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ABSTRACT
Real-time seismic monitoring is of primary importance for rapid and targeted emergency
operations after potentially destructive earthquakes. A key aspect in determining the
impact of an earthquake is the reconstruction of the ground-shaking field, usually
expressed as the ground-motion parameter. Traditional algorithms compute the
ground-shaking field from the punctual data at the stations relying on ground-motion pre-
diction equations computed on estimates of the earthquake location andmagnitudewhen
the instrumental data are missing. The results of such algorithms are then subordinate to
the evaluation of location and magnitude, which can take several minutes. To fill the tem-
poral gap between the arrival of the data and the estimate of these parameters, a new
data-driven algorithm that exploits the information from the station data only is intro-
duced. This algorithm, consisting of an ensemble of convolutional neural networks
(CNNs) trained on a database of ground-shaking maps produced with traditional algo-
rithms, can provide estimates of the ground-shaking maps and their associated uncertain-
ties in real time. Because CNNs cannot handle sparse data, a Voronoi tessellation of a
selected peak ground parameter recorded at the stations is computed and used as the
input to the CNNs; site effects and network geometry are accounted for using a (normal-
ized) VS30 map and a station location map, respectively. The developedmethod is robust to
noise, can handle network geometry changes over time without the need for retraining,
and can resolve multiple simultaneous events. Although having a lower resolution, the
results obtained are statistically compatible with the ones from traditional methods. A
fully operational version of the algorithm is running on the servers at the Department
ofMathematics and Geosciences of the University of Trieste, showing real-time capabilities
in handling stations from multiple Italian strong-motion networks and outputting results
with a resolution of 0.05° × 0.05°.

KEY POINTS
• Real-time seismic monitoring is of primary importance for

rapid and targeted emergency operations.
• ShakeRec is robust to noise, handles network geometry

changes, resolves multiple events, and operates in real time.

• ShakeRec is a useful tool for civil protection purposes
during the early stages of an emergency.

Supplemental Material

INTRODUCTION
Ground-shaking maps serve a wide spectrum of purposes, from
postearthquake emergency management and response (Wald,
Lin, and Quitoriano, 2008; Wald et al., 2020) to engineering
(Allen et al., 2009) and financial instruments (Wald, Lin,
Porter, and Turner, 2008) to general scientific applications

(Moratto et al., 2011). Multiple ground-motion parameters
(GMPs) have been introduced in the literature to represent dif-
ferent characteristics of strong-motion recordings. GMPs can be
classified into time-domain parameters and frequency-domain
parameters: the former are derived directly or with minimal
processing from the strong-motion recordings, and the latter
are derived from Fourier or response spectra. Typical examples
of time-domain parameters are peak ground acceleration (PGA),
peak ground velocity (PGV), and peak ground displacement
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(PGD). PGA is a measure of strong-motion amplitude, but it is
generally related to the motion at shorter periods (<0.3 s), which
is of interest only for the monitoring of very specific structures.
PGV and PGD have gained increasing attention in the seismic
engineering community due to their relation to motion at a
period range of more interest for buildings. PGV is also consid-
ered to be related to the macroseismic intensity and thus a good
indicator of the structural damaging potential of the ground
motion (Wald, Quitoriano, Heaton, and Kanamori, 1999;
Atkinson, 2003). Spectral accelerations (SAs) are an example
of frequency-domain parameters and are defined as the peak
time-domain response to the ground motion of a single degree
of freedom oscillator, with a given natural period and critical
damping, usually 5%. De facto standard periods for the SAs
are 0.3, 1.0, and 3.0 s, which are of interest for the engineering
community. Because GMPs are retrieved from instrumental
recordings only at a very limited number of points, the goal
of this work is to best constrain each GMP at any location using
a defined interpolation technique. ShakeMap (Wald, Quitoriano,
Heaton, Kanamori, Scrivner, andWorden, 1999; Wald, Worden,
Thompson, and Hearne, 2021) is a multiperiod geospatial inter-
polation process constrained with limited (often imprecise) data;
this interpolation is not only inherently uncertain but also fun-
damentally nonunique. ShakeMap outputs separate maps (here-
inafter referred to as shakemaps) of the spatial distribution of
peak ground motions (displacement, velocity, and acceleration),
SAs, and instrumental derived seismic intensity. The interpola-
tion model is constrained by site amplified ground-motion pre-
diction equations (GMPEs) based on rapidly determined source
parameters and conditioned by strong motion or macroseismic
observations. ShakeMap uses an elaborate system of multiple-
weighted GMPEs to appropriately model the ground motion,
whereas the site amplifications are introduced using the time-
averaged shear-wave velocity in the upper 30 m of the crust
(VS30). A fault model could be introduced in ShakeMap with
benefits depending on several factors such as event size and loca-
tion and station coverage, as well as the use of “Did You Feel It?”
data. The macrointensity maps are produced using GMPEs and

