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Abstract Rockfall risk is usually characterized by a high frequency
of occurrence, difficulty in prediction (given high velocity, lack of
noticeable forerunners, abrupt collapse, and complex mechanism),
and a relatively high potential vulnerability, especially against
people and communication routes. Considering that larger rock-
falls and rockslides are generally anticipated by an increased
occurrence of events, in this study, a framework based on micro-
seismic monitoring is introduced for a temporal and spatial rock-
fall early warning. This approach is realized through the detection,
classification, and localization of all the rockfalls recorded during
a 6-month-long microseismic monitoring performed in a lime-
stone quarry in central Italy. Then, in order to provide a temporal
warning, an observable quantity of accumulated energy, associated
to the rockfall rolling and bouncing and function of the number
and volume of events in a certain time window, has been defined.
This concept is based on the material failure method developed by
Fukuzono-Voight. As soon as the first predicted time of failure and
relative warning time are declared, all the rockfalls occurred in a
previous time window can be located in a topographic map to find
the rockfall susceptible area and thus to complement the warning
with spatial information. This methodology has been successfully
validated in an ex post analysis performed in the aforementioned
quarry, where a large rockfall was forecasted with a lead time of
3 min. This framework provides a novel way for rockfall spatio-
temporal early warning, and it could be helpful for activating
traffic lights and closing mountain roads or other transportation
lines using the knowledge of the time and location of a failure.
Since this approach is not based on the detection of the triggering
events (like for early warnings based on rainfall thresholds), it can
be used also for earthquake-induced failures.

Keywords Rockfall - Microseismic monitoring - Rockfall
susceptibility - Landslide early warning - Time series analysis

Introduction

The economic and population development, increasing access and
construction in mountainous areas, bring people and infrastruc-
tures to a higher exposure to slope hazards (Dammeier et al. 2011).
Reliable slope hazard prediction on brittle rock is still a hard task,
due to the lack of noticeable forerunners preceding abrupt failures
as well as the complex mechanisms not fully understood yet (Carla
et al. 2017). Nowadays, there are several ways to perform landslide
early warning. One way is to monitor displacements (Iovine et al.
2006; Blikra 2012; Kristensen et al. 2013; Lombardi et al. 2017;
Intrieri et al. 2019), which is a direct indicator of slope instability.
Although future developments in the exploitation of interferomet-
ric satellites might lead to a bloom of regional scale early warning
systems (Raspini et al. 2018), displacements are normally exploited
at slope scale. The lack of long-term prefailure deformations
compatible with the acquisition frequency of even the most mod-
ern displacement monitoring systems makes this kind of
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measurement not suitable for rockfalls. Furthermore, the typically
small dimensions of detaching blocks are often beyond the spatial
resolution capabilities of imaging instruments or even single point
networks, such as extensometer and inclinometer, which would
require to be installed on every single block that is potentially
unstable. Another, more common, approach to perform landslide
early warning is based on rainfall monitoring, which is mostly
used for regional-scale systems. Through defining a duration-
intensity threshold of rainfall, and considering the susceptible
map and catalogs of landslides, a spatiotemporal forecasting of
the failure can be achieved (Rosi et al. 2012; Segoni et al. 2015, 2018;
Salvatici et al. 2018). As the relation between rockfall occurrences
and rainfall is not very clear, since many other factors are in-
volved, such as rock temperature, rock moisture, wind intensity,
and air temperature (Matsuoka 2019), this kind of monitoring is
not optimal for a rockfall early warning system.

Considering that rockfalls generate ground vibrations during

crack nucleation, crack propagation, and eventually the collapse
and the subsequent movement along the slope and to the ground,
a geophones network can be used to record them. Important
information on the characteristics of the seismic source could be
derived from a three-components seismogram (e.g., the event type,
energy, duration, location, back-azimuth, and developing process)
that not only occurred on the surface but also in the subsurface
(Deparis et al. 2008; Vilajosana et al. 2008; Helmstetter and
Garambois 2010; Hibert et al. 2011; Coviello et al. 2019). Therefore,
an early warning system can be set up by monitoring the seismic
signals emitted by surface and subsurface slope dynamics
(Amitrano et al. 2005; Lacroix and Helmstetter 20115 Lenti et al.
2012; Walter and Joswig 2012; Van Herwijnen et al. 2016; Schopa
et al. 2018). Seismic monitoring turns out to be a valid means for
rockfall study and provides a complementary solution to
displacement-based early warning systems since it can also give
information about surface processes.

