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Abstract

Modularity is a desirable property for embodied agents, as it could
foster their suitability to different domains by disassembling them into
transferable modules that can be reassembled differently. We focus on a
class of embodied agents known as Voxel-based Soft Robots (VSRs). They
are aggregations of elastic blocks of soft material; as such, their morpholo-
gies are intrinsically modular. Nevertheless, controllers used until now
for VSRs act as abstract, disembodied processing units: disassembling
such controllers for the purpose of module transferability is a challenging
problem. Thus, the full potential of modularity for VSRs still remains
untapped. In this work, we propose a novel self-organizing, embodied
neural controller for VSRs. We optimize it for a given task and morphol-
ogy by means of evolutionary computation: while evolving, the controller
spreads across the VSR morphology in a way that permits emergence of
modularity. We experimentally investigate whether such controller (i) is
effective and (ii) allows to tune its degree of modularity, and with what
kind of impact. To this end, we consider the task of locomotion on rugged
terrains and evolve controllers for two morphologies. Our experiments
confirm that our self-organizing, embodied controller is indeed effective.
Moreover, by mimicking the structural modularity observed in biological
neural networks, different levels of modularity can be achieved. Our find-
ings suggest that the self-organization of modularity could be the basis
for an automatic pipeline for assembling, disassembling, and reassembling
embodied agents.

1 Introduction
One long-term vision for robotics is building fully autonomous robotic ecosys-
tems (Eiben, 2021). Such robotic communities would cooperate and act to solve
tasks that are either too dangerous (e.g., rescue missions, space exploration) or
impossible (e.g., digesting pollutants, navigating the vessels of the human body)
for humans. In these ecosystems, robots would participate in a pipeline of au-
tomatic reconfiguration: as the task and environment change, new robots are
“born” and reconfigured from past robots (Buchanan et al., 2020; Hale et al.,
2019). In such a pipeline, having a robotic “library” of (pre-optimized) modules
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would be desirable for the automatic assembly of new robots. Clearly, modu-
larity plays a crucial role, as it can potentially ease the process of reconfiguring
robotic components.

In this paper, we consider Voxel-based Soft Robots (VSRs) (Hiller & Lipson,
2012), aggregations of elastic cubic blocks made of soft material. As such,
VSRs are intrinsically modular. VSRs have emerged as a relevant formalism
for studying state-of-the-art robotics systems, e.g., soft robotics (Rus & Tolley,
2015). By virtue of their softness, they follow in the steps of natural evolution
and resemble natural organisms more closely than their rigid counterparts. They
have proved capable of solving challenging tasks, like squeezing through tight
spaces (Cheney et al., 2015) and underwater locomotion (Corucci et al., 2018),
as well as crossing the sim-to-real gap and designing living organisms (Kriegman,
Blackiston, et al., 2020; Kriegman, Nasab, et al., 2020).

Albeit their bodies are intrinsically modular, controllers used until now for
VSRs act as abstract, disembodied processing units: disassembling such VSRs
for the purpose of reassembling in a different manner, perhaps by combining
modules from different VSRs, is a challenging problem. Indeed, modularity is
a very desirable property in the road towards fully autonomous robotic ecosys-
tems. Thus, despite the tremendous achievements of VSRs, the full potential
for modularity remains unexploited.

To address this dilemma, we here propose a novel self-organizing, embodied
Artificial Neural Network (ANN)-based controller for VSRs. Nodes and edges
are precisely located throughout the VSR body without a topology fixed a
priori. We optimize the controller for a locomotion task (on rugged terrain) and
a morphology by means of Evolutionary Computation (EC) (De Jong, 2006):
while evolving, the controller spreads and self-organizes across the VSR body
in a way that permits emergence of modularity. In fact, self-organization allows
to tune the degree of neural complexity across the body. In doing so, we tap
into the power of Evolutionary Algorithms (EAs), a family of algorithms that
has successfully been applied to the field of robotics (Nolfi & Floreano, 2000;
Sims, 1994).

We experimentally inquire whether such controller (i) is effective at solving
the task, (ii) is transferable by means of disassembling and reassembling its
body and what role modularity plays in the process, and whether (iii) it allows
for the automatic discovery of modules.

Our experimental results confirm that our controller is indeed effective. We
also find that, when disassembling and reassembling by combining modules from
different VSRs, modularity is crucial: more modular controllers turn out to be
more transferable than less modular controllers. Finally, our embodied, self-
organizing controller allows for the automatic discovery of modules to be trans-
ferred. As such, this work positions itself in the road towards an automatic
pipeline for the fabrication of new robots in a human-out-of-the-loop manner
by assembling modules from other robots.
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2 Related work
This work is relevant for research on the topic of modularity in the fields of
artificial intelligence and robotics. Modularity is an emergent property of a
complex system, typically a network. We take inspiration from Yamashita and
Tani (2008) and distinguish between structural and functional modularity. In
the former, dense connectivity within modules and sparse connectivity between
modules emerge. In the latter, a network supports many different functional
patterns. For the sake of this study, we are mostly concerned with structural
modularity.

From a biological viewpoint, many scientists agree that modularity (the abil-
ity to separate functional processes into modules) played a key role in the evolv-
ability of natural systems (G. Wagner et al., 2007; G. P. Wagner & Altenberg,
2005). Recently, Gutai and Gorochowski (2021) suggested that modern ANNs
are much less modular than biological neural networks, and thus suffer from be-
ing monolithic. Concurrently, Eiben (2021) put modularity under the spotlight
as a key ingredient in the road toward fully autonomous robotic ecosystems.
Indeed, Faiña (2021) described the benefits of modularity as simplifying the
search space for robotic morphologies and controllers. Additionally, as made
clear in Yim et al. (2007), the versatility, robustness, and cheapness of modular
robots make them suitable to deployment in a short time.

Under these premises, there has been a growing body of literature devoted to
the topic of modular robotics. Starting from the early theoretical formulations
(Neumann & Burks, 1966), the last decades saw many physical realizations
being proposed (Howison et al., 2021), including soft ones (Sui et al., 2020).
Platforms for the automatic design and manufacture of robots from modular
components have also been recently explored (Faiña et al., 2015; Moreno et al.,
2018). Although interest and progress have been remarkable, there still remain
practical and theoretical challenges to be addressed (Liu et al., 2016). In this
scenario, our work can be seen as a stepping stone toward reconfigurable robots
with non-trivial control.

While the idea of optimizing ANNs by means of EC is definitely not new
(de Garis, 1998; Kitano, 1990; K. Stanley et al., 2009; K. O. Stanley & Miikku-
lainen, 2002), not a lot of studies have investigated the interplay between evolu-
tion of ANNs and modularity. Even more, while their achievements have been
tremendous, most state-of-the-art neuroevolutionary algorithms fail to produce
modular ANNs (Clune et al., 2010). The handful of studies related to evolution
and modularity mostly highlight the many benefits of modular ANNs, especially
when applied to robotic tasks. In a series of experiments (J. Bongard, 2011; J. C.
Bongard et al., 2015; Cappelle et al., 2016), modularity turned out to improve
the generalization abilities of robotic agents, and Ellefsen et al. (2015) showed
it can also subdue the infamous problem of catastrophic forgetting in ANNs
(French, 1999) via reinforcement learning. Other studies highlighted the in-
terlink between modularity and specialization (e.g., multi-tasking), both under
a computational (Schrum & Miikkulainen, 2014) and a biological (Espinosa-
Soto & Wagner, 2010) perspective. Finally, in a computational biology study,
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Clune et al. (2013) demonstrated how modularity can emerge in ANNs as a
“spandrel”—i.e., a phenotypic trait that is a byproduct of evolution of some
other trait (Gould & Lewontin, 1979)—to minimize connection costs between
neurons.

