
Journal of Scientific Computing (2024) 100:3
https://doi.org/10.1007/s10915-024-02546-w

Time Reparametrization and Event Location for
Discontinuous Differential Algebraic Equations

L. Lopez1 · S. Maset2

Received: 12 July 2023 / Revised: 4 April 2024 / Accepted: 12 April 2024 /
Published online: 21 May 2024
© The Author(s) 2024

Abstract
In this paper, we consider numerical methods for the event location of differential algebraic
equations. The event corresponds to cross a discontinuity surface, beyond which another
differential algebraic equation holds. The methods are based on a particular change of the
independent variable time, called time reparametrization or time transformation, reducing the
equation to another equation where the event time is known in advance. From a numerical
point of view, these methods never cross the discontinuity surface and reach it in a fixed
number of steps. The methods works also for differential algebraic equations of index higher
than one.

Keywords Discontinuous differential algebraic equations · Event location · Time
reparametrization · Diagonally implicit stiffly accurate Runge-Kutta methods

1 Introduction

This paper deals with differential algebraic equations (DAEs) with a discontinuity surface,
where, during the numerical integration of the equation, it is required the accurate compu-
tation of the event point corresponding to reaching the discontinuity surface. Several real
systems may be modeled by DAEs of this type, see for instance the applications in Chemical
Engineering and Electrical Systems [1, 3, 21, 23]. In recent years, a growing interest has
been observed concerning the theoretical aspects (see for example [10, 19, 20]), together
with the numerical questions that arise in such DAEs (see for example [10, 15, 16, 19, 20,
22]). DAEs with a discontinuity surface are called in several way: non-smooth DAEs, hybrid
DAEs, discontinuous DAEs, DAEs of Filippov type. Here, we use the term Discontinuous
DAEs (DDAEs).

B S. Maset
maset@units.it

L. Lopez
luciano.lopez@uniba.it

1 Dipartimento di Matematica, Università di Bari, Bari, Italy

2 Dipartimento di Matematica, Informatica e Geoscienze, Università di Trieste, Trieste, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02546-w&domain=pdf
http://orcid.org/0000-0002-7447-4036

3 Page 2 of 26 Journal of Scientific Computing (2024) 100 :3

In the following, we consider a DAE of the form:
⎧
⎨

⎩

y′ (t) = f (y (t) , z (t)) , t ≥ t0,
g (y (t) , z (t)) = 0, t ≥ t0,
(y(t0), z(t0)) = (y0, z0) ,

(1)

where y (t) ∈ R
d1 , z (t) ∈ R

d2 and f : R
d1 × R

d2 → R
d1 and g : R

d1 × R
d2 → R

d2

are sufficiently smooth functions. The initial value (y0, z0) ∈ R
d1 × R

d2 is assumed to be
consistent, i.e. g(y0, z0) = 0.

Moreover, we consider the state space Rd1 × R
d2 as partitioned in the three subsets:

S− = {(y, z) ∈ R
d1 × R

d2 : h(y, z) < 0}
� = {(y, z) ∈ R

d1 × R
d2 : h(y, z) = 0}

S+ = {(y, z) ∈ R
d1 × R

d2 : h(y, z) > 0}.
where h : Rd1 × R

d2 → R is a sufficiently smooth function. The DAE (1) is assumed to
hold in S− ∪� and the initial value (y0, z0) is assumed to belong to S−, while, in general, in
S+ ∪ � a different DAE is assigned. So, the DAE (1) is a DDAE with discontinuity surface
�.

We suppose that the DAE (1) has a unique solution (y, z) and this solution meets the
discontinuity surface � at a certain time t∗ > 0: we have (y(t), z(t)) ∈ S− for t ∈ [t0, t∗)
and (y(t∗), z(t∗)) ∈ �, i.e.

h
(
y
(
t∗

)
, z

(
t∗

)) = 0.

The time t∗ is called the event time and the state (y(t∗), z(t∗)) is called the event point. The
event location is the determination of the event time t∗ and the event point (y(t∗), z(t∗)).

The accurate evaluation of the event point is an important task in the integration ofDDAEs,
because, once evaluated the event point (y(t∗), z(t∗)), one may decided what to do next. In
general, after the event point, the solution can cross or slide on the discontinuity surface (see
for istance [7]). In [18], it is studied how to compute the event time and the event point by
means of the standard numerical methods for DAEs. In this paper, we compute the event
time and the event point by means of a time reparametrization producing a new DAE where
the event time is known a priori.

It is important for the event location to use numerical methods satisfying the following
three properties:

(a) the numerical event point (yτ (t∗), zτ (t∗)) lies on the discontinuity surface, i.e.
h(yτ (t∗), zτ (t∗)) = 0;

(b) the numerical event point (yτ (t∗), zτ (t∗)) is consistent, i.e. g(yτ (t∗), zτ (t∗)) = 0;
(c) the numerical method is one-side, i.e. up to reaching the discontinuity surface the method

uses values of f and g only at points of S− ∪ �.

By using suitable numerical methods in the integration of the new DAE obtained by the
time reparametrization, all the properties (a), (b) and (c) above can be satisfied. On the other
hand, this cannot be achieved by standard numerical methods for DAEs.

Moreover, regarding the property (c), it is important that an one-side method can reach the
discontinuity surface in an arbitrary number of steps fixed a priori, without needing to reduce
the stepsize as one approaches the discontinuity surface. This is obtained in the numerical
integration of the new DAE.

It is worthwhile to remark that the time reparametrization technique works also for DAEs
of index higher than one.

123

Journal of Scientific Computing (2024) 100 :3 Page 3 of 26 3

The plan of the present paper is as follows. We start by recalling the standard numerical
methods for DAEs and we show how to determine the event time and the event point by
these methods. Then, we discuss one-side numerical methods and show the difficulties that
the standard numerical methods encounter in satisfying the one-side property. After this,
we describe the time reparametrization technique and then the related numerical methods
fulfilling the properties (a), (b) and (c) above. Finally, some numerical tests conclude our
paper.

2 Background on Standard Numerical Methods and Event Location for
DAEs

In this section, we recall the standard numerical methods used for integrating DAEs, namely
semi-implicit methods, implicit RK methods and Rosenbrock methods (for reference see
[11, 12]). Moreover, we show how the event location is implemented for these methods (for
reference see [18]).

The methods are applied over a mesh

t0 < t1 < t2 < · · ·
of stepsizes

τn+1 = tn+1 − tn, n = 0, 1, 2, . . .

In the following, yn and zn denote the numerical approximations of the differential and
algebraic variables y and z, respectively, at the mesh point tn .

During the numerical event location, the numerical integration continues up tomesh points
tn∗ and tn∗+1 such that

h(yn∗ , zn∗) < 0 and h(yn∗+1, zn∗+1) > 0.

