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Abstract
We explore nonequilibrium features of certain operator algebras which appear
in quantum gravity. The algebra of observables in a black hole background is a
Type II∞ von Neumann algebra. We discuss how this algebra can be coupled to
the algebra of observable of an infinite reservoir within the canonical ensemble,
aiming to induce nonequilibrium dynamics. The resulting dynamics can lead
the system towards a nonequilibrium steady state which can be characterized
through modular theory. Within this framework we address the definition of
entropy production and its relationship to relative entropy, alongside exploring
other applications.
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1. Introduction

The Quantum Extremal Surface prescription [13] has played an important role in recent
advancements toward deriving the Page curve for evaporating black holes [4, 5, 36, 37]. More
broadly, this underscores the significance of a comprehensive understanding of entropy within
the context of quantum gravity. A crucial step in unraveling the mechanisms of the Anti de
Sitter/Conformal Field Theory (AdS/CFT) correspondence lies in precisely determining how
information about bulk degrees of freedom is encoded on the boundary.

Recently the use of operator algebras has emerged as a promising tool for elucidating the
connection between quantum gravity, entropy and information [28, 29, 34, 35]. In particular a
proper consideration of gravitational dynamics in a black hole background naturally leads to a
Type II von Neumann algebra [10, 47]. These results have been extended to various directions,
such as other spacetimes [7, 11, 19, 26] or subregions thereof [2, 22, 30], diverse setups [1,
8, 14, 17, 24, 25, 38] and the realm of quantum chaos [16, 18, 33]. Recent articles reviewing
aspects of the theory relevant to this article include [42, 43, 45, 46]. The resulting gravitational
algebras appear to encode most of the relevant properties anticipated in quantum gravity.

Several processes involving gravity, such as black hole evaporation, occur outside of equi-
librium.While equilibrium thermodynamics has been instrumental in understanding black hole
physics and gravity in general, certain processes necessitate departure from this regime. The
crucial role played by von Neumann algebras in recent developments provides an avenue to
connect with the formalism of nonequilibrium statistical mechanics.

In this paper we take a first modest step in this direction by adapting the general setup used
to study nonequilibrium quantum statistical mechanics, as reviewed in [6, 20, 39], to the grav-
itational algebras which appear in the context of holography. We achieve this first by coupling
the gravitational algebras to an external reservoir. The implementation of this coupling requires
the gravitational algebras to be associated with the canonical ensemble formalism of [47]. Such
gravitational algebras are Type II∞ algebras which arise from the crossed product of Type III1
algebras. Physically this crossed product corresponds to incorporating 1/N corrections in the
boundary theory. While coupling the boundary theory to a reservoir involves a straightforward
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modification of the relevant Hamiltonians, including 1/N corrections is more subtle, necessit-
ating the study of Kubo-Martin-Schwinger (KMS) structures and their deformations, as well
as aspects of Tomita-Takesaki theory.

Once the coupling is established, the system can transition to a new equilibrium state or,
more intriguingly, approach a nonequilibrium steady state (NESS). The characterization of
NESS is challenging, but we implicitly describe it in terms of the system’s dynamics. In partic-
ular we can relate explicitly the entropy production during the evolution to the relative entropy
between the relevant state and a reference state. Finally we discuss how we expect our results
to be useful in the study of evaporating black holes and of quantum chaos.

The purpose of this note is to establish an algebraic formalism, which will be used else-
where. We aim for generality, somewhat overlooking practical applications. The latter heavily
depend on specific details chosen for the interaction term between the boundary theory and
the reservoirs.

The main achievements of this note revolve around extending various results from nonequi-
librium statisticalmechanics to gravitational algebras. In the literature, these results are tailored
for finite-dimensional systems, typically characterized by a type In algebra, interacting with
an infinite reservoir. While we will see that extending these findings to type II∞ algebras can
be straightforward in some cases, it often requires a more intricate approach. For example this
will be the case when computing the modular operator of the system coupled to the reservoir
or delving into the analysis of NESSs and entropy production for classical-quantum states.

This note is organized as follows. Sections 2 and 3 are reviews of certain aspects of oper-
ator algebras and the construction of gravitational algebras that are relevant to this paper. In
section 4 we explore the nonequilibrium dynamics of these gravitational algebras arising from
coupling to reservoirs, and in section 5, we discuss entropy production. In both Sections we
briefly discuss the analog results for finite dimensional systems before generalizing them to
the case at hand. Finally in section 6 we briefly touch upon some applications, before ending
with our conclusions.

2. Modular structures

In this section we briefly review certain aspects of quantum dynamical systems and modular
theory towards the study of systems out of equilibrium.

2.1. Quantum dynamical systems

The thermodynamic limit of quantum systems can be conveniently described using operator
algebras. In this formalism a (W∗) quantum dynamical system is a pair (A,α) where A is a
von Neumann algebra and R ∋ t→ αt a one parameter group of ∗-automorphisms of A. The
dynamics α is formally defined for a ∈ A as

αt (a) =
∞∑
m=0

tm

m!
δma= e tδa (2.1)

where δ is the infinitesimal generator of α. The generator is a derivation, with δ(ab) =
δ(a)b+aδ(b) and δ(a†) = δ(a)†.
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For example if H is a finite dimensional Hilbert space and B(H) denotes the algebra of
bounded operators on H, then given H a self-adjoint operator,

αt (a) = e i tHa e− i tH (2.2)

is a dynamics generated by δ(a) = i [H,a].
A state ω on the algebra A is α-invariant if ω ◦αt = ω for all t ∈ R (by which we

mean ω(αt(a)) = ω(a) for every operator a ∈ A). To an invariant state ω on the quantum
dynamical system (A,α) the Gelfand–Naimark–Segal (GNS) construction associates the triple
(Hω,πω,Ωω) and the dynamics is generated by a one-parameter group t−→ Uω(t) of unitary
operators

πω (α
t (a)) = Uω (t) πω (a) Uω (t)

† (2.3)

which is unique for a given α.
We can define a perturbed dynamics starting from a perturbation V ∈ A via the generator

δV = δ+ i [V, · ] (2.4)

and setting αtV = e tδV . The perturbed dynamics is described by the Dyson expansion

αtV (a) = αt (a)+
∞∑
n=1

ˆ t

0
dt1

ˆ t1

0
dt2 · · ·

ˆ tn−1

0
dtn i [α

tn (V) , i [· · · , i [αt1 (V) ,αt (a)] · · · ]] .

(2.5)

2.2. Quantum KMS states

A state ω on (A,α) is (α,β)-KMS for some inverse temperature β ∈ R if ∀a,b ∈ A there
exists a function Fβ(a,b;z) which is analytic in the strip

Sβ = {z ∈ C |0< Im(zsgnβ)< |β|} , (2.6)

continuous on its closure and such that the following two conditions hold

• Fβ(a,b; t) = ω(aαt(b)),
• Fβ(a,b; t+ iβ) = ω(αt(b)a),

on its boundary. Note that if ω is (αt,β)-KMS, then it is also (αkt,β/k)-KMS. On the other
hand KMS states at different temperatures but with the same dynamics are not simply related.

The KMS conditions are equivalent to

ω (ba) = ω
(
aα iβ (b)

)
(2.7)

which can be taken as characterization of KMS states. In particular this condition implies that
a (α,β)-KMS state is α-invariant.

In the example of a finite dimensional Hilbert space (B(H),α), with α given in terms of a
Hamiltonian H, there is a unique thermal equilibrium state ω given by

ω (a) =
1
Z
Tr
(
e−βHa

)
(2.8)
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with Z= Tr
(
e−βH). Then

ω
(
aα iβ (b)

)
=

1
Z
Tr
(
e−βHae i( iβ)Hbe− i( iβ)H

)
=

1
Z
Tr
(
e−βHba

)
= ω (ba) . (2.9)

A crucial result in Araki’s theory of perturbation of KMS structures is that there is a one to
one correspondence between the set of (α,β)-KMS states and the set of (αV,β)-KMS states.

In the course of the paper wewill sometime encounter states which corresponds to vectors in
someHilbert space.Wewill denote the functional and the vector with the same letter, but lower
and upper case respectively; for example the functional φ and its vector Φ. This notation will
descend to the crossed product where states are denoted with hats, for example the functional
φ̂ and the vector Φ̂.

2.3. Tomita–Takesaki theory

Consider a von Neumann algebraA acting on a vector spaceH. Recall that a vectorΨ ∈H is
cyclic if AΨ is dense in H and separating if aΨ = 0 for some a ∈ A implies a= 0. A vector
which is both cyclic and separating is calledmodular. The relation betweenmodular theory and
finite temperature physics is that given a dynamics (A,α) any (α,β)-KMS state is modular.

If Ψ is a modular vector for A, then the map aΨ −→ a†Ψ determines an anti-linear invol-
ution S. Its polar decomposition S= J∆1/2

Ψ define the modular conjugation J and the modular
operator ∆Ψ. The cornerstone of Tomita-Takesaki theory is the result:

• JAJ=A ′, where A ′ is the commutant of A,
• ∆− i t

Ψ A∆ i t
Ψ =A for any t ∈ R

In particular σt(a) = ∆− i t
Ψ a∆ i t

Ψ defines a ∗-automorphism of A which is called the modular
group.

The modular group is deeply related to the KMS condition. An equivalent characterization
of the modular operator is

⟨Ψ |ab|Ψ⟩= ⟨Ψ |b∆Ψ a|Ψ⟩ . (2.10)

Consider for example a finite dimensional case. The modular operator defines the modular
hamiltonian H as∆Ψ = e−βH. Suppose the system is in thermal equilibrium so that the mod-
ular operator is associated to a Gibbs distribution. Then if a(t) = αt(a) = e i tHae− i tH denotes
the time evolved operator in the Heisenberg picture, we see that

⟨Ψ |a(t) b|Ψ⟩= ⟨Ψ |b∆Ψ a(t) |Ψ⟩= ⟨Ψ |b e i(t+ iβ)Hae− i(t+ iβ)H|Ψ⟩= ⟨Ψ |ba(t+ iβ) |Ψ⟩ ,
(2.11)

since H|Ψ⟩= 0. This shows that the state Ψ out of which the modular group is constructed is
(αt,β)-KMS1.

The above statement also holds in the infinite dimensional setting, where it is a very non-
trivial condition. It implies certain analytical properties of the correlators. In essence it says

1 This simple example also helps to set up our conventions. In the following we will deal with modular hamiltoniansH
defined via ∆= e−H. Then the associated state is KMS with inverse temperature β =+1. Most of the mathematics
literature use the opposite convention, defining∆= eH, so that the associated state is KMS with inverse temperature
β =−1.
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that every state on a von Neumann algebra determines an automorphism (a ‘time’ flow) on the
algebra, for which the original state is KMS. Furthermore thanks to the Connes’ cocycle the-
orem, two automorphisms induced by two different states via the associated modular flow are
equivalent, by which we mean they are related by the composition of another automorphism.
We refer the reader to [43] for a nice discussion of these matters and accessible proofs of the
relevant statements.

Only in special conditions such flows have a direct physical interpretation. In the example
above the KMS condition characterizes thermal equilibrium. In thermal equilibrium the mod-
ular automorphism group represents time evolution. This establishes the physical link between
the modular hamiltonian and the automorphism group which determines the dynamics. This
is the familiar statement in equilibrium statistical mechanics that the statistical weight of a
thermal state is determined by the evolution operator. See for example [39] for a discussion.

