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S1 Unit tsunamigenic source: numerical solution in one dimension

S1.1 Calculations for assessing the convergence of the model

In one dimension, the free surface perturbation reduces to (Nosov and Sementsov 2014):

ξ0(x) =
2B0

π

∞∫
0

cos(mx)sin(ma)

mcosh(mH0)
dm (1)

being B0 the amplitude of the bottom deformation and H0 the sea-depth, both assumed to be constant along a. The variable5
of integration m represents the spatial wavenumber and quantifies the number of oscillations of the integrand function along
a. To numerically solve the integral, we follow these steps:

1. Evaluate the convergence of the integral by:

(a) Dealing with the singularity at m= 0;

(b) Proving that it exists a value U such that the primitive of the integral contributes negligibly for all wave numbers10
m≫ U .

We split Eq. (1) into the sum of three terms:

ξ0(x) =
2B0

π

( ϵ∫
0

cos(mx)sin(ma)

mcosh(mH0)
dm+

U∫
ϵ

cos(mx)sin(ma)

mcosh(mH0)
dm+

∞∫
U

cos(mx)sin(ma)

mcosh(mH0)
dm

)
(2)

with ϵ≪ 1. We consider the first term in Eq. (2) and we use the Taylor expansions to the third order of sin(ma)
m and

cos(mx), respectively. It follows that:15

sin(ma)

m
= a+O(m2)

cos(mx) = 1+O(m2)

(3)

Since limm→0 cosh(mH0) = 1 and cosh(mH0)> 1 ∀m,H0 ∈R:

ϵ∫
0

cos(mx)sin(ma)

mcosh(mH0)
dm≃

ϵ∫
0

(a+O(m2))(1+O(m2))dm= aϵ+O(ϵ3) (4)20

meaning that the singularity at m= 0 is negligible. In particular, the truncation error O(ϵ3) ensures that the first term
in Eq. (2) is upper bounded by ϵ3. We then consider the third term in Eq. (2). We take advantage of the triangular
inequality and of the fact that both sine and cosine are bounded by one in absolute value. Reminding that the hyperbolic
cosine cosh(mH) = emH+e−mH

2 is always greater than one and in particular defined positive ∀m ∈R, the following
considerations can be done:25

1



∣∣∣∣∣
∞∫

U

cos(mx)sin(ma)

mcosh(mH0)
dm

∣∣∣∣∣≤
∞∫

U

∣∣∣∣∣cos(mx)sin(ma)

mcosh(mH0)

∣∣∣∣∣dm≤ (5)

≤
∞∫

U

1

mcosh(mH0)
dm=

∞∫
U

2

m(emH0 + e−mH0)
dm= (6)

=

∞∫
U

2

memH0(1+ e−2mH0)
dm≤ 2

∞∫
U

m−1e−mH0dm (7)

because the term 1+e−2mH0 at the denominator is grater than one ∀m,H0 ∈R. It would be helpful to perform a change
of variables. We will call t=mH0 from which dt= dmH0. Plugging this substitutions into (5), we will obtain:30

2

∞∫
UH0

m−1e−mH0dm= 2

∞∫
UH0

t−1e−tdt

We observe that this integral has the same shape of the gamma function:

Γ(x)|x=0
=

∞∫
0

tx−1e−tdt

Since we are seeking for convergence only in an integral support ranging in [U,∞), we can bound the integral underlying
that for very large t the exponential function e−

t
2 decays much faster than t−1. This is particularly true if t≫ 1, which35

implies that mH0 ≫ 1 ∀m ∈R. Physically speaking, the latter condition refers to wavelengths much smaller than the
depth, i.e. λ0, which is the filtering condition of Kajiura (1963). As a consequence:

2

∞∫
UH0

t−1e−tdt≤ 2

∞∫
UH0

e−te
t
2 dt= 2

∞∫
UH0

e−
t
2 dt

Going back to the integration with respect to the variable m, this is equivalent to:

2

∞∫
U

H0e
−mH0

2 dm= 4

∞∫
U

−H0

2
e−

mH0
2 dm40

Finally, we obtain:

∣∣∣∣∣
∞∫

U

cos(mx)sin(ma)

mcosh(mH0)
dm

∣∣∣∣∣≤ 4

∞∫
U

−H0

2
e−

mH0
2 dm=

[
− 4e−

mH0
2

]∞
U

= 4e−
UH0

2
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which is a finite quantity. Thus, Eq. (1) converges and can be restated as a sum of a proper integral plus an infinitesimal
error that approaches zero as U ≫ 2

H0
. The magnitude of the error depends on the product between the upper bound U

used to truncate the support of integral and the depth value H0 This suggests us that we can define a specific value for U45
depending on the precision we would achieve in performing numerical integration.