After the individuation of such mesh points, the numerical event location determines the
numerical event time t∗τ and numerical event point (y∗

τ , z∗τ).

2.1 Semi-implicit Methods

Byusing the usual notations forRKmethods, a semi-implicit method is defined by the scheme

yn+1 = yn + τn+1

ν∑

i=1

bi f (yni , zni) (2)

g(yn+1, zn+1) = 0, (3)

where the stage values (yni , zni), i = 1, . . . , ν, are successively obtained by

yni = yn + τn+1

i−1∑

j=1

ai j f (ynj , znj) (4)

g(yni , zni) = 0. (5)

123

3 Page 4 of 26 Journal of Scientific Computing (2024) 100 :3

Here, bi and ai j are weights and coefficients, respectively, of a ν-stage explicit RK method.
Observe that the implicitness of this scheme consists in solving at each step the ν + 1 non-
linear equations (3)-(5) of dimension d2. By construction (see (3)), the numerical solution
(yn, zn) is consistent, i.e.

g(yn, zn) = 0, n = 0, 1, 2, . . .

The numerical event time t∗τ and event point (y∗
τ , z∗τ) are obtained by solving the nonlinear

system in the unknowns t∗τ and z∗τ :
{
g(y∗

τ , z∗τ) = 0
h(y∗

τ , z∗τ) = 0,
(6)

where

y∗
τ = η(t∗τ) = yn∗ + τn∗+1

ν∑

i=1

bi

(
t∗τ − tn∗

τn∗+1

)

f (yn∗i , zn∗i),

with

η(tn + θτn+1) = yn + τn+1

ν∑

i=1

bi (θ) f (yni , zni), θ ∈ [0, 1],

a continuous extension of the explicit RK method. By construction (see (6)), the numerical
event point (y∗

τ , z∗τ) lies on the discontinuity surface (point a) in the introduction) and it is
consistent (point b) in the introduction). The numerical event location requires the solution
of the non-linear system (6) of dimension d2 + 1. The computational cost of solving such a
system is a fraction of the computational cost of a step of the semi-implicit method, where
ν + 1 systems of dimension d2 need to be solved.

2.2 Implicit RKMethods

Implicit RK methods are given by

yn+1 = yn + τn+1

ν∑

i=1

bi f (yni , zni)

zn+1 =
⎛

⎝1 −
ν∑

i, j=1

biωi j

⎞

⎠ zn +
ν∑

i, j=1

biωi j zn j , (7)

where the stage values (yni , zni), i = 1, . . . , ν, are obtained by solving the non-linear system
of equations

yni = yn + τn+1

ν∑

j=1

ai j f (ynj , znj), i = 1, . . . , ν,

g(yni , zni) = 0, i = 1, . . . , ν. (8)

Here, bi and ai j are weights and coefficients, respectively, of a ν-stage implicit RK method
and ωi j are the entries of the inverse of the RK matrix

(
ai j

)
. At each step of this implicit

scheme, the non-linear system (8) of dimension ν(d1 + d2) has to be solved. If the implicit
RK method is stiffly accurate, i.e.

aνi = bi , i = 1, . . . , ν, (9)

123

Journal of Scientific Computing (2024) 100 :3 Page 5 of 26 3

then the numerical solution (yn, zn) is consistent, since (ynν, znν) = (yn+1, zn+1) holds.
The numerical event time t∗τ and event point (y∗

τ , z∗τ) are obtained by

t∗τ = tn∗ + τ ∗

y∗
τ = yn∗ + τ ∗

ν∑

i=1

bi f (y
∗
i , z∗i)

z∗τ =
⎛

⎝1 −
ν∑

i, j=1

biωi j

⎞

⎠ zn∗ +
ν∑

i, j=1

biωi j z
∗
j , (10)

where the stepsize τ ∗ and the stage values (y∗
i , z∗i), i = 1, . . . , ν, satisfy

y∗
i = yn∗ + τ ∗

ν∑

j=1

ai j f (y
∗
j , z

∗
j), i = 1, . . . , ν,

g(y∗
i , z∗i) = 0, i = 1, . . . , ν,

h(y∗
τ , z∗τ) = 0. (11)

As in case of semi-implicit methods, the numerical event point (y∗
τ , z∗τ) lies on the discon-

tinuity surface (point a) in the introduction). Moreover, if the implicit RK method is stiffly
accurate, then the numerical event point is consistent (point b) in the introduction). The numer-
ical event location requires to solve the non-linear system (11) of dimension ν(d1 + d2) + 1.
So, the computational cost of solving such a non-linear system is essentially the same as
the computational cost of a step of the implicit RK method, where a system of dimension
ν(d1 + d2) needs to be solved.

2.3 RosenbrockMethods

Rosenbrock methods read

yn+1 = yn +
ν∑

i=1

bi lni

zn+1 = zn +
ν∑

i=1

bi kni , (12)

where (lni , kni), i = 1, . . . , ν, are successively obtained by solving the linear system

⎡

⎣
I − τn+1γi i f ny − τn+1γi i f nz

−τn+1γi i gny − τn+1γi i gnz

⎤

⎦

⎡

⎣
lni

kni

⎤

⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

τn+1 f (yni , zni) + τn+1

i−1∑

j=1
γi j

(
f ny lnj + f nz knj

)

τn+1g(yni , zni) + τn+1

i−1∑

j=1
γi j

(
gnylnj + gnz knj

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(13)

123

3 Page 6 of 26 Journal of Scientific Computing (2024) 100 :3

with (yni , zni), i = 1, . . . , ν, on the right-hand side successively and explicitly given by

yni = yn +
i−1∑

j=1

ai j ln j

zni = zn +
i−1∑

j=1

ai j knj . (14)

Here, bi , ai j and γi j are weights and coefficients of a ν-stage Rosenbrock method and f ny ,
f nz , g

n
y and gnz denote the jacobian matrices of f and g at (yn, zn). The implicitness of this

method consists in solving at each step ν linear systems of dimension d1 + d2. In general,
the numerical solution (yn, zn) is not consistent.

The numerical event time t∗τ and event point (y∗
τ , z∗τ) are obtained by solving the equation

h(y∗
τ , z∗τ) = 0, (15)

where

y∗
τ = η(t∗τ) = yn∗ +

ν∑

i=1

bi

(
t∗τ − tn∗

τn∗+1

)

lni

z∗τ = μ(t∗τ) = zn∗ +
ν∑

i=1

bi

(
t∗τ − tn∗

τn∗+1

)

kni ,

with

η(tn + θτ) = yn +
ν∑

i=1

bi (θ)lni

μ(tn + θτ) = zn +
ν∑

i=1

bi (θ)kni , θ ∈ [0, 1],

a continuous extension of the Rosenbrock method. As in case of semi-implicit methods
and implicit RK methods, the event point (y∗

τ , z∗τ) belongs to the discontinuity surface by
construction (point a) in the introduction). But, unlike semi-implicit methods and stiffly
accurate implicit RK methods, it is not consistent in general (point b) in the introduction).
The equation (15) is a scalar non-linear equation in the unknown numerical event time t∗τ .
The cost, for solving it, is a small fraction of the cost of a step of the Rosenbrock method,
where ν linear system of dimension d1 + d2 need to be solved.

