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Abstract

In this work we develop the Gaussian quadrature rule for weight func-
tions involving fractional powers, exponentials and Bessel functions of the
first kind. Besides the computation based on the use of the standard and
the modified Chebyshev algorithm, here we present a very stable algo-
rithm based on the preconditioning of the moment matrix. Numerical
experiments are provided and a geophysical application is considered.
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1 Introduction

This work deals with the construction of Gaussian quadrature rule for the com-
putation of integrals of the type

Iν,α,c(f) =

∫ ∞
0

f(x)xαe−cxJν(x)dx, (1)

where Jν is the Bessel function of the first kind of order ν ≥ 0, α > −1, c > 0
and f is a smooth function. Since for the Bessel functions it holds |Jν(x)| ≤ 1,
for ν ≥ 0, x ∈ R (see [1, p.362]), we consider weight functions of the type

wν,α,c(x) = xαe−cx[Jν(x) + 1] on [0,+∞). (2)

Then, we rewrite (1) as
IJν,α,c(f)− ILα,c(f),

where

IJν,α,c(f) =

∫ ∞
0

f(x)xαe−cx[Jν(x) + 1]dx, (3)

and

ILα,c(f) =

∫ ∞
0

f(x)xαe−cxdx. (4)
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We notice that the integral (4) can be accurately computed using a slight mod-
ification of the Gauss-Laguerre quadrature rule. In this setting, our aim is to
construct a Gaussian rule with respect to the function wν,α,c. Since we do not
know the explicit expression of the corresponding monic orthogonal polynomi-
als, that we denote by πk, k ≥ 0, we need to employ a numerical scheme to
derive the coefficients of the three-term recursion

πk+1(x) = (x− αk)πk(x)− βkπk−1(x), k ≥ 0,

π−1(x) = 0, π0(x) = 1,

with βk > 0. This can be done by computing the associated moments

µν,α,ck =

∫ ∞
0

xkwν,α,c(x)dx, k ≥ 0, (5)

and then using the Chebyshev algorithm (see [7, sect.2.3]). These coefficients
define the tridiagonal symmetric Jacobi matrix, whose eigenvalue decomposi-
tion provides abscissas and weights of the quadrature rule. This final step is
efficiently implemented by the famous Golub and Welsh algorithm [12]. Some
alternatives to this algorithm have been later developed and we refer to [15] for
a general discussion and a rich bibliography. Nevertheless, it is well known (see
e.g. [9]) that the computation of the recurrence coefficients can be inaccurate
for growing k because the problem is severely ill conditioned when starting from
the power moments (5). The ill conditioning can be partially overcome by using
the modified moments, having at disposal a family of polynomials orthogonal
with respect to a weight function similar to the one of the problem. This ap-
proach may be efficient in general but not always when working with unbounded
intervals of integration (see [8] and [9]). The idea of using modified moments
was introduced by Sack and Donovan in [16], who developed an algorithm simi-
lar to the so called modified Chebyshev algorithm, advanced by Gautschi in [7,
sect.2.4]. The same algorithm was independently obtained by Wheeler in [21].

In this work we present an alternative approach that is based on the precon-
ditioning of the moment matrix. In particular, since the three-term recurrence
coefficients can be written in terms of ratios of determinants of the moment
matrix or slight modifications of them (see [3, sect.2.7]), we exploit the Cramer
rule to show that the coefficients can be computed by solving a linear system
with the moment matrix. Since the weight function (2) can be interpreted as
a perturbation of the weight function of the generalized Laguerre polynomials,
we use the moment matrix of these polynomials as preconditioner. The nu-
merical experiments show that this technique is always (independently of the
parameters ν, α, c) much more stable than the modified Chebyshev algorithm.

As an application we use the developed Gaussian quadrature to evaluate
integrals of the type (1) arising in geophysical electromagnetic (EM) survey. In
particular, we consider the electromagnetic fields over a layered earth due to
magnetic dipoles above the surface (see [19]). In this framework, f is a smooth
function, ν = 0, 1, α = 0 and 0 < c < 1.
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The paper is organized as follows. In Section 2 we derive a recursive relation
for the practical evaluation of the power moments. In Section 3 we show the
necessary details for the construction of the Gaussian rule for (1) by using
the Chebyshev algorithm. In Section 4 we employ the modified Chebyshev
algorithm working with the modified moments generated by the generalized
Laguerre polynomials. In Section 5 we present the alternative approach based on
the preconditioning of the moment matrix, using again the generalized Laguerre
polynomials. Finally, in Section 6 we apply the method for the computation of
EM fields.