Despite being ground-breaking, these works suffer from one (or both) of the
following pitfalls. First, only some of them (J. C. Bongard et al., 2015; Cap-
pelle et al., 2016) are conducted under the embodied cognition paradigm, which
postulates that intelligence emerges from the complex interactions between the
brain, the body, and the environment (Brooks, 1990; Pfeifer & Bongard, 2006).
The others consider ANNs that function as abstract processing units, and are
not pervasive with respect to the body they control. Indeed, Mitchell (2021)
listed a lack of embodiment as one of the four “fallacies” of artificial intelligence,
and the dualist bias “body vs. mind” is well-known to be rooted in our culture
(Bloom, 2004). Second, even when under an embodiment perspective, none of
them addresses how to self-organize modularity inside a robotic agent body and
exploit it for the sake of reconfigurability.

In this work, we build on our previous research in the field of evolutionary
robotics. In (Medvet, Bartoli, De Lorenzo, & Fidel, 2020), we proposed a
representation for a distributed and embodied controller and a reconfigurability
procedure for VSRs that, together, proved effective. For the sake of this study,
we term that procedure disassembly-reassembly and describe it thoroughly in
Section 5.2.1. Later, in (Medvet et al., 2021), we showed how that representation
could be made more compact without loss of effectiveness or diversity. We
extend our previous studies by introducing a self-organizing controller that is
capable of supporting differing degrees of complexity across the body; as a result,
it is better suited to further exploit the intrinsic modularity of VSRs.

3 Background: Voxel-based Soft Robots
Voxel-based Soft Robots (VSRs) are a kind of modular robots composed as ag-
gregations of elastic cubic blocks (voxels), made of soft material. Each voxel acts
by contracting or expanding its volume and it is the overall symphony of vol-
ume changes that allows for the emergence of behavior at the robot level. VSRs
were first formalized in Hiller and Lipson (2012), together with a fabrication
method. In this work, we consider a 2-D variant of simulated (in discrete time
and continuous space) VSRs (Medvet, Bartoli, De Lorenzo, & Seriani, 2020a).
While disregarding one dimension certainly makes these simulated VSRs less
realistic, it also eases the optimization of VSR design, thanks to the smaller
search space. We remark, however, that the representation and the algorithms
adopted in this paper are easily portable to the 3-D setting.

In the following, we outline the characteristics of VSRs relevant to this study,
and refer the reader to (Medvet, Bartoli, De Lorenzo, & Seriani, 2020a, 2020b)
for more details. A VSR is completely defined by its morphology (i.e., the
body) and its controller (i.e., the brain). The former is in turn built with a
shape, dictating how many voxels the robot is constructed with and how they
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are arranged in a 2-D grid, and a sensory apparatus, telling what are the sensors
and how they are placed over the robot body. Sensors can provide information
about the external environment and the robot itself, a capability that has been
shown to be effective for locomotion (Talamini et al., 2019). The controller is
in charge of determining how the area of each voxel varies over time, based on
the sensor readings.

3.1 VSR morphology
The morphology of a VSR describes how the voxels, i.e., deformable squares
of side length l = 3m, are arranged in a grid topology of size w × h. Each
voxel is modeled as the assembly of spring-damper systems, masses, and dis-
tance constraints (Medvet, Bartoli, De Lorenzo, & Seriani, 2020a) and is rigidly
connected to its four adjacent voxels (if present). We set the same parameters
for the components of each voxel as the default ones; as a result, all the voxels
share the same mechanical properties.

Over time, being elastic soft blocks, the voxels change their area according
to (a) external forces acting on the voxel (e.g., other voxels and bodies like
the ground) and (b) a control signal dictated by the controller. The latter
produces a contraction/expansion force that is modeled in the simulation as an
instantaneous change in the resting length of the spring-damper systems of the
voxel. The length change is linearly dependent on an actuation value residing
in [−1, 1], −1 being the greatest possible expansion and 1 being the greatest
possible contraction. The controller sets the actuation value for each voxel, at
every time step of the simulation.

A VSR can be equipped with sensors, and each voxel can have one or more
sensors. A sensor outputs, for every time step, a sensor reading s ∈ Rm, where
m is the dimensionality of the sensor type. In this study, we equip VSRs with
four different types of sensor. Area sensors sense the ratio between the current
area of the voxel and its resting area (m = 1). Touch sensors sense whether
the voxel is currently touching another body different from the enclosing VSR
(e.g., the ground) or not, and output a value of 1 or 0, respectively (m = 1).
Velocity sensors sense the speed of the center of mass of the voxel along the
x- and y-directions (m = 2). Lidar sensors sense the distance to the closest
objects along a predefined set of directions. Precisely, for each direction, a lidar
sensor measures the distance between the voxel center of mass and the closest
object in that direction, clipping it to d. If no object is present at all, the sensor
reading is set to d. We used d = 10m and the following directions with respect
to the positive x-axis: − 1

4π, − 1
8π, 0, 1

8π, 1
4π (so m = 5). Sensor readings

undergo a soft normalization, with tanh function and rescaling, to ensure the
output is in [0, 1]m. After normalization, every sensor reading s is perturbed into
s′ = s+ ν, with ν = {νi}i ∈ Rm and νi ∼ N (0, σ2

noise) being additive Gaussian
noise of mean 0 and variance σ2

noise. We set σnoise = 0.01. The purpose of this
transformation is to simulate real-world sensor noise and, indirectly, to favor
generalization ability in the evolved controllers.

Figure 1 shows two example VSRs simulated using our software.
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(a) Biped (b) Worm

Figure 1: A biped and a worm example morphologies, taken at a snapshot of the
simulation. Each square is a voxel. The color represents the ratio between its
current area and its rest area: red stands for contraction, green for expansion,
yellow for no change. The semi-circular sectors drawn at the center of each
voxel encode the sensor readings, and are partitioned into subsectors according
to the number of sensors; subsectors are further partitioned according to the
sensor dimensionality m. The red lines depict the rays of the lidar system.

3.2 VSR controller
The controller is the main focus of this study. Let n be the number of voxels of
the VSR and let r(k) = [s1 s2 . . . ] be the concatenation of sensor readings for
all the VSR sensors at time step k, i.e., at time t = k∆t, where ∆t is the interval
between two simulation time steps. The controller is a dynamical system with
input r(k) and output a(k) ∈ [−1, 1]n.

Previous works dealing with VSRs employed different approaches in instan-
tiating this general definition, with different degrees of complexity. In some
works, as, e.g., (Cheney et al., 2013), the controller output a(k) depends only
on k, i.e., it does not exploit the information coming from the sensors. In other
cases, as, e.g., (Talamini et al., 2019), the controller does not have a state, i.e.,
a(k) depends only on the current r(k). In the latter scenario, the controller can
be modeled as a function a(k) = f

(
r(k)

)
, or simply a = f(r). In this condition,

and if the function f : Rp → Rn can be parametrized with a numerical vector
θ ∈ Rq, then the problem of finding a good controller given a morphology and
a task can be cast as a numerical optimization problem.