ground motion to intensity conversion equations (GMICEs). All
ShakeMap estimates are probabilistic with several sources of
uncertainty: the GMPEs used are nonunique, often with compet-
ing models for each tectonic region and event type; the use of
VS30 map as a proxy for site amplification introduces uncertain-
ties; and rapid estimate of earthquake parameters also introduces
uncertainties, which trades accuracy for speed. ShakeMap also
computes the uncertainty related to the estimates at each
mapped point. Its greater utility is, therefore, in the early emer-
gency stages, but there are intrinsic limitations to be aware of
such as the approximations introduced using GMPEs and the
probabilistic nature of the results (Wald et al., 2021), as well
as the way site amplification is handled (Cultrera et al., 2014).

In Italy, the Italian Civil Protection (Dipartimento per la
Protezione Civile, DPC) uses shakemaps, produced routinely
by Istituto Nazionale di Geofisica e Vulcanologia (INGV,
Michelini et al., 2020), together with other independent informa-
tion to assess the areas affected by an earthquake. Four GMPEs
are used for zones with different prevailing tectonic regimes and
earthquake depths as reported in Table 1. The VS30 map of Italy,
actually in use by INGV, was developed by Michelini et al.
(2020). Using automated procedures (Margheriti et al., 2021),
INGV communicates to DPC the preliminary parameters of
every seismic event of magnitudeM ≥3.0 in the Italian territory.
The rapid and final automatic locations are produced in 2 and
5 min after the earthquake occurrence, respectively; the verified
location, revised by the seismologists on duty in the control
room, are available, at most, 30 min after the event (12 min
on average). Only once the origin and magnitude are manually
evaluated, the automated ShakeMap procedure is triggered.

A different implementation of ShakeMap for the generation
of (near-)real-time shakemaps in the southeastern Alps was
proposed by Moratto et al. (2009) who calibrated the software
for the specific geological settings of the area, which was sub-
divided into three classes based on the geological map by
DiSGAM (2005), and used region-specific GMPEs, as reported
in Table 2. The procedure, integrated into the BRTT Antelope
system and automated, combines data from different national
networks (northeast Italy, Austria, and Slovenia) and generates
shakemaps within 5 min of the event.

This work describes the development of a new tool for the
reconstruction in real time of ground-shaking maps, herein-
after referred to as ShakeRec. The lack of information such
as earthquake location and magnitude in real-time analysis
implies that GMPEs cannot be applied and a machine-learning
(ML) approach is used instead. ML is a form of data analysis
that allows for the development of computational models for
which parameters are extracted directly from data using well-
defined optimization rules. Deep learning (DL) is a subset of
ML focused on extracting useful features and patterns from
data using neural networks. DL has gone into a resurgence
phase since the early 2000s due to the improved and more
easily accessible high-performance computational resources

TABLE 1
Ground-Motion Prediction Equations (GMPEs) for the Italian
Territory

Region
Depth Range
(km) GMPEs

Shallow active crustal
regions

<35 Bindi et al. (2011)

Volcanic areas <5 Tusa and Langer (2016)
>5 Bindi et al. (2011)

Deep events >35 Bindi et al. (2014)
5–35 Bindi et al. (2011)