The microseismic monitoring can be applied:

In a short time inversion analysis for an individual landslide:
the seismograms and spectrograms are consistent with the
dynamic process (location, trajectory, volume, energy, and
mechanism of evolution) of the landslide, e.g., different wave-
form peaks recorded in the seismogram correspond to the
collapsed material impacting and rebounding on the ground;
the onset time, duration, and speed of a landslide can also be
interpreted from the seismogram and the spectrogram
(Berrocal et al. 1978; Kanamori and Given 1982; Ekstrom
and Stark 2013; Yamada et al. 2013; Burtin et al. 2014; Hibert
et al. 2014, 2015, 2017a; Del Gaudio et al. 2018; Guinau et al.
2019; Li et al. 2019; Zhang et al. 2019);

In long-term unmanned monitoring: microseismic monitor-
ing could help to develop an early warning system by observ-
ing the parameters’ variation in both waveform and seismic
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events detected; in addition, by estimating the hypocenters of
the seismic sources, it could help to identify the most dan-
gerous zones in the monitored area and analyze the correla-
tion with tectonics, climate, etc., to design effective mitigation
measures accordingly (Satriano et al. 2011; Kao et al. 2012;
Coviello et al. 2015; Manconi et al. 2016; Hibert et al. 2017b, c;
Arosio et al. 2018; Schopa et al. 2018).

Based on the observation that the number of rockfalls increases
before a larger rockslide (Suwa 1991; Suwa et al. 1991; Amitrano
et al. 2005; Huggel et al. 2005; Rosser et al. 2007; Szwedzicki 2003;
Hibert et al. 2017b) and the fundamental law for failure material
proposed by Voight (1988) after Fukuzono (1985), here, we propose
a framework for a rockfall spatiotemporal early warning using
microseismic monitoring. This framework is complemented with
two algorithms (Feng et al. 2020a, b) for rockfall detection and
classification and for seismic event localization. In the next sec-
tions, the algorithms used will be shortly described, but since they
can be replaced in the proposed methodology with any suitable
alternative, they are not the focus of this paper.

Study area

The test site, Torgiovannetto, is a former quarry located in the
northward facing slope of Mount Subasio, 2 km NE from the city
of Assisi (Perugia, Umbria Region, Central Italy; Fig. 1). An
182,000-m’ unstable rock mass is located in the top area of the
quarry (Lotti et al. 2015, 2018; Antolini et al. 2016; Gracchi et al.
2017). It was first observed on May 2003, and it is suggested that
the main predisposing factor of the instability was the quarrying
activity (Intrieri et al. 2012). Now the extracting activities are
stopped, and the potential collapse is dealt with by using mitiga-
tion measurements (Gigli et al. 2014). A risk is also related to
rockfall, for which more detailed information can be found in
Feng et al. (2019).

A microseismic network equipped with four stations acquiring
data in a continuous mode from December 2012 to July 2013 was
installed (Lotti et al. 2015). Each station consists of a S45 triaxial
seismometer with a natural frequency of 4.5 Hz cable-connected to
a 24-bit digitizer from SARA Electronic Instrument Company. The
sampling frequency (F;) was set to 200 Hz. Data were recorded in
miniSEED format (“Data-only” volume) and subsequently con-
verted in SAC format for processing operations.

In this study, a 6-month-long (1st January-3oth June 2013)
microseismic dataset (which includes the recording of earth-
quakes, tremors, and rockfalls), and a 3D terrestrial laser scan
were used to map landslide susceptible areas.