2.4. Relative entropy

Similarly given two statesΨ andΦ one can introduce the relative Tomita operator SΦ |Ψ whose
action is

SΦ |Ψa |Ψ⟩= a†|Φ⟩ . (2.12)

The relative modular operator is then defined as∆Φ |Ψ = S†Φ |Ψ SΦ |Ψ, and the relative modular
hamiltonian is given by hΦ |Ψ =− log∆Φ |Ψ. The relative modular operator can be used to
define the relative entropy

S(Ψ∥Φ) =−⟨Ψ | log∆Φ |Ψ|Ψ⟩ . (2.13)

For example in a finite dimensional setting we can represent the state Ψ with a density matrix
ρ and the state Φ with a density matrix σ. In this case the the relative entropy assumes the
familiar form

S(Ψ∥Φ) = Trρ(logρ− logσ) . (2.14)

3. Gravitational algebras from holography

The work of [28, 29] shows the natural emergence of a certain algebra in the large N limit of
thermal correlators inN = 4 SYM. In such limit the only non vanishing thermal correlator of
subtracted single-trace operators of the form W = TrW−⟨TrW⟩β is the two point function.
Operators with this behavior define generalized free fields. The set of non-central operators of
this form in the large N limit form a certain von Neumann algebra. This algebra acts naturally
on a separable Hilbert space defined via the GNS construction, starting from a vector Ψ. The
inner product on this space is determined by the largeN limit of thermal correlators at a certain
temperature T= 1/β. When such temperature is above the Hawking-Page temperature the
algebra is a von Neumann algebra A0,R of Type III1. Above such temperature the state Ψ is
naturally identified with the thermofield double state

ΨTFD =
1√
Z

∑
i

exp(−βEi /2) |E⟩L⊗ |E⟩R (3.1)
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which physically represents a purification of the thermal density matrix

ρβ = Tr|ΨTFD⟩⟨ΨTFD|=
1

Z(β)

∑
i

e−βEi |E⟩r⟨E|r =
1

Z(β)
e−βH (3.2)

whenever this can be defined. In particular it is a pure state and its correlation functions are
thermal. The Hilbert space constructed in this way has a well defined large N limit.

In the AdS/CFT correspondence the dual of the thermofield double state above the
Hawking-Page temperature is the two-sided eternal black hole [31]. The algebra AR,0 is asso-
ciated with one of the boundaries and its commutant AL,0 =A ′

R,0 is a von Neumann algebra
of Type III1 associated with the other boundary. The algebras are respectively dual to the bulk
algebrasAr,0 andAl,0 which describe bulk quantum fields in the left and right exteriors of the
eternal black hole [28, 29].

The two algebras AR,0 and AL,0 are factors, which means that their center consists only of
c-numbers. This is a consequence of the fact that the construction of the algebras involves only
noncentral single-trace operators. Central single-trace operators form a finite dimensional set
and are associated with conserved charges. Among those are the boundary Hamiltonians HR

and HL which are related to the black hole mass via the duality. However the Hamiltonians do
not have a large N limit but only their difference Ĥ= HR−HL does. Indeed Ĥ annihilates the
thermofield double state. This operator is dual to ĥ, the conserved charge associated with the
killing vector field that generates time translations in the eternal black hole background, via
ĥ= βH.

To obtain a sensible large N limit one defines the rescaled and subtracted operators

UL =
HL−⟨HL⟩β

N
, UR =

HR−⟨HR⟩β
N

. (3.3)

These operators have a large N limit and they are central when N=∞. Moreover UR−UL =
Ĥ/N and therefore coincide in the strict N=∞ limit. In this case we can drop the labels and
simply call these operators U; U is a central operator for both AR,0 and AL,0.

Therefore one can incorporate the central generator U by simply tensoring the original
algebras with the algebra of bounded functions of U. The algebra AR =AR,0 ⊗AU acts now
on ĤTFD =HTFD ⊗L2(R) and its elements look like

â=

ˆ ∞

−∞
du a(u) e iuU (3.4)

for a ∈ AR,0. Now the thermofield double can be written as Ψ̂TFD =ΨTFD ⊗ g1/2(U), with g a
Gaussian function. State of this kind are called classical-quantum states. A similar story holds
for AL =AL,0 ⊗AU. In the large N limit AL and AR are still Type III1 algebras, but they are
not factors due to the presence of a non-trivial center, generated by U.

It was shown in [47] that taking into account 1/N corrections substantially improves the
picture and turn the algebras into von Neumann algebras of Type II∞. These kind of algebras
are quite different from the Type III algebras which appear in quantum field theory. They do
not have irreducible representations, which means that they do not describe microstates, but
have the advantage that one can define traces and density matrices, and therefore von Neumann
entropies.

The relevant construction is the so-called crossed product. We will now review in some
detail its definition and application to the case at hand following [10, 47], since we will use
this construction repeatedly in section 4. Abstractly the crossed product is defined as follows.
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Let A be an algebra acting on a Hilbert space H. The self-adjoint operator T generates a one
parameter group of automorphisms by e i sTAe− i sT. The crossed productA⋊R is defined as
the algebra acting on the Hilbert space Ĥ=H⊗ L2(R) generated by a⊗ 1 and e i sT⊗ e i sX.
Here L2(R) is the space of square summable functions of the auxiliary variable X.

If T is an inner automorphism the crossed product reduces to the ordinary tensor product.
The interesting case is when the automorphism generated by T is outer. In this case if the
algebra A is a III1 factor, then the crossed product algebra A⋊R is a II∞ factor and the
automorphism generated by T becomes inner. This is precisely our case. The thermofield
double stateΨTFD is associated to the modular operator∆= e−βĤ with Ĥ|ΨTFD⟩= 0. Tomita-
Takesaki theory implies that the automorphism generated by βĤ is outer for Type III algebras,
as is our case.

When we consider also 1/N corrections, the two operators UL and UR become distinct,
since UR = UL+βĤ/N. The operator UL still commutes with AR,0. We can therefore take
X= βNUL. The crossed product algebra AR is then the algebra that acts on Ĥ=H⊗ L2(R)
obtained by adjoining toAR,0 bounded functions of βĤ+X. This combination is morally HR,
which is not a well defined operator in the large N; the crossed product construction provides
a mean to include this operator in the algebra in a meaningful way.

The fact that AR is obtained via the crossed product by the modular automorphism group
seems to indicate that the full construction depends on the vector ΨTFD. However this is not
the case, as was proven in [47] by means of the Connes’ cocycle. Therefore henceforth we will
drop the subscript TFD and denote by Ψ a generic cyclic and separating vector and by ∆Ψ its
modular operator.

For classical-quantum states of the form Ψ̂ = Ψ ⊗ g(X)1/2 we can write down explicitly
the modular operator [47]

∆̂Ψ̂ =∆Ψ g
(
βĤ+X

)
g(X)−1

= KK̃ , (3.5)

where K ∈ A⋊RΨ and K̃ ∈ (A⋊RΨ)
′ are given by

K= e−(βĤ+X)g
(
βĤ+X

)
, (3.6)

K̃= eXg(X)−1
. (3.7)

In other words themodular operator factorizes. In the Type I algebras, which appear in ordinary
quantum mechanics, the Hilbert space of a bipartite system factorizes; similarly the modular
operator can be expressed as product of ordinary density matrices. For Type III algebras, which
appear in quantum field theory, neither the Hilbert space nor the modular operator factorize.
The Type II case is an intermediate situation where the Hilbert space does not factorize but the
modular operator does.

This factorization is important because we can use it to define the trace of an operator
â ∈ AR as

tr â= ⟨Ψ |âK−1|Ψ⟩ (3.8)

which is cyclic [47]. Note that this is defined up to a factor of e−c which comes from the
rescaling of K. For example if

â=

ˆ ∞

−∞
du a(u) e iuU (3.9)

8
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then

tr â=

ˆ ∞

−∞
dX eX ⟨Ψ |a(X) |Ψ⟩ . (3.10)

This algebra is a factor of Type II∞ and therefore the trace is not defined on all the elements,
but only on those such that the integral in (3.10) is convergent.

This definition of a trace is however not completely satisfactory. The appearance of the
operator X in the exponent means that there is a factor of N in the exponent. As a result these
traces cannot be expressed as formal power or Laurent series in 1/N but must be considered as
formal functions of N. Luckily this problem can be circumvented in the computations of the
entropies [10]. On the other hand using (3.10) as a formal expression can in many cases help
the intuition; therefore we will still employ it in the following.

If we accept that the above formula define a suitable trace, we can also introduce density
matrices. Recall that an element ρΦ̂ ∈ AR is a density matrix for a state Φ̂ if for all operators
â ∈ AR we have

tr âρΦ̂ = ⟨Φ̂|â|Φ̂⟩ . (3.11)

This density matrix is normalized to 1 but scales as ρΦ̂ −→ e−cρΦ̂ with the trace. Finally
existence of density matrices and of traces allow us to define the von Neumann entropy
S(ρ) =−Trρ logρ. For a state Φ̂ described by a density matrix ρΦ̂ the von Neumann entropy is
defined as

S
(
Φ̂
)
AR

=−⟨Φ̂| logρΦ̂|Φ̂⟩ . (3.12)

It follows from the above discussion that such an entropy is defined only up to an additive
constant and therefore only entropy differences are meaningful. Similarly one can also define
Renyi entropies.

For example taking the classical-quantum state Ψ̂ = Ψ ⊗ g(X)1/2, it follows from (3.8) that
ρΨ̂ = K and therefore

S
(
Ψ̂
)
AR

=

ˆ ∞

−∞
dX(Xg(X)− g(X) logX) . (3.13)

As we have discussed, traces and density matrices are not suitably defined for a Laurent
expansion in powers of 1/N. Nevertheless entropies are [10]. One can define entropies in the
canonical ensemble bypassing the construction of traces and density matrices as the expecta-
tion values of an operator which generates the modular flow. Indeed such an operator, morally
the logarithm of a density matrix, generates an inner automorphism in Type II algebras.

Consider a classical-quantum state Φ̂ = Φ ⊗ f(X)1/2. One can introduce the operator [10]

hΦ̂ =− 1
N

logρΦ̂ (3.14)

even if the expression ρΦ̂ is only formal. One finds that

NhΦ̂ = X+ hΦ |Ψ − log | f (UR) |+α(UR)+NS0 , (3.15)

which gives the entropy

S
(
Φ̂
)
AR

= Nβ⟨UR⟩+NS0 − S(Φ∥Ψ)−⟨log | f (UR) |⟩+ ⟨α(UR)⟩ . (3.16)
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Here we have used the relation hΨ − hΦ |Ψ = hΨ |Φ − hΦ which follows from the properties
of the Connes’ cocycle. The function α can be fixed by going to the next order in the 1/N
expansion as

α(UR) =− N2

T2CBH

U2
R

2
+ const , (3.17)

where CBH is the black hole heat capacity. In (3.16) both the constant NS0 and the function
⟨α(UR)⟩ are state independent and drop out when computing entropy differences.

Alternatively one can pass to the microcanonical ensemble, where traces and density
matrices can be defined without formal arguments [10]. However for the purpose of study-
ing the nonequilibrium dynamics we will continue to use the canonical ensemble.

4. Nonequilibrium dynamics

In this sectionwe discuss the nonequilibrium dynamics of the gravitational algebras introduced
in section 3. We start with a brief discussion on the operator formalism in nonequilibrium
statistical mechanics. Afterwards we couple the gravitational algebras to external reservoirs.
We discuss separately the case where the perturbed system approaches a KMS equilibrium
state or a genuinely NESS. In the KMS case we use the relation between statistical weights in
thermal states and the quantum dynamics to determine an automorphism of the algebra which
plays the role of time evolution. When discussing nonequilibrium physics we will follow [20,
39] closely and when needed generalize their results to algebras obtained from the crossed
product.

4.1. Generalities

At this stage we have an operator algebra which describes quantum gravity effects in a black
hole background. The black hole is in thermal equilibrium with its surroundings. We want
to introduce a perturbation to drive the system out of equilibrium. In principle this can be
done in several ways. In classical nonequilibrium statistical mechanics there are two principal
methods.

In the first scenario one starts with an Hamiltonian system with a large, but still finite,
number of degrees of freedom. The system is taken out of equilibrium, for example by time
dependent interactions, but still constrained to live within a fixed energy interval by a ther-
mostat. This scenario corresponds to a statistical description in terms of the microcanonical
ensemble.

In the second scenario we couple the original system to a number of reservoirs in thermal
equilibrium at different temperatures and we allow for the exchange of energy between the
original system and the reservoirs. This framework corresponds to the canonical ensemble.

It is this second scenario which we choose to work within. The reason is that it is easier from
the conceptual point of view. We should however stress that our system is infinite dimensional
to begin with. Furthermore the canonical gravitational algebras, as discussed in section 3,
are less understood than their microcanonical counterpart. Ultimately one expects that all the
ensembles become equivalent as the number of degrees of freedomgoes to infinity, but there are
certain aspects which still have to be clarified. For the present being we will ignore subtleties
in the definition of the canonical ensemble, like the difficulty in defining traces in the 1/N
expansion, leaving a more in depth discussion for the future.