3.3 Limitations of most controllers
Several kinds of controllers have proven effective for robotics tasks, includ-
ing phase controllers (Joachimczak et al., 2016), central pattern generators
(Kamimura et al., 2004), and ANNs (Ferigo, Iacca, Medvet, & Pigozzi, 2021;
Talamini et al., 2019). Nevertheless, the majority of them are disembodied and
do not self-organize, suffering from limitations that we detail here.
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First and foremost, they do not allow for the full exploitation of modularity
and reusability. Consider the case of disassembling a VSR for the sake of trans-
ferring its components to other robots and reusing them. A disembodied con-
troller, being tightly bound to the morphology, would require to be re-designed
from scratch. Indeed, the difficulties controllers face when adapting to unseen
morphologies have been documented by Lipson et al. (2016). In fact, a learned
controller is coupled with the overall VSR morphology and how it interacts with
the environment, consistently with the embodied cognition paradigm (Pfeifer &
Bongard, 2006). Once transferred to a new morphology, controllers have to be
learned all over again, resulting in the notorious “catastrophic forgetting” prob-
lem (French, 1999), i.e., controllers learned for one problem become ineffective
when transferred to a new one.

Second, they usually do not self-organize their structure, shrinking the space
of possible functions that can be explored. Self-organization is beneficial as it
can discover emergent properties that cannot arise by virtue of a single intelli-
gence only. In nature, self-organization provides mechanisms that evolution can
exploit (Johnson & Lam, 2010) and instances of self-organizing intelligence are
countless in biology.

Our controller addresses all of these shortcomings by virtue of its embodi-
ment and self-organization properties, as we explain in the following.

4 Embodied, self-organizing neural controller
4.1 Design goals
Based on the considerations drawn in Section 3.3, we want our controller to be:

(a) Embodied: it has to be located in the robot body.

(b) Self-organizing: it must permit different degrees of complexity in different
parts of the body. The actual distribution of complexity that fits a given
task and morphology must emerge from optimization.

(c) Optimizable for a given task and morphology.

4.2 Definition
Based on the vast existing literature on ANNs, which are well-known universal
function approximators (Goodfellow et al., 2016; Schäfer & Zimmermann, 2006),
and considering previous applications of ANNs for controlling VSRs (Ferigo,
Iacca, & Medvet, 2021; Medvet et al., 2021; Talamini et al., 2019), we decided
to rely on ANNs for building our embodied, self-organizing controller.

We represent the controller as a directed graph G = (V,E) encoding an ANN
where V are the nodes and E are the edges. The nodes of the graph are the
neurons, and the edges of the graph are the synapses between them describing
how computation flows over the ANN.
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Each node is a tuple v ∈ N × {0, . . . , w − 1} × {0, . . . , h − 1} × T , where
the elements of the tuple constitute the node attributes that we denote using
the following dot notation, for the sake of clarity. v.index ∈ N is the unique
identifier for the node in the graph and its sole purpose is to formally permit
the existence in V of nodes with the same values for all the other attributes.
v.x ∈ {0, . . . , w − 1} and v.y ∈ {0, . . . , h − 1} are the coordinates of the voxel
the node is placed into—recall that a VSR morphology is a grid of size w × h.
v.type ∈ T = {sensor,hidden,actuator} is the neuron type. Each node of
type sensor is statically associated with one element of one sensor placed in
the same voxel of the node. Similarly, each node of type actuator is statically
associated with the actuator of voxel the node is in.

Each edge is a tuple e ∈ V × V × R × R. e.source ∈ V and e.target ∈ V
are the source and target nodes, respectively. e.weight ∈ R is the edge weight.
e.bias ∈ R is the edge bias.

Since each one of the nodes of V is located in a precise voxel of the morphol-
ogy, the controller is embodied, which meets our first design goal. As a further
consequence, nodes and edges can be located more or less densely across the
morphology, which meets our second design goal.

4.3 Computation
During the simulation, at each time step the controller reads the readings from
the sensors and inputs them to sensor neurons, propagates the values across
hidden neurons, and outputs as actuation values the values that reached the
actuator neurons.

In detail, the controller works as follows. Let in(v) ⊆ E be the set of
incoming edges of a node v. Let h(k)(v) ∈ R be the activation value of node
v at step k. Collectively, the activation values {h(k)(v)}v∈V of all the neurons
v ∈ V constitute the state of the controller at step k. Initially, at k = 0, we set
each activation value to 0. Then, we update the state as follows. If the node is
a sensor neuron, then we set h(k)(v) to the tanh of the element of the current
reading of the sensor associated with the node. Otherwise, we set the activation
value to:

h(k)(v) = tanh

 ∑
e∈in(v)

h(k−1)(e.source) · e.weight + e.bias

 (1)

The concatenation of the activation values of the nodes of type actuator forms
the actuation values a(k) at step k.

In other words, at time step k every node sends the activation value to all its
outgoing neighbors. At the next time step k + 1, the neighbors, in turn, apply
the activation function to it and save the result as the activation value for the
next time step. Every edge propagates a message only once per time step, at
every time step. Having no real incoming neighbors, a sensor node treats the
sensor reading as if it was the message propagating from an incoming neighbor.
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We remark that this controller is a dynamical system, since there is a delay
of one time step in the propagation of information along each edge. Moreover,
we remark that the controller representation does not forbid cycles in the graph.

4.4 Optimization
We want to optimize a controller, i.e., a graph as defined in Section 4.2, for a
given task and a given robot morphology.

Graphs are, in general, difficult to optimize: being the search space non-
numeric, we cannot employ standard numerical optimization algorithms. We
resort to EC for optimization. Indeed, EAs have already proven capable of
dealing with graph-like structures (Medvet & Bartoli, 2020; Miller & Harding,
2008; K. O. Stanley & Miikkulainen, 2002), provided that a fitness function
and an appropriate representation are given. Additionally, EAs have also been
argued to be a competitive alternative when optimizing ANNs for continuous
control tasks (Such et al., 2017). EC is thus suitable for achieving the third
design goal.

We used the EA in Algorithm 1. It evolves a fixed-size population of npop
individuals, i.e., graphs, initially set randomly, for a fixed number of ngen gen-
erations. At each generation, the current population is used to generate an
offspring of npop new individuals that are then merged into the parent popula-
tion. Each new individual G′ is generated by applying mutation to a parent G
selected with tournament selection with size ntour. After parents and offspring
have merged, the population for the next generation is selected by picking the
npop best individuals, i.e., using truncation selection.

1 function evolve():
2 P ← initialize(npop)
3 foreach i ∈ {1, . . . , ngen} do
4 P ′ ← ∅
5 foreach j ∈ {1, . . . , npop} do
6 G← selectTournament(P, ntour)
7 G′ ← mutate(G)
8 P ′ ← P ′ ∪ {G}
9 end

10 end
11 P ← P ∪ P ′

12 P ← truncate(sort(P ), npop)

13 end
Algorithm 1: The EA used in our experiments.

Since the controller consists in a graph, we used genetic operators suitable
for this kind of representation. In particular, we used five mutation operators:
edge mutation, edge addition, edge removal, node addition, and node removal.
In line 7 of Algorithm 1, we beget an offspring G′ by first copying the parent
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G and then applying one of the five mutation operators according to their rela-
tive probabilities pmut, pedgeAdd, pedgeRemove, pnodeAdd, and pnodeRemove. In the
following, we detail the five mutation operators:

• Edge mutation. We randomly pick an edge e ∈ E with uniform probabil-
ity and mutate its weight and bias with additive Gaussian noise, i.e.,
e.weight← e.weight + α and e.bias← e.bias + β with α, β ∼ N (0, σ2

mut).

• Edge addition. We randomly pick two nodes u, v ∈ V with uniform probabil-
ity, such that u.type 6= actuator and v.type 6= sensor. Then, we add
an new edge e from u to v, i.e., with e.source = u and e.target = v, and
we set e.weight, e.bias ∼ U(−1, 1).