Considering U as a wavenumber that defines the upper boundary of the integral support, we can restate Eq. (1) as:

ξ0(x) =
2B0

π

(
aϵ+O(ϵ3)+

U∫
ϵ

cos(mx)sin(ma)

mcosh(mH0)
dm+ o(e−

UH0
2 )

)
(8)

The term o(e−
UH0

2 ) ensures that the third term in Eq. (2) is negligible, as it decreases faster than e−
UH0

2 .

Convergence is guaranteed when ϵ≪ 1 and U ≫ 2
H0

, being H0 the water depth, meaning that wavelengths λ≪ H0

2 do50
not contribute to the tsunami generation model.

S1.1.1 Corner wavenumber for truncation

Figure S1 shows the case where the cell size a, the sea depth H0 and the sea floor deformation B0 are kept constant,
while the upper limit for the integral support varies from U = 0.5

H0
to U = 5

H0
.

For U ≤ 2
H0

, the peak of the truncated numerical solution is half of the reference solution, generally failing to accurately55

reconstruct the reference sea-surface profile. However, increasing the upper limit for the integral support to U > 2
H0

results in a good approximation of the initial sea-surface perturbation, though it introduces highly oscillating tails due to
the limited number of wavenumbers considered. When the upper limit is set to U = 5

H0
, the solution is stable.

S1.2 Optimal quadrature method for numerically solving the integral

Since both sine and cosine cannot be greater than one, equation (8) can be re-stated in a more convenient scaled version:60

ξ0(xp)≃ U
2B0

π

(
aϵ

U
+

1∫
m= ϵ

U

cos(mUxp)sin(mUa)

mU cosh(mUH0)
dm

)
(9)

and solved at each point xp in the LED

le =
(
− 4H0 −

a

2
, 4H0 +

a

2

)
(10)

associated to the cell. In Section 2 of the main text, we set U = 5
H0

and ϵ= 10−9.65

The support of the integral
[
ϵ
U ,1

]
in Eq. (9) is partitioned into a family of sub-intervals:

{[ ϵ
U
,
ϵ

U
+ dm

]
,
[ ϵ
U

+ dm,
ϵ

U
+2dm

]
, . . . ,

[
1− dm,1

]}
(11)

where:

3



0.00

0.05

0.10

0.15

0.20

Se
a 

su
rfa

ce
 [m

] U= 1/H0

Reference Upper limited

U= 1.5/H0

Reference Upper limited

U= 2/H0

Reference Upper limited

x [km]
0.00

0.05

0.10

0.15

0.20
Se

a 
su

rfa
ce

 [m
] U= 2.5/H0

x [km]

U= 3/H0

x [km]

U= 3.5/H0

−10 0 10
x [km]

0.00

0.05

0.10

0.15

0.20

Se
a 

su
rfa

ce
 [m

] U= 4/H0

−10 0 10
x [km]

U= 4.5/H0

−10 0 10
x [km]

U= 5/H0

Figure S1. The cell size is kept constant to a= 30 arc-sec. The sea-depth is H0 = 4 km and the amplitude of the sea bottom deformation is
B0 = 1 for all the cases.

dm=
1− ϵ

U

Nm

70
and Nm is the number of sub-intervals as given by:

Nm =max
[
2wmax,Ns

]
(12)

being

wmax = Umax
(xp

2π
,
a

2π

)
(13)

the maximum frequency of the integrand function.75
An alternative expression for (11) can be:

{[
m1,m2],

[
m2,m3], . . . ,

[
mNm−1,mNm

]}
(14)

S1.2.1 Adapted Gauss-Legendre quadrature (GLQ)

We want to restate Eq. (9) into an integral of the form:
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1∫
−1

f(x)dx≃
n∑

i=1

wif(χi)80

where the points
{
χi

}n
i=0

are the roots of the Legendre polynomial of degree n and
{
wi

}n
i=0

are the associated weights
(Hildebrand, 1956). We employ an adaptive algorithm to numerically solve Eq. (9). The support of the integral is partitioned
into Nm (12) sub-intervals (14). The integral is then computed within each sub-interval setting n= 3. The values of the points
and weights are (Hildebrand, 1956):

χ1 =−
√

3
5 χ2 = 0 χ3 =

√
3
5

w1 =
5
9 w2 =

8
9 w3 =

5
9

85

As the endpoints of the sub-intervals (Eq. 11) do not align with ±1, a change of reference system is necessary, requiring a
restatement of the integrand as follows:

f
(
m

i
2 +m

−i
2 χj ,U,a,xp,H0

)
=

cos
(
m

i
2 +m

−i
2 χjUxp

)
sin
(
m

i
2 +m

−i
2 χjUa

)(
m

i
2 +m

−i
2 χjU cosh

(
m

i
2 +m

−i
2 χjUH0

) (15)

having called:

m
i
2 =

mi +mi+1

2
(16)90

m
−i
2 =

mi+1 −mi

2
(17)

The free surface deformation will be approximated by:

ξ0(xp)≃ U
2B0

π

[
aϵ

U
+

Nm−1∑
i=1

m
−i
2

3∑
j=1

wjf
(
m

i
2 +m

−i
2 χj ,U,a,xp,H0

)]
(18)

for all the points xp in the LED (10).