2 Computation of the moments

In order to compute the moments

µk = µν,α,ck =

∫ ∞
0

xk+αe−cx[Jν(x) + 1]dx, k ≥ 0, (6)

we first derive a recursive relation for the so called core moments, defined as

µk,0 = µν,α,ck,0 =

∫ ∞
0

xk+αe−cxJν(x)dx, k ≥ 0. (7)

Proposition 1 For k ≥ 0 it holds

µk,0 =
1

(
√
c2 + 1)k+α+1

Γ(k + α+ ν + 1)P−νk+α

(
c√

c2 + 1

)
, (8)

where Γ is the Gamma function and P−νk+α is the associated Legendre function
(see e.g. [1, ch.8]) of order −ν and degree k + α.

Proof. We start from the general relation [5, p.713]∫ ∞
0

e−t cos θJν(t sin θ)tk+αdt = Γ(k + α+ ν + 1)P−νk+α(cos θ),

which holds for each k ≥ 0 whenever α > −1, ν ≥ 0. By the change of variable
s = t sin θ, we have that∫ ∞

0

e−s
cos θ
sin θ Jν(s)sk+αds = sink+α+1(θ)Γ(k + α+ ν + 1)P−νk+α(cos θ).

Setting θ = arctan
(
1
c

)
, 0 < θ < π

2 , so that c = cos θ
sin θ , and using the relations

sin(arctanx) =
x√

1 + x2
, cos(arctanx) =

1√
1 + x2

,

we obtain the result.
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Proposition 2 The following three-term recursion holds

µk+1,0 =
1

c2 + 1
{c [2(k + α) + 1]µk,0 − [(k + α)2 − ν2]µk−1,0}, k ≥ 1, (9)

with

µ0,0 =
Γ(α+ ν + 1)

(
√
c2 + 1)α+1Γ(ν + 1)

(
c+
√
c2 + 1√

c2 + 1− c

)− ν2
×

2F1

(
−α, α+ 1; 1 + ν;

√
c2 + 1− c
2
√
c2 + 1

)
, (10)

µ1,0 =
Γ(α+ ν + 2)

(
√
c2 + 1)α+2Γ(ν + 1)

(
c+
√
c2 + 1√

c2 + 1− c

)− ν2
×

2F1

(
−α− 1, α+ 2; 1 + ν;

√
c2 + 1− c
2
√
c2 + 1

)
, (11)

where 2F1 is the hypergeometric function.

Proof. From equation (8) and using the following three-term recursive relation
for the associated Legendre functions ([1, p.334])

(k + α+ ν + 1)P−νk+α+1(z) = (2k + 2α+ 1)zP−νk+α(z)− (k + α− ν)P−νk+α−1(z),

we can write

µk+1,0 =
1

(
√
c2 + 1)k+α+2

Γ(k + α+ ν + 2)P−νk+α+1

(
c√

c2 + 1

)
=

Γ(k + α+ ν + 2)

(
√
c2 + 1)k+α+2

[
2(k + α) + 1

k + α+ ν + 1

c√
c2 + 1

P−νk+α

(
c√

c2 + 1

)

− k + α− ν
k + α+ ν + 1

P−νk+α−1

(
c√

c2 + 1

)]
. (12)

Rearranging (12) and using again (8) for µk,0 and µk−1,0, we obtain the relation
(9). Equations (10) and (11) follow directly from (8) with k = 0 and k = 1,
respectively, and from the relation [5, p.999]

P−νk+α(x) =
1

Γ(ν + 1)

(
1 + x

1− x

)− ν2
2F1

(
−k − α, k + α+ 1; 1 + ν;

1− x
2

)
,

for x ∈ (0, 1).
Finally, we can derive a recursive relation for the moments.
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Proposition 3 For k ≥ 1 it holds

µk+1 =
1

c2 + 1

{
c [2(k + α) + 1]µk −

[
(k + α)2 − ν2

]
µk−1

+
Γ(k + α)[(k + α)2 + (k + α)− c2ν2]

ck+α+2

}
, (13)

with

µ0 = µ0,0 +
Γ(α+ 1)

cα+1
, µ1 = µ1,0 +

Γ(α+ 2)

cα+2
.

Proof. By definition (6), the moments µk are given by

µk =

∫ ∞
0

xk+αe−cxJν(x)dx+

∫ ∞
0

xk+αe−cxdx

= µk,0 +
Γ(k + α+ 1)

ck+α+1
,

where we have used [5, sect.3.381, n.4]. Therefore, from relation (9) for k ≥ 1,
we can write

µk+1 = µk+1,0 +
Γ(k + α+ 2)

ck+α+2

=
c[2(k + α) + 1]

c2 + 1

(
µk −

Γ(k + α+ 1)

ck+α+1

)
− (k + α)2 − ν2

c2 + 1

(
µk−1 −

Γ(k + α)

ck

)
+

Γ(k + α+ 1)

ck+α+1
.