• Edge removal. We randomly pick an edge e ∈ E with uniform probability
and delete it from the graph. If, after this operation, there are hidden
nodes having no incoming and outgoing edges left, we remove them from
V to decrease redundancy of the representation (Rothlauf, 2006; Rothlauf
& Goldberg, 2003).

• Node addition. We randomly pick two nodes u, v ∈ V with uniform probabil-
ity, such that u.type 6= actuator and v.type 6= sensor. We then create
a new hidden node w and set w.x and w.y to be the coordinates of a voxel
picked at random. Finally, we add an edge e from u to w and an edge e′

from w to v and we set e.weight, e.bias, e′.weight, e′.bias ∼ U(−1, 1).

• Node removal. We randomly pick a hidden node v ∈ V with uniform prob-
ability and delete it from the graph, together with all its incoming and
outgoing edges. If, after this operation, there are hidden nodes having no
incoming and outgoing edges left, we remove them from V .

We initialize each individual of the initial population as follows. We add to v
a sensor node for each sensor reading element in the given morphology, associate
v the node with it, and set v.x and v.y to the coordinates of the voxel hosting the
sensor. We add to V an actuator node v for each voxel in the given morphology,
associate v the node with the actuator, and set v.x and v.y to the coordinates of
the voxel. For each actuator node v and each sensor node u in the same voxel,
we add to E an edge e from u to v and we set e.weight, e.bias ∼ U(−1, 1).

As a result of this initialization procedure, there are no edges encroaching on
different voxels for the VSRs of the very first generation, and the controllers can
be regarded as being minimal. We adopt this initialization strategy in line with
the complexification principle of starting minimally and incrementally growing
topologies of ANNs (K. O. Stanley & Miikkulainen, 2002).

We remark that the mutation operators that affect the topology of the graph,
i.e., edge and node addition (or removal), by changing the preference for edges
inside or outside modules, can affect the degree of modularity of the controller.
This consideration will reveal itself useful in Section 5.2.
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We used the same parameter values for all experiments, with values deter-
mined after preliminary experiments, with the exception of ngen that is de-
tailed separately for every experiment. We set npop = 96, ntour = 5, σmut =
0.7, pmut = 0.5, pedgeAdd = 0.1, pedgeRemove = 0.1, pnodeAdd = 0.15, and
pnodeRemove = 0.15.

4.5 Advantages and limitations of the embodied, self-or-
ganizing controller

The controller presented in this section addresses the design goals presented in
Section 4.1 and has several advantages.

First, as required by the first design goal, it is embodied, as the nodes are
precisely located throughout the VSR body. By virtue of this property, the
VSR brain can be partitioned into subgraphs (by selecting subsets of nodes
and the edges incident to them), and each of the subgraphs can then be traced
back to the portions of body it belongs to. At the same time, should the VSR
being dissected into physical modules (e.g., for the sake of transferring it to
assemble a new VSR), each physical module would then be able to refer to the
subgraph of the controller it was the embodiment for. As a result, each subgraph
(once transferred with its physical counterpart) still finds itself in a body it is
acquainted with, and is well-positioned to exploit the representations learned
during its “previous life”. Other studies have indeed highlighted how modular
controllers are less prone to catastrophic forgetting (Ellefsen et al., 2015). Since
functional modules, i.e., units sharing the same function or purpose, can arise
in embodied agents, the representations learned locally in a given functional
module could well be transferred to a new module performing the same, or a
similar, function.

Since both the topology and the parameters can freely evolve in the body,
our controller is self-organizing and thus satisfies the second design goal. This
fact bears an important consequence: emergent properties, that would not arise
without self-organization, can be observed. This is a consequence of the ex-
pressiveness of our representation: the search is performed in the space of every
possible topology (and parametrization) encompassing a given morphology. We
remark that there is no upper (or lower) bound on the length (measured, for
example, in terms of voxels to be crossed) of the edges. Potentially, interesting
long-range synapses can be established between the neurons of the controller
(e.g., between the two legs of the biped shape presented in Figure 1). Remark-
ably, self-organization can also be biased purposely in order to explore some
portions of the search space more densely, with the goal of easing the emergence
of some properties we deem interesting a priori. Moreover, self-organization
could be used as a way of testing how the “brain” of a robot adapts with re-
spect to the sensors and the robot shape, and make fascinating parallels with
neuroscience. As intriguing as it may be, we did not explore this last topic
further, and leave it for future work.

Third, messages propagate over the graph one hop at a time, and these
delays could be exploited by the optimization algorithm to introduce timed
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dependencies that would not be possible otherwise. As a proof of concept,
Cheney et al. (2014) demonstrated the benefits of having messages propagating
“physically” across a VSR body and the claim is biologically grounded (Segev
& Schneidman, 1999). Moreover, we remark our model is stateful, and could
thus show interesting temporal dynamic behavior, as it couples two dynamical
systems, the mechanical one and the controller one. Contrarily, a stateless
controller (without cycles and delays) couples its own static system with only
the mechanical dynamical system.

Fourth, distributing the controller delivers advantages on its own. Dis-
tributed controllers do not suffer from having a single point-of-failure, and would
thus prove resilient to both exogeneous (e.g., environmental changes) and en-
dogeneous (e.g., malfunctions) threats once deployed in vivo. As a biological
counterpart, animals that excel in regenerating their amputated limbs, like sea
stars (Lawrence, 2020), usually have a distributed nervous system1; some species
can even beget stand-alone new individuals from fragments of their bodies, like
flatworms of the genus Planaria do (Gentile et al., 2011). Although there is
evidence that these properties are due to pluripotent stem cells (Baguna et al.,
1989), having a less centralized nervous system intuitively eases regeneration.

We remark that the way we model the embodied, self-organizing controller
in this study also implies a few limitations.

First, the location of nodes within voxel is actually relevant only for nodes
of types actuator and sensor. Since there are no differences in the way
the activation value is computed between pair of nodes located in the same or
different voxel, a controller is in practice functionally invariant with respect to
the location of hidden nodes. In order to verify the practical impact of this
modeling choice, we conducted an experimental campaign where we explicitly
took into account the location of hidden nodes too as follows. We modified
the edge addition genetic operator in such a way that long connections had a
lower probability of being added: as a consequence, the location of all nodes—
including hidden nodes—matter when evolving the controller topology. We do
not present the full results for brevity, but we found that the controllers evolved
in this way were in general worse than those evolved without considering nodes
location. As an alternative, we could take into account node location also by
introducing longer delay in information spreading along long connections: we
leave this possibility for future work.

Second, we do not model the cost of complex and large controllers. As a
consequence, there are no factors driving the evolution towards parsimony: we
expect the complexity of the network to increase virtually unbounded during
the evolution. In fact, this is what we observed in our experiments. While
we acknowledge that the physical realization of arbitrarily complex neural con-
trollers might be unfeasible, the size of the controllers we evolved in this study
is in practice small, in the order of few hundreds of nodes and edges.

1Notable exceptions being salamanders (Joven et al., 2019) and axolotls (Roy & Gatien,
2008).
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(a) Biped (b) Worm

Figure 2: The two morphologies used in our experiments.

5 Experimental evaluation
We performed several experiments aimed at answering experimentally the fol-
lowing research questions:

RQ1 Is the proposed controller effective?

RQ2 Does it enable module transferability? Can transferability be favored
or disadvantaged?

RQ3 Can we automatically discover modules?