3 One-sideMethods

There are DDAEs where the functions f and g in (1) are defined only in S− ∪ � and not
in S+ (see the example of DDAE given in [21]). In such situations, one needs to integrate
the DAE (1) by a one-side numerical method, namely a method where the values of f and g
are evaluated only at points of S− ∪ �, while values of f and g at points of S+ cannot be
computed.

The one-sideness is an important property that numerical methods for DDAEs have to
satisfy (see point c) in the introduction).

123

Journal of Scientific Computing (2024) 100 :3 Page 7 of 26 3

For Discontinuous Ordinary Differential Equations (DODEs), numerical methods with
this property based on one-step and multistep schemes have been developed in [6, 8]. How-
ever, such schemes can become expensive because they need to adapt the stepsize in order
to approach the discontinuity surface. On the other hand, for DODEs, the methods studied
in [9, 17] and based on a transformation of the time variable are one-side and they can reach
the discontinuity surface in a number of steps fixed a priori, without needing to adapt the
stepsize. In this paper, we propose for DDAEs similar one-side methods based on a time
transformation.

Now, we briefly show the difficulties when we ask to be one-side to the standard numerical
methods forDAEs.Here,we are thinking aboutmethods that adapt the stepsize in approaching
the discontinuity surface in order to be one-side.

In case of semi-implicit methods (2), (3), (4), (5), the one-side property requires

(yni .zni) ∈ S− ∪ �, n = 0, 1, . . . , n∗ and i = 1, . . . , ν ,

and
(yn+1, zn+1) ∈ S− ∪ �, n = 0, 1, . . . , n∗.

This cannot be obtained, since (yn∗+1, zn∗+1) ∈ S+. However, in the particular situation
where h(y, z) = h(y), i.e h is a function of the sole variable y, the one-side property
could be obtained first by checking for h(yn+1) > 0 and then, only in the situation where
h(yn+1) ≤ 0, to compute zn+1 by g(yn+1, zn+1) = 0.

In case of implicit RK methods (7), (8), the one-side property requires

(yni .zni) ∈ S− ∪ �, n = 0, 1, . . . , n∗ and i = 1, . . . , ν.

This cannot be achieved if a stiffly accurate implicit RKmethod is used to obtain a consistent
numerical solution, since (yns, zns) = (yn∗+1, zn∗+1) ∈ S+ for n = n∗. However, if the
numerical integration up to tn∗+1 is accomplished by a non-stiffly-accurate method and the
stiffly accurate method is used only in the event location (10), (11), the one-side property
could be obtained.

In case of Rosenbrock methods (12), (13), (14), the one-side property require

(yni .zni) ∈ S− ∪ �, n = 0, 1, . . . , n∗ and i = 1, . . . , ν ,

and
(yn .zn) ∈ S− ∪ �, n = 0, 1, . . . , n∗.

This shows that techniques adapting the step in order to obtain a one-side method can be used
for Rosenbrock methods. However, recall that these methods have the drawback of providing
an event point which is not consistent in general (point b) in the introduction).

By summarizing, we can say that the numerical event locations by the three standard
numerical methods presented above satisfy the property (a) in the introduction, but they fail
to satisfy simultaneously the other two properties (b) and (c). On the other hand, the three
properties (a), (b) and (c) can be satisfied simultaneously by numerically integrating the
DAE obtained from the time transformation presented in the next section. Moreover, by this
numerical integration, the discontinuity surface can be reached in an arbitrary number of
steps fixed a priori.

123

3 Page 8 of 26 Journal of Scientific Computing (2024) 100 :3

4 Reparametrization of the Time

We present another approach to the event location for DDAEs, different from the use of
standard numerical methods, called time reparametrization or time transformation. This
approach has been introduced in [9] and [17] for DODEs and it has been also used in different
contexts (see for instance [2, 4, 5, 13]).

We assume to have
d

dt
h(y(t), z(t)) > 0, t ∈ [t0, t∗),

which holds sufficiently close to the event time. This means that the time reparametrization
should be used when the solution is definitely approaching the discontinuity surface.

4.1 The Time Transformation and the s-time DAE

Recall that t∗ is the event time for the DAE (1). Fix s0 < 0 and let

α : [s0, 0] → [
t0, t

∗]

be a C1 function such that α(s0) = t0 and α(0) = t∗. We call α a time transformation.
Now, we consider in the DAE (1) the time reparametrization (change of variable)

t = α (s)

and we set
(Y (s) , Z (s)) := (y (α (s)) , z (α (s))) , s ∈ [s0, 0] .

Observe that Y and Z are, respectively, the differential and algebraic variables in the new
s-time, whereas y and z are the differential and algebraic variables in the old t-time.

The time transformation α is chosen in order to have

h (y (α (s)) , z (α (s))) = h (Y (s) , Z (s)) = κ (s) , s ∈ [s0, 0] , (16)

where

κ : [s0, 0] → [h(y0, z0), 0]

is a given C1 strictly increasing function with κ(s0) = h(y0, z0) < 0 and κ(0) = 0. In this
manner, in advance we prescribe in the s-time how the negative values of the function h have
to increase in order to reach zero at the event time. The simplest choice for κ(s) is κ(s) = s
and then the initial s-time is s0 = h(y0, z0). Other forms of κ(s) are possible: for example,
κ(s) = sm with m ≥ 2 is used in [17].

The original t-time DAE (1) is transformed in a new s-time DAE where the time-
transformation α is one of the unknowns.

Theorem 1 The functions Y and Z and the time transformation α satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ′ (s) = α′ (s) f (Y (s) , Z (s)) , s ∈ [s0, 0],

g(Y (s), Z(s)) = 0, s ∈ [s0, 0],

h (Y (s) , Z (s)) = κ (s) , s ∈ [s0, 0],

(Y (s0) , Z (s0) , α (s0)) = (y0, z0, t0) .

(17)

123

Journal of Scientific Computing (2024) 100 :3 Page 9 of 26 3

Proof For s ∈ [s0, 0], we have

Y ′ (s) = α′ (s) y′ (α (s)) = α′ (s) f (y (α (s)) , z (α (s)))

= α′ (s) f (Y (s) , Z (s))

and

0 = g (y (α (s)) , z (α (s))) = g (Y (s) , Z (s)) .

