superpropagators connecting the vertices rather than to the vertices
themselves. For this reason, in the right hand sides of Fig. 2 we have not written them.

The hypermultiplet part of the action is given by

Shyper =
∫
d4x d4θ Q̄e2gV Q + Q̃e−2gV ¯̃Q

+ i
√

2gQ̃�Qδ2(θ̄) − i
√

2gQ̄�̄
¯̃Qδ2(θ). (2.7)

Expanding up to order g2 and making explicit the colour indices3 we get

Sh =
∫

d4xd2θd2θ̄

[
Q̄uQu + Q̃u ¯̃Qu

+ g
(
2Q̄uV a(T a

R )vuQv − 2Q̃uV a(T a
R )vu

¯̃Qv

+ i
√

2Q̃u�a(T a
R )vuQvδ

2(θ̄) − i
√

2Q̄u�̄a(T a
R )vu

¯̃Qvδ
2(θ)

)
+ g2(2Q̄uV aV b(T a

RT
b
R)vuQv + 2Q̃uV aV b(T a

RT
b
R)vu

¯̃Qv

)

+ O(g3)

]
. (2.8)

The corresponding superpropagators are displayed in Fig. 3 and the vertices in Fig. 4.

3 The chiral superfield Q transforms in a representation R whose indices we denote by u, v, . . .; by (T a)uv we denote the hermitian generators of
the gauge group in this representation. The superfield Q̃ transforms in the conjugate representation.
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Fig. 4 Vertex rules for the
N = 2 hypermultiplet action,
up to order g2

2.2 Factorizing the Grassmann part

We are interested in evaluating superdiagrams, constructed with the Feynman rules described above, that contributes to a
correlator with fixed external states. Such a superdiagram depends on the set of external momenta, which we label collectively
by q, and carries colour structure and Lorentz indices associated to the external states. We write it in the following form:4

WLorentz
colour (q) = N × Tcolour ×

∫ ∏
s

ddks
(2π)d

δ(d)(cons)
ZLorentz(k)∏

s k
2
s

. (2.9)

Here N is the product of the symmetry factor of the diagram and all the factors (like the powers of the coupling constants)
appearing in the vertices – except for the color factors which give rise to the tensor Tcolour. By the index s we enumerate the
internal lines of the superdiagram. The scalar integral over the internal momenta ks is typically performed using dimensional
regularization, setting d = 4 − 2ε. The momenta are subject to the appropriate conservation relations enforced by the δ-
functions δ(d)(cons). Beside the denominator coming from the massless propagators, the integrand contains also a numerator
ZLorentz(k) which is the result of the integration over all the Grassmann variables of the θ -dependent expressions present in
the superdiagram and is the object of this paper.

Since the difference between the chiral multiplets �, Q and Q̃ resides only in their colour properties and numerical factors
in the vertices, which are factored out in the decomposition (2.9), the Grassmann part of propagators and vertices are the same
independently of the specific chiral multiplets involved. Thus, denoting any chiral field simply by a solid line, and introducing

the symbol
θ= such that W θ= Z means “the Grassmann part of W is Z”, we have the following rules. For the chiral propagator

between two points i and j we have

, (2.10)

For the chiral and anti-chiral cubic vertices we have

, (2.11)

4 In the the N = 2 theory all fields are massless. If we would apply this decomposition in presence of massive fields, of course we should use
massive propagators in the appropriate legs.
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where we reinstated the integration over the variables θi and θ̄i pertaining to the vertex which was understood in Fig. 4. For
the vector propagator we have

(2.12)

and for the vertices involving the vectors

, (2.13)

where, as discussed above, we do not include in the r.h.s. the spinorial covariant derivatives because we will associate them
with the vector lines connected to the vertices.

2.3 External lines in superdiagrams

Often we are interested in correlators of specific fields rather than of superfields. In this case, super Feynman diagrams
contain field-superfield propagators in the external lines. Such propagators, that arise from the Wick contraction of an external
field with a superfield appearing in an internal vertex, are perfectly well defined. For instance, considering a generic chiral
superfield and omitting internal symmetry indexes, we have

〈φ(x1)�̄(x2, θ2, θ̄2)〉0

= 〈φ(x1)(φ̄(x2) + √
2θ̄2ψ̄(x2) + · · · )〉0

= 〈φ(x1)φ̄(x2)〉0 + √
2θ̄2,α̇〈φ(x1)ψ̄

α̇(x2)〉0 + · · · . (2.14)

We can also write them in terms of the super-propagators, and this will be useful for us in the following. Indeed one can see,
by Eq. (2.1), that for the chiral content we have:

φ(x) = �(x, θ, θ̄ )
∣∣
θ=θ̄=0 , (2.15)

ψα(x) = 1√
2
∂α�(x, θ, θ̄ )

∣∣∣∣
θ=θ̄=0

. (2.16)

Thus, considering the above relations for a generic chiral superfield and the similar ones for the anti-chiral content, we have

〈φ(xi )�̄(x j , θ j , θ̄ j )〉0 = 〈�(xi , θi , θ̄i )�̄(x j , θ j , θ̄ j )〉0

∣∣
θi=θ̄i=0 , (2.17)

〈�(xi , θi , θ̄i )φ̄(x j )〉0 = 〈�(xi , θi , θ̄i )�̄(x j , θ j , θ̄ j )〉0

∣∣
θ j=θ̄ j=0 , (2.18)

〈ψα(xi )�̄(x j , θ j , θ̄ j )〉0

= 1√
2

∂i,α〈�(xi , θi , θ̄i )�̄(x j , θ j , θ̄ j )〉0

∣∣
θi=θ̄i=0 , (2.19)

〈�(xi , θi , θ̄i )ψ̄
α̇(x j )〉0

= 1√
2

∂̄ α̇
j 〈�a(xi , θi , θ̄i )�̄

b(x j , θ j , θ̄ j )〉0

∣∣∣
θ j=θ̄ j=0

. (2.20)
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Writing the above relations in momenta space we obtain:

= 1

p2 e−θ j pθ̄ j θ= e−θ j pθ̄ j , (2.21)

= 1

p2 e−θi pθ̄i θ= e−θi pθ̄i , (2.22)

=
√

2

p2 pαβ̇ θ̄
β̇
j e−θ j pθ̄ j θ= pαβ̇ θ̄

β̇
j e−θ j pθ̄ j , (2.23)

= −
√

2

p2 p̄α̇βθi,βe−θi pθ̄i θ= p̄α̇βθi,βe−θi pθ̄i . (2.24)

We can relate the fields in the vector multiplet to the vector superfield in a similar way to what we did for the chiral
supermultiplet, see Eq. (2.15), namely using derivatives and the setting some variables to zero. Indeed one can see, omitting
colour indexes, that

vμ(x) = 1

2
σ

μ

αβ̇
∂α∂̄β̇V (x, θ, θ̄ )

∣∣∣
θ=θ̄=0

(2.25)

from which we can obtain:

〈vμ(xi )V (x j , θ j , θ̄ j )〉0

= 1

2
σ

μ

αβ̇
∂α∂̄β̇〈V (xi , θi , θ̄i )V (x j , θ j , θ̄ j )〉0

∣∣∣∣
θi=θ̄i=0

. (2.26)

Then in momentum space we have:

= 1

p2 (θ j pθ̄ j )
θ= 2(θ j pθ̄ j ). (2.27)

Also these external lines can be treated through the diagrammatical method that we propose in this paper, but a bit of care
is needed. Suppose that the external vector field be connected to a vector superfield on which a certain expression f (D, D̄),
built of spinorial covariant derivatives, acts. This happens, for instance, for some of the vector Super Yang–Mills vertices –
see Fig. 2. Then the Grassmann part of 〈v(xi ) f (Dj , D̄ j )V (x j , θ j , θ̄ j )〉0 would be given by

〈vμ f (Dj , D̄ j )V (θ j , θ̄ j )〉0
θ= σ

μ

α,β̇
∂α∂̄ β̇ f (Dj , D̄ j )δ

4(θi j ). (2.28)

Such an expression is not easily handled in our diagrammatical method, but there is a way around. Instead of expressing vμ

in terms of the superfield V by means of Grassmann derivatives, we can exploit Grassmann integrations and write

vμ(x) = −2
∫
d2θd2θ̄ (θσμθ̄)V (x, θ, θ̄ ), (2.29)
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Then we can also replace Eq. (2.28) with

〈vμ(xi ) f (Dj , D̄ j )V (x j , θ j , θ̄ j )〉0 = −2
∫
dθ
i d

2θ̄i (θiσ
μθ̄i )

× 〈V (xi , θi , θ̄i ) f (Dj , D̄ j )V (x j , θ j , θ̄ j )〉0. (2.30)

In momentum space this leads to

θ=
∫
d2θi d

2θ̄i 2(θiσ
μθ̄i ) f (Dj , D̄ j )

[
δ4(θi j )

]
, (2.31)

In this way5 we only have to deal with Grassmann integrals and covariant derivatives acting on δ4(θi j ), which can be treated
within our diagrammatic formalism, as we will discuss in Sect. 3.5.