For answering these questions, we performed several experiments with two
different VSR morphologies, depicted in Figure 2. We experimented with a 4×3
(size of the voxel grid constituting the shape) rectangle with a 2 × 1 rectangle
of missing voxels at the bottom-center, that we call biped, and with a 6 × 2
rectangle, that we call worm. We use similar sensor configurations for the two
shapes: area sensors for every voxel, touch sensor for the voxels in the bottom
row of the shape, velocity sensors for the voxels in the top row of the shape, and
lidar sensors for the voxels in the rightmost column of the shape. This sensor
configuration results in an overall number of 31 = 10 · 1 + 2 · 1 + 4 · 2 + 3 · 5
sensor nodes and 10 actuator nodes in the controllers for the biped and 40 =
12 · 1 + 6 · 1 + 6 · 2 + 2 · 5 sensor nodes and 12 actuator nodes in the controllers
for the worm.

For all the experiments, we considered the task of locomotion. The goal of
the VSR is to travel as far as possible on a terrain along the positive x direction
in a fixed amount of simulated time. The fitness of the individual is the average
velocity, measured as:

v̄x =
xc(tfinal)− xc(ttransient)

tfinal − ttransient
, (2)

where xc(t) is the x-position of the center of mass of the VSR at time t. We set
tfinal = 30 s and ttransient = 5 s to discard the initial transitory phase and avoid
deceptive and inconclusive behaviors (Whitley, 1991). Locomotion is a classic
task in evolutionary robotics and usually consists in making the robot run along
a flat surface. We here used instead an uneven (hilly) terrain with bumps. The
bumps have an average height of 1m (3m being the side length of a voxel)
and an average distance of 10m. Moreover, we used a different hilly randomly-
generated terrain at every fitness evaluation, so as to prevent the robots from
“overfitting” to a single terrain profile, making adaptation more challenging.
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We implemented the software for the experimental evaluation in Java, build-
ing on two frameworks: JGEA2 for the evolutionary optimization and 2D-VSR-
Sim3 (Medvet, Bartoli, De Lorenzo, & Seriani, 2020a) for the simulation of
VSRs. In the simulations, we set the time step to ∆t = 1

60 s and all other pa-
rameters to default values. The code for the experiments is publicly available
at https://github.com/pigozzif/SelfOrganizingVSRController.

For each experiment, unless otherwise specified, we performed 10 evolution-
ary runs by varying the random seed for the EA. We remark the each simulation
is instead deterministic, given a terrain and a VSR. After verifying the adequate
hypotheses, we carried out all statistical tests with the Mann Whitney U rank
test for independent samples (Mann & Whitney, 1947) using, unless otherwise
specified, 0.05 as confidence level.

5.1 RQ1: effectiveness of evolved controllers
We say that a controller is effective if it meets two criteria: (a) it can successfully
solve the task at hand and (b) it is clearly more complex than the minimal
controller. The latter point is crucial, since a controller that has not evolved
to be more complex than the minimal controller could not be considered “self-
organizing”, invalidating all of our conjectures. We thus introduce a simple, yet
effective measure of controller complexity that measure its size:

|G| = |V |+ |E| (3)

that is the sum of the number of nodes and edges of the graph. Concerning the
success in solving the task, we measure it using the robot average velocity v̄x,
as defined in Equation (2).

We ran an experimental campaign with 10 runs lasting ngen = 3000 genera-
tions each, and for the two shapes introduced previously.

Figure 3 shows, for the two shapes, the best individual velocity v̄x and
controller size |G| during the evolution. For both indexes, the figure shows the
median ± standard deviation across the 10 runs.

Table 1 reports the results in terms of |G|, and its components |V | and |E|,
for the best individual at the last generation, separately for the two shapes, and
compares them with the values at the start of evolution. Recall that, for a given
shape, |G|, |V |, and |E|, are the same for every individual in the first generation
(given a morphology). For the indexes at the last generation, the table shows
the median and standard deviation across the 10 runs.

From the table and the figure, we observe that the evolved VSRs turn out
to be effective according to our criteria. First, evolution is capable of finding
good solutions to the locomotion task. In fact, the best individuals run on
average at v̄x = 5m/s at the end of evolution, against approximately 0.5m/s at
the beginning, signifying a considerable gain in locomotion skills. We visually
inspected the behaviors and found them to be highly effective for locomotion

2https://github.com/ericmedvet/jgea
3https://github.com/ericmedvet/2dhmsr
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Figure 3: Median ± standard deviation (solid line and shaded area) across the
10 runs of the robot velocity v̄x (top) and controller size |G| (bottom) for the
best individual, for biped (left) and worm (right).

Initial At last generation
Shape |V | |E| |G| |V | |E| |G|
biped 45 35 80 88.5±17.3 96.5±26.8 179.5±42.2
worm 52 40 92 99.0±16.6 115.0±24.8 216.0±39.4

Table 1: Median and standard deviation of number of nodes |V |, number of
edges |E|, and controller size |G| for the best individual, at initialization and at
the last generation.
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(a) Biped (video available at https://youtu.be/qkVa9hiOveI)

(b) Biped (video available at https://youtu.be/oYeaZwtR8OI)

(c) Worm (video available at https://youtu.be/k1f2vQNyrEU)

(d) Worm (video available at https://youtu.be/HaZHnaRIPqA)

Figure 4: Time-lapse showing locomotion for two bipeds and two worms chosen
randomly among the 10 best individuals resulting for each of the two morpholo-
gies.

on a hilly terrain. As a proof of concept, Figures 4a to 4d are time-lapse images
for the movement of two bipeds and two worms chosen randomly among the 10
best individuals resulting for each of the two shapes. As can be seen from the
pictures, bipeds hop on their legs, and worms inch forward as a caterpillar would
do. To appreciate even more the adaptive behaviors exhibited by the robots,
the videos of all the 10 best bipeds and worms can be found respectively at
https://youtu.be/-ECoa1tffok and https://youtu.be/jADw6Qf70g0. As a side
comment, we found the gaits evolved with the self-organizing controller to be
particularly fluid when compared to our previous works (Medvet, Bartoli, De
Lorenzo, & Fidel, 2020; Medvet et al., 2021; Talamini et al., 2019).

Second, the evolved controllers do increase well beyond their initial size
during evolution. As a matter of fact, the numbers reported in Table 1 imply
there is a 149% median increase in |G| for the biped shape, and a 135% median
increase for the worm shape. Figure 3 corroborates this finding by showing an
upward trend in the |G| lines over the evolution (right plot), even though it
appears to decelerate toward the end. At the same time, there does not seem
to be an unexpected difference in contribution to |G| between nodes and edges
(the latter being slightly more abundant than the former).

By manually inspecting the evolved controllers, in particular the locations of
nodes and edges over the body, we noticed some patterns. Most notably, long-

16

https://youtu.be/qkVa9hiOveI
https://youtu.be/oYeaZwtR8OI
https://youtu.be/k1f2vQNyrEU
https://youtu.be/HaZHnaRIPqA
https://youtu.be/-ECoa1tffok
https://youtu.be/jADw6Qf70g0


range edges do arise. For example, numerous edges connect the front part to
the rear part of many worms. Intuitively, they establish a feedback mechanism
that is necessary to inch forward as a caterpillar would do. Another recurring
feedback mechanism evolved between the two legs of bipeds, contributing to
their signature gait (i.e., hopping between the front and the rear leg). These
facts altogether point out that self-organization is indeed at work.