After some simple manipulations, we obtain the result.

3 Computing the three-term recursion

One of the most used method for the computation of the coefficients αk and βk
of the recurrence relation

πk+1(x) = (x− αk)πk(x)− βkπk−1(x), k ≥ 0 (14)

π−1(x) = 0, π0(x) = 1,

with βk > 0, is the Chebyshev algorithm (see [7, sect.2.3] and [9]).
Given the first 2nmoments µ0, . . . , µ2n−1, the algorithm uniquely determines

the first n recurrence coefficients αk and βk, k = 0, . . . , n−1, by using the mixed
moments

σkl =

∫ ∞
0

πk(x)xlwν,α,c(x)dx, k, l ≥ −1.

The Chebyshev algorithm is summarized in Algorithm 1.
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Algorithm 1 Initialization

α0 =
µ1

µ0
, β0 = µ0,

σ−1,l = 0, l = 1, 2, . . . , 2n− 2,

σ0,l = µl, 0, 1, . . . , 2n− 1,

for k = 1, 2, . . . , n− 1

for l = k, k + 1, . . . , 2n− k − 1

σk,l = σk−1,l+1 − αk−1σk−1,l − βk−1σk−2,l,

αk =
σk,k+1

σk,k
− σk−1,k
σk−1,l−1

, βk =
σk,k

σk−1,k−1
.

The corresponding Jacobi matrix

J =



α0

√
β1 0√

β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn−1

0
√
βn−1 αn−1

 ∈ Rn×n,

contains the coefficients of the three term recurrence relation for the orthonormal
polynomials, that is,√

βk+1π̃k+1(x) = (x− αk)π̃k(x)−
√
βkπ̃k−1(x), k ≥ 0,

π̃−1(x) = 0, π̃0(x) =
1√
β0
.

It is well known that the eigendecomposition of the matrix J provides the nodes
xi and the weights wi, i = 1, . . . , n of the n-point Gaussian rule (see e.g. [3,
sect.2.7], and the reference therein).

Finally, for the computation of (1), we use the approximation

IJν,α,c(f) ≈ IJn (f) =

n∑
i=1

wif(xi),

for the integral (3). Then, denoting by tLi , wLi respectively the nodes and
the weights of the Gauss-Laguerre rule with respect to the weight function
wα(t) = tαe−t, α > −1, the integral (4) is approximated by

ILα,c(f) =
1

cα+1

∫ ∞
0

f

(
t

c

)
tαe−tdt

≈ ILn (f) =
1

cα+1

n∑
i=1

wLi f

(
tLi
c

)
.
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Finally, we thus have
Iν,α,c(f) ≈ IJn (f)− ILn (f). (15)

Below we present the results of the numerical experiments carried out in
Matlab. In particular, the Matlab routine that implements the Chebyshev al-
gorithm is taken from [11]. Since for integrals involving Bessel functions, expo-
nentials and powers the exact solution is known, in our simulations we choose
f(x) = e−0.5x. In Figure 1 we consider two examples, for different values of
the parameters ν, α and c, and plot the absolute error between the approxima-
tion obtained with the developed Gaussian rule and the exact solution (see [5,
sect.6.624, n.6] and [5, sect.8.704]) given by

Iν,α,d(f) =
Γ(d+ ν + 1)

(
√
c2 + 1)d+1Γ(ν + 1)

(√
c2 + 1 + c√
c2 + 1− c

)− ν2
×

2F1

(
−d, d+ 1; 1 + ν;

1

2
− c

2
√
c2 + 1

)
,

where d = c+ 0.5.
Moreover, since for the truncation error it holds (see [3, sect.4.4])

En(f) = Iν,α,c(f)− (IJn (f)− ILn (f))

= (IJν,α,c(f)− IJn (f))− (ILα,c(f))− ILn (f))

=
f (2n)(ηJ)

(2n)!(kJn)2
− f (2n)(ηL)

(2n)!(kLn )2
, ηJ , ηL ∈ (0,∞),

where kJn and kLn are the leading coefficients of the corresponding orthonormal
polynomials of degree n, in Figure 1 we also provide the plot of the upper bound
of En(f) given by

|En(f)| ≤ ‖f
(2n)‖∞
(2n)!

(
1

(kJn)2
+

1

(kLn )2

)
. (16)

The coefficients kJn are numerically evaluated by using the relation (see [3,
sect.2.7])

kJn =
1∏n

j=0

√
βj
,

while for kLn we employ the known explicit formulation

kLn =
1√

n!Γ(n+ α+ 1)
.