S1.2.2 Adapted Filon quadrature (FQ)95

Filon’s quadrature is particularly advantageous for finding approximate solutions to highly oscillatory integrals of the form:

∞∫
0

f(x)cos(kx)dx,

∞∫
0

f(x)sin(kx)dx,

∞∫
0

f(x)eiωxdx

Here, f is a sufficiently smooth function that multiplies a sinusoid oscillating at high frequency k ∈R. The method involves
replacing f with an interpolating polynomial, plus a remainder term, which allows for exact integration. Greater details can be
found, for instance, in (Filon, 1930; Iserles, 2004). We would like to rewrite the integral in Eq. (1) as:100

U∫
ϵ

f(m)sin(mx)dm (19)
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Reminding that:

1

2

[
sin(m(a+x))− sin(m(a−x))

]
= cos(ma)sin(mx) (20)

and scaling the support of the integral, Eq. (9) would be:105

ξ0(xp)≃ U
B0

π

1∫
ϵ
U

sin(mU(a+x))

mU cosh(mUH)
dm−U

B0

π

1∫
ϵ
U

sin(mU(a−x))

mU cosh(mUH)

If we consider a discrete integral support as in Eq. (14), we restate the previous equation as:

ξ(xp)≃ U
2B0

π

(
aϵ

U
+

1

2

Nm−1∑
j=1

sin(mj(a+xp))

mjU cosh(mjUH0)
− 1

2

Nm−1∑
j=1

sin(mjU(a−xp))

mjU cosh(mjUH0)

)
(21)

for all the points xp in the LED (10). For the Filon quadrature, we used a subroutine available at the link https://people.sc.
fsu.edu/~jburkardt/m_src/filon/filon.html.110

S1.3 Comparison with Kajiura

We compare the sea surface deformations obtained by the application of a "Kajiura-type" filter with those given by a "Nosov-
type" filter. The latter is evaluated through the Eq. (8), solved by the adapted Gauss-Legendre quadrature detailed in Section
S1.2.1. The former is expressed as:

ξkaj(x) =

+∞∫
−∞

η0(x
′)

cosh(kH0)
dx′ (22)115

Equation (22) tells that the coseismic deformation η0 is smoothed, at each point, by a factor 1
cosh(kH0)

, where k is the
wavenumber and H0 is the water depth, held constant along the segment or area where such deformation is evaluated.

S1.4 Superposition of unit contributions: validation of the linear assumption

Eq. (1), along with its equivalent scaled versions (9), are analytical solutions to the Laplace equation for the scalar potential of
fluid velocity, assuming a flat bottom H0. Under this hypothesis, the Laplace equation is linear and therefore the superposition120
principle holds. We show this through a systematic test, involving the extent of the coseismic deformations used in the main
text (Section 3.1) (a≃ 11 km, 19 km, 26 km), each divided into unit cells of different lengths (15, 30, 60 arc-sec). The sea
depth is assumed to be 1 km, 4 km, and 8 km. The sea surface maximum height resulting from different combinations of these
parameters is compared against the reference solution, obtained by directly applying Eq. (9). The comparison reveal a very
good agreement across all cases, with a minimum error of ∼ 10−4 m and a maximum error of ∼ 10−3 m, as depicted in Fig.125
S4.

S2 Laplacian Smoothing Tool - 1D case

The one dimensional Laplace Smoothing Tool (1D-LST hereafter) takes as input data the sea-bottom deformation and the
sea-depth for a region of interest D. Both the inputs are expressed in geographic coordinates. We denote with λ the latitude
and with ϕ the longitude. The coseismic deformation and the water depth are functions z(ϕ,λ) of the geographic points in the130
grid. The 1D-LST can be summarized in the following two steps.
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Figure S2. The free surface perturbations obtained by applying the standard procedure (which consists in copying the coseismic deformation
at the sea surface), the Kajiura-type filter and the Nosov-type filter are compared, assuming a constant water depth and varying the extent of
the seafloor deformation.

Step 1
Given a starting point (λ0,ϕ0) and end ending point (λ1,ϕ1) in the grid, a 1D transect is extracted for both the sea-depth

and the coseismic deformation. In cartesian coordinates, the initial and ending points of the transect will be given by (x0,y0)
and (x1,y1). Both the sea depth and the seafloor deformation along the transect are discretized into a finite number Nc of cells,135
according to the desired resolution. Once the cell length a is fixed, each cell is resampled into a certain number of points Nx.
Equation (9) is evaluated at each point xp in the cell. The resampled grid step is given by:

dx=
2a

Nx
(23)

The 1D sea depth and seafloor deformation profiles are interpolated in the new domain:

D̃ = 0,dx,2dx, . . . ,
√
(x1 −x0)2 +(y1 − y0)2 (24)140

which consists of a number Nc of cells given by:

Nc =

√
(x1 −x0)2 +(y1 − y0)2

2a
(25)

Practically, Nc is rounded to an integer. Since both the coseismic deformation and the sea-depth are assumed to be constant
within each cell ci, an average value is taken among the Nx interpolated values, resulting in the two sets

{
Bi

0

}Nc

i=1
and

{
Hi

0

}Nc

i=1
.