5.1.1 Impact of topology optimization

By looking closer at Figure 3, it looks like velocity reaches a plateau well before
controller growth stops. Indeed, there is no evidence controller growth stops
at all. It might be the case that there exists some sort of “critical mass” of
the controller such that, after a local optimum in the fitness space is reached,
evolution keeps adding redundant genetic material (i.e., neurons and edges that
do not necessarily contribute to the locomotion skills of the VSR). Since we do
not disfavor in any way the addition of new edges and nodes that do not modify
the functionality of the overall controller, we can speculate we are witnessing
an instance of the bloat phenomenon (Silva & Costa, 2008) observed in the
evolution of computer programs (also known as genetic programming, see Koza
(1993)). It has been argued that bloat is beneficial to the individual as it
provides a buffer against the deleterious effects of mutation and recombination
(López et al., 2011). Interestingly, there is a rich body of literature in biology
on the benefits of neutrality, after the work of Kimura (1979).

But then, does self-organization really matter? In other words, if (we spec-
ulate) bloat is at work, it might be that all those hidden neurons and edges are
just excess genetic material, and evolution is simply optimizing the set of initial
edges (those between sensors and actuators) and their parameters. To shed light
on this argument, we performed an ablation study, aiming at exploring what
happens if we evolve only the weights and biases and not the topology of the
controller (which is stuck to be the initialization topology, see Section 4.4). In
particular, we reset pmut = 1 and all other mutation probabilities to 0. Figure 5
summarizes the results by showing the boxplots for the distribution of the v̄x of
the best individuals at the last generation for the two cases: with and without
topology optimization. Interestingly, the distributions are radically different.
We carried out a one-sided Mann Whitney U test with the null hypothesis that,
for each shape, the median of the best fitness for evolving the topology is greater
than the median best fitness for not evolving the topology. We found that the
null hypothesis can be rejected at the 0.05 significance level (p-value < 0.001 for
both shapes). Even though this result is valid only for this kind of initialization,
it still suggests that self-organization does indeed benefit evolution.

5.2 RQ2: module transferability
Because of the way we defined the controller, specifically, since we put nodes
inside voxels, it is clear that it can by-design be disassembled together with the
morphology. Nevertheless, achieving module transferability in practice requires
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Figure 5: Boxplots for the distribution of the velocity v̄x of the best individu-
als at the last generation, for biped (left) and worm (right), obtained with or
without topology optimization. The bars above pairs of boxes show the corre-
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also a reassembly phase, in which disassembled modules are reused for building
a new VSRs. We hence define a way of transferring modules, by means of a
disassembly-reassembly procedure, and a way for measuring the effectiveness of
the transfer.

5.2.1 Disassembly-reassembly procedure

Let r1, r2 be two donor robots that have been optimized for a given task. We
assume that each of the robots can be disassembled in at least two modules, a
module being a connected subset of robot voxels. The disassembly-reassembly
procedure consists in building a new, reassembled robot r′ by combining at least
one module from the first robot and at least one module from the second robot.
We measure the transferability of the two modules used to build r′ as the relative
ability of r′ to solve the task with respect to the ability of the donors r1, r2.
We remark that this definition of transferability is somehow limited, as it does
not measure the degree to which robot modules can be re-used for arbitrarily
different tasks. Nevertheless, we believe that the possibility of reusing modules
for the same task is indeed useful (and, hence, it is important to quantify this
possibility): in the long term, re-using parts of disposed robots might be an
enabling factor for fully autonomous robotic ecosystems (Hale et al., 2019).

In the specific scenario of locomotion and with robots equipped with our
controller, we cast this general definition as follows. When disassembling a
robot, for each resulting module we drop all the edges whose source or target
nodes are not located in voxels belonging to the module. When reassembling
a robot from existing modules, we do not add any new edge between nodes
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located in different modules—in some preliminary experiments, we explored
other options, e.g., “rewiring” crossing edges at random, but we found they do
not deliver any advantage. We measure transferability as:

ρ =
v̄x,r′

v̄x,r1+v̄x,r2

2

, (4)

where v̄x,r1 , v̄x,r1 , and v̄x,r′ are the velocities of the three robots.
Since some edges of the controller get dropped in the disassembly-reassembly

procedure, before measuring the velocity v̄x,r′ of the reassembled robot r′, we
re-optimized it by means of the same EA used for from-scratch optimization
(see Algorithm 1), yet starting from a different initial population. This re-
optimization is of crucial importance, since we want the new VSRs to be effec-
tive and we expect the reassembled robot to benefit from a reasonable amount of
fine-tuning. The overall goal, however, is of making reassembly of pre-optimized
modules cheaper than optimizing from scratch. In detail, the initial population
of the re-optimization is composed of the controller G′ of the reassembled robot
r′ and npop − 1 mutations of G′ obtained by applying the same mutation oper-
ators (with the same probabilities) of the optimization step (see Section 4.4).

We remark that the disassembly-reassembly procedure requires to (a) define
a partitioning of the two donor robots r1 and r2, (b) select one or more modules
of r1 and one or more modules of r2, and (c) define a way to combine the selected
modules. It is evident that modules transferability strongly depends on these
three key choices. As an example, consider the case in which two “trunks” com-
ing from two legged robots with different morphologies, each with a trunk and
a few legs, are glued together: it is very unlikely that the resulting “trunk-only”
robot will be effective in locomotion, since it has no legs. The representation
of the controller on transferability, hence, clearly plays a secondary role. In the
next sections, for answering RQ2, we manually choose reasonable options for
these three choices. Later, in Section 5.3, we show how our representation may
be helpful while coping with the first choice (partitioning a robot in modules)
automatically.

5.2.2 Experimental procedure

We considered the two morphologies of the previous experiments and manually
partitioned them in modules as shown in Figure 6. Then, we proceeded as
follows.

First, we performed 10 evolutionary runs for each of the two morphologies,
obtaining ten bipeds and ten worms. Then, we performed two types of reassem-
bly for each morphology: an homogeneous one, where modules of the reassem-
bled robots come from robots with the same morphology, and an heterogeneous
one, where modules came from robots with the other morphology.

In the homogeneous case, we proceeded as follows. For the biped and for each
i ∈ {1, . . . , 10}, we reassembled a new biped by taking the red and blue modules
(the “legs”) from the i-th biped (i.e., the best individual obtained at the end of
the i-th run) and the yellow module (the “torso”) from the ((i+ 1) mod 10)-th
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(a) Biped (b) Worm

Figure 6: Our manual partitioning in modules (one color for each module) of
the two morphologies.

biped. Similarly, for the worm and for each i ∈ {1, . . . , 10}, we reassembled a
new worm by taking the red module (the “back half”) from the i-th worm and
the yellow module (the “front half”) from the ((i+ 1) mod 10)-th worm.

In the heterogeneous case, we proceeded as follows. For the biped and for
each i ∈ {1, . . . , 10}, we reassembled a new biped by taking the red and blue
modules from the i-th biped and the yellow module from the i-th worm. For
the worm and for each i ∈ {1, . . . , 10}, we reassembled a new worm by taking
the red module from the i-th worm and the yellow module from the i-th biped.

After reassembly, we re-optimized each resulting reassembled robot with the
EA of Algorithm 1 with the population initialization procedure modified as
described in Section 5.2.1. For the re-optimization, we set ngen = 510, a compu-
tational budget which is remarkably lower than the one used for optimization
(≈ 17%).