Methodology

The general framework proposed in this study is based on the
observation that the occurrence of rockfall and small landslides
increases over time prior to a larger failure (Huggel et al. 2005;
Rosser et al. 2007; Szwedzicki 2003). Suwa (1991) and Suwa et al.
(1991) proposed that the magnitude of the ultimate failure is
proportional to the level of precursory behavior, and this suggests
a dependence on the scale of the precursory events (Rosser et al.
2007). This phenomenon has been validated also for volcanic
eruptions (that obey to the same precollapse behaviors as
landslides, as demonstrated by Voight 1988) by the long-period
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observation of Hibert et al. (2017b). These authors continuously
monitored, from 2007 to 2011, the Piton de la Fournaise volcano
using seismically triggered video cameras, and analyzed the tem-
poral evolution of the daily number of rockfalls. They found that
the most active period, in terms of both the number of rockfalls
occurrences and the volumes of material displaced, was the one
immediately preceding the collapse of the Dolomieu crater. In this
paper, instead of using the occurrence frequency of rockfall as a
proxy for predicting a larger failure, the accumulated energy (A4,)
recorded by a seismic network when the rock hits the ground
(which is a function of the volume) was employed.

The whole framework is illustrated in Fig. 2 and is described in
detail in the next section. To perform this framework, the first step
is transforming seismic data recorded by the instruments into a
data format that can be processed, in order to detect and classify
the different seismic events by a rockfall detection and classifica-
tion model. The second step is extracting all the seismic signals
and features of the rockfalls, such as onset time and duration;
then, A, and the accumulated energy increment (44,) in a time
window are calculated, and, if 44, exceeds a fixed threshold, 1/A,
is calculated, a time of failure is automatically extrapolated, and a
warning time declared. In parallel, as soon as the time of failure is
computed, all the rockfalls detected in a fixed time window before
the triggering of the first alarm time are localized in a topograph-
ical map to find the susceptible area from where the events prob-
ably originated.

Temporal forecasting
Let us assume that a series of rockfalls (R, R,, ", Ry) is detected in
a time period (¢, —t). Instead of the real event source energy, a
parameter represented by the sum of the relative seismic energy
(E,), measured in m*/s® and recorded through the seismic network,
is adopted in this study, in order to reduce the chance of intro-
ducing calculation errors of the environmental influence and the
effects caused by the energy loss through propagation attenuation,
rock fragmentation, and heat generation (Amitrano et al. 2005;
Dammeier et al. 2011). Therefore, the relative seismic energy of the
rockfall series is E,, E,, -, Ey;, and the seismic signal time series of
one rockfall recorded in component j and station k, is presented as
Xkji> Xkja> > XkjNe

There are four three-component geophones employed in this
case, so the sum of the relative seismic energy (E,) of one rockfall
and the accumulated energy (A.;) of the rockfall series from time
t, to t, respectively, are:

k=4 j=3 i=N ,
Es=3X 2 Xii (1)
k=1 j=1 i=1
s=M(t)
Ae(t) = Es (2)

where i, j, k, and s are the number of seismic samples, components,
seismic stations, and rockfalls, respectively. M(f) is the accumulat-
ed number of rockfalls at the time ¢ in the rockfall series.



Fig. 1 Photographs of the back fracture of the landslide, of the lithology and of the studied slope, with indication of the boundaries of the unstable mass. The red star in
the lower right corner marks the study area in Italy. Modified from Intrieri et al. (2012)

In order to trigger the calculation of the time of failure, a sliding
time window is created, and the accumulated energy increment
(4A,p) in that sliding window at time ¢ is continuously calculated
according to Eq. 3. It is important to note that this parameter repre-
sents an empirical threshold () below which the forecasting methods
are not implemented because they would probably trigger false alarms.
In the study area, the length of the sliding window was set equal to 1 h
(the yellow area in Fig. 3) and stepped by 1 min, while the empirical
threshold (8) was set equal to 0.5 m*/s”. Such value can be calibrated
once that more data and experience on the specific site are gathered.