Subduction zone 35–70 Bindi et al. (2014)
>70 Abrahamson, Gregor, and

Addo (2016)
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(especially graphic processing units), the development of a
variety of open-source software that simplifies the design
and use of DL models, and the availability of big datasets.
LeCun et al. (2015) give a concise but comprehensive review
of the development of DL. Seismology itself is undergoing
rapid changes in the volume and variety of the data and the
velocity of data analysis. As a consequence, there is a wide-
spread application of ML models to seismological tasks;
Kong et al. (2018) reviewed the main field of ML applications
in seismology. Ensembles are well-established methods that are
introduced to limit some of the shortcomings of traditional ML
methods (Dietterich, 2000). Viewing a learning algorithm as
searching a space of hypotheses, ensemble techniques can limit
the problems arising from the spare sampling of such space of
hypotheses that are due to limited availability of training data,
the learning algorithm getting stuck in local minima during the
search, and the target function being outside the searching
space. Furthermore, the ensemble spread, defined as the (non-
biased) standard deviation of the outputs of the ensemble
members, provides a measure of the level of (epistemic) uncer-
tainty of the output of the ensemble (World Meteorological
Organization [WMO], 2012). ShakeRec is based on the work
of Fukami et al. (2021) who proposed a data-driven spatial field
recovery technique that makes use of Voronoi tessellation
(Voronoi, 1908; Aurenhammer, 1991) to obtain a structured
grid representation to enable computational, tractable use of
convolutional neural networks (CNNs). This architecture, first
introduced in its modern conception by LeCun et al. (1989),
was developed as one of the main DL algorithms to handle
matrix-like data due to its low number of learnable parameters
(with respect to fully connected neural networks) and its posi-
tion-invariant pattern recognition ability. Each convolutional
layer is defined on the base of its filters, and each one is a col-
lection of weights learned during the training phase that
addresses a different feature of the input data that are con-
volved; the output of the convolution (added to a bias term)
is then passed to an activation function.

The model architecture is presented in the Model architec-
ture section. In the Model training section, the preparation of
the datasets and the details of the model training are explained.
The results of the tests performed with ShakeRec are detailed in
the Results and discussion section.

MODEL ARCHITECTURE
The objective of this work is to reconstruct a 2D ground-shaking
field from measurements at the seismic stations. The conceptual
workflow of ShakeRec for a single GMP is shown in Figure 1.
The reconstruction for a single GMP is performed using an
ensemble of five CNN models, thereinafter called ensemble
members, depicted by the central panel in Figure 1. The archi-
tecture of each ensemble member was adapted from Fukami
et al. (2021): each ensemble member is composed of four con-
volutional layers, with zero-padding, with 12 filters of size 5 × 5
and a final convolutional layer with a single filter of size 5 × 5.
This architecture was developed considering both its perfor-
mance in reconstructing the ground-shaking field and its run
time. Each layer uses a rectified linear activation function
(ReLU) activation function (Nair and Hinton, 2010) to intro-
duce nonlinearity in the model. The activation function thresh-
old is set to 0.01, so it is high enough to remove small
computational artifacts and improve the overall loss function
values but small enough not to remove any useful information.

The ensemble takes the following as input (left side of
Fig. 1):

1. A Voronoi tessellation of the station peak ground values
over the last T seconds.

2. A map of the active station locations.
3. A normalized VS30 map, from which a mask of the sea is

computed and applied to the output.

The Voronoi tessellation and the map of the active stations
provide a full description of the value at the stations, in terms
of GMP amplitude and location of the recording, in a format
that is manageable by a CNN, whereas the VS30 map is intro-
duced as a proxy for the site effects. All ensemble inputs are
tensors of the shape (1,N,M, 1) withN,M being the number of
grid points along the latitudinal and longitudinal directions,
respectively.

The outputs of the ensemble are the mean ground-shaking
field μ̃ and its uncertainty σ̃ (right side of Fig. 1). The former is
computed as the mean of the ensemble members’ reconstruc-
tions and is comparable to the GMPE expected value at each
point; the latter is computed as the combination of an aleatoric
σa and an epistemic σe term as

EQ-TARGET;temp:intralink-;df1;320;198σ̃ �
����������������
σ2a � σ2e

p
: �1�

Because the GMPEs are usually expressed as log-normal dis-
tributions, the alearoric term σa of the uncertainty is computed
as