4 The modified Chebyshev algorithm

The picture on the right of Figure 1 shows the stability problem when working
with the power moments µk. Indeed the Chebyshev algorithm typically starts
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Figure 1: Error behavior of (15) and error bound (16) with respect to n for
ν = 1, α = −0.5, c = 1 on the left and for ν = 0.5, α = 0.5, c = 0.2 on the
right. In both cases f(x) = e−0.5x.

to produce negative values of βk for k around 20 or even before. This behavior
is rather common and has been observed by many authors in the past ([9], [12],
[21]). As already mentioned, the problem is that the coefficients αk and βk are
extremely sensitive to small changes in the moments. In fact, the nonlinear map

Kn : R2n → R2n

µ 7→ ρ

which maps the moment vector µ = [µ0, µ1, . . . , µ2n−1]T to the vector ρ =
[α0, . . . , αn−1, β0, . . . , βn−1]T of recursion coefficients becomes extremely ill con-
ditioned as n increases (see [9] for the complete analysis).

In order to overcome this difficulty, the modified Chebyshev algorithm (see
[7, sect.2.4]) can be employed. It is based on the use of the modified moments

mk = mν,α,c
k =

∫ ∞
0

pk(x)wν,α,c(x)dx, k ≥ 0, (17)

and on the mixed moments

σ̃kl =

∫ ∞
0

πk(x)pl(x)wν,α,c(x)dx, k, l ≥ −1,

where {pk}k≥0 is a given system of orthogonal polynomials, chosen to be close
to the desired polynomials {πk}k≥0, which satisfies the three-term recurrence
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relation
pk+1(x) = (x− ak)pk(x)− bkpk−1(x), k ≥ 0

p−1(x) = 0, p0(x) = 1,

with coefficients ak ∈ R, bk ≥ 0 that are known.
In our case, since the weight function can be interpreted as a perturbation of

the weight function relative to the generalized Laguerre polynomials {Lαk}k≥0,
we choose as {pk}k≥0 the system {Lα,ck }k≥0 of the monic polynomials

Lα,ck (x) =
1

ck
L̃αk (cx), (18)

where L̃αk (t) = (−1)kk!Lαk (t) is the monic generalized Laguerre polynomial of
degree k. This system satisfies the relation

L̃αk+1(t) = (t−Ak) L̃αk (t)−BkL̃αk−1(t),

with
Ak = 2k + α+ 1, Bk = k(k + α) k ≥ 1. (19)

Proposition 4 The monic polynomials {Lα,ck }k≥0 defined by (18) are orthogo-
nal with respect to the weight function xαe−cx and satisfy the three-term recur-
rence relation

Lα,ck+1(x) =

(
x− Ak

c

)
Lα,ck (x)− Bk

c2
Lα,ck−1(x), (20)

in which Ak and Bk are defined in (19).

Proof. The orthogonality follows from the change of variable cx = t, that leads
to∫ ∞

0

Lα,ck (x)Lα,cl (x)xαe−cxdx =
1

ck+l
(−1)k+lk!l!

∫ ∞
0

Lαk (cx)Lαl (cx)xαe−cxdx

=
(−1)k+lk!l!

ck+l+1−α

∫ ∞
0

Lαk (t)Lαl (t)tαe−tdt.

Now, from the recursive relation for the monic generalized Laguerre polynomials
{L̃αk}k≥0

L̃αk+1(cx) = (cx−Ak)L̃αk (cx)−BkL̃αk−1(cx), (21)

by (18) we obtain

ck+1Lα,ck+1(x) = c

(
x− Ak

c

)
ckLα,ck (x)−Bkck−1Lα,ck−1(x),

and then (20).
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Using the polynomials {Lα,ck }k≥0, the modified moments (see 17) can be
written as

mk =

∫ ∞
0

Lα,ck (x)xαe−cxJν(x)dx+

∫ ∞
0

Lα,ck (x)xαe−cxdx.

Clearly, by orthogonality, the second integral is zero for k ≥ 1. Hence, for
k ≥ 1, by (18) and the following explicit expression for the generalized Laguerre
polynomials (see [1, p.775])

Lαk (x) =

k∑
j=0

(−1)j
(
k + α

k − j

)
1

j!
xj ,

we have that

mk =

∫ ∞
0

Lα,ck (x)xαe−cxJν(x)dx

=
(−1)kk!

ck

∫ ∞
0

Lαk (cx)xαe−cxJν(x)dx

=
(−1)kk!

ck

k∑
j=0

(−1)j
(
k + α

k − j

)
1

j!
cj
∫ ∞
0

xα+je−cxJν(x)dx

=
(−1)kk!

ck

k∑
j=0

(−1)j
(
k + α

k − j

)
1

j!
cjµj,0, (22)

where the last equality comes from (7). Finally, for k = 0 we obtain

m0 = µ0,0 +
Γ(α+ 1)

cα+1
,

by [5, sect.3.381, n.4].
Using the modified moments, we can employ the Chebyshev algorithm, sum-

marized in Algorithm 2. We remark that the case ak = bk = 0 yields pk(x) = xk,
and Algorithm 2 reduces to Algorithm 1.