Input parameters Temporal forecasting

The times when 4A.() exceeds a certain threshold (6) (here
called “alarm time”, ¢,) are shown as red circles in Fig. 3. If 44, is
still over the threshold, the warning is maintained, indicating that
the energy in the system calculated in the reference time window is
still high.

Output Spatial estimation

Fig. 2 The framework of the proposed spatiotemporal rockfall early warning
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Fig. 3 a An example of failure forecasting using experimental data relative to rockfalls occurred on 15th Jan 2013 at Torgiovannetto (“Temporal and spatial estimation”
section). The red dashed line is the linear fit line of 1/A,; b detail of how 1/A, is approximated with a linear fit

Consistently with Voight (1988), who extended the application of
the Fukuzono (1985) method to a set of different variables, including
seismic quantities, in this framework a modified version of the classic
Fukuzono-Voight method is proposed. The material failure law de-
scribed by the Fukuzono-Voight method is presented in Eq. 4. As
demonstrated by Voight, the seismic quantity (€2) (such as the square
root of cumulative energy released) is an observable quantity suitable
for early warning, and A is a constant. Similarly, this method was also
applied in the studies of Amitrano et al. (2005). Therefore, in this case,
the accumulated energy (A4,) of rockfalls is adopted as €, and the
forecasting is made through the linear fit of the inverse of A,. The
forecasting method used in this study is shown in Eq. 5. Generally, this
observable quantity should represent Q2 (and not € as in our case),

and the forecasting method of Fukuzono should use the inverse of ()
against time (for example, if (2 is the displacement, the forecasting is
made through the inverse velocity). In this case, since A, is already
characterized by very abrupt accelerations, extrapolating the 1/A, line
until it intercepts the time axis gives approximately the same results as
using the inverse of the rate of A,, but the rate of A, generates a much
noisier time series (Fig. 3).

Q" 0-A=o0 (4)

Ae(t)_l—A =0 (5)

In practice, once the first ¢, is declared, a linear fitting process-
ing is initialized using A, (as in Eq. 6) from time ¢, —1h to ¢, in
a sliding window to obtain the slope (d) of the linear fit. The
function of the linear fit is shown in Eq. 7, and Eq. 8 shows how
to calculate the supposed collapse time (f.). To show the results
more clearly, a normalized accumulated energy (N,) was adopted
by adding 0.99 to the denominator, since A, of rockfalls measured
in m®/s* is typically a very small number (in the order of 107>~
107°). An example of this procedure employing real data gathered
at Torgiovannetto is shown in Fig. 3.

1 1 1
d) = linear fit (7777 - ) p
(@) A A A (6)

E
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Fig. 4 a The pink line indicates the real block trajectory observed in situ. The cyan spots represent each block impact localized with the P-B-30E method, and the white
triangles are seismic stations; b the original signal of the same artificial rockfall with highlighted in gray the impacts analyzed with the polarization method
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where t, —t, is the lead time and the warning period is t., —t,,
where we define ¢, as the last forecasted time of collapse calculat-
ed at the last alarm time ¢,,. In our case, the linear fit is performed
by the ployfit function in MATLAB.

Spatial estimation
As soon as t, and t, are calculated, all the rockfall events occurred
before, within a fixed time window, can be localized on a topo-
graphic map and the susceptible area can be found consequently.
In this case, the method of seismic polarization (polarization
bearing, P-B method) was adopted for rockfall localization. The
method uses the polarization from a three-component sensor to
calculate the source back azimuth through finding the correct P
wave from event signal, which is commonly used in earthquake
localization (Flinn 1965; Jurkevics 1988). Vilajosana et al. (2008)
and Guinau et al. (2019) extended the technique to rockfall
localization.
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Fig. 5 (continued)

Starting from this point, the P-B method was optimized by
means of an overdetermined matrix based on the geophone net-
work. A confidence weight for each sensor was proposed accord-
ing to the received signal quality and the reliability of the
calculated back azimuths. Moreover, three marker parameters
were compared with properly select frequency bands in seismic
polarization: energy, rectilinearity, and special permanent frequen-
cy band. Finally, 30 of 96 frequency bands with the strongest
energy are suggested to perform the P-B localization (P-B-30E).
One example of P-B-30E localization from an in situ test consisting
in manually released rockfall is shown in Fig. 4. For each rockfall,
the coordinates of the starting and ending points were measured,