Step 2145
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Figure S3. The same of Fig S2, but helding constant the extent of the coseismic deformation and varying the water depth.

For each cell ci, Eq. (9) is solved in the associated LED (10) through an adapted Gauss-Legendre formula (18), as detailed
previously in Section S1.2.1. Since the LED is centered in zero, the within-cell sea surface deformation ξi0 is shifted and
interpolated to match the nodes in D̃. The final free surface perturbation ξ0 is given by summing, at each iteration, the within-
cell sea surface deformation ξi0. A pseudo-code for the 1D-LST is provided in the following section.
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Figure S4. The LED (10) associated to a coseismic deformation of about 26 km is partitioned into cells of equal size a∼920 m (∼30 arc-
sec). Sea-bottom deformation and water depth are fixed at B0 = 1 m and H0 =4 km, respectively. The upper panel displays the water height
within each cell, while the lower panel illustrates the comparison between the superposition of unit cells (depicted in red) and the resulting
free-surface perturbation, obtained by directly solving the Eq. (9) across the entire source.

S2.0.1 Pseudo code150
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Algorithm 1 1D-LST
Input: Sea-depth within the domain and amplitude of the coseismic deformation, both provided as a ".xyz" files having as
entries (LON, LAT, ELEVATION)
Output: 1D Filtered free surface deformation in cartesian coordinates

1: ϕ,λ,H← Longitude, Latitude, Sea-depth
2: ϕ,λ,B0← Longitude, Latitude, Amplitude of the seafloor deformation

Ensure: H is positive downward
3: Get a transect of H and B0 starting from a point (ϕ0,λ0) and an ending at (ϕ1,λ1) and convert it to Cartesian coordinates, such that the

first point is (x0,y0) and the last one is (x1,y1)
4: Set a value for a, depending on the resolution required
5: Nx← 5
6: dx← 2a

Nx

7: D̃← 0,dx,2dx, . . . ,
√

(x1−x0)2 +(y1− y0)2

8: Inizialize an array for the final filtered free surface ξ0, obtained by linearly combine unit contributions, having the same dimension of D̃
9: Nc← round(max(Dx)−min(Dx)

2a
)

10: Interpolate both B0 and H in D̃
11: for each cell i do
12: if H[i]> 0 : then
13: Define the LED lie as in Eq. 10
14: Solve the elementary contribution ξi0 in lie through the Adapted Gauss-Legendre (18)
15: xshift← D̃[Nx ∗ i]
16: lie,shifted← lie +xshift to shift the LED, such that its center is not zero

17: inew←Nx ∗ i− round( 4H
ij
0

2dx
)

18: iD←Dx[inew : inew + round( 8H
ij
0 +2∗max(a,b)

dx
)] to find the correct position of the unit contribution in the domain

19: ξiinterp← interpolate each unit solution ξj0 in the real nodes of the grid iD
20: iXmin← inew

21: iXmax← inew + round( 8H
ij
0 +2max(a,b)

dx
)

22: ξ0[iXmin : iXmax]±Bi
0× ξiinterp

23: end if
24: end for
25: Down-sample ξ0 to have the same length of the original transect, by taking the average value over windows of Nx points

S3 The 2D case

S3.1 Adapted Gauss-Legendre quadrature

In two dimensions, the free surface elevation is given by (Nosov and Kolesov, 2011):

ξ(x,y) =
4B0

π2

∞∫
0

dm

∞∫
0

dn
cos(mx)sin(ma)cos(ny)sin(nb)

mncosh(kH0)
(26)

where a is the extension of the coseismic deformation along x̂, b is the width of the coseismic deformation along ŷ, (x,y) is155
a point in the domain and k =

√
m2 +n2. B0 is the amplitude of the residual bottom deformation and H0 is the water depth,

taken as positive downward, both assumed to be constant inside the rectangle with borders a and b.
The methodology adopted is a natural extension of the 1D case proposed in Section 2.1 and consists of an adaptive Gauss-

Legendre quadrature evaluated at four points, considered to be enough for this application.
The equivalent scaled version of Eq. (26) is:160
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ξ0(x,y)≃ U2 4B0

π2

(
abϵ

U2
+O(ϵ4)+

1∫
ϵ
U

1∫
ϵ
U

cos(Umx)sin(Uma)cos(Uny)sin(Unb)

mnU2 cosh(kUH)
dmdn

)
(27)