We can deal similarly with the gaugino, even if the expression is slightly more complicated and contains two terms:6

〈λα(xi )V (x j , θ j , θ̄ j )〉0 =
∫
d4θi

(
−2iθi,α − σ

μ

αβ̇
θ̄

β
i θ̄2

i ∂/∂xi,μ
)

× 〈V (xi , θi , θ̄i )V (x j , θ j , θ̄ j )〉0, (2.32)

〈V (xi , θi , θ̄i )λ̄
α̇(x j )〉0 =

∫
d4θ j

(
2iθ̄ α̇

j + σ̄ μ,α̇,βθ j,βθ2
j ∂/∂x j,μ

)

× 〈V (xi , θi , θ̄i )V (x j , θ j , θ̄ j )〉0. (2.33)

In momentum space and focusing only on the Grassmann part we obtain:

θ=
∫
d2θi d

2θ̄i

(
θi,α + pαβ̇

2
θ̄

β̇
i θ2

i

)
f (Dj , D̄ j )

[
δ4(θi j )

]
, (2.34)

θ=
∫
d2θ j d

2θ̄ j

(
θ̄ α̇
j − p̄α̇β

2
θ j,β θ̄2

j

)
f (Di , D̄i )

[
δ4(θi j )

]
. (2.35)

In making explicit the spinorial derivatives in the expressions above one has to take into account that Eq. (A.50) is written
with the momentum flowing out of the vertex j (so in some of the cases above it is actually the momentum −p).

3 Grassmann integration in superdiagrams

As already stated, the focus of this paper is on the Grassmann integration occurring in superdiagrams, namely on the com-
putation of the quantity ZLorentz defined in Eq. (2.9). Of course, methods to perform such integration are well known, and in
particular the so-called D-algebra approach of [8] is widely used. Here we propose a method that we find efficient and that
is very algorithmic, so that it can be implemented in a symbolic language code. This method is based on the construction of
what we call θ -diagrams.

5 Note that it is also possible to use field to superfield relations based on Grassmann integration, instead of derivations as in Eq. (2.15), also for the
fields in the chiral multiplet. Again, this could in principle be useful for theories containing vertices with covariant spinorial derivatives acting on
(anti-)chiral superfields. For theories that do not contain such vertices, as is the case for instance for the N = 2 SYM theory, this is not needed and
it is more efficient to use the formulas (2.17–2.20) which do not introduce integration of auxiliary variables.
6 This is due to the fact that we do not impose the Wess–Zumino gauge and thus we have to disentangle the χ spinor from the gaugino.
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3.1 A simple example

To fix the ideas, let us consider a very simple example, the one-loop correction to the propagator of the scalar in an adjoint
chiral multiplet with matter chiral multiplets running in the loop. In this case the Lorentz structure is trivial, and the colour
factor follows easily from the colour part of the vertices and propagators given in Figs. 4 and 3, while the normalization factor
turns out to be just 2g2. With respect to Eq. (2.9) it is immediate in this example to exploit the momentum conservation,
obtaining

= 2g2 × TrR(T bT c)

×
∫

ddk

(2π)d

1

(q2)2

1

k2(k − q)2 Z(k, q). (3.1)

The factor Z(k, q) is the result of the integration over the Grassmann variables at each internal vertex. According to the rules
in Figs. 3 and 4 and Eqs. (2.21) and (2.22) it reads

Z(k, q) =
∫

d4θ3 d
4θ4 (θ3)

2(θ̄4)
2 e2θ4(k−q)θ̄3−θ4(k−q)θ̄4−θ3(k−q)θ̄3

e−2θ4kθ̄3+θ4kθ̄4+θ3kθ̄3 . (3.2)

This integral is straightforward, as we will describe shortly. In general, the computation of ZLorentz(k) through Grassmann
integrations remains essentially algebraic and presents in principle no conceptual difficulty for any superdiagram. Nevertheless,
it typically becomes very involved as the complexity of the superdiagram increases.

3.2 D-algebra

The key idea of this approach is to make the Grassmann integration local, namely to reduce it to the integral over a single
pair of Grassmann variables.

This can be achieved because the Grassmann variables to be [9] integrated over are associated to the vertices in the
superdiagram. The vertices are connected by superpropagators. The Grassmann part of the vector superpropagator directly
contains δ functions, see Eq. (2.12), that identify the θ -variables in the vertices i and j it connects. Also the Grassmann part
of the chiral-antichiral propagator, given in Eq. (2.10), can be rewritten so as to display such δ functions; indeed one can show
that

e2θi pθ̄ j−θi pθ̄i−θ j pθ̄ j = 1

16
D̄2
i,p D

2
i,pδ

2(θi j )δ
2(θ̄i j ), (3.3)

where we have remarked that the spinorial covariant derivatives contain the momentum p. Exploiting appropriately the δ

functions present in the propagators, one can then eliminate the integrals over all but one of the pair of Grassmann variables.
The remaining integrand, however, contains in general spinor covariant derivatives arising both from the vector vertices, see
Fig. 2, and from the chiral propagators rewritten using Eq. (3.3). This expression needs to be evaluated using the algebraic
properties of the spinorial covariant derivatives D and D̄, i.e., carrying out the D-algebra.

For the example of Eq. (3.2), this procedure amounts to rewrite Z(k, q) as

Z(k, q) = 1

162

∫
d4θ̄3 d

4θ4 θ2
3 θ̄2

4

[
D2

4,−k D̄
2
4,−kδ

4(θ34)
]

×
[
D2

4,k−q D̄2
4,k−qδ

4(θ34)
]

(3.4)
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and integrate it by parts7 to obtain

Z(k, q) = 1

162

∫
d4θ̄3 d

4θ4

[
D2

4,q−k D̄
2
4,q−k

×
[
θ2

3 θ̄2
4 D̄

2
4,−k D

2
4,−kδ

4(θ34)
]]

δ4(θ34). (3.5)

Using the fact that D2
4 and D̄2

4 commute with θ2
3 and exploiting the δ-function we can write

Z(k, q) = 1

162

∫
d4θ̄4 θ2

4

[
D2

4,q−k D̄
2
4,q−k

×
[
θ̄2

4 D̄
2
4,−k D

2
4,−kδ

4(θ34)
]]

3→4
, (3.6)

where in the string of covariant derivatives we have to identify the variables in the node 3 with those in the node 4 after having
carried out the derivatives. In this way we have recast Z in term of a Grassmannian integration at a single node. As argued in
[8], this can be done for any loop within a superdiagram and, iterating the procedure, for any irreducible superdiagram.

The explicit evaluation of Z written in the form (3.6) can be carried out exploiting the algebraic properties of the covariant
derivatives and the final outcome is that

Z(k, q) = −q2. (3.7)

3.3 Introducing the θ -diagrams

In this example, the D-algebra strategy turns out to be rather more involute than carrying out the integration over the Grassmann
variables in both nodes with the propagators in exponential form, as in Eqs. (3.2, 3.7). In fact, the latter procedure can be
described in a diagrammatic, algorithmic form which turns out to be generalizable to a large class of superdiagrams and can
be implemented in a computer program. Let us now introduce this strategy starting from the example at hand.

The basic ingredient are the exponentials appearing in the chiral propagators. We introduce the following diagrammatic
notation:

. (3.8)

Due to the Grassmannian nature of the θ and θ̄ variables, the exponentials are in fact polynomial:

e2(θi pθ̄ j ) = 1 + 2(θi pθ̄ j ) + 1

2
× (

2(θi pθ̄ j )
)2

. (3.9)

In diagrammatic notation, this reads

, (3.10)

where the momentum and the end-point labels are the same in all lines and are understood.

7 The rules for Grassmannian integrations by part are collected in Appendix A.2.
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The superdiagrams contain integrations over Grassmann variables θi and θ̄i at the various sites. These we represent
graphically as black or white dots:

. (3.11)

The cubic (anti)-chiral super-vertices bring in factors of Grassmannian delta-functions:

θ2
i = δ2(θi ), θ̄2

i = δ2(θ̄i ). (3.12)

Taking into account all this, we can rewrite diagrammatically eq. (3.2) as follows:

Z(k, q) = . (3.13)

This expression can be simplified in some obvious ways. The Grassmannian delta-function δ2(θ3) soaks up the correspond-
ing integration and sets to zero all occurrences of θ3. On the diagram, this correspond simply to remove the black dot labeled
by 3 and the two solid lines connecting to it, since the associated exponentials reduce to 1. Similarly, the δ2(θ4) removes the
white dot labeled by 4 and the lines attached to it. We remain thus with

Z(k, q) = . (3.14)

Note that the labels 3 and 4 attached to the dots just assign a name to the integration variables, and they are thus actually
redundant.