1400 : : :
a

1200 | 1
§ 1000 1.
2 &
S 800f {1 %
St B
Q 5]
o o
£ 600} 1 E
E E
= Q
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and the trajectory was recorded using two video cameras. In this
case, four impacts were picked and automatically localized in a
topographic map (Fig. 4b). All the estimated positions are closely
distributed along the real rockfall trajectory; the maximum error is
impact #4 with 48.2 m, and the minimum error is impact #1 with
10.2 m. The details about this method are described in Feng et al.
(2020Db).

Moreover, the early warning framework can also be implement-
ed with alternative or complementary localization methods, such
as those based on arrival times (Gracchi et al. 2017), beam-forming
(Lacroix and Helmstetter 2011), and amplitude source location
(Pérez-Guillén et al. 2019).

400 - 1

300 1

200 1

100 - 1

RF-vL RF-L RF-S

Fig. 6 a All the seismic events detection and classification results relative to the 1st-31st January 2013 time period; b distribution of RF in terms of spatial scale
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0.084 m/s (RF-vL) occurred at 11:38:40 on the 15th of January and 0.025 m/s (2.5
Magnitude, located approximately 25 km southeast from the study area) occurred
at 15:53:52 on the 31st of January, respectively

Rockfall detection and classification

All the data are examined with an ad hoc program, DEtection
and STorage of ROckfall (DESTRO, Feng et al. 2020a), to
detect and classify all the seismic events that occurred in
the monitoring period. The events have been grouped in the
following classes: earthquake (EQ), rockfall (RF), and tectonic
tremor (TR); other microevents and ambient noise are also
detected and classified but not considered in our analysis.
The examples of signals and frequencies of these events are
shown in Fig. 5. Moreover, the event spatial scales are also
classified as: point event (P), very local event (vL), local event
(L), slope scale event (S), and regional event (R), which
means that a certain event has been detected and classified
correctly by respectively one component, one seismic station
(at least two components), two seismic stations, and more
than two seismic stations. Given their very local nature, point
events are generally considered as noise and therefore not
considered in the elaborations.
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Fig. 9 Rockfall early warning from 14th to 16th January 2013; the red point on x-
axis is the predicted time of collapse (z.)

The validation of DESTRO has been done through a 2-day-long
test where 9o rocks taken from the site were manually released
along the slopes of Torgiovannetto quarry and recorded with two
cameras and the seismic network. A detailed description of the
experiment can be found in Feng et al. (2019). To describe the
classification capability of DESTRO, we defined three variables,
true positive (TP), false positive (FP), and false negative (FN),
respectively, equal to the number of rockfall correctly classified
as rockfall, the number of events misclassified as rockfall, and the
number of rockfalls misclassified as noise. The recall (TP/(TP +
FN)) of DESTRO in the experiment is 98% (88 rockfalls (TP)
correctly detected out of the 9o released; other two rockfalls
(FN) misclassified that being characterized by a particularly low
signal). This value represents the confidence against false negative
(i.e., the probability of missing an event is only 2%). On the other
hand, 21 events (FP) in excess were detected, for a total of 109
signals classified as rockfalls. Even a manual check on these 21
extra signals made it impossible to distinguish them from the
verified rockfalls. Probably these represent actual involuntary
rockfalls caused by the passage of the experiment operators or
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Fig. 8 A, times series relative to EQ and RF, correlated with precipitation (from 1st to 31st January 2013)
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of the data, and a maximum dimension was set corresponding to a fixed threshold. The RF-L event marked in the dashed square is RF-L-1V, the longest and most powerful

RF in this period. b Seismic signal of RF-L-IV

even small natural rockfalls that went unnoticed. This means that
the precision (TP/(TP +FP)) of DESTRO (i.e., of detecting real
rockfalls from raw seismic data) is >81% (where 81% represents
the assumption that the 21 extra events detected were all errors).
The details of this program are described by Feng et al. (2020a).