Given D an ocean basin, we discretize it into a finite number Nx
c x Ny

c of cells
{
cij
}

, with constant length 2a along x̂ and
constant width 2b along ŷ . In each cell cij the sea-floor deformation Bij

0 and water depth Hij
0 are assumed to be constant. In

two dimensions, the LED is defined by a rectangular area surrounding the cell in the Cartesian plane:

pmin =−4Hij
0 −max(

a

2
,
b

2
) (28)165

pmax = 4Hij
0 +max(

a

2
,
b

2
) (29)

lxe = pmin, pmin +∆x, pmin +2∆x, . . . , pmax −∆x, pmax (30)
lye = pmin, pmin +∆y, pmin +2∆y, . . . , pmax −∆y, pmax (31)

where ∆x and ∆y are the spacing between the points along the x̂ and ŷ directions respectively. The number of points in (28)
is:170

Nx =
2a

∆x

Ny =
2b

∆y

11



The number of cells along the two directions is:

Nx
c =

pmax − pmin

2a
(32)

Ny
c =

pmax − pmin

2b
(33)175

Practically, both Nx
c and Ny

c are rounded to integers.
The initial condition given by Eq. (27) is solved numerically at every point (xe,ye) of the LEDs (28) associated to the

respective cell cij .
As done in Section S1.2, the partition of the integral support

[
ϵ
U ,1

]
×
[
ϵ
U ,1

]
should be chosen according to the numerator

g(mU,x,a)h(nU,y,b) of the integrand function, with g(mU,x,a) = cos(mUx)sin(mUa) and h(nU,y,b) = cos(nUy)sin(nUb).180
In two dimension, this can be achieved by independently dividing each of the two supports into a number of points controlled
by the maximum oscillation frequencies wg

max of g and wh
max of h, respectively.

The maximum frequencies are defined as:

wg
max = Umax

(xpx
e

2π
,
a

2π

)
∀px = 1, . . . ,Nx (34)

wh
max = Umax

(ypy
e

2π
,
b

2π

)
∀py = 1, . . . ,Ny (35)185

and the number of sub-intervals for the support
[
ϵ
U ,1

]
×
[
ϵ
U ,1

]
, according to the maximum frequencies, are given by:

Nm =max
[
2wg

max,Ns

]
(36)

Nn =max
[
2wh

max,Ns

]
(37)

for the integration with respect to m, along x̂ and with respect n, along ŷ respectively, for each point (xpx
e ,y

py
e ) in the LED

28. In Eq. (36) Ns = 10 to properly capture the sinusoidal cycles.190
The free surface deformation is numerically approximated by:

ξ0(xp,yp)≃ U
4B0

π2

[
abϵ2

U2
+

Nn−1∑
j=1

Nm−1∑
i=1

n
− 1

2
j m

− 1
2

i

4∑
k=1

wkf
(
n

1
2
j +n

− 1
2

j χx
k,m

1
2
i +m

− 1
2

i χy
k,U,a,b,xp,yp,H0

)]
(38)

for all xp ∈ lx̂e and yp ∈ lŷe , having called:

f(n,m,U,a,b,xp,yp,H0) =
cos(mUxp)sin(mUa)cos(nUyp)sin(nUb)

mnU2 cosh(kUH0)

n
1
2
j =

nj +nj+1

2
j = 1, . . . ,Nn − 1195

n
− 1

2
j =

nj+1 −nj

2
j = 1, . . . ,Nn − 1

m
1
2
i =

mi +mi+1

2
i= 1, . . . ,Nm − 1

m
− 1

2
i =

mi+1 −mi

2
i= 1, . . . ,Nm − 1
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The points χk and weights wk for the quadrature rule are given by:

χx
k =

[
−1√
3
,
−1√
3
,
1√
3
,
1√
3

]
200

χy
k =

[
−1√
3
,
1√
3
,
−1√
3
,
1√
3

]
wk = [1,1,1,1]

S3.2 Physical Interpretation: 2D unit sources with varying parameters

In Fig. S5, we present the 2D unit sea surface height described in the main text (Section 3.1). We first held constant the water
depth at 4 km and let the cell size vary. Specifically, the length of the cell a is assumed 15 arc-sec, 30 arc-sec, 60 arc-sec, 11205
km, 19 km, and 26 km, and the width b= a

2 . Finally, we consider a fixed cell size of a≃ 11 km and a varying depth of 1 km,
4 km, and 8 km.