Algorithm 2 Initialization

α0 = a0 +
m1

m0
, β0 = m0,

σ−1,l = 0, l = 1, 2, . . . , 2n− 2,

σ0,l = ml, 0, 1, . . . , 2n− 1,

for k = 1, 2, . . . , n− 1

for l = k, k + 1, . . . , 2n− k − 1

σk,l = σk−1,l+1 − (αk−1 − al)σk−1,l − βk−1σk−2,l + blσk−1,l−1,

αk = ak +
σk,k+1

σk,k
− σk−1,k
σk−1,l−1

, βk =
σk,k

σk−1,k−1
.
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Figure 2: Error behavior with respect to n for ν = 0.5, α = 0.5, c = 0.2 on the
left and for ν = 1, α = 0.5, c = 0.7 on the right. In both cases f(x) = e−0.5x.

In Figure 2 we compare the results of Algorithm 1 and 2. We provide
only two representative examples that, nevertheless, are sufficient to say that
Algorithm 2 in general allows to gain stability for further 5÷ 10 iterations but
in many cases there is no effective improvement.

5 A preconditioned Cramer based approach

Let

Mk =


µ0 µ1 · · · µk−1
µ1 µ2 · · · µk
...

...
...

µk−1 µk · · · µ2k−2

 ∈ Rk×k,

be the moment matrix, and

Nk =


µ0 µ1 · · · µk−2 µk
µ1 µ2 · · · µk−1 µk+1

...
...

...
...

µk−1 µk · · · µ2k−3 µ2k−1

 ∈ Rk×k.

It is known (see [3], [18]) that the recurrence coefficients in (14) can also be
written as

αk =
Fk+1

Dk+1
− Fk
Dk

, βk =
Dk−1Dk+1

D2
k

k ≥ 0, (23)
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where

Dk = det(Mk), for k ≥ 1,

Fk = det(Nk), for k ≥ 2,

and

D0 = D−1 = 1,

F0 = 0, F1 = µ1.

Consider the linear system

Mk+1x
(k+1) = ek+1, (24)

where ek+1 = (0, . . . , 0, 1)T ∈ Rk+1. In the following, we denote by x
(k+1)
i the

i-th component of the solution of (24). First of all, we observe that, by Cramer’s
rule,

Dk

Dk+1
= x

(k+1)
k+1 .

Moreover, since
det(Nk) = − detMk+1,(k),

in which Mk+1,(k) is the matrix Mk+1 with the k-th column substituted by the
vector ek+1, we have that

Fk
Dk+1

= −
detMk+1,(k)

detMk+1
= −x(k+1)

k .

Hence, we obtain

Fk
Dk

=
Fk
Dk+1

Dk+1

Dk
= −

x
(k+1)
k

x
(k+1)
k+1

.

In this setting, the coefficients αk and βk can be expressed in terms of the
components of the solutions of appropriate linear systems as follows:

αk = −
x
(k+2)
k+1

x
(k+2)
k+2

+
x
(k+1)
k

x
(k+1)
k+1

, βk =
x
(k)
k

x
(k+1)
k+1

, k ≥ 1, (25)

with
α0 =

µ1

µ0
, β0 = µ0.

The system (24) rapidly becomes severely ill conditioned, so that the proce-
dure does not offer any improvement with respect to the Chebyshev algorithm.
Nevertheless, since Mk+1 is a symmetric positive definite matrix, the idea is to
use a bilateral preconditioner in order to solve efficiently (24). Analogously to
the choice made for the modified Chebyshev approach, here we want to use as
preconditioner the moment matrix corresponding to the generalized Laguerre
polynomials.
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Let ηk, k ≥ 0, be the moments relative to the weight function xαe−cx, given
by

ηk = ηα,ck =

∫ ∞
0

xk+αe−cxdx =
Γ(k + α+ 1)

ck+α+1
,

where we have used again [5, sect.3.381, n.4]. We can write

ηk =
1

cα+1

γk
ck
,

where

γk = γαk =

∫ ∞
0

xk+αe−xdx = Γ(k + α+ 1) (26)

are the moments relative to the generalized Gauss-Laguerre rule. Hence, we can
write the corresponding moment matrix

Mα,c
k =

 η0 η1 · · · ηk−1
...