Moreover, (16) holds, the initial values for Y and Z at s0 are the initial values y0 and z0 for
y and z at t0 and the initial value for α at s0 is t0. 	

In this approach, where the time t is transformed in the time s and the event time becomes
known to be 0 a priori, the event location consists in integrating the DAE (17) in the unknown
Y , Z and α over the interval [s0, 0]: the event time is α(0) and the event point is (Y (0), Z(0)).

Observe that (17) is a DAE where α′, not α, is an unknown scalar algebraic variable. By
introducing the fictitious differential equation α′(s) = β(s), α becomes a new differential
variable and β is a new algebraic variable. The DAE (17) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ′ (s) = β (s) f (Y (s) , Z (s)) , s ∈ [s0, 0],

α′(s) = β(s), s ∈ [s0, 0],

g(Y (s), Z(s)) = 0, s ∈ [s0, 0],

h (Y (s) , Z (s)) = κ (s) , s ∈ [s0, 0],

(Y (s0) , Z (s0) , α (s0)) = (y0, z0, t0) .

(18)

Observe that the algebraic scalar variable β appears in the differential equations, but not in
the algebraic equations.

4.2 Index and Form of the s-time DAE

A general DAE is said of index m, m positive integer, if m differentations of the algebraic
equations provide explicit differential equations for the algebraic variables by reducing the
DAE to an ODE.

Thus, by following this definition, if the original t-time DAE (1) has index 1, then the
s-time DAE (18) is of index 2, and if the t-time DAE has index higher than 1, then the
s-time DAE (18) has the same index as the t-time DAE. In fact, by two differentiations of
the algebraic equation

h (Y (s) , Z (s)) = κ (s)

we can obtain an explicit differential equation for β.

123

3 Page 10 of 26 Journal of Scientific Computing (2024) 100 :3

Suppose that the t-time DAE (1) has index 1. Since the algebraic equation g(y, z) = 0
can be written as z = G(y) for some function G, the s-time DAE (18) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ′ (s) = β (s) f (Y (s) ,G(Y (s))) , s ∈ [s0, 0],

α′(s) = β(s), s ∈ [s0, 0],

h (Y (s) ,G(Y (s))) = κ (s) , s ∈ [s0, 0],

(Y (s0) , α (s0)) = (y0, t0) .

(19)

The DAE (19) is an Hessenberg index-2 DAE, i.e. a DAE where the algebraic variables
appear only in the differential equations.

If the t-time DAE (1) is of index higher than 1, then the s-time DAE (18) inherits this
higher index and it has in addition the scalar differential variable α and the scalar algebraic
variable β, which appears only in the differential equations. In particular, if the t-time DAE
(1) is an Hessenberg index-2 DAE

⎧
⎨

⎩

y′ (t) = f (y (t) , z (t)) , t ≥ t0,
g (y (t)) = 0, t ≥ t0,
y(t0) = y0,

(20)

then the s-time DAE (18) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ′ (s) = β (s) f (Y (s) , Z (s)) , s ∈ [s0, 0],

α′(s) = β(s), s ∈ [s0, 0],

g(Y (s)) = 0, s ∈ [s0, 0],

h (Y (s) , Z (s)) = κ (s) , s ∈ [s0, 0],

(Y (s0) , α (s0)) = (y0, t0) .

(21)

The s-time DAE (21) has index 2, but in general it is not Hessenberg index-2, since the
algebraic variable Z appears in the second algebraic equation. Of course, in the particular
case h(y, z) = h(y), the s-time DAE (21) is Hessenberg index-2.

In the next two subsections, we see two alternative approaches for the solution of (17),
different from viewing it as a DAE of index (at least) 2. One is to reduce it to an ODE by
a unique differentiation (not two differentations) of the algebraic equation. The other is to
reduce it to a DAE with the sole algebraic equation of the original DAE.

4.3 Reduction to an ODE

The DAE (17) can be reduced to an ODE by differentiating the algebraic equations.

123

Journal of Scientific Computing (2024) 100 :3 Page 11 of 26 3

Theorem 2 The functions Y and Z and the time transformation α satisfy the ODE

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y ′ (s) = κ ′(s)
B(Y (s),Z(s)) f (Y (s),Z(s)) f (Y (s) , Z (s)) , s ∈ [s0, 0] ,

Z ′ (s) = κ ′(s)
B(Y (s),Z(s)) f (Y (s),Z(s)) A (Y (s) , Z (s)) f (Y (s) , Z (s)) , s ∈ [s0, 0] ,

α′ (s) = κ ′(s)
B(Y (s),Z(s)) f (Y (s),Z(s)) , s ∈ [s0, 0] ,

(Y (s0), Z(s0), α (s0)) = (y0, z0, t0) ,

(22)

where
A(Y (s), Z(s)) = −gz(Y (s), Z(s))−1gy(Y (s), Z(s)) ∈ R

d2×d1

and

B (Y (s) , Z (s)) = hy (Y (s) , Z (s)) + hz (Y (s) , Z (s)) A(Y (s), Z(s)) ∈ R
1×d1 ,

with gz, gy, hy, hz derivatives (jacobian matrices) of the functions g and h with respect to
the variables y and z.

Proof For s ∈ [s0, 0], we have

d

ds
g (Y (s) , Z (s)) = gy(Y (s), Z(s))Y ′ (s) + gz(Y (s), Z(s))Z ′ (s) = 0 (23)

and

d

ds
h (Y (s) , Z (s)) = hy (Y (s) , Z (s)) Y ′ (s) + hz (Y (s) , Z (s)) Z ′ (s) = κ ′ (s) . (24)

Hence, we obtain
Z ′ (s) = A(Y (s), Z(s))Y ′ (s)

by (23) and

B (Y (s) , Z (s)) Y ′(s) = B (Y (s) , Z (s)) α′ (s) f (Y (s) , Z (s)) = κ ′ (s)

and then

α′ (s) = κ ′ (s)
B (Y (s) , Z (s)) f (Y (s) , Z (s))

by (24). Now, (22) easily follows. 	

Although the ODE (22) is equivalent to the DAE (17), it has a much more complicated
form than (17) and it involves gy , the inverse of gz , hy and hz .

4.4 Reduction to a DAE

In the particular case where h (y, z) = h (y), the DAE (17) is equivalent to a DAE with the
same algebraic equation of the original DAE (1). This is obtained by differentiating the scalar
algebraic equation involving h.