S3.3 Laplacian Smoothing Tool - 2D case

The LST (Laplacian Smoothing Tool) in two dimensions (hereafter denoted as 2D-LST) consists of three steps, each of them
discussed in the following.210

Step 1
The input data consists of the sea-depth, provided in geographic coordinates at a certain resolution. A change of reference

system is executed, transitioning from geographic to UTM. The sea-depth is discretized into a finite number of cells Nx
c ×Ny

c .
To keep unchanged the resolution at which the sea-depth is originally given, we set as a

2 , the size of the cell along x̂, and b
2 ,

the size of the cell along ŷ, equal to the mean differences between the nodes of the grid in the two respective directions. Each215
cell is resampled into a certain number of points Nx ×Ny . The resampled grid step is given along the two directions of the
cartesian plane by:

dx=
2a

Nx
(39)

dy =
2b

Nx
(40)

The domain D where the sea surface perturbation is evaluated has components:220

Dx = x0,dx,2dx, . . . ,xN (41)
Dy = y0,dy,2dy, . . . ,yM (42)

where Nx
c and Ny

c are the number of cells in the two directions, given by:

Nx
c =

xN −x0

2a
(43)

Ny
c =

yM −x0

2b
(44)225

Practically, both Nx
c and Ny

c are rounded to integer numbers.
Step 2

13



Figure S5. 2D shapes as model parameters change. The first six graphs, in which only the cell dimensions are shown in each title, are
obtained by keeping the water depth constant. The last three graphs share the same cell dimensions and consider a varying water depth
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Equation (27) is solved within the LED associated to each cell, scaled by the respective sea-floor deformation. The integration
is performed according to the adapted Gauss-Legendre quadrature detailed in Section (S3.1). This approach enables the creation
of a database for the region of interest at a specific resolution, facilitating reuse across various applications. Although the230
proposed numerical scheme for integral solving is highly efficient, addressing high resolutions and extensive domains can lead
to time-consuming operations when solving the integral within each cell. To enhance computational speed, each cell can be
independently solved by exploiting the High-Performance Computing (HPC) resources.

Step 3
Final results can be merged and combined to obtain the final filtered free-surface deformation. For each cell, we retrieve the235

result obtained from integration in its LED and re-scale it according to the value of the residual seafloor deformation. Similarly
to the 1D case (see Section 3), since the LEDs are centered in zero, the within-cell sea surface deformation ξij0 associated
to each cell cij is shifted and interpolated to match the nodes in Dx and Dy . The final free surface perturbation ξ0 is given
by summing, at each iteration, the within-cell sea surface deformation ξij0 . A pseudo-code for the 2D-LST is provided in the
following section.240
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S3.3.1 Pseudo code

Algorithm 2 Step 1
Input: Sea depth within the domain, provided as a ".xyz" file having as entries (LON, LAT, ELEVATION)
Output: Cartesian Coordinates, grid for the filtered free-surface deformation and number of cells

1: ϕ,λ,H← Longitude, Latitude, Sea-depth
Ensure: H is positive downward

2: x,y← convertToUTM(λ,ϕ)
3: a is set as half the average spacing between values in x
4: b is set as half the average spacing between values in y
5: The number of points to resample each cell is N = 5
6: dx← 2a

N

7: dy← 2b
N

8: Dx←min(x),min(x)+ dx,min(x)+ 2dx, . . . ,max(x)
9: Dy←min(y),min(y)+ dy,min(y)+ 2dy, . . . ,max(y)

10: Nx
c ← round(max(Dx)−min(Dx)

2a
)

11: Ny
c ← round(

max(Dy)−min(Dy)

2b
)

Algorithm 3 Step 2
Input: Sea depth within the domain, outputs from Step 1, indices i, j denoting which cell we are referring to
Output: Local database of unit sources in Cartesian Coordinates, constructed through a job-array in a cluster

B0← 1
2: if H[i, j]> 0 : then

Define the LED lxe along x̂
4: Define the LED lye along ŷ

Evaluate the elementary contribution for the ξij0 using the GLQ (adapted Gauss-Legendre Quadrature) scheme
6: Save lxe , l

y
e , ξ

ij
0 in a netCDF file "cell_i_j.nc"

end if
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Algorithm 4 Step 3
Input: Amplitude of the coseismic deformation B0, Sea-depth within the domain, outputs from Step 1, path to the local
database (pathToDir)
Output: Filtered free surface ξ0 in the original Geographic coordinates

Upload B0,Dx,Dy,a,b,dx,dy,N
x
c ,N

y
c ,N

Inizialize an array ξ0 having dimensions (len(Dx), len(Dy)), which represents the final free-surface
3: for all the files "cell_i_j.nc" in pathToDir do

Retrieve lxe , l
y
e , ξ

ij
0

xshift,yshift←Dx[N ∗ i],Dy[N ∗ j]
6: lxe,shifted← lxe +xshift

lye,shifted← lye + yshift

inew←N ∗ i− round( 4H
ij
0

2dx
)

9: jnew←N ∗ j− round( 4H
ij
0

2dy
)

iD←Dx[inew : inew + round( 8H
ij
0 +2∗max(a,b)

dx
)]

jD←Dy[jnew : jnew + round( 8H
ij
0 +2∗max(a,b)

dy
)]