Moreover, we can take into account the following general property: the product of two solid lines with the same endpoints
gives a single solid line carrying the total momentum, namely

. (3.15)

This just corresponds to the product rule for the corresponding two exponentials, see Eq. (3.8). Thus we arrive at

Z(k, q) = . (3.16)

We can expand the solid θ -lines into dashed lines according to Eq. (3.10). Then we have to take into account the presence of
white and black dots, that correspond to Grassmann integrals over two-component spinors. According to Eq. (3.8), each dashed
line leaving the vertex i carries one θi variable, and each dashed line entering the vertex j carries one θ̄ j . The Grassmann
integrals

∫
dθ2 or

∫
d θ̄2 vanish unless they act on expression quadratic in θα or θ̄ α̇ . Graphically this means that a θ -diagram
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is non-null if and only if exactly two dashed lines are attached to each dot. This is a very simple but crucial property of the
θ -diagrams. In particular, we have

. (3.17)

Finally, the dashed loop on the r.h.s. above is very easily evaluated. One has

= 1

2

∫
d2θ4 d

2θ̄3 2(θ4q θ̄3)2(θ4q θ̄3) = 1

2
tr(qq̄) = −q2, (3.18)

where we made use of a Fierz rearrangement, see Eqs. (A.33, A.35), and carried out the integrations according to the basic
rules in Eqs. (A.12–A.14). We obtain therefore

Z(k, q) = −q2, (3.19)

in agreement with the result of the D-algebra manipulations.
Of course, the Grassmann integrations in this Z(k, q) are very easy. It may seem that our diagrammatic notation unneces-

sarily complicates it. However, it readily generalizes and is algorithmic. As a first step, we show how the Grassmann part Z
of all superdiagrams involving only (anti)-chiral superfields can be managed using θ -diagrams.

3.4 Diagrams with (anti)chiral superfields

This is the simplest case. Let us describe how to manage it.
Deriving the θ -diagram The Grassmann part of all chiral-superchiral propagators is given by a momentum dependent

exponential of the type considered above, see Eq. (2.10), thus we can say that

. (3.20)

Note that in Eq. (3.20) and in the following, the cyan, thick lines that appear on the r.h.s. of the
θ= symbol have a completely

different meaning from the black ones on the left: they are the solid θ -lines defined in Eq. (3.8).
For propagators connected to external scalars, given in Eqs. (2.21) and (2.22), we have simply

(3.21)

and

(3.22)
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Also the contribution of cubic vertices involving chiral superfields to the Grassmann part of the diagram are very easy to
describe:

. (3.23)

Similarly, for the anti-chiral vertices one has

. (3.24)

It follows from Eqs. (3.21, 3.22) that a chiral propagator connecting an external scalar to a cubic vertex gives a trivial
contribution to the θ -diagram. Indeed, suppose for instance that the propagator (3.21) be attached to a vertex of the type (3.24)
in position j ; then its θ -line exp(−θ j pθ̄ j ) reduces to 1 since the vertex sets all occurrences of θ j to zero.

The properties we have listed are sufficient to determine the θ -diagrammatic form of the Grassmann factor Z associated
to any superdiagram Wcolour involving only (anti) chiral superfields with scalar external states; we will consider later the
possibility that the external states correspond to other components of the multiplet.

An example Let us illustrate this by a specific example, namely

Wab(q) = . (3.25)

This diagram represents a three-loop contribution to the adjoint chiral scalar propagator, and has been considered for instance
in [14]. Using the rules from (3.20) to (3.24) for all the propagators and vertices and making use of the δ-functions that they
contain we obtain

Wab
θ= Z = . (3.26)

This is perfectly analogous to the form we obtained in Eq. (3.14) for the one-loop example. It is easy to convince oneself
that in fact in all cases involving only chiral/antichiral superfields the structure of vertices and lines of the θ -diagram mimics
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Fig. 5 An example of the
decomposition of a θ -diagram
into its non-vanishing
contributions. For simplicity we
do not label the vertex and the
lines

the one of the original superdiagram, except for dropping the external lines attached to scalar components, and associating a
white dot to every chiral cubic vertex and a black dot to every anti-chiral one.

Expanding the θ -diagram To compute a θ -diagram of the type just described, one can expand its solid lines according to
Eq. (3.10). Having done this, we can exploit the crucial observation we already stated just before Eq. (3.17): the only non
zero contributions are those in which exactly two dashed lines enter or leave every dot. As a consequence, such non-zero
contributions consist of products of loops of dashed lines8 going through non-overlapping subsets of dots, leaving no dot
isolated.

Let us illustrate this with another example. Consider a θ -diagram with the following structure:

Z = . (3.27)

This can arise, for instance, from a one-loop contribution to a four-point function of chiral/antichiral scalars. According to
the rules just stated, it is given by

Z = . (3.28)

The terms in the right hand side represent precisely the possible decompositions of Z into loops of dashed lines; note that
we have drawn the loops involving two dots as single solid lines, see Eq. (3.17).

Another example of the decomposition of a θ -diagram is given in Fig. 5.
The decomposition into loops can be realized by means of a path-finding algorithm and implemented in a computer code;

this was done in [16]. In the code presented here we follow a different strategy, based on expanding in turn all lines and
taking into account at each steps the simplifications owing to the rule that selects exactly two dashed lines in each node. This
approach turns out to be computationally more efficient.

Getting the final result The next ingredient is the following: each loop of dashed lines can be evaluated explicitly and the
result can be given in a general form. Using repeatedly the Fierz rearrangements in Eqs. (A.32–A.35) and the integration rules

8 Each loop consisting of only two lines, though, comes with a factor 1/2 because it arises from the expansion of a single solid line as in Eq. (3.17).
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(A.12,A.13,A.14) one easily shows that

=
∫

d2θ1 d
2θ̄1 . . . . . . d2θn d

2θ̄n 2
(
θ1 p1θ̄1

)
2
(
θ2k1θ̄1

)
. . .

× 2
(
θn pn θ̄n

)
2
(
θ1kn θ̄n

) = (−1)n+1 tr
(
p1 k̄1 . . . pn k̄n

)
(3.29)

The traces appearing above are of the form

tr(p1k̄1...pnk̄n) = p1,μ1k1,ν1 ...pn,μn kn,νn tr(σμ1 σ̄ ν1 ...σμn σ̄ νn ) (3.30)

They can be recursively computed using the properties of the matrices σμ and σ̄ μ, see Appendix A.2.
For instance for Eq. (3.28) we obtain

Z = p2
1 p2

3 − 2(p1 · p2)(p3 · p4) + 2(p1 · p3)(p2 · p4)

− 2(p1 · p4)(p2 · p3) + p2
2 p2

4 + p1,μ p2,ν p3,ρ p4,σ εμνρσ . (3.31)

PerspectiveLet us summarize. Drawing the θ -diagrams and evaluating them according to the rules we just described, we can
compute explicitly the Grassmannian integrations for all superdiagrams involving only chiral and antichiral superfields, with
scalar external states. All the three main steps of the procedure, namely writing down the θ -diagram, finding its decomposition
into loops of dashed lines and evaluating the latter, are completely algorithmic and can be implemented in a computer code.

This procedure was already described in [14], without however detailing the algorithm for determining all non-zero
contributions and without providing a computer code. In the present work we aim at extending this approach to a much larger
class of superdiagrams, maintaining its main advantage, namely that of being algorithmic and readily implemented in a code.
The basic idea is to cast the θ -dependent part of the superdiagram in terms of Grassmannian delta-functions and exponentials,
which we can then evaluate with the θ -diagrammatic method described in the present section.

3.5 Diagrams with (internal) vector superfields

The Grassmann part of the propagator of the vector superfields is very simple:

. (3.32)

As was mentioned in the introduction, we restrict in this paper to theories that can be formulated in terms of N = 1 chiral
and vectorial superfields, with interactions that have covariant derivatives that act only on vectorial superfields. This class of
theories contain in particular N = 2 SYM theories with matter hypermultiplets. In this case, beside the cubic vertices of the
type considered in Eqs. (3.23, 3.24), we have other interactions that involve both vectors and chiral superfields. Up to order
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g2, they are elementary from the point of view of their Grassmann structure:

. (3.33)

From the action (2.6) we see that there are also interaction vertices, involving vector superfields only, which include spinor
covariant derivatives. Connecting vertices of this kind to other vertices by means of the vector superpropagator we effectively
obtain expressions in which such covariant derivatives act on the vector lines. The possible cases, and their Grassmann
structure, can be worked out with a little bit of algebra. For instance, as in Eq. (4.4), there might be a case where we have a
single covariant derivative acting on a vector propagator. This implies a contribution like Di,αδ4(θi j ). It is straightforward to
see that the following two expression coincide:

Di,αδ4(θi j ) = 2θi j,αδ2(θ̄i j )e
(θi pi j θ̄i )−(θ j pi j θ̄i )

2 . (3.34)

Graphically we have:

. (3.35)

This can be extended with further derivatives analogously. In two cases we might have two spinor derivatives:

, (3.36)

, (3.37)

In Eq. (3.36) we have took into account that a line might have a derivatives coming from both vertices it attaches to, see Fig.
7.

We have two contributions with three spinor derivatives:

, (3.38)
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, (3.39)

two with four spinor derivatives:

, (3.40)

, (3.41)

one with five spinor derivatives:

(3.42)

and finally a single one with six spinor derivatives:

(3.43)

Once the spinorial covariant derivatives have been assigned to the vector lines, the “bare” gluon vertices only contain the
information about the integration; thus for instance

. (3.44)

Consider the situation in which the “decorated” vector lines of Fig. 2 are inserted inside superdiagrams with scalar external
states, which have an overall trivial Lorentz structure. The various spinor quantities and tensors appearing above, like θα

i j ,
εαβ , and δα

β , must conspire to produce scalar structure. Thus they can only give overall numerical factors or Grassmannian
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scalar products of the type θi j · θkl . Remembering that θi j = θi − θ j and that δ2(θ) = θ2, one has:

θi j · θkl = 1

2

(
δ2(θi j ) + δ2(θkl) − δ2(θi − (θ j + θk − θl))

)
. (3.45)

Thus, the Grassmann structure of all superdiagrams formed with the elements we considered so far can be recast as linear com-
binations of integrals of exponentials and Grassmann δ functions which we know how to deal with using the θ -diagrammatic
technique.