10



Class. Quantum Grav. 41 (2024) 235006 M Cirafici

4.2. Close to and far from equilibrium

Equilibrium thermodynamics is characterized by the observation that macroscopic equilibrium
states are operationally definable in terms of macroscopic quantities, such as temperature and
entropy, that are non mechanical. In equilibrium there is no explicit time dependence and no
more reference to the dynamics after it has been used to define the microscopic ensembles.

Outside of the equilibrium regime, temperature and entropy may vary, with time and even-
tually with the position. The simples class of nonequilibrium states are the NESSs. From a
phenomenological point of view NESSs arise for example when bringing in contact two isol-
ated systems in equilibrium at different temperature. Before the whole system thermalizes,
there will be a regime characterized, for example, by a steady flow of heat from one system
to another. The precise details depend on the interaction between the two systems. NESSs are
simply defined as limits of initial states under time evolution, if such limits exist.

Consider a quantum dynamical system (A,α)which is in a α-invariant state ω. We imagine
perturbing the system with a self-adjoint operator V= V† ∈ A and denote by αV the perturbed
dynamics. Let (Hω,πω,Ωω) be the GNS representation of the algebra A associated with the
state ω. When no confusion is expected to arise, we will drop the label ω from the relevant
quantities and omit the map πω. A state η is called ω-normal if for every operator a ∈ A it can
be represented by using a density matrix, that is η(a) = Trρπω(a).

NESSs are then defined as limits of states under the perturbed evolution

ω+ (a) = lim
tk

1
tk

ˆ tk

0
ω ◦αtV (a) dt= lim

tk

1
tk

ˆ tk

0
⟨Ωω|αtV (a) |Ωω⟩dt , (4.1)

if such limit exists for a divergent sequence {tk}n∈Z+
and for all a ∈ A. Just like in the case of

thermal equilibrium, where a system can have several KMS states, NESSs need not be unique.
We denote by Σ+

V (ω) the set of NESSs which can be reached from ω due to the perturbation
V. Note that in particular ω+ could be a KMS state. Indeed Araki’s theory of perturbations of
KMS states gives a general framework to understand when this is the case, see for example
[9]. Similarly one can define Σ−

V (ω), in the far past. Note that a NESS is necessarily an αV -
invariant state.

We also expect that the limit is independent of the initial state in the sense that initial states
which are not too far apart, under weak ergodic hypotheses, will converge to the same limit.
For example it is enough that [20]

lim
T−→±∞

1
T

ˆ T

0
η ([αtV (A) ,B]) dt= 0 (4.2)

for all η ∈Nω. This condition of asymptotic abelianness is an ergodic condition and in general
very difficult to prove rigorously. It implies that in the long-time limit observables become
effectively non-interacting. For example it would be satisfied if the system thermalizes. If
this is the case then all η ∈Nω tend to the same limit and Σ±

V (η) = Σ±
V (ω). We expect this

condition to be satisfied for generalized free fields.
Any state can be decomposed into a normal part and a singular part, η = ηn+ ηs with ηn ∈

Nω and ηs is defined as the remaining part. The rationale behind this decomposition is that the
entropy production of a purely normal and αV -invariant state is always zero, as we will see
more in detail in section 5.

More in detail let us suppose that we start from a KMS state ω in a quantum dynamical
system (A,α). After a weak perturbation the system will eventually set in a NESS. Under
rather general conditions if the perturbation is sufficiently weak we expect that this NESS has

11
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the form of ωV , a KMS state for the perturbed dynamics (A,αV). In this case, as we will see
momentarily, Araki’s theory gives a precise expression for ωV .

Example. Consider again a finite dimensional isolated system governed by an hamiltonian
HS acting on a Hilbert space H. Introduce now a perturbation HS+V, so that the perturbed
dynamics is given by

αV (a) = e i t(HS+V)ae− i t(HS+V). (4.3)

The system is originally in the (α,β)-KMS Gibbs state

ω (a) =
TrH e−βHSa
TrH e−βHS

, (4.4)

and the state

ωV (a) =
TrH e−β(HS+V)a
TrH e−β(HS+V)

(4.5)

is the unique (αV,β)-KMS state associated with the perturbed dynamics. Note however that
by introducing

ΓVt = e i t(HS+V) e− i tHS (4.6)

and analytically continuing it to iβ/2, we can write

ωV (a) =
ω

((
ΓViβ/2

)†
a
(
ΓViβ/2

))
ω

((
ΓViβ/2

)†(
ΓViβ/2

)) , (4.7)

where the adjoint is needed to have the correct ordering of the operators. In particular it
follows that

ΩωV =
eβ/2(HS+V)Ωω

∥eβ/2(HS+V)Ωω∥
. (4.8)

Since ΓVt can be expanded in perturbation theory, one can relate the results of the perturbed
system to those of the unperturbed system.

While this example is spelled out in detail for finite dimensions, the main relations hold
also in the infinite dimensional case, under certain conditions [9]. To a state ω we associate an
Hilbert spaceHω and a cyclic and separating vectorΩω via theGNS construction. Themodular
operator associated to (Hω,Ωω) is ∆= e−H and governs the modular time evolution

α(a) = ∆− i ta∆ i t (4.9)

of the operators in the algebra. If we now introduce a perturbation V the system will settle into
a KMS state ωV , associated with a new vector ΩωV via the GNS construction. The modular
group automorphism is now implemented by the perturbed modular operator

∆V = e−(H+V−JVJ) (4.10)

12
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and has the form

αV (a) = ∆− i t
V a∆ i t

V . (4.11)

Note that the conjugate term JVJ is necessary to ensure that

[H+V− JVJ,J] = [V− JVJ,J] = 0 (4.12)

in the case when [V,J] ̸= 0. In the literature the operators H and H+V− JVJ are often called
the standard Liouvilleans L and LV associated with the evolution of the system.

When rephrased in terms of the standard Liouvillean the study of NESS becomes a spectral
problem [20]. Namely a NESS η which is in the kernel of LV is a KMS state for which ∆V is
the modular operator. On the other hand if kerLV = {∅} any NESS in Σ±

V (ω) is a genuinely
nonequilibrium state. Note that the operator (4.10) and the automorphism (4.11) both make
sense even if the system does not settle into a KMS state ωV but into a more general NESS,
which needs not be modular. This is similar to ordinary quantum field theory, where a Wick
rotation relates the evolution operator to the thermal equilibrium state; however the former
makes sense even when system is not in thermal equilibrium.

Now suppose we find ourselves in the following situation, which we will encounter when
studying gravitational algebras. We have a KMS state and its modular operator. Now we per-
turb the system and let it evolve into a NESS which is not in thermal equilibrium and in par-
ticular needs not to be modular, but for some reason we do not know how to write the auto-
morphism αV , maybe because the algebra is too complicated. A solution present itself if we
pretend that the system settles into a KMS state and we are able compute its modular operator.
In this case from the modular operator we can read the standard Liouvillean and compute the
automorphism αV . This is just a version of a familiar statement in statistical mechanics: the
condition of thermal equilibrium requires that the statistical weight of a state is determined by
the generator of the dynamics.

Going back to the finite dimensional example outlined above, one starts with a KMS state
and ends up with another KMS state after introducing a local time independent perturbation.
In this case, as we will see, the entropy production of the perturbed state ωV is zero. Note that,
while in this case the thermodynamics behavior does not give anything new, there are still
interesting observables one can study.

On the other hand the simplest way to engineer a nontrivial NESS is via coupling to a set
of external reservoirs. By choosing appropriately the temperatures of the reservoirs one can
insure that the initial state of the system is not in thermal equilibrium (but eventually a product
of KMS states at different temperatures). We will see in the next section how to study the
entropy production in such a state.

4.3. Adding reservoirs

In quantum mechanics a typical construction of a NESS consists in the coupling of a finite
dimensional quantum system S to a collection of reservoirs. The original system is the quantum
dynamical system (AS,αS). Also the reservoirs are described by an operator algebra.

More precisely we assume for the reservoirs the following structure. A collection of reser-
voirs is modeled by a certain dynamical system (OR,αR), where the dynamics is generated
by δR. The reservoirR consists ofM partsR1, . . . ,RM, each with its own dynamics αRi gen-
erated by δRi , so that αR =⊗M

j=1αRj . Furthermore we will assume that each reservoir is in
thermal equilibrium and described by a αRi-KMS state ωi at a certain inverse temperature βi.

13
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The joint system is described by the algebra A=AS⊗OR1 ⊗ ·· ·⊗ORM . Sometimes we
will denote byOb =

⊗M
i=1ORi the operator algebra associated with the reservoir. We assume

the joint system to be initially decoupled and described by a quantum dynamics (A,α) with
α=⊗M

a=0αa = αS⊗αR.
A clarification on the nomenclature. A single state ωk as above is a (αtRk

,βk)-KMS state. By

rescaling this means that it is also a (α−t/βk
Rk

,−1)-KMS state. Therefore if we have a product

state ω =⊗kωRk where each factor is (αtRk
,βk)-KMS, this implies that ω is (⊗kα

−t/βk
Rk

,−1)-
KMS. However this does not imply that when we put the reservoirs in contact with the system
the overall system is in thermal equilibrium. This is certainly not the case unless all the temper-
atures are all equal. The relation between thermal equilibrium and the KMS condition holds
when a state is KMS with respect to the physical Hamiltonian evolution, and not with respect
to the rescaled products ⊗kα

−t/βk
Rk

.

The original system and the reservoirs are coupled via a perturbation V=
∑L

j=1Vj where

eachVj = V†
j ∈ A0 ⊗Oj models the interaction betweenAS andORj . The perturbation induces

an automorphism αV of A. Note that now operators in the system S, while they still commute
with every operator in the reservoirs, do not necessarily commute with the interaction.

Now let us turn to the case of interest, that of a gravitational algebra which arises from a
crossed product.

We couple the left and right boundaries with two infinite reservoirs, eventually partitioned
in sub-systems. The reservoirs will be now described by two operator algebrasOb,R andOb,L.
We can for example assume that the reservoirs are in equilibrium (multi)-Gibbs states with
Hamiltonians Hω,R and Hω,L (in the same notation as above, except for the left L and right
R specifiers). For simplicity we assume that these hamiltonians make sense in the large N
limit2. Nevertheless it is convenient to associate a vector Ωω in a Hilbert space to the func-
tional ω. Since ω is the functional which gives the vacuum expectation value of operators in
the thermodynamic limit of a Gibbs state, its GNS construction is essentially the thermofield
double construction [46]. Therefore we can take the GNS vector Ωω as a thermofield double
state associated to the reservoirs. In particular in the ith partition of the reservoir the vector
|Ωωi⟩ is annihilated by the Hamiltonian Ĥωi = Hωi ,R−Hωi ,L. The modular Hamiltonian is

then ∆ωi = e−βi Ĥωi .
In the following we will use a compact notation where expression of the form βĤω really

mean
∑M

j=1βi Ĥωi leaving open the possibility that the reservoir R is partitioned in M com-
ponents at different inverse temperatures βi.

If for example one considers the right algebra then

A0,R⊗Ob,R (4.13)

is the total algebra at N=∞ in the right exterior of the black hole. At the moment the two
algebras are still decoupled. Adding the central element (which in the bulk is related to the
black hole mass) gives

A0,R⊗AU⊗Ob,R (4.14)

2 Most of the times we will not need this assumption. We will however do in a situation where we will consider the
system only coupled to reservoirs on the right side. We therefore assume that we have no problem in defining traces
and density matrices in the reservoirs, decoupled from the boundary theory.
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where however the two algebras are still decoupled. Note that U commutes with all of A0,R

and obviously also with every operator in Ob,R.
If one wants to include perturbative 1/N corrections, since the algebras are still decoupled

we can simply proceed as in section 3. The decoupled algebra A0,R⊗Ob,R has the diagonal
automorphism

(∆Ψ ⊗∆ω)
− i s

(A0,R⊗Ob,R)(∆Ψ ⊗∆ω)
i s
. (4.15)

To this automorphism one associates the dynamics of the system

τ s (a) = e i(Ĥ+Ĥω)sae− i(Ĥ+Ĥω)s (4.16)

and its generator δ. Note that δ generates the flow both of the system and of the reservoir. We
will sometimes drop the s from τ s.