...
...

ηk−1 ηk · · · η2k−2

 ∈ Rk×k,

as

Mα,c
k =

1

cα+1
EkM

α
k Ek,

where

Mα
k =

 γ0 γ1 · · · γk−1
...

...
...

γk−1 γk · · · γ2k−2

 ∈ Rk×k,

and Ek = diag
(
c0, c−1, . . . , c1−k

)
.

At this point, if we consider the Cholesky decomposition of Mα
k

Mα
k = (Rαk )TRαk ,

we have

Mα,c
k =

1

cα+1
Ek(Rαk )TRαkEk = (Rα,ck )TRα,ck ,

where

Rα,ck =
1

(
√
c)α+1

RαkEk.

The following proposition provides the explicit expression for Rαk , and therefore
for Rα,ck .

Proposition 5 The Cholesky decomposition of the matrix Mα
k is

Mα
k = (Rαk )TRαk ,

with

Rαij =
(j − 1)!

(j − i)!
Γ(α+ j)√

Γ(i)Γ(α+ i)
, for i ≤ j ≤ k.

13



Proof. Since the matrix Mα
k is symmetric, we can restrict the analysis to the

case i ≤ j. By (26) we know that

(Mα
k )ij = Γ(i+ α+ j − 1).

Now,

((Rαk )TRαk )ij =

i∑
l=1

RαljR
α
li

= Γ(j)Γ(α+ j)Γ(i)Γ(α+ i)

i∑
l=1

1

(j − l)!(i− l)!Γ(l)Γ(α+ l)
.

Writing (
x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
, (27)

with x = α+ i− 1 and y = l − i, we have

1

Γ(α+ l)(i− l)!
=

(
α+ i− 1

i− l

)
1

Γ(α+ i)
.

Moreover,
1

(j − l)!(l − 1)!
=

(
j − 1

l − 1

)
1

(j − 1)!
.

Using the above relations, we obtain

((Rαk )TRαk )ij = Γ(α+ j)Γ(i)

i∑
l=1

(
α+ i− 1

i− l

)(
j − 1

l − 1

)
.

At this point, by the following slight modification of the Chu-Vandermonde
identity (see [2]),

q∑
u=1

(
t

u− 1

)(
s− t
q − u

)
=

(
s

q − 1

)
,

we obtain

((Rαk )TRαk )ij = Γ(α+ j)Γ(i)

(
α+ j + i− 2

i− 1

)
.

Using again (27), with x = α+ j + i− 2 and y = i+ 1, it holds(
α+ j + i− 2

i− 1

)
=

Γ(i+ j + α− 1)

Γ(α+ j)Γ(i)
,

and finally
((Rαk )TRαk )ij = Γ(i+ α+ j − 1).

14



We observe that the matrix Rαk can be written as

Rαk = DkR̃
α
k ,

with

(R̃αk )ij =
(j − 1)!Γ(α+ j)

(j − i)!Γ(i)Γ(α+ i)
, for i ≤ j,

and Dk diagonal matrix such that

(Dk)ii =
√

Γ(i)Γ(α+ i).

Since
(Rαk )−1 = (R̃αk )−1(Dα

k )−1.

and
(R̃αk )−1ij = (−1)i+j(R̃αk )ij ,

we have that the explicit expression for (Rαk )−1 is given by

(Rαk )−1ij = (−1)i+j
√

(j − 1)!Γ(α+ j)

(j − i)!Γ(i)Γ(α+ i)
, for i ≤ j.

Therefore, the matrix (Rα,ck )−1 can be written as

(Rα,ck )−1 = (
√
c)α+1E−1k (R̃αk )−1(Dα

k )−1,

with

(Rα,ck )−1ij =

√
c
α+1

ci−1(−1)i+j
√

(j − 1)!Γ(α+ j)

(j − i)!Γ(i)Γ(α+ i)
. (28)

Finally, the linear system (24) can be preconditioned as

(Rα,ck+1)−TMk+1(Rα,ck+1)−1y(k+1) = (Rα,ck+1)−T ek+1, (29)

with
x(k+1) = (Rα,ck+1)−1y(k+1). (30)

Since the matrix Mk+1 can be written as Mk+1 = Mα,c
k+1+Mα,c

k+1,0, where Mα,c
k+1,0

is the matrix of the core moments defined by equation (7), we have that

(Rα,ck+1)−TMk+1(Rα,ck+1)−1 = (Rα,ck+1)−T (Mα,c
k+1 +Mα,c

k+1,0)(Rα,ck+1)−1

= (Rα,ck+1)−TMα,c
k+1(Rα,ck+1)−1 + (Rα,ck+1)−TMα,c

k+1,0(Rα,ck+1)−1

= Ik+1 + (Rα,ck+1)−TMα,c
k+1,0(Rα,ck+1)−1 := Qk+1, (31)

where Ik+1 is the identity matrix. The system (29) becomes

(Ik+1 + (Rα,ck+1)−TMα,c
k+1,0(Rα,ck+1)−1)y(k+1) = (Rα,ck+1)−T ek+1.