In other theories based on N = 1 superfields, other combinations of spinorial covariant derivatives, beside those appearing
in Eqs. (3.35–3.43), might appear. They could be treated by applying the same principle. Furthermore the number of possible
different combinations is finite and one could write down the analogues of the rules in Eqs. (3.35–3.43) for all of them. Thus
for a generic theory with chiral/antichiral and vector N = 1 superfields, with spinorial covariant derivatives appearing on the
vectors only, all the Grassmann integrals in any superdiagram can always be expressed in terms of θ -diagrams.

3.6 Some θ -diagrammatical properties

Let us pause here to recapitulate some properties of our θ -diagrammatic notation, which have used somehow implicitly above.
First of all, the order in which white and black dots appear in the graphical representation of the θ -diagram is not relevant:

they represent integrals over certain Grassmann variables, and all the occurrences of these variables in other elements of the
diagram must be integrated over. Thus, for example,

=
∫

d2θ̄ j e2(θi pθ̄ j ), (3.46)

even if the white dot appears rightmost in the drawing.
Another graphical property that we have been using is the fact that endpoints of solid or dotted θ lines get attached to dots

carrying the same index, remembering that the lines go from a black to a white dot: thus, for instance,

(3.47)

as well as

. (3.48)

This also works when one end is already attached to a dot, or when a dot has already other lines attached to it.
In the θ diagram, the lines can be constrained as consequence of the integration of some Grassmannian delta function.

These delta function might set some variable to zero, as in the case of the δ2(θ) or δ2(θ̄) present in the hyper-multiplet vertices,
or identify two different variables, as in the case of the δ2(θi j ) = δ2(θi −θ j ) and the δ2(θ̄i j ) = δ2(θ̄i − θ̄ j ) present in vectorial
superpropagators, see Eq. (3.32).

It is easy to see that such constraints amount to the following rules:

(3.49)

and
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(3.50)

as well as

(3.51)

and

. (3.52)

Another important property is the fact that we can combine the solid lines with the same endpoints, summing their momenta,
as described in Eq. (3.15):

. (3.53)

Finally we would like to point out the fact that solid θ -lines can be stripped off from a θ -diagram; we will show this through
an example. Let’s consider a portion of θ -diagram with the following form:

(3.54)

and the decomposition of its external line:

. (3.55)
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The only contribution that we can accept is the one where two dashed θ -lines connect to the external vertex; thus we remain
with:

, (3.56)

where in the last step we took into account that, since two dashed lines are already attached to the white θ -dot, no further
lines can be attached to it. Using Eq. (3.17), we can summarize this property as follows:

. (3.57)

This property obviously holds independently of the color of the most external θ -dot.

4 Analyizing an example

In this section we illustrate the θ -diagram methodology by means of an example which contains all the ingredients discussed
above.

Let us consider a superdiagram that contributes at the three-loop order to the propagator of the adjoint scalar in an N = 2
SYM theory with matter, given by

Wab = . (4.1)

We have explicitly written here our rather obvious convention for the names of the momenta running in the various
propagators; in the following we will sometimes just assume them.

To the “external” ring of chiral propagators and to all vertices but the central one we can assign θ -diagrammatic elements
according to the rules discussed above, in particular those in Eqs. (3.20, 3.23, 3.24, 3.33). These elements are

. (4.2)

Building up the Feynman diagram, we actually have to take into account six contributions corresponding to the different
ways in which the triple and the single covariant derivative structures that appear originally in the three-gluon vertex – see
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Fig. 2 – can be assigned to the vector propagators. In other words, the gluon part of this superdiagram is given by

. (4.3)

We denote by Zi jk , with i, j, k in the range 5, 7, 8, the Grassmann part of contribution to the diagram Wab in which D̄6Dα
6

acts on the vector propagator from the node 6 to the node i and D6,α acts on the propagator from 6 to k. Thus, for instance,

θ= Z875, (4.4)

where for simplicity we did not write the momenta associated to the various propagators. Altogether we have

Wab
θ= Z875 + Z578 + Z758 + Z857 + Z587 + Z785. (4.5)

The term Zi jk contains the following ingredients:

(4.6)

which, according to the rules in Eqs. (3.44, 3.38, 3.32) and (3.35), correspond to

. (4.7)

The contraction θ6i · θ6k appears, for which we can use the property (3.45) obtaining

θ6i · θ6k = 1

2

[
−δ2(θki ) + δ2(θ6i ) + δ2(θ6k)

]
. (4.8)

Moreover, we can integrate over θ6 and θ̄6 variables, which appear only inside this portion of the diagram, using the δ

functions δ2(θ6 j ) and δ2(θ̄6 j ). We rewrite thus the factors in eq. (4.6) as
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.

(4.9)

Here we have used the property (3.15) for the solid lines from j to j ; note that these elements were written in Eq. (4.7)
as solid lines from 6 to 6, which is the same in presence of δ2(θ6 j )δ

2(θ̄6 j ). Equation (4.9) contains the sum of three terms,
containing different δ functions. Correspondingly, we write

Zi jk = 8
(
A(1)

i jk − A(2)
i jk − A(3)

i jk

)
, (4.10)

where A(1)
i jk contains δ2(θki ), A(2)

i jk contains δ2(θ j i ) and A(3)
i jk contains δ2(θ jk).

We will now describe in some detail the evaluation of Z875 and Z578; the other terms can be treated analogously and we
well just quote the result.

Evaluation of Z875 We start from A(1)
875. We put together the contributions in Eq. (4.2) with the first addend in (4.9) with

i, j, k = 8, 7, 5, we take into account the factor of δ2(θ58)δ
2(θ̄75) and we collect the lines between the same nodes according

to the property (3.15). Finally, we exploit momentum conservation at each node of the diagram, see Eq. (4.1). In this way we
obtain a θ -diagram that we can easily evaluate using the rules discussed in Sects. 3.3 and 3.4:

A(1)
875 = (4.11)

In the second step we simply stripped off the external lines, according to the procedure discussed around Eq. (3.57). This
simplification is implemented in the code that we will discuss in Sect. 6. Now we can apply to the r.h.s. the results (3.17,3.18)
obtaining

A(1)
875 = −k2

83 (q2)2. (4.12)

Let us now consider A(2)
875. We combine the contributions in Eq. (4.2) with the second addend in (4.9) with i, j, k = 8, 7, 5.

We have now a factor of δ2(θ78)δ
2(θ̄75); collecting the lines and using momentum conservation we arrive at the following

θ -diagram:

A(2)
875 = . (4.13)

In the second step we have stripped off the line 〈47〉. The resulting expression can be evaluated using the results for a
single line and the one for a four-nodes loop. The second one was given in Eq. (3.31), in which we now have to set p1 = k53,
p2 = −p3 = p4 = k83: taking into account the momentum conservation relation k53 + k83 = −q, the result is simply q2 k2

83.
Altogether we get thus

A(2)
875 = −k2

83(q
2)2. (4.14)
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For what concerns A(3)
875, the terms in Eq. (4.2) have to be combined with the third addend in (4.9) with i, j, k = 8, 7, 5,

which contains a factor of δ2(θ75)δ
2(θ̄75). Collecting the lines and using momentum conservation, we get this time

A(3)
875 = . (4.15)

This diagram is obviously vanishing because the integration over the Grassmann variables of the isolated white dot cannot
be saturated by any line. Thus

A(3)
875 = 0. (4.16)

Inserting the results (4.12, 4.14, 4.16) into Eq. (4.10) we get

Z875 = 8
(
A(1)

875 − A(2)
875 − A(3)

875

)
= 0. (4.17)

Evaluation of Z578 This contribution is obtained by combining the elements in Eq. (4.2) with those in Eq. (4.9) with
i, j, k = 5, 7, 8. We split it into the three terms A(a)

578, with a = 1, 2, 3, according to Eq. (4.10). Thus A(1)
578 corresponds to the

first addend in (4.9), and contains the factor δ2(θ85)δ
2(θ̄78). Collecting the lines and using momentum conservation we obtain

A(1)
578 = = , (4.18)

where in the second step we have simplified the θ -diagram by stripping off the line 〈35〉. We can now evaluate the single line
and the four-nodes loop using Eqs. (3.17, 3.18) and (3.31). We obtain in the end

A(1)
578 = −(q2)2(k45 − k53)

2. (4.19)

The term A(2)
578 corresponds to the second addend in eq. (4.9), and contains the factor δ2(θ75)δ

2(θ̄78). Proceeding in the by
now usual way we arrive at the following θ -diagram:

A(2)
578 = . (4.20)
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Fig. 6 An example of diagram
in which ordering issues must be
taken into account when
applying the θ -diagrammatic
rules

The decomposition of such a double-box diagram was exhibited in Fig. 5. Each of the terms in the decomposition is either
a single line or a dashed loop whose value is obtained from Eqs. (3.29) and (A.39–A.43). After a bit of algebra, the final
outcome is

A(2)
578 = −(q + k45)

2 k2
53 (q + k53)

2. (4.21)

The term A(3)
578 comes from the third addend in (4.9). It is proportional to δ2(θ78)δ

2(θ̄78) and the associated θ -diagram is
found to be the following:

A(3)
578 = . (4.22)

This double box diagram can be evaluated analogously to the one of Eq. (4.20) and the result is

A(3)
578 = −q2 k2

45(q + k53)
2. (4.23)

It is now straightforward to obtain

Z578 = 8
(
A(1)

578 − A(2)
578 − A(3)

578

)

= 16q2 (k2
45 k

2
53 + q2 k45 · k53

+ k2
45 q · k53 + k2

53 q · k45). (4.24)

Similarly one can compute all the terms Zi jk in the Grassmann part of the diagram Wab. The total result agrees with
[14], where the computation was performed only partly by means of θ -diagrammatic techniques as the covariant spinorial
derivatives were treated by brute force.