123

3 Page 12 of 26 Journal of Scientific Computing (2024) 100 :3

Theorem 3 Suppose h (y, z) = h (y). The functions Y and Z satisfy the DAE

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y ′ (s) = κ ′(s)
hy(Y (s)) f (Y (s),Z(s)) f (Y (s) , Z (s)) , s ∈ [s0, 0],

g(Y (s), Z(s)) = 0, s ∈ [s0, 0],

(Y (s0), Z(s0)) = (y0, z0) ,

(25)

and the time-transformation α satisfy
⎧
⎪⎨

⎪⎩

α′ (s) = κ ′(s)
hy(Y (s)) f (Y (s),Z(s)) , s ∈ [s0, 0],

α (s0) = t0.

(26)

Proof For s ∈ [s0, 0], we have,

κ ′ (s) = hy (Y (s)) Y ′ (s) = hy (Y (s)) α′ (s) f (Y (s) , Z (s))

and then

α′ (s) = κ ′ (s)
hy (Y (s)) f (Y (s) , Z (s))

in the differential equation of the DAE (17). 	

Observe that (25) is a DAE in the sole variables Y and Z and it has the same algebraic
equation of the DAE (1). The time transformation α satisfies the pure quadrature problem
(26), which can be solved once Y and Z are determined. This reformulation of (17) as a DAE
similar to the original DAE (1) only involves the derivative hy .

We have seen that, when the t-time DAE has index 1, the s-time DAE (18) has index 2.
On the other hand, the index 1 of the t-time DAE turns out to be preserved in the DAE (25).

Remark 4 When the DAE (1) is an ODE, i.e. f (y, z) = f (y) and the algebraic equation is
not present, the equation (17) remains a DAE and the equation (18) remains an Hessenberg
index-2 DAE. Thus, we pay for the simplification of the problem, achieved through the time
reparametrization, with the change in the nature of the equation, even in the simplest case of
an ODE. Observe that in [17], the DAE (17) corrisponding to an ODE (1) is reduced to (25),
which is an ODE.

5 Numerical Solution in the s-time

In this section we present numerical methods for the s-time DAE (18). When we consider
such methods as methods for the numerical event location in the original t-time DAE (1),
they turn out to be methods satisfying all three properties (a), (b) and (c) in the introduction.
It is important to remark that none of the standard methods presented in Section 2 can do
this.

We consider the situation where the s-time DAE (18) is Hessenberg index-2. This happens
when the original t-time DAE has index 1 or has the Hessenberg index-2 form (20) and
h(y, z) = h(y).

123

Journal of Scientific Computing (2024) 100 :3 Page 13 of 26 3

The s-time Hessenberg index-2 DAE reads
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y ′ (s) = β(s) f (Y (s), Z (s)), s ∈ [s0, 0],
α′(s) = β(s), s ∈ [s0, 0],
g(Y (s), Z(s)) = 0, s ∈ [s0, 0],
h (Y (s), Z (s)) = κ(s), s ∈ [s0, 0],
(Y (s0), α(s0), Z(s0)) = (y0, t0, Z0)

(27)

where

• the first algebraic equation reads Z(s) = G(Y (s)) for a t-time DAE of index 1;
• the algebraic equations read g(Y (s)) = 0 and h(Y (s)) = κ(s) for a t-time Hessenberg

index-2 DAE.

We integrate the Hessenberg index-2 DAE (27), over a mesh

s0 < s1 < · · · < sN = 0 (28)

of stepsizes

τn+1 = sn+1 − sn, n = 0, 1, . . . , N − 1,

by RK methods (A, b, c) as illustrated in Chapter VII.4 of [12]. For a general Hessenberg
index-2 DAE ⎧

⎨

⎩

U ′ (s) = F(U (s), V (s)), s ∈ [s0, 0],
G (s,U (s)) = 0, s ∈ [s0, 0],
U (s0) = U0,

where U is the vector of the differentiable variables and V is the vector of the algebraic
variables, the RK numerical integration over the mesh (28) takes the form

Un+1 = Un + τn+1

ν∑

i=1

biF(Uni , Vni)

Vn+1 = Vn + τn+1

ν∑

i=1

bi lni , (29)

where the stage values (Uni , Vni), i = 1, . . . , ν, are determined by the non-linear equations

Uni = Un + τn+1

ν∑

j=1

ai jF(Unj , Vnj), i = 1, . . . , ν,

G(sni ,Uni) = 0, j = 1, . . . , ν, (30)

with sni = sn + ciτn+1, and the derivatives lni , i = 1, . . . , ν, are determined by the linear
equations

Vni = Vn + τn+1

ν∑

j=1

ai j ln j , i = 1, . . . , ν, (31)

once the system (30) is solved,
About the convergence of the scheme (29), (30), (31), one can refer to the results inChapter

VII.4 in [12], in particular Table 4.1.

123

3 Page 14 of 26 Journal of Scientific Computing (2024) 100 :3

When the original t-time DAE has index 1, the RK numerical integration of the s-time
DAE is

Yn+1 = Yn + τn+1

ν∑

i=1

biβni f (Yni , Zni)

αn+1 = αn + τn+1

ν∑

i=1

biβni

g(Yn+1, Zn+1) = 0, (32)

where the stage values (Yni , Zni , βni), i = 1, . . . , ν, are obtained by solving the non-linear
system

Yni = Yn + τn+1

ν∑

j=1

ai jβnj f (Ynj , Znj), i = 1, . . . , ν,

g(Yni , Zni) = 0, i = 1, . . . , ν,

h(Yni , Zni) = κ(sn + ciτn+1), i = 1, . . . , ν, (33)

of dimension ν(d1 + d2 + 1).
When the original t-time DAE is Hessenberg index-2 and h(y, z) = h(y), the RK

numerical integration of the s-time DAE is

Yn+1 = Yn + τn+1

ν∑

i=1

biβni f (Yni , Zni)

αn+1 = αn + τn+1

ν∑

i=1

biβni

Zn+1 = Zn + τn+1

ν∑

i=1

bi lni , (34)

where, first, the stage values (Yni , Zni , βni), i = 1, . . . , ν, are obtained by solving the
non-linear system

Yni = Yn + τn+1

ν∑

j=1

ai jβnj f (Ynj , Znj), i = 1, . . . , ν,

g(Yni) = 0, i = 1, . . . , ν,

h(Yni) = κ(sn + ciτn+1), i = 1, . . . , ν, (35)

of dimension ν(d1 + d2 + 1) and, then, the derivatives lni , i = 1, . . . , ν, are obtained by
solving the linear system

Zni = Zn + τn+1

ν∑

j=1

ai j ln j , i = 1, . . . , ν, (36)

of dimension νd2.
The numerical integration of (27) provides the numerical event time αN and the numerical

event point (YN , ZN). Observe that there is no equation for βn+1 in (32) or (34), since we
are not interested in the nodal values βn but only in the stage values βni . In this manner, we
can avoid to assign an initial value β0 for the variable β.