Results

For slope stability evaluation and susceptibility mapping, data
from a significant monitoring time period (1st-31st January 2013),
when a higher number of rockfalls was detected, are chosen from
the entire 6-month-long dataset.

Rockfall occurrence frequency
In this 1-month period, 1322 EQ, 585 TR, and 428 RF were detected. It
should be pointed out that, among RF events, also very small-scale
failures (i.e., small rolling stones but not microseismic cracks) are
included. In detail, considering the scales of the events classified as RF,
there are 416 very local events (VL), 8 local events (L), and 4 slope scale
events (S). The detection and classification results are plotted in Fig. 6.
To better understand the slope stability evolution and seismic
events occurrence frequency, the distribution of detected seismic
events (e.g., EQs and RFs) and their parameter A, are plotted in
Fig. 7 and Fig. 8, respectively. In Fig. 7, each event is represented with
a point whose diameter is proportional to its seismic spectral max-
imum amplitude; a maximum dimension was set corresponding to a
fixed threshold (0.025 m/s for RFs and 0.008 m/s for EQs, in this
case). The different scales of RF are marked with different colors. In

Fig. 8, the precipitation measured every 5 min and the accumulated
precipitation in this month are also correlated with A..

Figures 7 and 8 highlight that the curves of the accumulated
number of RFs and A, of RFs display a step-shaped behavior, with
the steps indicating the sudden occurrence of many RFs in a short
time. Usually, a series of vL events happened before L and S events.
The onset of the maximum increment of rockfalls (hereafter
named “rockfall paroxysm”) occurred at 9:20:00 of 15 January
2013 (Fig. 8), followed a heavy rainfall that ended at 19:10:00 of
14 January 2013 and consisting in 42.2 mm recorded in the previ-
ous 24 h (the maximum daily precipitation in this month). More-
over, no significant correlation between earthquakes and the
occurrence of rockfall events was found in the entire dataset.
Therefore, the rockfall paroxysm was probably induced by this
rainfall event after a delay of 14 h. This suggests and confirms the
observation by Lotti et al. (2018) that, at least at Torgiovannetto
quarry, the main triggering factors are probably the environmental
conditions, such as rainfall.

Temporal and spatial estimation

To simulate a warning relative to rockfall events, the inverse value
of A, versus time was calculated in the three most active days of
rockfall, between 14th and 16th January 2013. In the presented case,
the input parameter of the empirical threshold () of 44, in the 1-h
sliding window is set equal to 0.5 m*/s* and all the time points
(stepped in 1 min) that exceeded the threshold are marked as ¢,
(the red circles in Fig. 9). The rockfall occurrence frequency of
these 3 days is plotted in Fig. 10.

Table 1 Main seismic features of RF-L events occurred in 14th—16th Jan 2013. Since these events were detected by more than one station, for each event only the value
relative to the station that recorded the maximum values are reported

Maximum Maximum Seismic energy Duration Location (see
amplitude (m/s) frequency (Hz) (E) (m*/s?) (s) Fig. )
15 Jan 2013 10:20:32 RF-L-I 0.017 88.7 0.027 106.1 Near TOR2
15 Jan 2013 10:22:35 RF-L-II 0.012 89.0 0.013 1.8 Near TOR2
15 Jan 2013 10:22:59 RF-L-1II 0.014 87.6 0.081 107.6 Near TOR2
15 Jan 2013 11:54:40 RF-L-IV 0.042 99.9 0.351 336.7 Near TOR4
15 Jan 2013 12:06:32 RF-L-V 0.002 66.8 0.003 38.9 Near TOR4
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position, since the forest located on the upper hill prevented the light from the LiDAR to pass through the tree cover

In these 3 days, 101 RF events were recorded, including five RF-
L events (named from I to V in Table 1). Figure 10 clearly shows the
rockfall paroxysm and displays event IV (highlighted in a dashed
square) as the longest and most powerful. The signal of RF-L-IV
recorded along the east-west component of station TOR 3 is
shown in Fig. 10b. The seismic signal of RF-L-IV displays that
plenty of minor RFs anticipated RF-L-IV, and many others were
later induced and were recorded after the large event.