In Table 1 we show the remarkable effect of the preconditioning.
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k 5 10 15 20 25 30

κ2(Mk) 2.4e+ 13 7.8e+ 32 1.0e+ 51 2.2e+ 69 4.6e+ 88 1.1e+ 107
κ2(Qk) 1.0e+ 00 1.3e+ 00 1.4e+ 00 1.4e+ 00 1.5e+ 00 1.6e+ 00

Table 1: The Euclidean condition number of the matrix Mk and of the precon-
ditioned matrix Qk, defined in (31), for different values of k. In this example
ν = 0.9, α = 0.1 and c = 0.1.

We observe that, since (Rα,ck+1)−1 is an upper triangular matrix, the compo-
nents of the solution used in (23) can be written as

x
(k+1)
k = (Rα,ck+1)−1kk y

(k+1)
k + (Rα,ck+1)−1k,k+1y

(k+1)
k+1 , (32)

x
(k+1)
k+1 = (Rα,ck+1)−1k+1,k+1y

(k+1)
k+1 . (33)

We notice that the numerical implementation of the procedure to calculate
αk and βk as in (25), by using expressions (32) and (33), starts to show instabil-

ity around k = 60÷ 70, depending on the parameters, when x
(k+1)
k and x

(k+1)
k+1

are close to the underflow. In order to gain more stability the idea is to rewrite
the coefficients αk and βk, for k ≥ 1, in terms of the components of the vectors
y(k), y(k+1), y(k+2), defined in (30), and exploit the relation (28). Indeed, we
observe that for i ∼ j ∼ k,

(Rα,ck )−1ij ∼
ck

k!
,

and therefore y
(k+1)
i � x

(k+1)
i for i = k, k + 1. By (23) and (28), we obtain

αk = −
√

(k + 1)(α+ k + 1)

c

(
y
(k+2)
k+1

y
(k+2)
k+2

−
√

(k + 1)(α+ k + 1)

)

+

√
k(α+ k)

c

(
y
(k+1)
k

y
(k+1)
k+1

−
√
k(α+ k)

)
, (34)

βk =

√
k(α+ k)

c

(
y
(k)
k

y
(k+1)
k+1

)
. (35)

The final procedure, explained in Algorithm 3, allows to work with 80÷ 90
points, dependently on the parameters.

Algorithm 3 Define α0, β0, β1, y(1), y(2).

for k = 2, . . . , n− 1

calculate y(k+1) by solving (29)

βk ← y(k+1), y(k) by (35)
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Figure 3: Error histories for ν = 1, α = 0.7, c = 0.3 on the left, for ν = 0.9,
α = 0.1, c = 0.1 in the middle and for ν = 1.5, α = 0.5, c = 0.2 on the right. In
all cases f(x) = e−0.5x.

αk−1 ← y(k+1), y(k) by (34)

end

In Figure 3 we compare the results of Algorithm 1, 2 and 3. For all the ex-
amples we can say that only the preconditioned Cramer based approach allows
to achieve an absolute error around the machine precision, while the Cheby-
shev and modified Chebyshev algorithms lose stability much earlier. In fact, as
shown in Figure 4, Algorithm 1 and 2 start to provide inaccurate values of the
coefficients αk and βk for k around 15÷25, while Algorithm 3 is definitely more
stable. Since the plot is in logarithmic scale, the missing parts of the curves are
relative to negative entries.