123

Journal of Scientific Computing (2024) 100 :3 Page 15 of 26 3

If the s-time DAE is not Hessenberg index-2, then other RK schemes need to be used. In
case of DAEs of index 3, see for example [14].

5.1 Diagonally Implicit Stiffly Accurate RKMethods

Suppose that a stiffly accurate RK method (recall (9)) is used for the integration (32), (33)
or (34), (35), (36) of the s-time DAE (27). We have

(Yn+1, Zn+1) = (Ynν, Znν), n = 0, 1, . . . , N − 1,

and then the method consists only in the equations (33) or (35) and the equation for αn+1.
The next theorem contains a fundamental result of our study

Theorem 5 If the t-timeDAE (1) is of index 1, or it is Hessenberg index-2 and h(y, z) = h(y),
and the numerical event location for such DAE is accomplished with an integration of the
s-time DAE (27) by a stiffly accurate RK method, then the properties (a), (b) and (c) in the
introduction are satisfied.

Proof By construction (see (33) and (35)), we have a consistent numerical solution, i.e.

g(Yn+1, Zn+1) = g(Ynν, Znν) = 0, n = 0, 1, . . . , N − 1.

In particular, we have g(YN , ZN) = 0 and so the numerical event point (YN , ZN) is consistent
(point b) in the introduction).

Moreover, we have

h(Yni , Zni) = κ(sn + ciτn+1) ≤ 0, n = 0, 1, . . . , N − 1 and i = 1, . . . , ν,

i.e.
(Yni , Zni) ∈ S− ∪ �, n = 0, 1, . . . , N − 1 and i = 1, . . . , ν. (37)

Thus, the method is one-side (point c) in the introduction), since the values of f and g are
required only at points (37).

Finally, we have

h(Yn+1, Zn+1) = κ(sn+1), n = 0, 1, . . . , N − 1.

In particular, we have h(YN , ZN) = 0 and thus the numerical event point (YN , ZN) lies on
the discontinuity surface (point a) in the introduction). 	

Observe that the one-side stiffly accurate RK method reaches the discontinuity surface,
i.e. it reaches the final s-time s = 0, in an arbitrary number of steps fixed a priori, since there
are no restrictions posed on the mesh (28).

5.1.1 Diagonally Implicit RK Methods

To avoid a large computational cost, we can use a diagonally implicit stiffly accurate RK
method, instead of a fully implicit stiffly accurate RK method. Remind that a diagonally
implicit RK method is a RK method such that

ai j = 0, i, j = 1, . . . , ν with i < j .

123

3 Page 16 of 26 Journal of Scientific Computing (2024) 100 :3

So, in (33) or (35), the stage values (Yni , Zni , βni), i = 1, . . . , ν, are obtained by successively
solving, for i = 1, . . . , ν, the non-linear system

Yni = Yn + τn+1

i−1∑

j=1

ai jβnj f (Ynj , Znj) + τn+1aiiβni f (Yni , Zni)

g(Yni , Zni) = 0

h(Yni , Zni) = κ(sn + ciτn+1),

or

Yni = Yn + τn+1

i−1∑

j=1

ai jβnj f (Ynj , Znj) + τn+1aiiβni f (Yni , Zni)

g(Yni) = 0

h(Yni) = κ(sn + ciτn+1),

of dimension d1 + d2 + 1, where the stage value (Yni , Zni , βni) are the unknowns and the
stage-values

(
Ynj , Znj , βnj

)
, j = 1, . . . , i − 1, have been already computed.

The computational saving is given, at any step, by the solution of ν non-linear systems of
dimension d1 + d2 + 1, rather than a unique non-linear system of dimension ν(d1 + d2 + 1).

5.1.2 SomeMethods

The simplest diagonally implicit stiffly accurate RK method is the implicit Euler method.
Two-stage diagonally implicit stiffly accurate RK methods of order two (for ODEs) are

given by the tableau

a a

1 1 − b b

1 − b b

where

a =
1
2 − b

1 − b
.

For b = 1
2 , we have the trapezoidal rule. For b = 0, we have the implicit midpoint rule.

123

Journal of Scientific Computing (2024) 100 :3 Page 17 of 26 3

Table 1 Hessenberg index-2 global orders of convergence for methods in Section 5.1.2

Method Variables y Variables z

Implicit Euler method (Radau IIA with s = 1) One One

Trapezoidal rule (Lobatto IIA with s = 2) Two Two

Implicit midpoint rule (Gauss with s = 1) Two One

Method (38) (SDIRK (IV.6.18)) Two One

As another example of a diagonally implicit accurately stiff RK method, we give the
following five-stage method of order four (for ODEs)

1
4

1
4

3
4

1
2

1
4

11
20

17
50 − 1

25
1
4

1
2

371
1360 − 137

2720
15
544

1
4

1 25
24 − 49

48
125
16 − 85

12
1
4

25
24 − 49

48
125
16 − 85

12
1
4

(38)

appearing in [12, IV.(6.16)]. Indeed, since all the diagonal coefficients aii are equal, this
method is a singly diagonally implicit RK (SDIRK) method.

The global orders of convergence when the implicit Euler method, the trapezoidal rule,
the implicit midpoint rule and the method (38) are applied to Hessenberg index-2 DAE are
given in Table 1 derived from Table 4.1 in [12].

6 Numerical Tests

Weconsider three numerical examples for testing our approach to the numerical event location
for DDAEs by the time reparametrization. Indeed, the first and third examples are event
locations problems for DAEs, where one can imagine that the event equation could constitute
a surface of discontinuity. Whereas, the second example comes from a model formulated as
a DDAE.

6.1 The First Test

The first example is the three-dimensional DAE of index 1

123

3 Page 18 of 26 Journal of Scientific Computing (2024) 100 :3

Fig. 1 Time transformation for the Hessenberg index-2 DAE relevant to the DAE (39)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
1 (t) = −2y2 (t) , t ≥ π

4 ,

y′
2 (t) = −z(t)2 + y1 (t) , t ≥ π

4 ,

y1 (t)2 + y2 (t)2 + z (t)2 − 1 = 0, t ≥ π
4 ,

(
y
(

π
4

)
, z

(
π
4

)) =
(
1
4 ,

1
4 ,

√
2
2

)

(39)

whose solution is

(y(t), z(t)) = (cos2 t, cos t sin t, sin t).

with the event equation

h(y, z) = −y1(t) − y2(t) − z(t) + v = 0,

where

v = cos2
π

3
+ cos

π

3
sin

π

3
+ sin

π

3

In this situation, the event time is t∗ = π
3 and the event point is

(
y∗, z∗

) =
(
cos2

π

3
, cos

π

3
sin

π

3
, sin

π

3

)
.