Furthermore, in this case, based on the proposed early warning
framework, a time of failure prediction was performed (Fig. 9). The
first t, and . are at 11:12:00 and 11:15:00 of the 15th January 2013,
respectively; the last ¢, and ¢, are at 12:52:00 and 14:07:00 of the 15th
January 2013, respectively. Therefore, the warning period is from
11:12:00 t0 14:07:00 of the 15th January 2013. Within this warning time

frame, two relatively large events (IVand V) occurred at 11:54:40 and
12:06:32 respectively that is with a 42-min and 54-min lead time
available, respectively, counting from the first ¢,.

As soon as the first t, was declared, all the rockfalls detected in
the sliding window (from ¢, — 1 h to t,) before the triggering of the
first ¢, have been localized with the improved P-B method. More-
over, in the presented case, all the rockfalls occurred in 3 days (5
RF-L and 96 RF-VL events) are localized on a topographic map to
clearly show the susceptible area. Particularly, the five RF-Ls in
Table 1 are marked as cyan points in Fig. 11a.

The localization results in Fig. 11a show that most rockfalls originated
from the area near station TOR 2, and some rockfalls came from the
upper part of the former quarry. Consistently, as visible from the field
surveys and the 3D light detection and ranging (LiDAR) scan (Fig. 12b),
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there is an area near station TOR 2 marked by the presence of a debris
talus that confirms the susceptibility to rockfalls of this portion of the
former quarry (where the rockfall paroxysm also occurred), while the
upper part of the slope is an unstable rock wedge as introduced in the
“Study area” section (Fig. 1). Once the area has been delimited, the early
warning system can also by complemented with other countermeasures
that would benefit from this spatial information, for example by forbid-
ding access to the area (especially for active open-pit mines), turning on
traffic lights, closing endangered streets, automatically activating, or
intensifying monitoring in that area.

Application to long-term monitoring

This methodology has also been applied to the long-term
monitoring data from 1st January to 3oth June 2013 (Fig. 12).
A total of six warnings have been identified in these 6 months,
the largest event being the one occurred in January and
previously analyzed. However, there is an issue that should
be pointed out when performing a long-term (at least a few
months) real-time forecasting; in fact, since 4, is a cumulated
value, its value is constantly increasing. When A, is sufficient-
ly high, variations of 1/A, become very small and difficult to
notice and the linear fit is more difficulty performed. There-
fore, it is recommended that the value of A, is reset to zero
periodically depending on the state of activity of the slope
(e.g., monthly). In this case the value of A, is reset to zero on
a monthly basis.

Conclusions

In this study, a framework for rockfall spatial and temporal
early warning using a microseismic monitoring network was
proposed. According to the original application of the classic
Fukuzono-Voight failure forecast method, an observable quan-
tity of accumulated energy (A,) of rockfall is adopted for rock-
fall early warning. Whenever, over a sliding time window, the
threshold 4A, is exceeded, an alarm time is declared. As con-
firmed by several studies in literature, an increased amount of
rockfalls occurring in a short time often takes place before a
larger detachment. This is represented as an abrupt step in a
rockfall occurrence frequency curve against time, which is con-
sidered as a significant foretell sign of an imminent event. As
soon as the first alarm time and consequent time of failure
forecast are declared, all the rockfalls previously occurred with-
in a fixed sliding time window are localized on a topographic
map to simultaneously show the rockfall susceptible area.

The monitoring performed by microseismic networks is not
only specific for slope surface phenomena but also for subsur-
face movement or cracking, which can significantly complement
the drawbacks of image-based techniques such as satellite or
ground-based InSAR. The relatively low cost of geophones po-
tentially makes this rockfall early warning framework available
to a larger of end-users.
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