The automorphism above is not inner because of the factor ∆Ψ (since we have assumed
the bath Hamiltonians exist and are part of the bath algebras, and therefore so it is ∆ω). To
include it in the algebra one needs to take the crossed product. The bath algebra commutes
with the large N algebra and therefore does not play any role in the crossed product. The result
is therefore the algebra

A(b)
R =A0,R⋊RΨ ⊗Ob,R . (4.17)

This is the product of two decoupled algebras. It is however worth spelling out some of its
structure in more detail.

Operators in this algebra have the form ae− i ŝh⊗ e i sX⊗ ob, acting on the Hilbert space
H⊗ L2(R)⊗Hω.

The algebra A(b)
R possess a special class of states, the classical-quantum states, of the form

Ψ ⊗ g(X)⊗Ωω. Similarly a trace can be defined using the product structure, by taking the
trace separately over the two decoupled factors, where the trace over the A0,R⋊RΨ factor
was defined in (3.10). We assume that the bath is accurately described by Gibbs states, which
therefore have well defined Hamiltonians and traces. Or we could assume that the bath is a
copy of the boundary theory in its ground state.

Now the modular operator is again a tensor product, since the two systems are still
decoupled, but the first factor is replaced by ∆̂Ψ = KK̃. Now we have the modular flow
given by

K− i saK i s⊗∆− i s
ω ob∆

i s
ω = (K⊗∆ω)

− i sa⊗ ob (K⊗∆ω)
i s (4.18)

and consequently the dynamics is generated by

τ̂ s (a⊗ ob) = e i s(I+Ĥω) (a⊗ ob) e
− i s(I+Ĥω) (4.19)

in terms of the modular hamiltonian

I= Ĥ+
X
β
− 1
β
logg

(
βĤ+X

)
. (4.20)

We will loosely refer to (4.19) and its generalizations as ‘dynamics’ and to the evolution para-
meter as ‘time’ even if technically we are talking about a modular flow. The reason for this is
that it is the modular flow which descends directly from the physical dynamics of the system
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after including perturbative 1/N corrections. It contains the physical Hamiltonian responsible
for time evolution, as well as other corrections which are necessary for a proper algebraic
treatment.

Next we turn to the study of the coupled algebra A(b)
R,V

4.4. Interacting algebras and perturbed KMS states

Now we introduce an interaction term in the total Hamiltonian and couple the two algebras.
We want to understand the form of the Liouvillean / modular Hamiltonian for the coupled
algebras at N=∞ and subsequently to include 1/N corrections. Note however that the would
be modular operator is not anymore associated with a tensor product state such as Ψ ⊗Ωω.

To couple the two algebras we introduce an interaction so that the total Hamiltonians have
the structure

Htot,R = HR+Hω,R+VR
Htot,L = HL+Hω,L+VL (4.21)

where VR and VL are self-adjoint operators which mediate the interaction between the original
systems and the reservoirs and are conjugate to each other by the operator J. For example

VR =
M∑
j=1

VR,j (4.22)

where VR,jj ∈ AR⊗Obj,R. We couple the boundary theory and the reservoirs in this way to
keep the formalism as general as possible. A particular case of this coupling, which we will
consider in an example, is when the left hand side Hamiltonian and interactions are trivial and
the system is coupled to a reservoir only on the right side (assuming now VR and J commute).
We will use the notationA0,R⊗VOb,R to remind us that the algebra of operators now contains
interactions.

Note however that the Hamiltonians (4.21) do not exist in the large N limit, since HR and
HL do not exist separately. We however have assumed that the reservoirs’ Hamiltonians have
a well defined N limit (for example do not depend on N altogether). The reservoir on the left
boundary are conjugated to those on the right boundary; for example the left reservoir algebra
is understood to be the commutant of the right reservoir algebra, to couple consistently with
the boundary theories.

Aswe are assuming the reservoir to be less intrusive as possible with respect to the dynamics
of the bulk, we can still assume that the product A0,R⊗VOb,R is a Type III1 algebra. Taking
the crossed product we will therefore obtain a Type II∞ algebra, as with theA0,R factor alone.

However in general the perturbed state will not be the a tensor product involving the ther-
mofield double state Ψ anymore. There are a few alternatives to treat the problem. We could
provide some educated guess for the state which replaces Ψ, for example another KMS state
or a genuinely NESS. We could work in perturbation theory and study the properties of NESS
perturbatively in the coupling to the bath. Or we could try to understand aspects of the system
which do not require the specification of such a state; we will study one such observable asso-
ciated with the entropy production in the next section. For the time being we will investigate
the first two alternatives.

We can make progress if we assume that the perturbed state is KMS. This is for example
the case if all the reservoirs are at the same temperature. Consider first the decoupled the-
ory at N=∞. Then, as discussed previously, the reference state in the GNS construction is
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given by Ψ ⊗Ωω and the modular operator is the tensor product ∆Ψ ⊗∆ω =∆Ψ⊗ω. Note
that (Ĥ+ Ĥω)Ψ ⊗Ωω = 0. Let us now add a perturbation V= V† ∈ A0,R⊗Ob and assume
that the perturbed state ΨV is (τV,β)-KMS, where τV denotes the perturbed dynamics. This
assumption is realistic for sufficiently small perturbations. From the properties of the perturbed
equilibrium KMS state we will be able to write down τV explicitly.

Let us define

ΨV = e−β(Ĥ+Ĥω+V)/2Ψ ⊗Ωω . (4.23)

Note that this is not a product state. Since JVJ belongs to the commutant algebra, we can write

e i(Ĥ+Ĥω+V)JVJe− i(Ĥ+Ĥω+V) = e i(Ĥ+Ĥω)JVJe− i(Ĥ+Ĥω). (4.24)

Then

e i(Ĥ+Ĥω+V)t
(
Ĥ+ Ĥω +V− JVJ

)
e− i(Ĥ+Ĥω+V)t (Ψ ⊗Ωω)

=
[
Ĥ+ Ĥω +V− e i(Ĥ+Ĥω)t (JVJ) e− i(Ĥ+Ĥω)t

]
(Ψ ⊗Ωω)

=
(
V− e i(Ĥ+Ĥω)tJV

)
(Ψ ⊗Ωω) (4.25)

where we have used (Ĥ+ Ĥω)(Ψ ⊗Ωω) = 0. Note that e i(Ĥ+Ĥω)t =∆
− i t/β
Ψ⊗ω . Now we use the

KMS assumption to analytically continue the last expression to t=− iβ/2 so that(
V−∆

−1/2
Ψ⊗ωJV

)
(Ψ ⊗Ωω) =

(
V− J∆1/2

Ψ⊗ωV
)
(Ψ ⊗Ωω) =

(
V−V†)(Ψ ⊗Ωω) = 0.

(4.26)

Retracing back our steps, we have shown that(
Ĥ+ Ĥω +V− JVJ

)
e− i(Ĥ+Ĥω+V)(− iβ/2) (Ψ ⊗Ωω) = 0 (4.27)

or equivalently that

ΨV = e−β(Ĥ+Ĥω+V)/2 (Ψ ⊗Ωω) (4.28)

is annihilated by the operator LV = Ĥ+ Ĥω +V− JVJ. In other words the KMS condition
forces LV to have a zero eigenvalues. This is in accordance with the discussion in the paragraph
below equation (4.12). In particular the state ΨV is modular (cyclic and separating) and its
modular operator is

∆ΨV = e−βLV = e−β(Ĥ+Ĥω+V−JVJ) . (4.29)

Note that in the whole derivation it is crucial that all the subsystems are at the same inverse
temperature β.

To uniformize with the notation of (4.21), recall that V= VR and JVJ= VL. We set now
V̂= VR−VL so that the Liouvillean has the simple form LV = Ĥ+ Ĥω + V̂.

Note that from the explicit form of ∆ΨV we can determine the dynamics τV of the system

τ sV (aV) = e i sLVaV e− i sLV (4.30)
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for any aV ∈ A0,R⊗VOb,R. Note that this is precisely the evolution operator we could have
guessed from the general form of the Hamiltonians (4.21). Determining the evolution operator
will become less trivial once we include perturbative 1/N corrections.

Now to incorporate 1/N corrections we take the crossed product. The construction goes on
as before with minor modifications. With the same notation of section 3, in order to carry on
the crossed product in the coupled algebras we now set

T= β
(
Ĥ+ Ĥω + V̂

)
= βLV (4.31)

and

X= βNUL. (4.32)

Now e iTs is an outer automorphism for the tensor product algebra A0,R⊗VOb,R (the notation
⊗V is just a reminder that now the two algebras are interacting). The reason for this is that it is
an outer automorphism for the algebra A0,R and that the commutators [Ĥ,V] and [Ĥω,V] will

in general be both non trivial. Taking the crossed product results now in the algebra A(b)
R,V =

(A0,R⊗VOb,R)⋊RΨ.
Before we proceed a brief remark about the crossed product. We have chosen the operator X

to contain only information about the boundary theory and not the reservoir.We could have also
involved the reservoirs more directly in the crossed product by adjoining bounded functions
which depend also on HL,ω. The fact that we did not correspond physically to the assumption
that the reservoir does not gravitate and is not affected by 1/N corrections. We stress that this
could be changed if needed.

Going back to the algebra A(b)
V we are now interested in studying some of its properties.

Let us begin with the modular operator. We make the following ansatz

∆̂ΨV =∆ΨVg
(
β
(
Ĥ+ Ĥω + V̂

)
+X
)
g(X)−1

=∆ΨVg(βLV+X) g(X)−1 (4.33)

and take

Ψ̂V =ΨV⊗ g(X)1/2 (4.34)

as the classical-quantum state of interest.
Let us check these statements. As in section 3 the algebra is generated additively by oper-

ators of the form âV = aV e iu(β LV+X) and it is therefore enough to check these statements on
these operators. Note that in general the operator aV is not in a factorized form. This can be
easily see starting from a factorized operator in the N=∞ theory and then applying the inter-
acting time evolution operator; the result of this operation will in general not be factorizable.

To begin with we must have

⟨Ψ̂V|âVb̂V|Ψ̂V⟩= ⟨Ψ̂V|b̂V∆̂ΨV âV|Ψ̂V⟩ (4.35)

by definition of the modular operator. Indeed one can follow almost verbatim [47] and write

∆̂ΨV =
∆ΨV

2πg(X)

ˆ +∞

−∞
dwe− iw(β LV+X)g̃(w) (4.36)
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where g̃(w) is the Fourier transform of g(X). Then we see that

⟨Ψ̂V|âVb̂V|Ψ̂V⟩=
ˆ +∞

−∞
dXg(X)⟨ΨV|aV e i s(βLV+X)bV e i s(βLV+X)|ΨV⟩

=

ˆ +∞

−∞
dXg(X) e i sX e i tX⟨ΨV|aV e i sβLV bV e− i sβLV e i sβLV e i tβLV |ΨV⟩

= g̃(s+ t)⟨ΨV|aV e i sβLV bV e− i sβLV |ΨV⟩ (4.37)

after performing the integration over X. We have used repeatedly the fact that LVΨV = 0, which
follows from the fact that ΨV is a KMS state and ∆ΨV its modular operator. This could be no
longer true if ΨV were a genuinely nonequilibrium state.