The numerical event location is accomplished by integrating the Hessenberg index-2 DAE
(18), relevant to the DAE (39), with κ(s) = s. The implicit Euler method, the trapezoidal rule
and the method (38), are used for the numerical integration. We consider uniform meshes
(28) with

Nk = 2k, k = 0, 1, . . . , 10,

subintervals.
In Fig. 1, we see the time-transformation (computed with the method (38) over the mesh

with k = 10).
In Fig. 2, we see, for the three methods, the logarithm in base 10 of the errors

errtk = |αN − t∗|, erryk = ‖YN − y∗‖2 and err zk = |ZN − z∗|, k = 0, 1, . . . , 10,

in red dashed lines marked with ♦. The black solid lines marked with
 show convergences
with order one, two, three and four.

123

Journal of Scientific Computing (2024) 100 :3 Page 19 of 26 3

Fig. 2 Errors in the integration of the Hessenberg index-2 DAE relevant to the DAE (39)

123

3 Page 20 of 26 Journal of Scientific Computing (2024) 100 :3

The orders of convergence one, two and two in the differential variables (α included) for
implicit Euler method, trapezoidal rule and method (38), respectively, given in Table 1 are
here confirmed. The order of convergence of the algebraic variable Z is the order of the
differential variables since Z = G(Y) holds.

6.2 The Second Test

The second example is the DAE of index 1
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′
1 (t) = F1 − z(t) − kc

y1(t)y2(t)
V , t ≥ 0

y′
2 (t) = F2 − kc

y1(t)y2(t)
V , t ≥ 0,

y′
3 (t) = kc

y1(t)y2(t)
V , t ≥ 0,

z (t) = kg X (P(y(t)) − Pout) , t ≥ 0,

(y1(0), y2(0), y3(0)) = (0.72, 95, 0),

(40)

where

P(y(t)) = y1(t)RT

V − y2(t)
ρl

− y3(t)
ρa

,

describing the gas-phase in a model of soft-drink production (see [7]). The event equation is

h(y(t), z(t)) = y2(t)

ρl
+ y3(t)

ρa
− Vd = 0,

and involves only y(t). After the event, we have a transition to the liquid-phase described by
another DAE. About constants and parameters in (40), the following values

F1 = 0.5, F2 = 7.5, kc = 0.433

4000
, V = 10,

kg = 3, X = 1, Pout = 1

R = 0.0820574587, T = 293, ρa = 16, ρl = 50,

Vd = 2.25

in suitable units are used.
The numerical event location is accomplished by integrating the Hessenberg index-2 DAE

(18), relevant to the DAE (40), with κ(s) = s. We use the three methods of the previous test
over the same meshes.

In Fig. 3, we see the time-transformation.
In Fig. 4, we see the logarithm in base 10 of the errors as in the previous test. For the

computation of the errors, the exact event time and event point are estimated by integrating
with the method (38) over a uniform mesh with N = 213 subintervals, one thousand time
more subintervals than the more refined mesh used: We obtain the values

t∗ = 2.333036718967131

y∗ = (3.767995595486393 · 10−1, 1.124967285180228 · 102,

123

Journal of Scientific Computing (2024) 100 :3 Page 21 of 26 3

Fig. 3 Time transformation for the Hessenberg index-2 DAE relevant to the DAE (40)

1.046874232710747 · 10−3)

z∗ = 5.068373375540564 · 10−1.

For the implicit Eulermethod, the trapezoidal rule and themethod (38) the observed orders
are one, two and four, respectively. The method (38) has, on this problem, the order four for
ODEs, not the order two of Table 1 for Hessenberg index-2 DAEs. This could be due to the
fact that, since h depends only on the differentiable variable and the t-time DAE is of index
1, the s-time DAE can be reduced to a DAE of index 1 as described in Sect. 4.4, where the
convergence order is the convergence order for ODEs.

6.3 The Third Test

The third example is given by the second order Hessenberg index-2 DAE describing the
motion of the simple pendulum in cartesian coordinates x and y (the x-axis is horizontal and
the y-axis is vertical downward)

⎧
⎨

⎩

x ′′ (t) = −n(t)x (t) , t ≥ 0,
y′′ (t) = −n(t)y (t) + g, t ≥ 0,
x(t)2 + y(t)2 = 1, t ≥ 0,

(41)

where the algebraic variable n(t) appearing only in the differential equations is the tension
of the pendulum rod. Here, we are assuming that the rod has unit length and the pendulum
bob has unit mass.

We consider the initial condition
⎧
⎨

⎩

(x(0), y(0)) =
(√

2
2 ,

√
2
2

)

(x ′(0), y′(0)) =
(
−

√
2
2 ,

√
2
2

)

i.e. the pendulum starts with unit speed at 45◦ with respect to the vertical axis, and the event
equation

x(t) = 0,

i.e. the event is when the pendulum bob reaches the lowest point in the motion.
The DAE (41) has index 3 (by three differentiations of the algebraic equation we obtain a

differential equation for n) and then the DAE (18) also has index 3. Thus, suitable numerical
methods for the index 3 (see [14]) should be used for its integration. However, the DAE (41)

123

3 Page 22 of 26 Journal of Scientific Computing (2024) 100 :3

Fig. 4 Errors in the integration of the Hessenberg index-2 DAE relevant to the DAE (40)

123

Journal of Scientific Computing (2024) 100 :3 Page 23 of 26 3

Fig. 5 Time transformation for the s-time Hessenberg index-2 DAE relevant to the t-time DAE (41)

can be reduced to an Hesseberg index-2 DAE by differentiating only one time the algebraic
equation. We obtain ⎧

⎨

⎩

x ′′ (t) = −n(t)x (t) , t ≥ 0,
y′′ (t) = −n(t)y (t) + g, t ≥ 0,
x(t)x ′(t) + y(t)y′(t) = 0, t ≥ 0,

(42)

The numerical event location is accomplished by integrating the DAE (18), relevant to the
first order version of the second order DAE (42), with κ(s) = s. Unlike the previous tests,
where the original t-time DAE was of index 1, here the t-time DAE is Hessenberg index-2.
The s-time DAE is Hessenberg index-2, since h(y, z) = h(y).

For the numerical integration of the s-time DAE, we use the same methods with the same
meshes of the two previous tests.

In Fig. 5, we see the time-transformation.
In Fig. 6, we see the logarithm in base 10 of the errors of t∗, x ′(t∗) and n(t∗). The exact

values of t∗, x ′(t∗) and n(t∗) can be easily determined by well-known physics: we have

t∗ = 3.875000113579756 · 10−1

x ′(t∗) = −2.597415052147026

n(t∗) = 1.655656495311994 · 101.
The implicit Euler method appears to converge with order one as predicted in Table 1. The

trapezoidal rule appears to converge with order two for the differential variables as predicted
in Table 1, but it does not converge for the algebraic variable although the order is two for
such variables in Table 1. The method (38) appears to converge with order two, also for the
algebraic variable although the order is one for such variables in Table 1.