6 Electromagnetic fields

In this section we deal with an interesting application arising in geophysical
electromagnetic (EM) survey. We consider the theoretical EM response, i.e.
the electromagnetic fields components, over a N -layered earth due to vertical
magnetic dipoles above the surface, composed of a transmitter coil and couples
of receiver coils. The receiver couples are placed at different distances (offsets)
from the transmitter coil. In this case, the electromagnetic induction effect,
encoded in the first-order linear differential equations, produces eddy alterning
currents in the soil which on their turn, induce response EM fields. Under the
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Figure 4: Plot of the coefficients αk (solid lines) and βk (dashed lines) for
ν = 0.9, α = 0.1 and c = 0.1.

assumption that each layer is characterized by a certain conductivity σi and
thickness hi (the deeper layer is assumed to have infinite thickness), the general
integral solutions of Maxwell equations are given by (see [14] and [19])

H(N)
z =

m

4π

∫ ∞
0

(1 +R0(λ)e−2Hλ)λ2J0(λr)dλ,

H(N)
ρ =

m

4π

∫ ∞
0

(1−R0(λ)e−2Hλ)λ2J1(λr)dλ,

where m is the magnetic moment, H is the height of the dipole with respect
to the surface and r is the offset. In the above formulas R0(λ) is the reflection
term, recursively defined by

R0(λ) =
R1(λ) + Ψ1(λ)

R1(λ)Ψ1(λ) + 1
,

Rj(λ) =
Rj+1(λ) + Ψj+1(λ)

Rj+1(λ)Ψj+1(λ) + 1
e−2uj(λ)hj , j = 1, ..., N − 1,

RN (λ) = 0,

with

Ψj(λ) =
uj−1(λ)− uj(λ)

uj−1(λ) + uj(λ)
, j = 1, ..., N,

in which u0(λ) = λ and uj(λ) =
√
λ2 − k2j , kj =

√
−iωµσj , for j = 1, . . . , N ,

where ω is the angular frequency and µ is the magnetic permeability of vac-

18



uum. We refer to [19, Section 4] and the reference therein for an exhaustive
background. Since in the case of conductivity of geological materials only the
imaginary part of the fields are considered, using the change of variable λr = x,
we obtain

=(H(N)
z ) =

m

4πr3

∫ ∞
0

=
(
R0

(x
r

))
e−

2H
r xx2J0(x)dx, (36)

=(H(N)
ρ ) = − m

4πr3

∫ ∞
0

=
(
R0

(x
r

))
e−

2H
r xx2J1(x)dx. (37)

In the numerical experiments we use Algorithm 3 to evaluate the fields (36)
and (37) in the case of a 3-layered underground model. Referring to (1), in our
examples we set ν = 0, 1, α = 0, c = 2H

r and f(x) = =
(
R0

(
x
r

))
x2. Regarding

the choice of the parameters σi and hi, i.e. of the underground models, we
consider real life values of river levees (see e.g. [4]).

In Figure 5 and 6 we provide the absolute error between the approximated

fields =(H
(3)
z ) and =(H

(3)
ρ ), and a corresponding reference solution (see e.g. [13],

[17]). In all examples we stop the procedure when the error is less than 10−8.
The main reason of this choice is that for these parameters the method works
with kmax ∼ 85, but in order to reach the machine precision more points are
necessary. To overcome this issue, the symbolic computation and quadruple-
precision arithmetic can be adopted (see e.g. [10]), but this is beyond the
purpose of the present paper.

7 Conclusions

In this work a Gaussian type quadrature rule for the computation of integrals
involving fractional powers, exponentials and Bessel functions of the first kind, is
presented. In this framework, the techniques commonly used in the computation
of the coefficients of the three-term recurrence relation, for the corresponding or-
thogonal polynomials, are the standard and the modified Chebyshev algorithm.
Since it is well known that the results of these methods can be inaccurate for
growing number of quadrature points and especially for unbounded intervals of
integrations, an alternative and very stable approach, based on the precondi-
tioning of the moment matrix, is developed. In particular, an algorithm, which
exploits the Cramer rule to compute the coefficients by solving a linear system
with the moment matrix, is presented. The numerical experiments confirm the
reliability of this preconditioned Cramer based approach and shows that it is
definitely more stable than the modified Chebyshev algorithm, since it allows
to work with further 40÷ 60 points, depending on the parameters.

We remark that, in principle, the approach can be applied to each weight
function that is not so far to the standard ones, because it is necessary to be
able to construct the preconditioner. Finally, we also point out that, similarly
to the Gauss Laguerre rule, the weights decay exponentially and therefore a
truncated approach can also be introduced as well.
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Figure 5: Error history for the computation of =(H
(3)
z ) with respect to n for

parameters H = 0.4 m, r = 8 m, h1 = 2.5 m, h1 = 0.5 m, σ1 = 0.05 S/m,
σ2 = 0.0049 S/m, σ3 = 0.0182 S/m on the left and for parameters H = 0.2 m,
r = 8 m, h1 = 2.5 m, h1 = 0.5 m, σ1 = 0.033 S/m, σ2 = 0.1 S/m, σ3 = 0.01
S/m on the right.
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ρ ) with respect to n for

parameters H = 0.4 m, r = 8 m, h1 = 2.5 m, h1 = 0.5 m, σ1 = 0.333 S/m,
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