On the other hand we can write

⟨Ψ̂V|b̂V∆̂ΨV âV|Ψ̂V⟩

=

ˆ +∞

−∞
dX⟨ΨV|bV e i t(βLV+X)∆ΨV

2π

ˆ +∞

−∞
dw e− iw(βLV+X)g̃(w)aV e i s(βLV+X)|ΨV⟩

=

ˆ +∞

−∞
dw

g̃(w)
2π

ˆ +∞

−∞
dXe i(t−w+s)X⟨ΨV|bV e i tβLV∆ΨV e

− iwβLV g̃(w)aV e i sβLV |ΨV⟩

=

ˆ +∞

−∞
dw

g̃(w)
2π

ˆ +∞

−∞
dXe i(t−w+s)X⟨ΨV|bV e i(t+ i−w)βLVaV e− i(t+ i−w)βLV |ΨV⟩

= g̃(t+ s)⟨ΨV|bV e i( i−s)βLVaV e− i( i−s)βLV |ΨV⟩ (4.38)

and the equality with (4.37) follows from the KMS condition and time translation symmetry.
Finally as in section 3 the modular operator factorizes as

∆̂ΨV = K̃VKV (4.39)

where

KV = e−(βLV+X)g(βLV+X) = e−β[LV+ X
β− 1

β logg(βLV+X)]

K̃V =
eX

g(X)
. (4.40)

In particular note that this factorization implies that the ∗-automorphism

τ̂ sV
(
âV
)
= ∆̂

− i s/β
ΨV

âV ∆̂
i s/β
ΨV

=K− i s/β
V âVK i s/β

V (4.41)

is now inner, since KV is now an element of the crossed product algebra A(b)
R,V. We interpret

the automorphism τ̂V as the natural modular time evolution of the quantum dynamical system
describing the gravitational algebras coupled to reservoirs, once 1/N corrections have been
accounted for. It can be described as the conjugation

τ̂ sV
(
âV
)
= e i tIV âV e− i tIV (4.42)

in terms of the modular Hamiltonian

IV = LV+
X
β
− 1
β
logg(βLV+X) . (4.43)
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To clarify our approach, we initiate our analysis from the thermofield double state, which
characterizes thermal physics in equilibrium. The introduction of perturbative 1/N correc-
tions leads to the emergence of the automorphism induced by K as described in section 3.
This automorphism notably is associated to an equilibrium state. The modular hamiltonian
contains the exponential of βĤ+X, which is a conceptual analogue to the non-existent (in
the large N limit) operator HR governing time evolution on the right boundary. The supple-
mentary term logg(βĤ+X) accounts for gravitational corrections. Subsequently, we couple
the system to reservoirs at the same temperature, ensuring that the resultant state is again at
thermal equilibrium. Employing Araki’s general theory of perturbation of KMS structures, we
can explicitly express and compute the modular hamiltonian for this state. Furthermore Araki’s
theory assures us that the deformed KMS state is unique [9]. This state corresponds to an equi-
librium state and its modular hamiltonian is naturally identified with the physical dynamics,
taking into account gravitational corrections. We therefore interpret IV as the generator of the
dynamics of the system and we will use it to study the system even out of equilibrium. Note
that in general any modular state is KMS with respect to its modular operator; in our case the
modular state descends directly from the thermofield double and therefore we can interpret
its modular operator as the generator of the physical dynamics. This interpretation mirrors the
fundamental relationship between equilibrium statistical weights and the evolution operator in
statistical mechanics.

We can now define a trace as in section 3

tr âV = ⟨Ψ̂V|âVK−1
V |Ψ̂V⟩= ⟨Ψ̂V|âV

eX

g(X)
|Ψ̂V⟩=

ˆ +∞

−∞
dX eX⟨ΨV|âV|ΨV⟩ (4.44)

which is finite for a certain subalgebra, characterized by the fact that the above integral is
convergent. Note that again we have used the fact that LVΨV = 0. The same caveats discussed
in section 3 also apply in this context. Note that this definition is identical to (3.10), except
that now the state Ψ is replaced by ΨV.

By using the definition of the trace one can also define density matrices and therefore the
von Neumann entropy. In particular the density matrix corresponding to the classical-quantum
state Ψ̂V is KV itself, since

Tr âVKV = ⟨Ψ̂V|KVK−1
V âV|Ψ̂V⟩= ⟨Ψ̂V|âV|Ψ̂V⟩ . (4.45)

So far our analysis has followed [47] closely and the generalization of every proposition
there to our case was almost verbatim. However now we come to a very important physical
point. Since

KV logKV = e−(βLV+X)g(βLV+X)(−(βLV+X)+ logg(βLV+X)) (4.46)

by using the definition of the trace (4.45) we see that the von Neumann entropy for the state
Ψ̂V is

S
(
Ψ̂V

)
A(b)

R,V

=

ˆ +∞

−∞
dX(Xg(X)− g(X) logg(X)) (4.47)

precisely as in (3.13)! The entropy for the weakly interacting theory in thermal equilibrium is
the same as the entropy for the non-interacting theory, which up to a constant coincides with
the entropy of the isolated system without the reservoirs (because of thermal equilibrium). In
other words we have proven explicitly that a weak time-independent interaction which perturbs
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the original state into a new thermal state does not have any non-trivial thermodynamics and
in particular does not give rise to entropy production. This is the counterpart of the familiar
result in thermodynamics where adiabatic processes do not involve entropy production and
it is a consequence of the fact that as the dynamics is perturbed by the interaction, also the
ground state changes accordingly. We will find again this result in the next section from a
more formal perspective. In this construction it was crucial to assume that the reservoirs and
the bulk are all at the same temperature. The situation will change drastically when we will
allow the reservoirs to have different equilibrium temperature and/or the perturbation to be
time dependent, which is the case of physical interest.

4.5. Interacting algebras and general NESS

In the general case the NESS of the interacting algebra will not be a KMS state. Nevertheless
modular time evolution in the interacting algebra A(b)

R,V will still be given by the automorph-
ism τ̂V defined in (4.41). This is just an example of the general relation between the statistical
weight of a thermal state and the evolution operator. By studying the KMS states of the algebra
A(b)
R,V we have found their statistical weights from the modular operator and therefore the ∗-

automorphism which determined modular time evolution in the algebra. We can now use it
without any reference to thermal equilibrium. This will allow us to characterize NESS in per-
turbation theory.

Now we consider a general time dependent perturbation and we assume that the system
settles into a NESS which is not a KMS state. What would such a state look like? We can
make some progress by adapting to the gravitational algebras the perspective advocated in
[39, 40]

Assume we start with the equilibrium classical-quantum state3 Ψ̂ = Ψ ⊗Ωω ⊗
√
g(X) in

the noninteracting gravitational algebra A(b)
R . We let evolve the system after a perturbation is

applied. The above state is an equilibrium state and therefore invariant under the decoupled
evolution τ̂ defined in (4.19). If we consider a time dependent perturbation which vanishes in
the far past, the state Ψ̂ is also an element of the algebra A(b)

R,V.
We define the time dependent state

χt
(
âV
)
= lim

s→−∞
⟨Ψ̂|τ̂V (s, t)

(
âV
)
|Ψ̂⟩ . (4.48)

In plain wordsχt is a state reached at time t from the evolution of the interacting system starting
from the state Ψ̂ in the infinite past, before the perturbation was turned on. Here4

τ̂V (s, t) = τ̂ −s
V τ̂ tV (4.49)

which becomes simply τ̂ t−s
V if the perturbation is time independent or if it commutes with

itself at different times. Similarly τ̂(s, t) = τ̂ t−s for the free evolution. Since the vector Ψ̂ is by
assumption invariant under the free evolution τ̂ , we can rewrite (4.48) as

χt (a) = lim
s→−∞

⟨Ψ̂|τ̂ (t,s) τ̂V (s, t) âV|Ψ̂⟩ . (4.50)

3 We are abusing notation here since this Ψ̂ is not the same object we encountered in section 3. We trust this will not
cause confusion since now every vector will involve also the reservoirs. Also the position of the g(X) factor in the
tensor product does not matter.
4 In ordinary quantum mechanics this would be just the operator e− i(t0−t)H responsible for the evolution of the
system from time t0 to time t.
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Given the explicit form of the evolution operators we have the operator identity

d
du
τ̂ (t,u) τ̂V (u, t) âV =− i τ̂ (t,u)

[
V (u) , τ̂V (u, t) âV

]
, (4.51)

where we have introduced the operator

V (u) = IV (u)− I−
M∑
j=1

Ĥωj , (4.52)

which captures the interacting part of the modular evolution. Note that V depends explicitly
on time if the interaction V depends explicitly on time.

Let us derive this expression explicitly. To begin with we introduce an analog of the inter-
action representation by writing

τ̂ tV
(
âV
)
= ΓtVτ

t
(
âV
)
Γt†V . (4.53)

where the ΓtV is a family of unitary operators which are solution of the differential equation

d
dt

ΓtV = iΓtVτ̂
t (V (t)) (4.54)

with initial condition Γ0
V = id.

Let us begin with the simpler identity

d
dt
τ̂ t (τ̂ tV)

−1 âV =− i τ̂ t
[
V (t) , (τ̂ tV)

−1 âV
]
. (4.55)

Since

(τ̂ tV)
−1 (âV)= τ̂−t

(
Γt†V âVΓ

t
V

)
(4.56)

we see immediately that

τ̂ t (τ̂ tV)
−1 (âV)= Γt†V âVΓ

t
V . (4.57)

Therefore

d
dt
τ̂ t (τ̂ tV)

−1 âV =
d
dt

(
Γt†V âVΓ

t
V

)
, (4.58)

and now verifying (4.55) simply amounts to using the differential equation (4.54) repeatedly.
Now it is easy to derive (4.51) because it differs from (4.55) by the composition of t-
independent operators.

Since
ˆ t

s
du

d
du
τ̂ (t,u) τ̂V (u, t) âV = âV− τ̂ (t,s) τ̂V (s, t) âV (4.59)

we can use (4.51) to find

âV− τ̂ (t,s) τ̂V (s, t) âV =− i
ˆ t

s
du τ̂ (t,u)

[
V (u) , τ̂V (u, t) âV

]
. (4.60)
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Now we apply to both sides the functional corresponding to the state Ψ̂ and take the limit
s→−∞ to find

χt
(
âV
)
= ⟨Ψ̂| âV |Ψ̂⟩+ i

ˆ t

−∞
du⟨Ψ̂|

[
V (u) , τ̂V (u, t) âV

]
|Ψ̂⟩. (4.61)

If now we specialize to stationary states, that is we assume that χt = χ is a NESS and drop the
dependence on t everywhere, we obtain

χ
(
âV
)
= ⟨Ψ̂| âV |Ψ̂⟩+ i

ˆ 0

−∞
du⟨Ψ̂|

[
V (u) , τ̂ −u

V âV
]
|Ψ̂⟩ . (4.62)

Note that the above formula is expressed in terms of the interacting evolution operator. We can
rephrase it in terms of the free modular evolution operator as a Dyson series

τ̂ tV
(
âV
)
= τ̂ t

(
âV
)
+
∑
n≥1

i n
ˆ t

0
dt1

ˆ t1

0
dt2 . . . (4.63)

· · ·
ˆ tn−1

0
dtn
[
τ̂ tn (V (tn)) ,

[
· · ·
[
τ̂ t1 (V (t1)) , τ̂

t1
(
âV
)]]]

. (4.64)

Therefore in principle given an interaction term, then the form of the NESS state can be com-
puted explicitly, if laboriously, in perturbation theory. Note that it will not be in general asso-
ciated with a simple vector since in (4.48) taking the limit will in general not commute with
taking the expectation value.

Remark. One issue we do not address in this paper is the fate of symmetries in NESSs. In
general, it is possible that the nonequilibrium dynamics will break some or all of the symmet-
ries present in the original system. Conversely, new symmetries may emerge. Unfortunately,
there is no formalism available to fully address this problem, as NESS are poorly understood
compared to KMS states. However, it might be possible to use holography to provide a more
concrete description. Geometric techniques from the bulk could potentially be developed to
characterize NESSs more explicitly and to ask more precise questions about symmetries. This
may be achievable in simpler models, such as JT gravity. For a discussion of symmetries within
the context of crossed product algebras see [3, 15].

5. Entropy production

In general for an arbitrary interaction it will be difficult to obtain explicit expressions for
the NESS. It is therefore interesting to try to circumvent the problem by asking if there are
any observables which can be computed independently of the explicit form of the NESS and
to what extent. In this section we will discuss entropy production, following the formalism
of [20, 39].