Upon re-optimization, we measure transferability ρ as defined in Equa-
tion (4). We also count how many edges were cut during disassembly, and
compute the sum of their weights and biases in absolute value, as proxies of
how much destructive that operation is. To make figures comparable, we cast
these indexes as relative to their corresponding values before the disassembly.
We denote by ηnum the ratio between the number of edges dropped from a
module upon disassembly and the overall number of edges in the module (be-
fore disassembly). Similarly, we denote by ηweight the ratio between the sum
of weight and bias (in absolute value) of edges dropped from a module upon
disassembly and the overall sum for edges in the module (before disassembly).

In the next subsection, we present the results and comment on them.

5.2.3 Results

Figure 7 reports the median (across the 10 reassembled robots for each morphol-
ogy and each reassembly type, i.e., homogeneous and heterogeneous reassembly)
ρ during the re-optimization for four combinations. We remark that a value of
ρ = 1.0 (on the y-axis) corresponds to fully recovering the average velocity of
the donors.

Our disassembly-reassembly procedure partially succeeds in recovering the
lost functionality, in the homogeneous as well as in the more challenging het-
erogeneous combinations. Due to the intrinsic hardness of the heterogeneous
reassembly case, and for the sake of brevity, in the following, we discuss only

20



0

0.2

0.4

0.6

0.8

1

ρ

Biped-biped (homogeneous) Worm-worm (homogeneous)

0 200 400
0

0.2

0.4

0.6

0.8

1

Generation i

ρ

Biped-worm (heterogeneous)

0 200 400

Generation i

Worm-biped (heterogeneous)
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reassembly type, during the re-optimization for four combinations.
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the homogeneous case.
The magnitude of the effect differs by morphology; bipeds hover above 60%

and worms just fall short of 80%. Nevertheless, we are far from recovering (let
alone outclassing) the average velocity v̄x of donors. Arguably, the morphol-
ogy also affects transferability, with more “primitive” shapes like worm being
advantaged.

For explaining why recovering is not complete, we looked at the values of
ηnum and ηweight, that measure the impact of disassembly in terms of edges
being cut. Median values are ηnum = 0.60 and ηweight = 0.56, for the biped,
and 0.45 and 0.38 for the worm. In other words, the disassembly of a robot
in modules is a very destructive operation for the VSR controller and the re-
optimization struggles in recovering the lost structure. Interestingly, values of
ηnum and ηweight are lower for the worm (fewer edges are cut) and this is somehow
reflected in the value of ρ, that is greater for the worm than for the biped.

5.2.4 Fostering modularity

Having observed that the removal of edges crossing modules appears to be detri-
mental to transferability, we designed a variant of the EA for evolving controllers
that is aimed at discouraging the use of edges crossing modules. In other words,
with this variant we can foster the modularity of the controller.

In detail, the EA is the same as the one presented in Section 4.4, with
the exception of two mutation operators. We introduce a biased edge addition
operator, and a biased node addition operator, that substitute the original edge
addition and node addition operators (edge removal and node removal are left
untouched, as well as the mutation probabilities).

In the biased edge addition operator, when picking the pair of nodes u, v to
be connected by the new edge (see Section 4.4), instead on using uniform proba-
bility, we pick pairs whose nodes are in the same module with a probability that
is ω larger than the probability of picking nodes that are in different modules.

In the biased node addition operator, choice of nodes u, v works as above;
the new node w is placed in a random voxel of the module, if u, v are in the
same module, or in a random voxel of the robot, otherwise.

The role of the parameter ω is to determine the degree of preference toward
modularity. With ω > 1 we foster modularity, with ω < 1 we discourage
modularity, with ω = 1 we are neutral, i.e., we use exactly the same operators
of the original EA of Section 4.4.

While designing this variant, i.e., the two biased mutation operators, we
got inspiration from nature. In fact, G. P. Wagner et al. (2001) suggest that
only two processes can foster modularity in biological systems: parcellation and
integration. The latter consists in the selective acquisition of genes that map
to phenotypic traits belonging to the same module. In other words, modular
phenotypic traits are favored by evolution. In the light of this consideration,
biased edge addition and biased node addition, by favoring connectivity within
modules, can be seen as a simplified form of integration. The same processes (of
parcellation and integration) have been fruitfully exploited for modular ANNs
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Figure 8: Median ρ, across the 10 reassembled robots for each morphology,
during the re-optimization for biped (left) and worm (right) and for the three
EA variants (line color).

in Mouret and Doncieux (2009), but dealing with a different set of tasks and
not under an embodiment perspective.

For assessing the effectiveness of this variant in fostering modularity, i.e., fa-
voring module transferability, we performed an experimental campaign following
the same procedure described in Section 5.2.2 with three EAs: the original one
(ω = 1, “neutral” in the figures), one with ω = 10 (“more modularity” in the
figures), and one with ω = 0.1 (“less modularity” in the figures), the latter as a
sort of control group.

Figure 8 summarizes the main outcome of this experimental campaign by
reporting the median (across the 10 reassembled robots for each morphology) ρ
during the re-optimization for the two morphologies and the three variants.

The foremost observation is that the two new variants perform as expected—
the result of the “neutral” variant is, obviously, the same as in the previous
experiments. There seems to be a stark contrast between the median profile of
ρ of the different variants. Not only do modular controllers, i.e., those obtained
with ω = 10, recover more quickly than neutral ones, i.e., those obtained with
ω = 1, but they also appear to be more fit at the very end of evolution. The
same holds true when comparing neutral controllers with their non-modular
counterparts, i.e., those obtained with ω = 0.1. Statistical tests comparing
median ρ across the evolutionary runs showed the differences at the end of re-
optimization are indeed significant, with the exception of the neutral vs. modular
and neutral vs. non-modular pairings for the worm shape.

We hypothesize that, intuitively, the observed differences are due to the dif-
ferent number of edges that are cut upon disassembly for the three variants,
that we report in Figure 9. It can be seen from the figure that modular con-
trollers stay in the range of 0.25–0.5 of edges cut (ηnum), while the proportions
are higher for the neutral and non-modular variants. The plots for ηweight cor-
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Figure 9: Boxplots for the distribution of ηnum of ηweight (rate of edges cut upon
disassembly) for the two morphologies and the three EA variants. The bars
above pairs of boxes show the corresponding p-value.

roborate this interpretation. Statistical tests, whose outcomes are reported in
Figure 9, support our claim that the three variants are different in terms of ηnum
and ηweight.

As an aside, by looking at the raw values of v̄x after the re-optimization,
we observe that the magnitude of the loss with respect to the value of the
donor robots varies with the morphology, being less pronounced for worms,
and more evident for bipeds, and that worms have, on average, less edges cut.
Undoubtedly, the configuration influences how large is the gap between bipeds
and worms, with modular biped controllers being more or less at the same level
as their worm counterparts, whereas we witness a 30% hiatus with non-modular
controllers. For this, we conjecture the reason to be that the long-range edges
(non-modular controllers are biased toward) bear more importance in bipeds
rather than worms. This fact is meaningful if we consider the gait of bipeds and
the many long-range edges that evolve between the two legs (see Section 5.1).

For gaining further insights about the three variants, we compared them in
terms of the outcome of the first optimization, i.e., we looked at the values of
v̄x and |G| obtained before the disassembly-reassembly procedure. Figures 10
and 11 summarizes the results concerning these indexes, respectively as the
median values for v̄x and |G| during the evolution and as the boxplots for the
distributions of the value of v̄x of the best individuals at the end of the evolution.

It can be seen that, for what concerns the size |G| of controllers, the three
variants exhibit negligible differences. From another point of view, favoring or
discouraging modularity does not impact on the self-organization of the con-
troller.