Just for a comparison, by replacing the trapezoidal rule with the implicit midpoint rule,
we obtain the errors in Fig. 7. The orders agree with Table 1, although the order for x ′(t∗) is
four rather than two.

7 Conclusion

In this paper, we have presented a new approach to the event location for DDAEs based
on a time reparametrization reducing the event location to the integration of an Hessenberg
index-2 DAE up to a known final time. By integrating this DAE by a diagonally implicit
stiffly accurate RK method, we obtain a not-so-computationally-expensive method for the

123

3 Page 24 of 26 Journal of Scientific Computing (2024) 100 :3

Fig. 6 Errors in the integration of the Hessenberg index-2 DAE relevant to the DAE (42)

123

Journal of Scientific Computing (2024) 100 :3 Page 25 of 26 3

Fig. 7 Errors in the integration of the Hessenberg index-2 DAE relevant to the DAE (42) by the implicit
midpoint rule

numerical event location satisfying the properties (a), (b) and (c) in the introduction. None of
the standard methods for the numerical event location of DDAEs satisfies all three of these
properties. The approach can be used also for DAEs of index higher than 1.

Acknowledgements The authors acknowledge that this researchwas supported by funds from the ItalianMUR
(Ministero dellUniversità e della Ricerca) within the PRIN 2017 Project Discontinuous dynamical systems:
theory, numerics and applications; and by the INdAM Research group GNCS (Gruppo Nazionale di Calcolo
Scientifico).

Funding Open access funding provided by Università degli Studi di Trieste within the CRUI-CARE
Agreement. The authors have no relevant financial or non-financial interests to disclose.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

3 Page 26 of 26 Journal of Scientific Computing (2024) 100 :3

References

1. Agrawal, J., Moudgalya, K.M., Pani, A.K.: Sliding motion of discontinuous dynamical systems described
by semi-implicit index one differential algebraic equations. Chem. Eng. Sci. 61, 4722–4731 (2006)

2. Amodio, P., Brugnano, L., Iavernaro, F.: Arbitrary high-order methods for one-sided direct event location
in discontinuous differential problems with nonlinear event function. Appl. Numer. Math. 179, 39–49
(2022)

3. Biak, M., Hanus, T., Janovska, D.: Some applications of Filippov’s dynamical systems. J. Comput. Appl.
Math. 254, 132–143 (2013)

4. Brunner, H., Maset, S.: Time transformation for delay differential equations. Discr. Contin. Dyn. Syst.
25, 751–775 (2009)

5. Brunner, H., Maset, S.: Time transformation for state-dependent delay differential equations. Commun.
Pure Appl. Anal. 9, 23–45 (2010)

6. Berardi, M., Lopez, L.: On the continuous extension of Adams-Bashforth methods and the event location
in discontinuous ODEs. Appl. Math. Lett. 25, 995–999 (2015)

7. Dieci, L., Elia,C., Lopez, L.:OnFilippov solutions of discontinuousDAEsof index1.Commun.Nonlinear
Sci. Numer. Simulat. 95, 1105656 (2021)

8. Dieci, L., Lopez, L.: Numerical solution of discontinuous differential systems: approaching the
discontinuity surface from one side. Appl. Numer. Math. 67, 98–110 (2013)

9. Dieci, L., Lopez, L.: One-sided direct event location techniques in the numerical solution of discontinuous
differential systems. BIT Numer. Math. 55, 987–1003 (2015)

10. Galan, D.S., Barton, P.I.: Dynamic optimization of hybrid systems. Comput. Chem. Eng. 22 Suppl.,
S183–S190 (1998)

11. Hairer, E., Lubich,C.,Roche,M.:Thenumerical solutionof differential-algebraic systemsbyRunge-Kutta
methods. Springer (1989)

12. Hairer, E., Wanner, G.: Solving ordinary differential equations II. Stiff Differential-Algebraic problems.
Springer, Berlin (1996)

13. Henon, M.: On the numerical computation of Poincaré maps. Physica 5D, 412–414 (1982)
14. Jay, L.: Convergence of Runge-Kutta methods for differential-algebraic systems of index 3. Appl. Numer.

Math. 17, 97–118 (1995)
15. Kunkel, P., Mehrmann, V.: Numerical solution of hybrid systems of differential-algebraic equations.

Comput. Methods Appl. Mech. Eng. 197, 693–705 (2008)
16. Kunkel, P., Mehrmann, V.: Regular solutions of DAE hybrid systems and regularization techniques. BIT

Numer. Math. 58, 1049–1077 (2018)
17. Lopez, L., Maset, S.: Time-transformations for the event location in discontinuous ODEs. Math. Comput.

87, 2321–2341 (2018)
18. Lopez, L., Maset, S.: Numerical event location techniques in discontinuous differential algebraic

equations. Appl. Numer. Math. 178, 98–122 (2022)
19. Mao, G., Petzold, L.R.: Efficient integration over discontinuities for differential-algebraic systems.

Comput. Math. Appl. 43, 65–79 (2002)
20. Majer, C., Marquardt, W., Gilles, E.D.: Reinitialilization of DEAs after discontinuities. Comput. Chem.

Eng. 6, 8507–8512 (1995). (Suppl.,)
21. Najafi, M., Nikoukhah, R.: Modeling and simulation of differential equations in Scicos. Modelica, The

Modelica Association: 177-185, (2006)
22. Park, T., Barton, P.I.: State event location in differential-algebraic models. ACM Trans. Model. Comput.

Simul. 6, 137–165 (1996)
23. Stechlinski, P., Patrascu, M., Barton, P.I.: Nonsmooth differential-algebraic equations in chemical

engineering. Comput. Chem. Eng. 114, 52–68 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Time Reparametrization and Event Location for Discontinuous Differential Algebraic Equations
	Abstract
	1 Introduction
	2 Background on Standard Numerical Methods and Event Location for DAEs
	2.1 Semi-implicit Methods
	2.2 Implicit RK Methods
	2.3 Rosenbrock Methods

	3 One-side Methods
	4 Reparametrization of the Time
	4.1 The Time Transformation and the s-time DAE
	4.2 Index and Form of the s-time DAE
	4.3 Reduction to an ODE
	4.4 Reduction to a DAE

	5 Numerical Solution in the s-time
	5.1 Diagonally Implicit Stiffly Accurate RK Methods
	5.1.1 Diagonally Implicit RK Methods
	5.1.2 Some Methods

	6 Numerical Tests
	6.1 The First Test
	6.2 The Second Test
	6.3 The Third Test

	7 Conclusion
	Acknowledgements
	References