5.1. Entropy production in finite systems

Let us begin with some phenomenological aspects of entropy production in open quantum
systems. If we have a system S coupled to several reservoirs Rj at different temperatures βj,
we expect to see a steady heat flow through the system. In a stationary state we expect that a
non zero entropy production rate in the system S is determined by the entropy flux entering /
leaving the system.
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Consider a finite dimensional system S whose dynamics is governed by the Hamiltonian
HS. In a stationary state the rate of the entropy flux entering the system is determined by the
energy leaving the reservoirs

−
∑
k

βkΦk . (5.1)

If the system-reservoir dynamics is captures by the Hamiltonian

H= HS+V+
∑
k

HRk , (5.2)

then the energy flux is given by Heisenberg equation

Φk =− i [H,HRk ] = δk (V) (5.3)

in terms of the generator δk = i [HRk , · ] of the dynamics of the reservoir. We assume that the
perturbation V is so small that it does not affect the thermal equilibrium of the reservoirs.
Therefore the entropy production in a state µ is defined as

Ep(µ) = µ

(
−

L∑
k=1

βk δk (V)

)
. (5.4)

We have written the entropy production in a fashion which can be immediately generalized to
infinite dimensional systems.

To familiarize ourselves with the definition of entropy production (5.4), consider as an
illustrative example of a finite dimensional system divided into subsystems [41]. Observables
in the system are elements of a von Neumann algebra of Type I∞, specifically the algebra
of bounded operators on the Hilbert space. We assume the full Hilbert space has the form
H=⊗aHa. The full system is described by a density matrix ρ(t)which will be in general time
dependent. Since the complete system is isolated, the von Neumann entropy S(ρ) =−Trρ logρ
is however time independent, in the sense that if U(t) denotes the unitary evolution oper-
ator, S(U(t)ρU(−t)) = S(ρ). If we set Hâ =⊗b̸=aHb, we can define partial density matrices
ρa = TrHâ

ρ and their von Neumann entropies Sa(t) =−TrHaρa logρa, which may now be time
dependent.

It is therefore natural to define the entropy production rate as

e=
d
dt

(∑
a

Sa (t)− S(ρ(t))

)
, (5.5)

where the term in parenthesis is positive by the subadditivity of the entropy and physically
represent the information we lose about ρ when we partition the system into its several sub-
systems. Note that since S(ρ(t)) is really time independent, the quantity in parenthesis is just
the rate of change of the entropy of every subsystem. We assume that the Hamiltonian can be
written as H=

∑
aHa+V where V is an interaction term and Ha is the tensor product of unit

matrices and the Hamiltonian ha acting on the subsystem a.
Then at the linearized level the evolution of the density matrix in Schrödinger picture is

given by

ρ(t+ dt) = e− iHdtρe iHdt = ρ(t)− idt

[∑
a

Ha+V,ρ(t)

]
(5.6)
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and therefore for the partial density matrices

ρa (t+ dt) = ρa (t)− idt [ha,ρa]− idtTrHâ
[V,ρ(t)] . (5.7)

A simple computation, using the cyclicity of the trace in each subspace, shows that

Sa (t+ dt)− Sa (t) =− idtTrH (ρ(t) [V,1â⊗ logρa (t)]) (5.8)

where 1â is the identity operator on the tensor product Hâ.
Therefore the entropy production is given by

e=− i
∑
a

TrH (ρ(t) [V,1â⊗ logρa (t)]) =− iTrH (ρ(t) [V, log⊗a⩾0ρa]) (5.9)

This formula gives a clear physical picture of the entropy production in a simple quantum
mechanics system. We will now argue how the infinite volume limit reproduces (5.4).

To take the infinite volume limit, we declare that the subsystems with a ̸= 0 are reservoirs in
thermal equilibrium at inverse temperature βa. Therefore we can replace their density matrices
ρa with Gibbs ensembles determined by the reservoir Hamiltonians HRa . We also assume that
in the large volume limit the density matrix ρ(t) of the system tends to a time independent state
ρ. Then we can write (5.9) as

e= ρ

(∑
a

βa i [H,HRa ]

)
=−ρ

(∑
a

βa δa (V)

)
(5.10)

which precisely coincides with (5.4); in fact one can see that the a= 0 term can be ignored
since the fluxes to the system S all add up to zero in a stationary state [41]. Here H is the total
Hamiltonian of the system (5.2). Note that while these Hamiltonians will not really make sense
in the infinite volume limit, their commutator does since for local interactions it will have non
vanishing support only in a finite spacetime region5. Each commutator [H,HRa ] represents the
rate of transfer of energy (with sign) to the reservoir Ra.

5.2. Entropy production in gravitational algebras

We are interested in developing a similar expression in the context of gravitational algebras.
To do so we pick a reference state Ψ̂ = Ψ ⊗Ωω ⊗ g(X)1/2 of the non-interacting system. The
main idea is that the relative entropy between this reference state and another state captures
the entropy production observable and motivates its definition. Let δΨ̂ be the generator of the

modular group of the reference state Ψ̂

δΨ̂ = i
L∑

k=1

βk

[
Ĥωk , ·

]
+ iβ [I, · ] (5.11)

where δ̂Rk = i
[
Ĥωk , ·

]
is the infinitesimal generator of the dynamics of the kth reservoir and

the operator I was defined in (4.20). Note that Ψ̂ is (+1)-KMS with respect to the dynamics
generated by δΨ̂.

5 This is clear for example if one thinks of an infinite lattice of spins which have a nearest neighbor interaction.
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Next we introduce a coupling V between the boundary theory and the reservoirs. In the
strict N=∞ limit the two algebras interact via the coupling in the Hamiltonian, in the sense
that the Hamiltonian evolution τV of any operator in the tensor product algebra will contain
the interaction term V̂. As a result any operator evolved in time will not have generically a
factorized form.

What can we say about the interaction of the two algebras when including 1/N corrections?
Now the situation is complicated by the crossed product. The coupling of the boundary algebra
with the reservoir algebras is induced by the N=∞ coupling, but it is not exactly the same
since the evolution operator τ̂V is more complicated. However it is natural to define as an
interaction term the difference between the infinitesimal generator δτ̂V of the coupled theory
and the generator δτ̂ of the uncoupled theory

We can compute δτ̂V from (4.41) as

δτ̂V = i [IV , · ] (5.12)

where IV was defined in (4.43). Assume for simplicity that V is time independent. Then we
define the interaction

V = IV− I−
M∑
k=1

Ĥωk (5.13)

as in (4.52). Finally we define the entropy production observable6 as

σV =−δΨ̂ (V) . (5.14)

Then the entropy production rate of a state φ̂, interpreted as a linear functional on the algebra
A(b)
R,V is defined as

Ep(φ̂) = φ̂(σV) . (5.15)

In particular if the state φ̂ is a classical-quantum state represented by the vector Φ̂ we simply
have

Ep(φ̂) = φ̂(σV) = ⟨Φ̂ |σV | Φ̂⟩ . (5.16)

A more interesting case is when the state is a NESS χ+ ∈ Σ+(Ψ̂) obtained starting from the
(generalized) thermofield double state ψ̂ represented by the vector Ψ̂. Then

χ+ (a) = lim
tk

1
tk

ˆ tk

0
ψ̂ ◦ τ̂ tV (a)dt= lim

tk

1
tk

ˆ tk

0
⟨Ψ̂ | τ̂ tV (a) |Ψ̂⟩dt . (5.17)

What is the physical meaning of entropy production? First note that

σV =− i
L∑

k=1

βk

[
Ĥωk ,V

]
− iβ [I, V ] (5.18)

6 Since we have taken Ψ̂ to be (+1)-KMS the sign in the definition of entropy production is the opposite of [20] but
agrees with [39].
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because of (5.14) and (5.11). We define

Θk = δRk (V) = i
[
Ĥωk ,V

]
(5.19)

which is formally the analog of (5.3) and has therefore the physical interpretation as the energy
flux in/out the reservoir when 1/N corrections are taken into account.

Note that by definition Θ is actually the net flux entering/exiting the system from the kth

reservoir, since Ĥωk = Hωk,R−Hωk,L. It is important to notice that, while Hωk,R−Hωk,L gives
zero on the vacuumΩωk , it will not be trivial on a generic state, especially after time evolution.
For example a state time evolved from the reference state Ψ̂ will be very complicated and
exhibit entanglement between the bulk and the reservoirs.

We will now connect the observable σV with the phenomenological discussion in
section 5.1. To begin with note that δRk(I) = 0 since operators in the reservoir and operat-
ors in the boundary theory commute. Therefore we can write, using (5.12)

δτ̂V (I) = i [IV, I] = i

[
I+

L∑
k=1

Ĥωk +V, I

]
= i [V, I] . (5.20)

Therefore looking at (5.18) we conclude that

σV =−
L∑

k=1

βk δRk (V)+ δτ̂V (I) (5.21)

where the last term is a total derivative. We will now use this fact to show that the entropy
production due to the last term is bounded and will not contribute in a τ̂V invariant state.

Let us look now at the expression for the entropy production of a NESS χ+ ∈ Σ+(Ψ̂)

Ep
(
χ+
)
= χ+ (σV) = lim

tk

1
tk

ˆ tk

0
ψ̂ ◦ τ̂ tV

(
−δΨ̂ (V)

)
dt

= lim
tk

1
tk

− M∑
j=1

βj

ˆ tk

0
ψ̂ ◦ τ̂ tV (Θj)dt+

ˆ tk

0
ψ̂ ◦ τ̂ tV (δτ̂V (I))dt


= lim

tk

1
tk

− M∑
j=1

βj

ˆ tk

0
ψ̂ ◦ τ̂ tV (Θj)dt+ ψ̂

(
τ̂ tkV (I)

)
− ψ̂ (I)


= lim

tk

1
tk

− M∑
j=1

βj

ˆ tk

0
ψ̂ ◦ τ̂ tV (Θj)dt

=−
M∑
j=1

βjχ
+ (Θj) , (5.22)

where we have used the fact that the NESS χ+ is τ̂V invariant to cancel the contributions
coming from δτ̂V(I). This expression agrees with (5.4). Therefore our formalism incorporates
gravitational corrections in such a way as to be compatible with the laws of thermodynamics.

Also note that the infinitesimal generator δτ̂V , as well as its finite counterpart, do not
reduce to the free evolution generators when the interaction is removed. This has a nice phys-
ical explanation; once the reservoirs and the bulk start interacting, even if the interactions
are removed, quanta from the bulk will have passed into the reservoirs. Due to the nature
of Hawking’s radiation, even if the interaction is now removed, the reservoirs will still be
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entangled with the bulk where a black hole is present. Therefore even removing the interac-
tion, after the systems have been put into contact, the evolution operator will not factorize into
a product of the bulk and the reservoirs.

The entropy production can be written in term of the relative entropy. Again we consider
the reference state Ψ̂ and the generator of its modular group δΨ̂. Let U be a unitary operator.
Then it was proven in [21] that

S
(
Φ̂U∥Ψ̂

)
= S

(
Φ̂∥Ψ̂

)
− i Φ̂

(
U† δΨ̂ (U)

)
(5.23)

where Φ̂U is defined by the property that for every a ∈ A one has Φ̂U(a) = Φ̂(U†aU). The
relation (5.23) is fairly general and requires mild regularity properties of the perturbation and
the initial state Ψ̂ to be KMS for the dynamics induced by δΨ̂. It follows from Araki’s general
theory of perturbation of KMS structures.