4.1 Ordering issues

The techniques introduced here allow to compute the Grassmann part of more complicated diagrams that would really be
hard to deal with other methods. For diagrams which contain more than one vertex with spinor covariant derivatives, one has
to pay attention to ordering issues which are relevant for determining the overall sign of each contribution.

Suppose for instance having to compute the diagram in Fig. 6.
Using the condensed notation Vi = V (xi , θi , θ̄i ), the contractions that lead to the term singled out in the right hand side of

Fig. 6 are the following:

...V7...V8...(D̄5)
2[Dα

5 [V5]]V5D5,α[V5](D̄6)
2[Dα

6 [V6]]V6D6,α[V6]...V9...V10.... (4.25)
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Fig. 7 An example of a decomposition where the overall sign is non trivial

Our approach is to separate this superdiagram in its elementary constituents, to which we assign their θ -diagra
mmatical counterparts. In doing this we have to take into account that, while the vectorial superfield is a commuting object,
each covariant spinor derivative flips its statistics. We must thus pay attention to the signs that arise if some exchanges of such
elements in the Wick contractions. These signs are accounted for in the code that accompanies this paper. In the case at hand,
the decomposition of the particular contribution we are considering is given in Fig. 7 and includes a global (−1) factor.

5 Superdiagrams with vector or spinor external states

We will now discuss how to handle the Grassmann integrations in n-point functions whose external states are spinorial or
vectorial. To extend the θ -diagrammatic method to these cases it suffices to understand what Grassmannian factors the non-
scalar external lines introduce. The necessary ingredients have already been written down in Sect. 2.3; here we will recast
them in a θ -diagrammatic form.

We shall begin with vector external states, which are quite easy to handle.

5.1 External vectors

The Grassmann part of a vector line attached on one end to an external vector state vμ has been given in Eq. (2.31). We can
introduce a θ -diagrammatical notation for it as follows:

, (5.1)

where the element

. (5.2)

is nothing else that the dashed line introduced in Eq. (3.8) with the momentum p replaced by the versor êμ in the direction
μ. This versor has components êμ

ν = δ
μ
ν , so that its scalar product with any vector a yields

êμ · a = aμ. (5.3)

Thus in particular êμ · σ = σμ and êμ · σ̄ = σ̄ μ.
Let us note that, in the case in which the external vector line carries no spinorial covariant derivatives, its expression

simplifies into

(5.4)
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since the supervector propagator is given by δ2(θi j )δ
2(θ̄i j ) and can be used to integrate the θi and θ̄i variables, which only

occur in this part of the diagram, according to (2.31).
Consider a very simple example, akin to the case with scalar external states considered in Sect. 3.1, namely the one-loop

superdiagram

Wμν
ab = . (5.5)

Its Grassmann part Zμν θ= Wμν
ab is given, according to the rule just introduced and to Eqs. (3.20, 3.33), by

Zμν = . (5.6)

This θ -diagram can be expanded as usual into cycles of dotted lines, but such cycles are bound to contain the two êμ and êν

dotted lines. Therefore one gets

Zμν = . (5.7)

Both terms can now be computed using the trace rule of Eq. (3.29) and the formulæ in Appendix A.2, treating the versors
êμ and êν as any other quadri-momentum and then taking into account Eq. (5.3).

As another example, let us consider the following superdiagram, corresponding to a one loop cubic vertex correction:

Wμ
abc = . (5.8)

Its Grassmann part Zμ θ= Wμ
abc is given, using the rules introduced above, by

Zμ = . (5.9)
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Expanding this θ -diagram into cycles of dotted lines, bound to contain the êμ dotted line, we get

Zμ = . (5.10)

Again, both terms can be computed using Eq. (3.29) and Appendix A.2.

5.2 Spinors from (anti-)chiral multiplets as external states

Let us now consider superdiagrams whose external states are spinors sitting in N = 1 chiral or anti-chiral multiplets.9

The Grassmann part of a chiral line attached at one end to a chiralino or to an anti-chiralino has been given in Eqs. (2.23,
2.24). In a (partially) θ -diagrammatic notation it can be expressed as follows:

(5.11)

and

. (5.12)

The novelty is the presence of “bare” θ -variables whose spinorial indices are not contracted with the spinor indices carried
by other θ variables. This leads, when these external lines are combined with the inner vertices, to the appearance of new
θ -diagrammatic elements. Indeed, consider for instance an external line of the type (5.11) attached to a chiral cubic vertex,
whose Grassmann part was given in Eq. (3.24). We have

(5.13)

and similarly

, (5.14)

where we introduced the notation

9 Note that, from the N = 2 point of view, if the N = 1 chiral or antichiral multiplet is the adjoint one which, together with the N = 1 vector
multiplet, makes up the N = 2 gauge multiplet, then these spinors are among the gauginos of the theory.
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. (5.15)

Consider for instance the following simple one-loop example:

W α̇
ab,α = . (5.16)

Using the rules just stated, its Grassmann part Z α̇
α

θ= W α̇
ab,α is given by

Z α̇
α = . (5.17)

Let us note that the external spinors appear in a specific order, dictated by the Wick contractions that originate the diagram
one is considering, which implies a specific ordering of the “bare” θ -variables in the θ -diagram that carry the spinor indices
of the external spinors. If this order is altered, we have to keep track of the ensuing overall sign - again, this is automatic in
the code.

The crucial property of these triangular symbols is that, in the expansion of a θ -diagram, only the terms where precisely
one dotted line is attached to each triangular vertex survive since these represent an integration already containing a fermionic
coordinate. This is analogous to the fact that exactly two dotted lines must be attached to each black or white dot, as stated
after Eq. (3.16). Thus the possible decompositions of the θ -diagram must contain open trajectories – which cannot intersect
or overlap – starting on a triangle end ending on another one. In the case of Eq. (5.17) there is just one possibility:

Z α̇
α = . (5.18)

Let us consider a more elaborate example, namely the following two-loop quartic diagram, which we indicate only
schematically, without labeling the momenta and the nodes:

. (5.19)
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In this case there are many more possibilities to draw the open lines and the decomposition of the θ -diagram contains the
following structures (we omit writing the factors of the external momenta attached to the triangles):

. (5.20)

The open paths connecting the triangles represent Grassmannian integrations; for instance

=
∫

d�θ1,α2(θ1 p1θ̄1) . . . 2(θn pn θ̄n)θ̄
β̇
n , (5.21)

where by d� we indicate the integration over all the involved Grassmann variables. These expressions can be evaluated by
the same Fierz techniques utilized in Eq. (3.29) for the closed paths. The result is

= (−1)n+1

2
(p1q̄1 . . . q̄n−1 pn)

γ̇
α . (5.22)

Similarly, one has

= (−1)n

2
(p1q̄1 . . . pn−1q̄n−1)αβ (5.23)

and

= (−1)n

2
(q̄1 p1 . . . q̄n−1 pn−1)

α̇β̇ (5.24)

All of these products of σμ-matrices can be treated algorithmically as described in Appendix (A.2).
For instance, in the first two cases we have

= 1

2
(p1)

β̇
α = 1

2
(p1)μ (σμ) β̇

α (5.25)

and
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= 1

2
(p1)μ (q1)ν (σμσ̄ ν)αβ

= −1

2
p1 · q1 εαβ + 1

2
(p1)μ (q1)ν (σμν)αβ. (5.26)

Note that the open chains with two black triangles, i.e. with two external chiral spinor indices, transform in the (2, 1)⊗ (2, 1)

representation of the spin group, which is reducible into (1, 1) ⊕ (3, 1), i.e., into an antisymmetric and a symmetric part in
these spinor indices.

Coming back to the simple case of Eq. (5.18), the final result is

Z α̇
α = (−1)q̄ α̇β × (−1)

2
(−q)βγ̇ εγ̇ β̇qαβ̇ = −1

2
(q̄qq̄)α̇α

= q2

2
(q̄)α̇α = q2

2
qμ(σμ) α̇

α . (5.27)

The first (−1) factor comes from exchanging the theta-variables of the triangular θ -vertices in Eq. (5.18) to match the one
in the formula (5.21).