12: ξijinterp← interpolate each unit solution ξij0 in the real nodes of the grid iD, jD
iXmin← inew

iXmax← inew + round( 8H
ij
0 +2max(a,b)

dx
)+Nx

15: iXmax← inew + round( 8H
ij
0 +2max(a,b)

dx
)+Nx

iYmax← jnew + round( 8H
ij
0 +2max(a,b)

dx
)+Ny

ξ0[iXmin : iXmax, iYmin : iYmax]±Bij
0 ∗ ξ

ij
interp

18: end for
Down-sample ξ0 to match the dimensions of the original domain D, by taking the average value over blocks of (N,N) points

S3.4 Test on real cases

S3.5 Relative percentage differences

We show the spatial distribution of Relative Percentage Differences (RPD) between the unfiltered and filtered initial conditions
for all models described in the main text (Section 4.1). The RPD is defined by:245

RPD = 100×

∣∣∣∣∣ξLST
0 − ξunf0

ξunf0

∣∣∣∣∣ (45)

where ξLST
0 is the initial free surface obtained through LST and ξunf0 is the unfiltered free surface deformation, obtained by

copying the coseismic deformation at the free surface. Figure S6 depicts the results for the megathrust event occurred in late
2006. Figures S7 and S8 show the case of the 2007 outer-rise, considering the northwest-dipping and the southeast-dipping
source models, respectively.250

S3.6 Comparison between 2D-LST and Kajiura-type filter

As a term of comparison with the algorithm presented in this study, a Kajiura-type filter is applied to the resulting deformations,
assuming a constant basin sea-depth of 2.5 km for the 2006 megathrust and of 7 km for the outer-rise, respectively. These values
are approximately the averaged sea-depths along the area deformed by the shocks. The results for the 2006 event are illustrated
in Fig. S9. Figure S10 shows the 1D profiles along the transect AB depicted Fig. S9a for all the nine models. For the 2007255
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Figure S6. Results for the tsunamigenic earthquake occurred on November 15, 2006. The first column depicts the sea-surface distribution
arising from a vertical bottom movement. The last two columns present the results obtained with the contribution of the horizontal bottom
displacement according to Model A and Model B in Tanioka and Seno (2001). Panel (a) depicts the transect AB where 1D profiles for all the
six models have been considered. Panels (g), (h) and (i) show how the RPD defined in Eq. (45) between the unfiltered and the filtered (LST)
initial conditions are spatially distributed.

event, the outcomes for the northwest dipping fault plane are depicted in Fig. S11 and in Fig. S12. Findings for the southeast
dipping fault plane are presented in Fig. S13 and in Fig. S14.
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Figure S7. Results for the tsunamigenic earthquake occurred on January 13, 2007. The fault plane is northwest dipping. Panel (a) depicts the
transect AB where 1D profiles for all models have been considered. Panels (e) and (f) show how the RPD defined in Eq. (45) between the
unfiltered and the filtered (LST) initial conditions are spatially distributed.
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Figure S8. Results for the tsunamigenic earthquake occurred on January 13, 2007. The fault plane is southeast dipping. Panel (a) depicts the
transect AB where 1D profiles for all models have been considered. Panels (e) and (f) show how the RPD defined in Eq. (45) between the
unfiltered and the filtered (LST) initial conditions are spatially distributed.

S3.6.1 Comparison between 1D-LST and 2D-LST

We apply both the 1D-LST (Section S2) and 2D-LST (Section S3.3) to each of the models detailed in the Main Text (Section
4) and compare the results along three transects. Figures S15, S16 and S17 showcase the results for the 2006 megathrust event.260
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Figure S9. Results for the tsunamigenic earthquake occurred on November 15, 2006. The first column depicts the sea-surface distribution
arising from a vertical bottom movement. The last two columns present the results obtained with the contribution of the horizontal bottom
displacement according to Model A and Model B in Tanioka and Seno (2001). Panel (a) depicts the transect AB where 1D profiles for all the
six models have been considered. Panels (g), (h) and (i) show how the simple differences between the initial conditions filtered with Kajiura
and LST are spatially distributed.