Suppose that we have now a time dependent perturbation V(t), and let τ tV be the perturbed
evolution, as in the previous section. To deal with this case we introduce an analog of the
interaction representation as in (4.54). Then if we write

τ̂ tV (a) = ΓtV τ̂
t (a)Γt†V = ΓtV e i t(I+Ĥω)a e− i t(I+Ĥω)Γt†V , (5.24)

we see that we can include the information about the dynamics in (5.23) if we identify U=

e− i t(I+Ĥω)Γt†V . Recall now that the initial state Ψ̂ is invariant under the unperturbed evolution
τ̂ . Then for any state Φ̂ if follows from (5.23) that

S
(
Φ̂ ◦ τ̂ tV∥Ψ̂

)
= S

(
Φ̂∥Ψ̂

)
− i Φ̂

(
ΓtV δΨ̂ (Γt∗V )

)
. (5.25)

Consider now the case of a time independent perturbation V, and therefore a time independ-
ent V . The following identity holds

d
dt
ΓtV δΦ̂ (Γt∗V ) =− iτ tV

(
δΨ̂ (V)

)
. (5.26)

This can be seen by noting that for time independent interactions one has

ΓtV = e i t(I+V+Ĥω) e− i t(I+Ĥω) , (5.27)

and therefore

ΓtV δΦ̂ (Γt∗V ) = e i t(I+V+Ĥω)
[(
I+ Ĥω

)
, e i t(I+V+Ĥω)

]
. (5.28)

One arrives to (5.26) by taking the time derivative of this equality. By integrating the iden-
tity (5.26) we find the following relation

S
(
Φ̂ ◦ τ̂ tV∥Ψ̂

)
= S

(
Φ̂∥Ψ̂

)
+

ˆ t

0
Φ̂ ◦ τ̂ sV (σV) ds , (5.29)

which expresses the entropy production in the state Φ̂ in terms of the relative entropy.
In a physically interesting situation we would choose Φ̂ to be initially of the form Φ ⊗

1⊗ f(X)1/2, with trivial support on the reservoir. In this case S(Φ̂∥Ψ̂) can be related to the
generalized entropy by using (3.16). On the other hand S(Φ̂ ◦ τ̂ tV∥Ψ̂) contains a state evolved
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in time from Φ̂which will not have anymore trivial support on the reservoir. Indeed such a state
will contain the information about the radiation which has entered the reservoir. We expect that
the entropy production observable captures this information, but making this observation more
precise would require new tools to deal with the time dependence in the density matrix for Φ̂.

Note that the relative entropy makes sense under the assumption that Φ̂ is a purely normal
state, which in general will not be the case for a NESS. Still the case of a NESS can be studied

as follow. Assume χ̂+ ∈ Σ+
V

(
Ψ̂
)
is a NESS of the perturbed system and that it can be reached

by a divergent sequence {τ̂ tnV }n∈Z+
, then one has

lim
n→∞

1
tn
S
(
Ψ̂ ◦ τ̂ tV∥Ψ̂

)
= lim

n→∞

1
tn

ˆ tn

0
Ψ̂ ◦ τ sV (σV) ds= Ep

(
χ̂+
)

(5.30)

under the assumption that the perturbation is sufficiently regular. The main point here is
that, since we have related the entropy production of a NESS to the (non-decreasing) relat-
ive entropy between the reference state and its modular time-translate, we can easily conclude
that

Ep
(
χ̂+
)
⩾ 0 (5.31)

which shows that the entropy production in the NESS Υ̂ is non-negative.
Note that the entropy production refers to the whole system, boundary theory and reservoir,

and that its non-negativity is just a statement of the second law of thermodynamics. Extracting
the entropy of the radiation or studying the Page curve would require more work. We will
comment briefly on this in the next section.

Let us check a few physical consequences of (5.29). Assume for example that the state
Φ̂ is a normal state which is also τ̂V invariant. This is the case if the state Φ̂ is KMS, for
example of the form of the state Ψ̂V studied in the previous section. Then (5.29) implies that

Ep
(
Φ̂
)
= 0, so that no nontrivial thermodynamics happens, in agreement with what we have

seen in section 4.5. On the other hand it may be that Φ̂ is τ̂V invariant, but not a normal state.
Then one cannot use the relative entropy formula directly. We can however use the fact that
normal states are dense in the weak topology to find a sequence Φ̂n of normal states which
converges to Φ̂. Then we have

lim
n

(
S
(
Φ̂n ◦ τ̂ tV|Ψ̂

)
− S
(
Φ̂n|Ψ̂

))
=

ˆ t

0
Φ̂ ◦ τ̂ sV (σV) ds= tEp

(
Φ̂
)

(5.32)

where we have used the τ̂V-independence of Φ̂. The latter expression has the physical inter-
pretation as the rate of divergence of the entropy differential ∆S(Φ̂, t) = tEp(Φ̂).

We can hope to make some progress in perturbation theory. To this end let us rescale the
interaction term V−→ λV, assuming for simplicity that the strength of the coupling is the
same for each reservoir. The non-local structure of the modular hamiltonian complicates the
perturbative expansion. For simplicity let us consider only the time independent case. For
example we can expand

V =
∞∑
p=0

λp V̂p cp
(
Ĥ, Ĥω,X,β

)
(5.33)
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where the functions cp are explicitly computable. The first terms are

c0 =
1
β

(
logg

(
βĤ+X

)
− logg

(
βĤ+βĤω +X

))
c1 =

g
(
βĤ+βĤω +X

)
− g ′

(
βĤ+βĤω +X

)
g
(
βĤ+βĤω +X

)
c2 =

β

2

g
(
βĤ+βĤω +X

)
g ′ ′
(
βĤ+βĤω +X

)
− g ′

(
βĤ+βĤω +X

)2

g
(
βĤ+βĤω +X

)2 (5.34)

where the primes denote derivatives.
Similarly for the entropy production we have

σV =−δΨ̂

 ∞∑
p=0

λp cpV
p

=
∞∑
p=0

λp cp
(
−δΨ̂ (Vp)

)
=

∞∑
p=0

λpσ
(p)
V , (5.35)

since the functions cp only depend on (Ĥ, Ĥω,X,β). Consequently we can write the fluxes as

Θk =
∞∑
p=0

λpΘ
(p)
k . (5.36)

On the other hand we know from (4.62) that for any NESS χ̂+ ∈ Σ+
V

(
Ψ̂
)
we can expand

χ+ (a) =
∞∑
s=0

λsχ+
s (a) (5.37)

for any a ∈ A(b)
R,V. Therefore entropy production Ep(χ̂+) is in principle computable as a power

series in λ.

5.3. A toy model example

To summarize and illustrate some physical consequences of the formalism, we present a simple
toy model. We couple the system to a single bath and focus on the interacting right algebra
A(b)
R,V discussed in 4.5. This coupling allows for energy exchange with the bath, giving rise to

interesting thermodynamic effects.
To capture the basic idea, we can model the process where Hawking radiation enters the

bath with an unrealistic but simple interaction term that destroys quanta in the bulk and creates
them in the bath, and viceversa:

VR = λ
(
a⊗d†k +a† ⊗dk

)
. (5.38)

In this simplified model, there is a single Hawking particle in the bulk, represented by the oper-
ator a. We suppress additional labels for simplicity. The bath operator d†k creates quanta in the
bath in the state k of the bath’s Fock space. The process occurs with a fixed rate proportional to
λ2. While this interaction is too simplistic to model the actual exchange of Hawking radiation

30



Class. Quantum Grav. 41 (2024) 235006 M Cirafici

between the bulk and the bath (see for example [4, 5, 36]), it serves to illustrate the form-
alism. After taking the crossed product the relevant interaction term becomes (5.13), which
contains (5.38) but also logarithmic terms.

For the bath, we take the simple HamiltonianH=
∑

j εjd
†
j dj. Since we are only considering

the right algebra, we suppress the R and L labels. We can use this setup to compute some of
the thermodynamic quantities we have discussed in this section. For example, let us consider
the energy flux (5.19) associated with the right algebra:

Θ= i

∑
j

εjd
†
j dj , V

 . (5.39)

We use the expansion (5.33) to write at first order:

V = c0 +λVc1 +O
(
λ2
)
. (5.40)

Note that higher-order terms arise due to the nonlocal structure of the modular Hamiltonian.
This is a gravitational effect, absent in a purely quantum mechanics setup. Since the coeffi-
cients c0 and c1 commute with the bath Hamiltonian, the first non trivial termwhich contributes
to a transition amplitude is the commutator:

Θ(1) = c1 iλ

∑
j

εjd
†
j dj , a⊗d†k +a† ⊗dk

= c1 iλεk
(
a⊗d†k −a† ⊗dk

)
. (5.41)

This corresponds to the operator that transfers the particle from the bulk to the bath (and vice
versa), weighted by the energy εk. This operator can therefore be interpreted as the one respons-
ible for the energy (or heat) transfer. Note that the coefficient c1 is another gravitational effect,
coming from the nonlocal structure of the modular Hamiltonian. Higher-order terms in λ can
be computed similarly. Furthermore, one can compute a formal entropy production observable
to first order in λ by using (5.21) and the expansion (5.35):

σ
(1)
V =−βΘ(1) , (5.42)

having dropped a total derivative. When computed on a certain state this operator measures the
entropy produced in the process. This model is likely too simple to exhibit a NESS. However,
it effectively captures the basic ideas presented in this paper and shows how quantities are
explicitly computable.

6. Some applications

In this section we outline two applications of the formalism. Each one should be explicitly
computable using the perturbative expansion we have discussed in the previous sections, once
a specific form for the interaction is chosen.

6.1. Evaporating black hole

Now we want to discuss how the formalism could be in principle applied to the case of an
evaporating black hole.
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So far we have studied gravitational algebras which arise in the background of the eternal
black hole, coupled to reservoirs.Wewould like to argue that the formalismwe have introduced
can be useful also in the case of an evaporating black hole.

To begin with we imagine coupling the system only to a single reservoir on the right side,
as described in [4]. We assume that the coupling can be at least in part accomplished by a local
interaction V. For example the interaction can destroy quanta in the bulk and create them in
the reservoir.

Ideally we would like to argue that after the black hole has reached thermal equilibrium,
we can couple it to the reservoir and observe its evaporation until we arrive at the final pure
state. However this process is outside the validity of our approximations. We have always
assumed that the bulk physics do not alter significantly the properties of the reservoir. The
latter is assumed to be some infinite system at some fixed temperature, in this case lower than
the black hole. It is not clear that this assumption holds throughout the black hole evaporation.

We can however follow the process in different stages by appropriately introducing time
scales. Consider the black hole in thermal equilibrium. Then we couple it to the reservoir for a
fixed interval of time, centered around some time T1. Then our formalism describes accurately
the NESS where a steady flux of radiation enters the reservoir, before the interaction is shut
down. The t−→∞ limit in the definition of the NESS, in this context means that we wait
enough time after the interaction is turned on so that a steady state is reached, but not so
much that the interaction is shut down. After the interaction is shut down the black hole is
again an isolated system and it will thermalize. We can imagine repeating this procedure for a
collection of parametrically large times Ta before and after the Page time. Hopefully the study
of the NESS around each Ta contains information about the Page curve. We hope to return to
this setting in the future. For the moment let us discuss more precisely the setup and the kind
of qualitative information given by the entropy production formula.

We can be more precise following a procedure outlined in [10]. To model the system we
begin with a shell of matter which collapses and forms a black hole. After a parametrically
large time T≫ β the black hole will have reached thermal equilibrium. This means that in the
strict large N limit the correlators of single trace operators will look thermal. We can therefore
construct a large N algebra A0,R. If we chose T so that T−→∞ when N−→∞, then finite
time t≪ T evolution will preserve the algebra A0,R, and in particular will preserve thermal
equilibrium.

More precisely we will have an algebra A0,R of early time operators a(t) and an algebra
B0,R of late time operators b(T+ t ′). In the large N limit correlators involving operators a(t)
and b(T+ t ′) will factorize into products of early time and of late time operators. In the large
N limit finite time evolution will map A0,R to itself. Therefore we can talk about the algebra
A0,R in thermal equilibrium, and by adjoining the operator U as before, it will become a Type
II∞ algebra AR [10].

Now that we know how to define AR, we can couple it to a reservoir as discussed in the
paper, for a fixed but parametrically small amount of time, so that a NESS appears before the
coupling is shut off.

We can therefore apply our results to this case. We consider a total system made by the
black hole, now in thermal equilibrium, and a single reservoir. As before we take the reference
state Ψ̂ in factorized form.

If we denote by δτ̂ the infinitesimal generator of the decoupled evolution, we have δτ̂ =
δR+ δI, where δI = i [I, ·]. Note that the decoupled system is KMSwith respect to the evolution
δΨ̂ = βR δR+β δI.
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Now we imagine putting the two subsystems in contact by a perturbation V(t) which is
vanishing outside an interval [0, t1]. This perturbation changes the boundary condition at infin-
ity from reflecting to transparent for a finite amount of time. We expect the system to reach
a NESS where the black hole slowly evaporates until the perturbation is removed and then
thermalizes again.