5.3 Gauginos as external states

Let us consider now the case in which we have a spinor from the N = 1 vector multiplet in an external state. The Grassmann
parts of a vector line attached at one end to an external gaugino or anti-gauginowere given in Eqs. (2.34) and (2.35). We can
describe them in θ -diagrammatic notation as follows:

(5.28)

and

. (5.29)

Thus each gaugino external line leads to the sum of two diagrammatic elements; this is a consequence of the fact that
we chose not to impose the Wess–Zumino gauge. The θ -diagrams with gauginos as external states will therefore comprise
multiple terms already before effecting their decomposition.

Let us note that if the external gaugino line carries no spinorial derivatives its contributions simplify because they involve
the vector line with no spinor derivatives, which is just δ2(θi j )δ

2(θ̄i j ). This allows to integrate out the θ variables in the
external node. Thus, for instance, if the external gaugino is attached to a cubic adjoint vertex, see Fig. 2, we have

(5.30)
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and

. (5.31)

Let us consider, for instance, the following one-loop superdiagram:

W α̇
ab,α = . (5.32)

According to the rules we just described, its Grassmann part Z α̇
α

θ= W α̇
ab,α is given in θ -diagrammatical terms by

Z α̇
α = . (5.33)

It comprises therefore four θ -diagrams: we write Z α̇
α = Z α̇

(1)α + Z α̇
(2)α + Z α̇

(3)α + Z α̇
(4)α and we have

Z α̇
(1)α = . (5.34)

In the first step we kept the labels on the nodes to facilitate the comparison with Eq. (5.33); in the second step we omitted
such labels and we joined the lines between the same nodes. In the following terms we will write directly the analogue of this
second expression, namely

Z α̇
(2)α = ,

Z α̇
(3)α = (5.35)
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and finally

Z α̇
(4)α = . (5.36)

The decomposition of these θ -diagrams goes as follows. We find

Z α̇
(1)α = (5.37)

as well as

Z α̇
(2)α = , Z α̇

(3)α = (5.38)

and

Z α̇
(4)α = . (5.39)

6 Use of the Grassmann integration algorithm

We have insisted that the approach to the Grassmann integration in superdiagrams we described in the previous sections
is algorithmic and can therefore be implemented in a computer code. We have chosen to realize this possibility as a
Mathematica notebook10 which is made available together with this paper. Besides the code we provide an ancillary file,
furtherinstructions.pdf, which gives some details not discussed here.

The code, as it stands, allows to deal with the type of matter content and interactions considered in the bulk of the paper. It
can also be applied to other theories whose interaction vertices contain only products of superfields with some combinations
of spinorial covariant derivatives on vector superfields. It is straightforward to modify the program in order to include massive
chiral multiplets, in which case chiral superpropagators terms like 〈��〉 or 〈�̄�̄〉 appear. Furthermore it is in principle possible
to extend the program to handle vertices with all possible combinations of spinorial derivatives an all superfields. It is true
that the code can certainly be optimized by more expert programmers but yet it proves our point: the procedure described in
the text can be implemented on a computer.

The notebook is called Theta-diagrams.nb. In the following, we assume that this notebook has been opened in
Mathematica and evaluated. Beside the notebook Theta-diagrams.nb, there is a folder, called Theta-programs,
which contains the breakup of the code into smaller notebooks, each containing some basic step of the procedure, accompanied
by a few more examples.

In this section we illustrate how to use this software to obtain from a superdiagram the momenta polynomial resulting
from the Grassmann integration. We proceed by examples to illustrate how the superdiagram must be specified and how the
output has to be interpreted.

10 We decided to not build a package because our coding requires to make Mathematica’s “.” operation orderless. We chose to localize this choice
in a single notebook to avoid disrupting other Mathematica computations by the user.
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Diagrams with (anti)chiral superfields Let us begin with a very simple example, namely the superdiagram in Eq. (3.1),
which we redraw here for commodity of the reader:

. (6.1)

To evaluate the corresponding Grassmann integral, namely the function Z of Eq. (3.2), the following command must be
issued:

The first argument is empty because it must be used only when gauginos appear in the external states. The other arguments
describe the elements of the diagram.

• ECSc[1,3,q] is the external line of the chiral scalar going from the vertex labeled as 1 to the vertex labeled as 3.
Similarly, EACAS[4,2,q] is the external line or the anti-chiral scalar from vertex 4 to vertex 2.

• CP[4,3,-k] stands for the chiral superfield propagator that carries momentum −k and goes from the vertex 4 to the
vertex 3. CP[4,3,k-q] is the other chiral superfield propagator of the diagram.

• C3inward[3] and C3outward[4] signal the presence of three-point chiral supervertices with incoming lines in
position 3, and outgoing lines in position 4, see Eq. (2.11).

The command returns the output -q·q, namely −q2, in agreement with Eq. (3.7).
Let us consider a more complex example, namely the three-loop superdiagram of Eq. (3.25). We implement momentum

conservation at each vertex and choose three independent loop momenta r, s, t as follows:

. (6.2)

The corresponding Grassmann integral is computed by the following command:
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The result, which is proportional to q2, is written almost completely in terms of scalar products of momenta. The only
other type of expression that appears is $E[q,r,s,t], which stands for εμρστqμrρsσ tτ .

Diagrams with internal vector superfields We consider now the three loops example with an internal three-vector vertex
of Eq. (4.2). Implementing momentum conservation and choosing three independent loop momenta r, s, t we write it as

. (6.3)

To evaluate the Grassmann integrals for this superdiagram, we have to explicitly define the momenta variables for the gluon
propagators. We choose

and then compute

Among the arguments we have some new ingredients.

• V3[6,5,7,8] represents the 3-vector vertex in 6, from which three vector superpropagators point toward the vertices
5, 7, 8.

• In case one needs to consider a diagram in which a propagator connects two legs of the vertex V3 the input should be of the
form V3[o,a,a,b]. Note that the index a to be used has to be different from all other indices used to specify vertices
or external lines. A similar remark applies also to four-vector vertices, which in the program are denoted in general as
V4[o,a,b,c,d].

• Note that the vector propagators departing from the 3-vector vertex must not appear separately in the input, and the
program assign automatically a name to their momenta: $p[6][5] is the momentum flowing in the propagator from 6
to 5, and so on. This is why we had to give the instructions $p[6][5] = s-r, to enforce our choice of names before
calling the program.11

• GV[i] indicates that in position i there is a “generic vertex” whose Grassmann contribution is just
∫
d4θi . This is the

case, see Eq. (2.13), of the vector-chiral-chiral vertices in positions 5, 7 and 8.

The result, which is proportional to 16q2, is very simple although the computation, described in Sect. 4, is quite involved.
Diagrams with vector external lines The program also handles superdiagrams with external vector lines. Let us consider

for instance the example given in Eq. (5.5), that we redraw here for ease of comparison to the input that must be given to the
program:

11 The default choice of the momenta for these vertexes is flowing outward, when two of these are connected the program defines $p[i][j] with
i<j.
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. (6.4)

The corresponding Grassmann integrations are evaluated by the following command:

Note the following points:

• EVV[i,j] stands for a vector external lines attached to a vertex in position j .
• The external indices μ and ν are not specified explicitly in the input. The program associates automatically to each

external vector line EVV[i,j] a unit vector $s[V,i,j] that appears in the output. With the conventions taken in (6.4)
we should therefore read $s[V,1,3] as êμ and $s[V,4,2] as êν .

Using the properties of the unit vectors êμ, see the discussion from Eqs. (5.1) to (5.3), the output of the program corresponds
therefore to

q · êμ q · êν + 2k · k êμ · êν − 2k · q êμ · êν

+2kρqσ ê
μ
λ ê

ν
ηε

ρσλη = qμqν

+2k · kδμν − 2k · qδμν + 2kρqσ ερσμν. (6.5)

Consider now the diagram of Eq. (5.8), namely

. (6.6)

The corresponding Grassmann integration can be performed with the command

According to the conventions already discussed for the diagram (6.4), $s[V,1,3] stands for the unit vector êμ and, after
simple manipulations, the result has the form

2�μ(p2 + p · q) − 2pμ(�2 − � · q)
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− qμ
(
�2 − 2� · q + (p + q)2

)
− 2εμνρσ �ν pρqσ . (6.7)

Diagrams with chiralino external lines Let us discuss now the the case in which some of the external states are spinors,
focusing as usual on an example. We consider the superdiagram of Eq. (5.32), namely

. (6.8)

The corresponding Grassmann integrals are computed using the following call:

In this expression, $seps[S,1,2dot] stands for (σμ) α̇
α while $s[S,1,2dot] corresponds to êμ. Indeed $seps

indicates a σμ matrix with an index saturated via a ε (theS simply reminds us that that term comes from a spinorial contribution)
whose spinorial indices are those associated to the external points 1 and 2 in the diagram, namely α and α̇. The index μ is
dummy, and it has to be saturated with a structure labeled by the same arguments, namely $s[S,1,2dot]. As already
explained after Eq. (6.4), $s indicates a unit vector, which here has to be êμ. Thus the above results amounts to

1

2
q2 qμ

(
σμ

) α̇

α
= 1

2
q2 q α̇

α . (6.9)

Let us now consider the more complicated case introduced in Eq. (5.19) and discussed thereafter. In the decomposition of
the corresponding Grassmannian integrals more tensorial structures appear, which are codified in a non completely obvious
way in the output of the program. Let us redraw the diagram in question here:

. (6.10)

Here we labeled the nodes so as to facilitate the comparison with the input that has to be given to the program in order to
compute the corresponding Grassmann integrals, namely

.
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We used momentum conservation to express the external momentum p4 in terms of p1, p2 and p3 and we denoted by k
and l the two independent loop momenta running in the two boxes - the assignments of momenta to the various lines can be
understood from the call itself, whose syntax should by now be clear.