Figures S18 and S19 depict the case of the 2007 outer-rise, considering a northwest oriented source. Figures S20 and S21 refer
to the southeast-dipping model for the same event. In all the figures the unfiltered free-surface deformation is also plotted.
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Figure S10. The transect AB under consideration is depicted in Fig. S9a. The upper panel illustrates the bathymetric profile. In (a), the
profiles are derived from the initial conditions shown in Fig. S9 (a, d, g), taking into account only the vertical component. In (b), the profiles
are obtained from the initial conditions in Fig. S9 (d, e, h), incorporating the influence of the horizontal component through Model A. Lastly,
in (c), the profiles are extracted from the initial conditions in Fig. S9 (c, f, i), considering the effect of the horizontal component through
Model B.
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Figure S11. Results for the tsunamigenic earthquake occurred on January 13, 2007. The fault plane is northwest dipping. Panel (a) depicts the
transect AB where 1D profiles for all models have been considered. Panels (e) and (f) show the spatial distributions of the simple differences
between the initial conditions obtained by the application of the Kajiura-type filter and LST.
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Figure S12. The picture refers to the 2007 event in case of a source oriented to the northwest. The transect AB considered is the one depicted
in Fig. S11a. The upper panel illustrates the bathymetric profile along it. (a) The profiles are taken from the initial conditions in Figure S11
(a, c, e), considering only the vertical component. (b) The profiles are taken from the initial conditions in Figure S11 (b, d, f), considering
the effect of the horizontal component through Model A.
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Figure S13. Results for the tsunamigenic earthquake occurred on January 13, 2007. The fault plane is southeast dipping. Panel (a) depicts the
transect AB where 1D profiles for all models have been considered. Panels (e) and (f) show the spatial distributions of the simple differences
between the initial conditions obtained by the application of the Kajiura-type filter and LST.
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Figure S14. The picture refers the 2007 event in case of a source oriented to the southeast. The transect considered is the one depicted in
Fig. S13a. Similarly to the Fig. S12, The upper panel illustrates the bathymetric profile along it. (a) The profiles are taken from the initial
conditions in Figure S11 (a, c, e), considering only the vertical component. (b) The profiles are taken from the initial conditions in Figure
S11 (b, d, f), considering the effect of the horizontal component through Model A.
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(a) Transects along the sea-surface height distribution resulting
from the vertical component of the coseismic deformation, for the
megathrust occurred in late 2006 (Central Kuril Islands).

(b) Comparison of the su-
perpositions in 1D and in
2D along the profile A-B.

(c) Comparison of the su-
perpositions in 1D and in
2D along the profile C-D.

(d) Comparison of the su-
perpositions in 1D and in
2D along the profile E-F.

Figure S15. Results for the 2006 event, considering a coseismic deformation resulting from the vertical component.
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(a) Transects along the sea-surface height distribution resulting
from Model A, for the megathrust occurred in late 2006 (Central
Kuril Islands).

(b) Comparison of the su-
perpositions in 1D and in
2D along the profile A-B.

(c) Comparison of the su-
perpositions in 1D and in
2D along the profile C-D.

(d) Comparison of the su-
perpositions in 1D and in
2D along the profile E-F.

Figure S16. Results for the 2006 event, when accounting for Model A.
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(a) Transects along the sea-surface height distribution resulting
from Model B, for the megathrust occurred in late 2006 (Central
Kuril Islands).

(b) Comparison of the su-
perpositions in 1D and in
2D along the profile A-B.

(c) Comparison of the su-
perpositions in 1D and in
2D along the profile C-D.

(d) Comparison of the su-
perpositions in 1D and in
2D along the profile E-F.

Figure S17. Results for the 2006 event, when accounting for Model B.
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(a) Transects along the sea-surface height distribution resulting
from the vertical component of the coseismic deformation, for the
outer-rise occurred in early 2007, with north-west dipping (Cen-
tral Kuril Islands).

(b) Comparison of the su-
perpositions in 1D and in
2D along the profile A-B.

(c) Comparison of the su-
perpositions in 1D and in
2D along the profile C-D.

(d) Comparison of the su-
perpositions in 1D and in
2D along the profile E-F.

Figure S18. Results for the 2007 event, considering a coseismic deformation resulting from the vertical component. The source is oriented
northwest (NW).
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(a) Transects along the sea-surface height distribution resulting
from Model A, for the outer-rise occurred in early 2007, with
north-west dipping (Central Kuril Islands).

(b) Comparison of the su-
perpositions in 1D and in
2D along the profile A-B.

(c) Comparison of the su-
perpositions in 1D and in
2D along the profile C-D.

(d) Comparison of the su-
perpositions in 1D and in
2D along the profile E-F.

Figure S19. Results for the 2007 event, when accounting for Model A. The source is oriented northwest (NW).
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(a) Transects along the sea-surface height distribution resulting
from the vertical component of the coseismic deformation, for the
outer-rise occurred in early 2007, with south-east dipping (Central
Kuril Islands).

(b) Comparison of the su-
perpositions in 1D and in
2D along the profile A-B.

(c) Comparison of the su-
perpositions in 1D and in
2D along the profile C-D.

(d) Comparison of the su-
perpositions in 1D and in
2D along the profile E-F.

Figure S20. Results for the 2007 event, considering a coseismic deformation resulting from the vertical component. The source is oriented
southeast (SE).
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(a) Transects along the sea-surface height distribution resulting
from Model A, for the outer-rise occurred in early 2007, with
south-east dipping (Central Kuril Islands).

(b) Comparison of the su-
perpositions in 1D and in
2D along the profile A-B.

(c) Comparison of the su-
perpositions in 1D and in
2D along the profile C-D.

(d) Comparison of the su-
perpositions in 1D and in
2D along the profile E-F.

Figure S21. Results for the 2007 event, when accounting for Model A. The source is oriented southeast (SE).
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