By the entropy production formula (5.29) it follows

S
(
Ψ̂ ◦ τ̂ tV|Ψ̂

)
=− iΨ̂

(
ΓtV δΨ̂⊗ω (Γ

t∗
V )
)
=− iΨ̂(ΓtV δI (Γ

t∗
V ))− iΨ̂(ΓtV δω (Γ

t∗
V )) . (6.1)

What is the physical interpretation of the two terms on the right hand side? Let us explain this
with a finite dimensional example.

Example. Assume we have a finite dimensional system initially in thermal equilibrium. We
assume its hamiltonian has the formH(t) = H+V(t)where V(t) is a time dependent perturba-
tion which in particular vanishes outside a certain interval [0, t1]. The initial state of the system
η is (τ,β)-KMSwith respect to the evolution generated by δω = β δ = iβ [H, ·]. Then as above
the entropy production formula gives

S
(
η ◦ τTV |η

)
= iβ η

(
ΓTV δ

(
ΓT∗V
))
. (6.2)

We seek a physical interpretation of the right hand side. Since the system is finite dimensional,
the energy at time t can be computed from the Hamiltonian as

E (t) = η (τ tV (H(t))) . (6.3)

Note that this quantity would be divergent for an infinite dimensional system.
Since the perturbation is identically zero outside the time interval [0, t1] we can compute

the difference between the initial and final energies

E (t1)−E (0) =
ˆ t1

0
η ◦ τ tV (δ (V(t))) dt= iη

(
Γt1V δ

(
Γt1,†V

))
. (6.4)

Therefore the observable on the right hand side has the physical interpretation as the total
amount of work done on the system. Note that while for an infinite dimensional system the
energy computed via the Hamiltonian would be divergent, energy differences are well defined
and captured by the right hand side of (6.4).

Now we can interpret (6.2) as

S
(
η ◦ τTV |η

)
= βRWR+βWS . (6.5)

Finally we can repeat the argument to allow for several algebras at different time instants
Ta. We can adjust the time scales so that the algebras of early time operators and the algebras
of late time operators capture physics before and after the Page time. In this way we have all
the tools to address thermodynamic aspects of the system before and after the Page time. We
hope to return to this setting in the future.
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6.2. Quantum chaos

In this section we use the formalism we have built to propose a variant of the OTOC as a tool
to probe quantum chaos in operator algebras.

Finite dimensional systems. The OTOC is widely recognized as a diagnostic of quantum
chaos [32, 44]. It is a time and temperature dependent function which is defined via the aver-
aging of a double commutator

CV,W (t) = Tr
(
ρ [Wt,V]

†
[Wt,V]

)
. (6.6)

To unpack a bit the notation, here Wt = e iHtWe− iHt is the operator evolved in time and ρ=
e−βH/Z is the thermal density operator. The operators V,W ∈ B(H) are usually taken to be
Hermitian and with local support.

Physically the growth of the function (6.6) measures the spread of quantum information,
also known as information scrambling [44]. For example we can choose the operators in such a
way that [W,V] = 0, for example by having them have support on space-like separated regions.
A non vanishing [Wt,V], and therefore a non vanishing (6.6) measure how quickly the operator
W spreads among an operator basis. In chaotic systems the OTOC is expected to grow until
a certain scrambling time is reached, where any subsystem is now maximally entangled, and
then remain approximately constant.

In the particular case where the two operators are position and momentum, the semi-
classical limit of (6.6) has the exponential behavior e 2λt where λ can be interpreted as
a Lyapunov exponent, which measures the sensitivity to initial conditions of classical
trajectories.

Quantum chaos in gravitational algebras. Consider now a quantum dynamical system
(O,α) where O is a von Neumann algebra and α determines the time evolution. Consider
a reference state ψ which we assume to be (α,β)-KMS. In the general infinite dimensional
setting we will not in general have a finite Hamiltonian operator or a Gibbs state, but we might
replace them with the ∗-automorphism which governs the time evolution and a general normal
state ψ. Then given two operators v,w ∈ O we define the algebraic OTOC as

Cv,w (t) = ψ
(
[αt (w) ,v]† [αt (w) ,v]

)
. (6.7)

This definition is more general than (6.6) and reduces to it in the finite dimensional setting. It
however holds for an arbitrary normal state ω. See also [16, 18, 33] for a different approach.

Oddly such definition appears to be new in the context of the operator algebra approach
to quantum statistical mechanics. An even more natural definition appears in the case where
ψ is modular, where we can replace the ∗-automorphism α with the modular flow associated
to ψ. In this case we can study the OTOC using the structural properties of the modular flow.
Denote by∆ψ the modular operator associated toψ. In this case we define amodular algebraic
OTOC as

Ca,b (s) = ψ

([
∆− i s
ψ a∆ i s

ψ ,b
]† [

∆− i s
ψ a∆ i s

ψ ,b
])

. (6.8)

We could be even more general and replace the state ψ with an arbitary state χ, for example a
NESS.
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Now we turn our attention to the gravitational algebras in black hole backgrounds. In this
case the relevant operator algebra is the algebra A(b)

R,V discussed in section 4.4. In this case we

have the modular vector Ψ̂V and the modular-time evolution operator ∆̂ΨV . This induces the
inner ∗-automorphism τ̂ tV introduced in (4.41).

Now for any pair of operators âV, b̂V ∈ A(b)
R,V we can write

Ca,b (s) = χ

([
τ sV
(
âV
)
, b̂V
]† [

τ sV
(
âV
)
, b̂V
])

. (6.9)

In this case the state χ could be a non-trivial NESS or an equilibrium KMS state. Let us
unpack a bit this definition. For simplicity let us assume that the two operators âV, b̂V ∈ ÂV

are Hermitian, so that we can rewrite (6.9) as

Ca,b (s) =−χ
([
τ sV
(
âV
)
, b̂V
]2)

. (6.10)

To be concrete we can choose to be in thermal equilibrium, where we already expect to see
some signatures of chaos and pick as χ the perturbed KMS state Ψ̂V

Ca,b (s) =−⟨Ψ̂V|
[
τ sV
(
âV
)
, b̂V
]2
|Ψ̂V⟩ (6.11)

We propose this function as a probe of quantum chaos in operator algebras when gravitational
effects are included. Since N = 4 SYM above the Hawking-Page transition is expected to be
maximally chaotic, we expect that these functions should have very interesting properties.

Note that the modular OTOC could be as well studied in other systems, including the
microcanonical gravitational algebra introduced in [10].

7. Conclusions

In this note we have studied certain aspects of the gravitational algebras introduced in [47]
when driven out of equilibrium. Our primary technical tool has been to couple the original
system with an external reservoir. Once this coupling is established, it becomes conceivable
to manipulate it, thereby driving the original system out of equilibrium and allowing for the
exploration of its thermodynamic properties, including entropy production. In order to do so
we have found an explicit expression for the quantum dynamics of the system and we have
use it to set up a perturbative treatment for the NESSs and for the relevant observables. In
principle everything is computable order by order. From the technical point of view, these
results were obtained by generalizing several findings from nonequilibrium statistical mech-
anics, often written with the type I algebra of a finite system in mind, to encompass type II∞
gravitational algebras.

We have however merely scratched the surface of the subject as many interesting open
problems remain. We would like to highlight some of these challenges:

• The primary limitation of this note lies in the formal nature of the construction. One can only
go so far without specifying a detailed interaction term and making other choices. To make
progress it would be necessary to choose a certain setting and work out explicit examples.
A natural place to start is the case of JT gravity where the algebraic formalism has been
established in detail in [38].
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• Ideally the main goal of this program would be to say something about the page curve. The
evaporation process of a black hole inherently involves nonequilibrium dynamics. Hopefully
the relation between entropy and nonequilibrium dynamics we have discussed could be use-
ful to connect the results of [4, 36] with the algebraic formalism.

• While we have discussed several aspects of nonequilibrium physics, we have yet to intro-
duce two fundamental tools of nonequilibrium quantum statistical mechanics: the spectral
analysis and the scattering approach [20, 39]. Both tools require appropriate generalization
to be applied in our context.

• It should be possible to generalize our discussion to the microcanonical ensemble introduced
in [10]. One can for example imagine to perturb the boundary theory with certain operators
and appropriately tuning the couplings to drive the system out of equilibrium.

• In section 4 we have chosen the simplest way to implement the 1/N corrections via the
crossed product. There could be more interesting ways which involve the reservoirs in an
essential manner. For example this could provide an avenue to include gravitational effects
in the reservoirs.

• While the OTOC is widely recognized as a probe of quantum chaos, there does not appear to
be any comprehensive discussion in the context of Tomita-Takesaki theory, although see also
[16, 18, 33]. Possibly such a link should be established before attempting to use the OTOC
in the context of gravitational algebras. It is fascinating to speculate that the chaotic behavior
of N = 4 SYM above the Hawking-Page transition is connected with the appearance of the
II∞ factor. It would also be interesting to see if this holds in simpler systems in quantum
statistical mechanics.

• It has been recently shown in [2, 23, 27] that the crossed product construction can be applied
to quantum field theories beyond the original holography framework. Therefore the results
presented in this note could in principle offer a new perspective on nonequilibrium dynam-
ics in generic quantum field theories. Investigating this further would be a very interesting
avenue of research.

• In this note, we have not considered symmetries. As in [47], the crossed product construction
involved only the modular automorphism group. However, [3] identifies conditions under
which the crossed product yields a semifinite algebra for more general symmetry groups.
The crossed product on backgrounds with symmetries is also discussed in [15]. This per-
spective may lead to a generalization of the formalism presented here to study nonequilib-
rium dynamics in systems with charges. This raises interesting questions, such as under what
conditions symmetries are broken by nonequilibrium dynamics or whether new symmetries
could emerge in nonequilibrium states.

• Finally one of the primary motivations behind this note was to derive a gravitational analog
of the many nonequilibrium thermodynamics identities, such as Jarzynski’s or Crook’s work
relations. Some progress in this direction is reported in [12].

We hope to report on progress about these challenges in the near future.
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[6] Aschbacher W H, Jakšic̀ V, Pautrat Y, Pillet C-A, Attal S, Joye A and Pillet C-A 2006 Topics
in nonequilibrium quantum statistical mechanics Open Quantum Systems III (Lecture Notes in
Mathematics vol 1882) (Springer) pp 1–66

[7] Bahiru E 2023 Algebra of operators in an AdS-Rindler wedge J. High Energy Phys.
JHEP06(2023)197

[8] Bahiru E 2023 Algebras and their Covariant representations in quantum gravity (arXiv:2308.14166
[hep-th])

[9] Bratteli O and Robinson D W 1996 Operator Algebras and Quantum Statistical Mechanics 2.
Equilibrium States. Models in Quantum Statistical Mechanics (Springer)

[10] Chandrasekaran V, Penington G and Witten E 2022 Large N algebras and generalized entropy
(arXiv:2209.10454 [hep-th])

[11] Chandrasekaran V, Longo R, Penington G and Witten E 2023 An algebra of observables for de
Sitter space J. High Energy Phys. JHEP02(2023)082

[12] Cirafici M 2024 Fluctuation theorems, quantum channels and gravitational algebras J. High Energy
Phys. accepted (arXiv:2408.04219 [hep-th])

[13] Engelhardt N and Wall A C 2015 Quantum extremal surfaces: holographic entanglement entropy
beyond the classical regime J. High Energy Phys. JHEP01(2015)073

[14] Engelhardt N and Liu H 2023 Algebraic ER = EPR and complexity transfer (arXiv:2311.04281
[hep-th])

[15] Fewster C J, Janssen D W, Loveridge L D, Rejzner K and Waldron J Quantum reference frames,
measurement schemes and the type of local algebras in quantum field theory (arXiv:2403.11973
[math-ph])

[16] Furuya K, Lashkari N, Moosa M and Ouseph S 2023 Information loss, mixing and emergent Type
III1 factors, J. High Energy Phys. JHEP08(2023)111

[17] Gesteau E 2023 Large N von Neumann algebras and the renormalization of Newton’s constant
(arXiv:2302.01938 [hep-th])

[18] Gesteau E 2023 Emergent spacetime and the ergodic hierarchy (arXiv:2310.13733 [hep-th])
[19] Gomez C 2023 Entanglement, observers and cosmology: a view from von Neumann U (arXiv:

2302.14747 [hep-th])
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