Concerning the velocity v̄x, Figure 10 seems to suggest that there are some
differences. In particular, it looks like modular evolved VSRs are, on average,

24



0

2

4

6

v̄ x

Biped Worm

0 1 000 2 000 3 000
50

100

150

200

250

Generation i

|G
|

0 1 000 2 000 3 000

Generation i

neutral more modularity less modularity

Figure 10: Median ± standard deviation (solid line and shaded area) across the
10 runs of the robot velocity v̄x (top) and controller size |G| (bottom) for the
best individual, for biped (left) and worm (right) and for the three EA variants.

0

5

10

0.13

0.70

0.01

v̄ x

Biped

0.33

0.60

0.26

Worm

plain more modularity less modularity

Figure 11: Boxplots for the distribution of the velocity v̄x of the best individuals
at the last generation, for biped (left) and worm (right), obtained with the three
EA variants. The bars above pairs of boxes show the corresponding p-value.

25



less fit than neutral ones, which in turn seem to be, on average, less fit than
their non-modular counterparts. Despite those differences are not statistically
significant (see the p-values in Figure 11), we think they can be explained by
the role of long-range edges, i.e., edges crossing several voxels. Non-modular
controllers might outperform the others because their long-range edges (they
are implicitly biased toward) carry “more” information. More broadly, the ef-
fectiveness of a procedure for favoring or disfavoring modularity, might depend
on the choice on how to split the robot in modules. However, we here compared
EA variants using the same choice for modules and we do not have any argu-
ment for hypothesizing that a different choice might be better for favoring or
disfavoring modularity.

To summarize, two conclusions can be made. First, in line with the em-
bodied cognition paradigm, morphology impacts transferability. Second, after
disassembly-reassembly, we do not always fully recover the lost functionality of
the donor robots. In particular, the degree of modularity does impact the trans-
ferability of an embodied controller. There are, however, two caveats: (a) mod-
ularity appears to negatively affect average velocity v̄x before disassembly and
(b) favoring modularity requires the manual definition of modules before the
optimization. The latter point is undeniable, but we will next introduce a pro-
cedure for the automatic discovery of modules inside VSRs having an embodied,
self-organizing controller.

5.3 RQ3: automatic modules discovery
So far, we assumed that the partitioning in modules of a given morphology was
known a priori, i.e., before the optimization of a controller for that morphology.
We were hence considering a human-in-the-loop scenario, in which the human
designer plays a key role in defining modules.

In this section, we propose a way for discovering modules a posteriori, i.e.,
after the optimization, and automatically: we hence consider a human-out-of-
the-loop scenario. More specifically, we propose a method to partition a VSR
with a given morphology into modules, inclusive of both body and brain, after
the optimization of an embodied, self-organizing controller for that morphology.

While the human-in-the-loop setting is interesting per se, e.g., for transfer-
ring robotic components and assembling new robots, the human-out-the-loop
would be interesting even in the long-term, visionary setting of an autonomous
robotic ecosystem; in this scenario, the ecosystem could be made more efficient
by reusing (recycling) components of robots that have to be disposed of. As
principled instantiation of this scenario, consider the ARE project (Hale et al.,
2019).

The proposed method works as follows. Let r be the VSR to be partitioned in
modules and let B be the morphology (i.e., the set of voxels with their positions
in the grid) of r and G = (V,E) the controller of r. Let (B′, G′) be a candidate
module, with B′ ⊆ B being a connected subset of voxels of r and G′ = (V ′, E′)
the subgraph of G containing all the vertexes V ′ ⊆ V located in voxels of B′

and all the edges E′ ⊆ E whose source or target nodes are in V ′. We define the
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(a) Biped

(b) Worm

Figure 12: A random subset of robots partitioned in modules with the auto-
matic procedure, one color for each module. The module with the greatest
compactness is depicted in red.

module compactness c(B′, G′) of a candidate module (B′, G′) as:

c(B′, G′) =

∑
e ∈ E′

inside|e.weight|+ |e.bias|∑
e ∈ E′|e.weight|+ |e.bias|

, (5)

where E′
inside = {e ∈ E′ : e.source ∈ V ′ ∧ e.target ∈ V ′} is the subset of E′

edges which do not cross the boundaries of the module, i.e., whose source or
target nodes are in V ′.

Based on the module compactness definition, we propose this procedure for
partitioning a VSR into modules. First, we identify all the candidates modules
whose size |B′| is in a given range [bmin, bmax]. Second, we find the candidate
module with the greatest compactness and partition the robot in that module
and the modules remaining after removing it. The number of modules resulting
from this procedure can be larger than 2, if, upon the removal of the module
with the greatest compactness, the remaining part of the robot is not physically
connected—see, for example, Figure 12a.

The rationale of this procedure is to exploit the findings of the previous ex-
periments, that suggest that cutting edges is deleterious with respect to module
transferability. We remark that the procedure itself is applicable because the
controller is a graph distributed over the body.

Other graph clustering techniques exist in the literature that we could have
used in place of module compactness. To name a few, these include minimum
cut algorithms (Goldschmidt & Hochbaum, 1988), spectral clustering (Seary
& Richards, 1996), and community detection algorithms (Girvan & Newman,
2001). While any of the above would be a legitimate choice, we here adopt a
simple approach that is still intuitive, easy to implement and effective.

We performed a qualitative evaluation of this procedure by applying it to
the VSRs evolved in the experiments described in Section 5.1. After preliminary
experiments and taking into account the size of the biped and of the worm, we
set bmin = 2 and bmax = 5. Figure 12 shows a few of the partitioning that we
obtained in this experiment.

By looking at the modules with greatest compactness (i.e., the red ones),
we notice some patterns. For the biped shape, there seems to be a tendency to
find modules that span horizontally across the body, connecting the front with
the rear. It might be the case that dense neural connectivity subsists between
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these two body parts. This is likely to be useful in a gait that is alternated like
the biped one. To a lesser extent, the same considerations can be made for the
worm shape.

We envision such modules to be of high utility when assembling brand new
VSRs from pre-optimized components. As a result, this heuristic could well fit
in an automatic pipeline of robot disassembly and assembly, where new VSRs
are fabricated in a human-out-of-the-loop manner by assembling modules picked
from a repository and briefly fine-tuning them.

6 Concluding remarks
We have considered the case of VSRs, a kind of robots that are intrinsically mod-
ular in the morphology. Existing methods for building controllers for VSRs are
not, however, capable of exploiting the modularity of the morphology. Address-
ing this limitation would permit to disassemble robots in modules, encompassing
both the body and the brain, and to reassemble them differently, to cope, e.g.,
with malfunctions, broken components, or different environments and tasks.
In the long term, enhancing modularity of VSRs would enable the building of
libraries of pre-optimized modules that can be reused over and over.

We proposed a representation for an embodied, self-organizing neural con-
troller in which nodes and edges of the ANN are located at precise voxels in the
VSR morphology. We also described an EA suitable for evolving a controller
with our representation given a task and a morphology. With an extensive
experimental campaign, we showed that:

(i) our representation and EA allow to obtain effective controllers for the task
of locomotion;

(ii) VSRs with evolved controllers can be disassembled and reassembled in
different VSRs and are able, after a cheap re-optimization, to recover the
original functionality;

(iii) modularity can be favored or discouraged by means of a simple numerical
parameter in the mutation operators of the EA and this is reflected in the
abilitity of recovering the functionality;

(iv) due to its self-organizing property, our controller can be helpful for par-
titioning automatically a VSRs in modules that exhibit potentially good
transferability.

7 Data and code policy
We made all the code to replicate the experiments publicly available at https:
//github.com/pigozzif/SelfOrganizingVSRController.
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