The resulting expression carries two chiral and two anti-chiral indices, namely it transforms in the (2, 1)⊗ (2, 1)⊗ (1, 2)⊗
(1, 2) representation, which is reducible into (3, 3) ⊕ (3, 1) ⊕ (1, 3) ⊕ (1, 1). The program, however, which implements the
decomposition into open paths described in Eq. (5.20), does not completely carry out the reduction. It does so for the terms
arising from the first term in the decomposition (5.20), but not or the others.12 As a consequence, the output of the program
is not optimized and is very long, so we do not report it here. It contains various new structures. For instance, the following
term appears in the output of the program call above:

.

Here $eps[S,1,4] stands for εαβ : indeed, $eps denotes an ε tensor, the argument S indicates that its indices are
spinorial while 1,4 states that these spinorial indices are those associated with the lines denoted as 1 and 4 in the input for
this diagram. With analogous logic, $eps[S,3dot,2dot] stands for εβ̇α̇ . Altogether this term reads therefore

− 1

4
(k · p2)(k · p3)(� · p1)(� · p2)εαβ εβ̇α̇. (6.11)

Another term appearing in the output is the following:

.

Here $sbareps[S,1 3dot,2dot][A-B] stands for (σ̄ μν)β̇α̇ . Indeed $sbareps[…][A-B] indicates a σ̄ matrix
with two vector indices with raised spinor indices – see the remark after Eq. A.27. The arguments S,3dot,2dot
mean that the spinor indices are those associated with the external lines numbered as 3 and 2 in the input. The quantity
$s[S,3dot,2dot,A] has to be interpreted as the unit vector êμ. In fact, $s indicates a unit vector, while the arguments
S,1,4,A implicate that the vector index of this unit vector is the first one (this is the meaning of A) of the indices of the
sigma matrix whose spinor indices are associated to the lines 3 and 2. Similarly, $s[S,3dot,2dot,B] means êν . Overall
the output term above is

1

16
(k · p2)(k · êν)(� · p1)(� · êμ)(p2 · p3)εαβ(σ̄ μν)β̇α̇

= 1

16
(k · p2)(� · p1)(p2 · p3)�μkν(σ̄

μν)β̇α̇ εαβ. (6.12)

Of course, there is an analogous notation for (σμν)αβ matrices, which are called $seps.
Diagrams with gaugino external lines The external gaugino (EG) and anti-gaugino (EAG) lines have to be called within the

first argument of the Superdiagram Computation command. For instance, consider the diagram of figure Eq. (5.32),
which we redraw here for ease of comparison:

. (6.13)

12 In the first decomposition of (5.20), the tensor product is performed in two steps as [(2, 1) ⊗ (2, 1)] ⊗ [(1, 2) ⊗ (1, 2)]; in the other cases it is
organized as [(2, 1) ⊗ (1, 2)] ⊗ [(2, 1) ⊗ (1, 2)] and the tensor product between the two brackets is left indicated.
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Its Grassmann part is computed via the following call:13

There is no new ingredient in this result which, with manipulations already used previously, reads explicitly

−
(
k2 + q2

4

)
k α̇
α − 1

2

(
k2 − (k · q)

)
q α̇
α . (6.14)

Ordering issuesWhen there are spinorial external lines, which have a fermionic statistics, the order in which they are written
in the correlator is relevant to determine the overall sign. The program returns the sign which is appropriate for the correlator
in which the external spinors are ordered exactly in which they appear as arguments of the SuperdiagramComputation
call. Our convention is thus that the gauginos appear as the leftmost elements.
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Appendix A: Notations and conventions

A.1 General conventions

We will work in the Euclidean formulation of the theory. The Minkowskian theory can be recovered by an (inverse) Wick
rotation. Tensors will be (anti)-symmetrized with strength one, namely we will define

A(μ1...μn) = 1

n!
∑

σ∈�n

Aμσ(1)...μσ(n)
, (A.1)

A[μ1...μn ] = 1

n!
∑

σ∈�n

sgn(σ )Aμσ(1)...μσ(n)
. (A.2)

We will use commas to avoid symmetrization/anti-symmetrization of certain indexes as in the example that follows:

A[μ, ν, ρ] = 1

2
(Aμνρ − Aρνμ) . (A.3)

We will also adopt the following as generalized delta:

δμν
ρσ = δμ

ρ δν
σ − δμ

σ δν
ρ . (A.4)

13 Note that EG and EAG, differently from the other superdiagrammatic elements, are not functions but just place-holders that the command
SuperdiagramComputation recognizes and elaborates properly.
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We will usually consider correlation functions in momentum space. Our conventions are such that, fo instance, the
(super)propagators we have

〈�(xi , θi , θ̄i )�̄(x j , θ j , θ̄ j )〉

=
∫

d4 p

(2π)4 〈�(θi , θ̄i )�̄(θ j , θ̄ j )〉(p) eip·(xi−x j ). (A.5)

and in (super)-vertices the momenta associated to the various legs are naturally considered to be directed outward.

A.2 Spinorial and grassmannian conventions

We denote by ψ a chiral spinor of components ψα with α = 1, 2, which transforms in the (2, 1) representation of SO(4) ∼
SU(2)L × SU(2)R and by ψ̄ an anti-chiral one of components ψ̄ α̇ , with α̇ = 1, 2, which transforms in the (1, 2). Scalar
spinor bilinears are denoted as follows:

(ψχ) ≡ εαβ ψβ χα, (A.6)

(ψ̄χ̄) ≡ εα̇β̇ ψ̄ β̇ χ̄ α̇ (A.7)

where

ε12 = ε1̇2̇ = ε21 = ε2̇1̇ = 1. (A.8)

Since the spinors are of Grassmannian nature, these scalar products are symmetric. For the “square” of spinors, we use –
when there is no risk of confusion with the component α = 2 of the spinor itself, the notation

ψ2 ≡ (ψψ), ψ̄2 ≡ (ψ̄ψ̄). (A.9)

The spinor indices are raised and lowered with the following rules:

ψα = εαβ ψβ, ψα = εαβ ψβ, ψ̄α̇ = εα̇β̇ ψ̄β̇ ,

ψ̄α̇ = εα̇β̇ ψ̄ β̇ , (A.10)

so that the bilinears can also be written as

(ψχ) = ψαχα, (ψ̄χ̄) = ψ̄α̇χ̄ α̇ . (A.11)

Integration formulæ The basic integration rules are

∫
dθα θβ = δα

β ,

∫
d θ̄α̇ θ̄ β̇ = δ

β̇
α̇ . (A.12)

One defines then
∫

d2θ = −1

4
εαβ

∫
dθαdθβ,

∫
d2θ̄ = −1

4
εα̇β̇

∫
d θ̄α̇d θ̄β̇ , (A.13)

so that
∫

d2θ θ2 = 1,

∫
d2θ̄ θ̄2 = 1. (A.14)
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Thus θ2 and θ̄2 act as fermionic δ-functions; more in general, if we write θi j = θi − θ j , we have

θ2
i j = δ2(θi j ), θ̄ 2

i j = δ2(θ̄i j ). (A.15)

We also use the notation

θ2
i j θ̄

2
i j = δ4(θi j ). (A.16)

Clifford algebra We realize the Euclidean Clifford algebra

σμσ̄ν + σνσ̄μ = −2 δμν 1 (A.17)

by means of the matrices (σμ)αβ̇ and (σ̄ μ)α̇β that we take to be

σμ = (τ ,−i1), σ̄ μ = −σ †
μ = (−τ ,−i1), (A.18)

where τ are the ordinary Pauli matrices. They are such that

(σ̄ μ)α̇α = εαβ εα̇β̇ (σμ)ββ̇ . (A.19)

With these matrices we can write the four-vectors as bispinors:

kαβ̇ = kμ (σμ)αβ̇ , k̄αβ̇ = kμ (σ̄μ)α̇β . (A.20)

We will often use the notations k and k̄ to indicate the matrices kαβ̇ and k̄αβ̇ . One can then form spinor bilinears of the type

(θkθ̄ ) = θα kαβ̇ θ̄ β̇ . (A.21)

Because of the property (A.19) we have

(θkθ̄ ) = −(θ̄ k̄θ). (A.22)

Let us introduce the matrices (σμν)
β
α and (σ̄ μν)α̇

β̇
, defined as

(σμν) β
α = 1

2

(
σμσ̄ ν − σνσ̄μ

) β

α
,

(σ̄ μν)α̇
β̇

= 1

2

(
σ̄ μσ ν − σ̄ νσμ

)α̇

β̇
. (A.23)

They are (anti)self-dual:

σμν = 1

2
εμνρσ σρσ , σ̄ μν = −1

2
εμνρσ σ̄ρσ , (A.24)

and are proportional to the generators of SO(4) Lorentz rotations on the chiral and antichiral spinors ψβ and ψ̄ β̇ , as it follows
by computing their commutators. In fact, none has the following product formulæ:

σμνσρσ = (
δμσ δνρ − δμρδνσ − εμνρσ

)
1

+ (−δρμσ νσ + δρνσμσ − δσνσμρ + δσμσ νρ
)
, (A.25)

and

σ̄ μνσ̄ ρσ = (
δμσ δνρ − δμρδνσ + εμνρσ

)
1
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+ (−δρμσ̄ νσ + δρνσ̄ μσ − δσνσ̄ μρ + δσμσ̄ νρ
)
. (A.26)

Taking the trace, we have

tr
(
σμνσρσ

) = 2
(
δμσ δνρ − δμρδνσ − εμνρσ

)
,

tr
(
σ̄ μν σ̄ ρσ

) = 2
(
δμσ δνρ − δμρδνσ + εμνρσ

)
. (A.27)

Let us also notice that the tensors (σμν)αβ and (σ̄ μν)α̇β̇ obtained by lowering or raising one spinor index are symmetric in
(α, β) or (α̇, β̇).

Decomposition of bispinors Let us consider a bispinor Aαβ . It transforms in the representation (2, 1) ⊗ (2, 1) which is
reducible into (1, 1) ⊕ (3, 1), i.e. into a singlet and a symmetric triplet, as follows:

Aαβ = −a εαβ + 1

2
aμν (σμν)αβ. (A.28)

If we consider the matrix A of components A β
α , the above decomposition reads

A = a 1 + 1

2
aμν σμν, (A.29)

and, using the trace relation (A.27), we can determine the coefficients of the decomposition as follows:

a = 1

2
tr A, aμν = −1

4
tr(Aσμν). (A.30)

Analogously, an anti-chiral bispinor C̄ α̇

β̇
an be decomposed in matrix terms as follows:

C̄ = 1

2
tr C̄ 1 − 1

8
tr(C̄ σ̄μν) σ̄ μν. (A.31)

In particular, when the bispinor is factorized, i.e. when Aαβ = ψαχβ , we have the Fierz identity

ψαχβ = 1

2
(χψ) εαβ + 1

8
(χσμνψ)

(
σμν

)
αβ

. (A.32)

If the two spinors are identical, only the anti-symmetric structure survives:

ψαψβ = 1

2
(ψψ) εαβ. (A.33)

Similarly in the anti-chiral case we have

ψ̄ α̇χ̄ β̇ = 1

2
(χ̄ψ̄) εα̇β̇ + 1

8
(χ̄ σ̄μνψ̄)

(
σ̄ μν

)α̇β̇
. (A.34)

Again, if the two spinors are identical, only the anti-symmetric structure survives:

ψ̄ α̇ψ̄ β̇ = 1

2
(ψ̄ψ̄) εα̇β̇ . (A.35)

Strings of σ matrices In the evaluation of the superdiagrams one often has to deal with bispinors obtained by repeated
products of σ and σ̄ matrices, of the form

(σμ1 σ̄ ν1 · · · σμn σ̄ νn ) β
α (A.36)
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or

(σ̄ μ1σν1 · · · σ̄ μnσνn )α̇
β̇
. (A.37)

They can be decomposed according to Eqs. (A.29) and (A.31), and the tensorial coefficients of their decomposition can be
determined recursively. Let us consider the chiral case (A.36), for the antichiral case the procedure is perfectly analogous.
We write

σμ1 σ̄ ν1 · · · σμn σ̄ νn = aμ1···νn 1 + 1

2
bμ1···νn
ρσ σρσ (A.38)

and we want to determine the numerical tensorial coefficients a and b. Let us note that the coefficients a correspond to the
traces of these products of matrices:

tr
(
σμ1 σ̄ ν1 · · · σμn σ̄ νn

) = 2aμ1···νn . (A.39)

In the case n = 1, we have

aμ1ν1 = −δμ1ν1 , bμ1ν1
ρσ = 1

2
(δμ1ν1

ρσ + εμ1ν1
ρσ ), (A.40)

where in the second equality the double delta is anti-symmetrized with strength one. These relations represent the initial
conditions for a recursive procedure in n. In fact, on the one side

σμ1 σ̄ ν1 · · · σμn+1 σ̄ νn+1 = aμ1...νn+1 1 + 1

2
bμ1...νn+1
ρσ σρσ . (A.41)

On the other side, using Eqs. (A.38) and (A.40), we have

σμ1 σ̄ ν1 ...σμn+1 σ̄ νn+1 =
(
aμ1...νn 1 + 1

2
bμ1...νn
ρσ σρσ

)

× (−δμn+1νn+1 1 + σμn+1νn+1
)
. (A.42)

We can expand the products using Eq. (A.25) and compare the result with Eq. (A.41). In this way we find, after some algebric
manipulations, the following recursion relations:

aμ1...νn+1 = −aμ1...νn δμn+1νn+1 − 2bμ1...νn ,μn+1νn+1 ,

bμ1...νn+1
ρσ = −bμ1...νn

ρσ δμn+1νn+1

+ 1

2
aμ1...νn (δ

μn+1νn+1
ρσ + ε

μn+1νn+1
ρσ )

+ 4bμ1...νn+1, [μn+1
[μ δ

νn+1]
ν] . (A.43)

Starting from the initial condition (A.40) we can in this way obtain the coefficients a and b of the decomposition for any n.
For instance, in the the n = 2 case we find

σμ1 σ̄ ν1σμ2 σ̄ ν2 = (
δμ1ν1δμ2ν2 − δμ1μ2δν1ν2 + δμ1ν2δμ2ν1

−εμ1ν1μ2ν2
)
1+

− δμ1ν1σμ2ν2 − δμ2ν2σμ1ν1 − δμ1μ2σν1ν2

− δν1ν2σμ1μ2 + δμ1ν2σν1μ2 + δν1μ2σμ1ν2 , (A.44)

which implies, according to Eq. (A.39), that

tr
(
σμ1 σ̄ ν1σμ2 σ̄ ν2

) = 2
(
δμ1ν1δμ2ν2 − δμ1μ2δν1ν2
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+δμ1ν2δμ2ν1 − εμ1ν1μ2ν2
)
. (A.45)

In a completely analogous way we can determine recursively the decomposition of the antichiral bispinors given by products
of σ matrices as in Eq. (A.37). The expressions have the same form but for the Levi–Civita tensors appearing with the opposite
sign.

This recursive procedure to determine the products of σ matrices is implemented in the Mathematica code distributed with
this paper.

Spinorial derivatives We use the symbols

∂α = ∂

∂θα
, ∂̄α̇ = ∂

∂θ̄ α̇
(A.46)

and

∂α = ∂

∂θα

, ∂̄ α̇ = ∂

∂θ̄α̇

, (A.47)

in such a way that ∂αθβ = ∂βθα = δ
β
α and ∂α̇θ β̇ = ∂β̇θα̇ = δ

β̇
α̇ . Note that in this way

∂α = −εαβ∂β, ∂̄ α̇ = −εα̇β̇∂β̇ , (A.48)

with a sign difference with respect to the general rule (A.10).
Spinor covariant derivatives Covariant derivatives are defined as:

Dα = ∂α + iσμ
αα̇θ̄ α̇∂μ, D̄α̇ = −∂̄α̇ − iθασ

μ
αα̇∂μ. (A.49)

The spinor indices of the covariant derivatives are raised according to the convention in Eq. (A.48). In momentum space, we
have

Dα = ∂α − pαα̇θ̄ α̇, D̄α̇ = −∂̄α̇ + θα pαα̇, (A.50)

where p il the momentum out-flowing from the node in which sits the superfield to which the covariant derivative is applied.
When it is not obvious which momentum should appear, we specify it using the notations Dα(p), and D̄α̇(p). The squared
covariant derivatives are defined as follows:

D2 = εαβDαDβ D̄2 = εα̇β̇ D̄
ᾱ D̄β̄

Grassmannian integration by parts Let Bi be bosonic quantities, and Fi a fermionic elements. Then one has the following
integration by parts rules for the covariant derivative Dα(p):

∫
d2θ [Dα(p)F] B =

∫
d2θ F [Dα(−p)B] , (A.51)

∫
d2θ [Dα(p)B1] B2 = −

∫
d2θ B1 [Dα(−p)B2] , (A.52)

∫
d2θ [Dα(p)F1] F2 =

∫
d2θ F1 [Dα(−p)F2] . (A.53)

The rules for D̄α̇(p) are analogous. One also has

∫
d2θ

[
D2(p)F

]
B = −

∫
d2θ F

[
D2(−p)B

]
, (A.54)

∫
d2θ

[
D2(p)B1

]
B2 =

∫
d2θ B1

[
D2(−p)B2

]
, (A.55)
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∫
d2θ

[
D2(p)F1

]
F2 =

∫
d2θ F1

[
D2(−p)F2

]
. (A.56)
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