EQ-TARGET;temp:intralink-;df2;320;119σa � μ̃
������������������������
eln�10�

2σ2G − 1
p

; �2�

with σG being the mean standard deviation of the GMPEs used
in Michelini et al. (2020) (expressed in log-10 units). The

TABLE 2
GMPEs for the Southeastern Alps

Magnitude
Range PGA and PGV SA

2.5–3.5 Bragato and Slejko (2005) –

3.5–5.5 Massa et al. (2008) Massa et al. (2008)
>5.5 Sabetta and Pugliese

(1996)
Akkar and Bommer
(2007)

PGA, peak ground acceleration; PGV, peak ground velocity; SA, spectral acceleration.
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epistemic component σe of uncertainty is computed as the
standard deviation of the reconstructions of the ensemble
members:

EQ-TARGET;temp:intralink-;df3;41;522σe �
������������������������������������������������
1
m

Xm
i�0

μ2i −

�
1
m

Xm
i�0

μi

�
2

s
; �3�

with m being the number of members in the ensemble and μi
being the prediction of a single ensemble member.

MODEL TRAINING
The training dataset for each GMP (namely, PGA, PGV, SA03,
SA10, and SA30) is generated from the corresponding INGV
shakemap database. The location, magnitude, and depth of
the events in this database are reported in Fig. 2. Each shakemap
of the original database has been interpolated to the area 6.5°–
19.0° E and 35.5°–47.1° N and resampled with a resolution of
0.05° × 0.05°. The area corresponds to the overall area for which
the INGV shakemaps are evaluated. The resolution is chosen to
limit the size of the network inputs and to reflect the real capa-
bilities in reconstructing the ground-shaking field of the model.
The processed data are matrices of shape 258 × 238 considered
to be ground truth. The following seismic networks have been
considered: the Italian strong-motion network (RAN), Friuli
Venezia Giulia accelerometric network (RAF), Irpinia seismic
network (ISNet), northeast Italy broadband network (NI),
and Reti accelerometriche centri storici italiani (RR); see Data
and Resources. The GMP values at the stations are drawn from
the processed maps considering only the stations that were
active during each specific event. Taking the value from the
processed maps (as opposed to taking the real value recorded
at the station) ensures that the input data from the stations
and the corresponding target shaking maps have a one-to-
one correspondence. The position of the station and the peak
values are used to generate the Voronoi tessellation. The shake-
maps with extensions that do not involve any station of the
selected networks, with maximum values that differ by more
than an order of magnitude from the maximum value at the
stations, or with maximum values that are below the 0.1%g

(or 0:1 cm s−1 for PGV) threshold are discarded to stabilize
the CNN training process. Many of the discarded events hap-
pened at sea, were outside the Italian territory, or were small
events in regions with poor instrumental distribution. The proc-
essed dataset is split into a training set and a test set with a ratio
of 4:1.

The VS30 map developed by Michelini et al. (2020) is nor-
malized using min–max scaling and used as input for the con-
volutional neural network. Within the neural network, the
normalized map is also used to produce a sea mask used to
zero all offshore grid points; this step is useful for improving
the results of the network in the area of interest.

The loss function L has the form

EQ-TARGET;temp:intralink-;df4;308;301L � jjμ − μ̃jj2
jjμjj2

; �4�

with μ and μ̃ being the expected and reconstructed ground-
shaking fields, respectively. The use of a normalized loss func-
tion promotes small relative differences between the expected
and reconstructed values.

The optimizer chosen is Adam (Kingma and Ba, 2017)
using a learning rate of 0.001, as suggested by the parametric
studies performed.

The 10-fold cross validation is adopted to train the models
composing the ensemble. The training dataset is divided in 10
chunks, with one of each routinely used for validation and the
others used for training. Ensembles constructed with all mod-
els trained in this way are called cross-validated committees
(Parmanto et al., 1996); a further step is performed selecting
only five of them to limit the computational costs. All possible
combinations of the 10 trained models are tested using the test

Figure 1. ShakeRec flowchart: real-time and static data are used as the
input for the five-models ensemble, the outputs of which are the aver-
age reconstructed ground-motion parameters (GMP) field and its associated
uncertainty. The color version of this figure is available only in the electronic
edition.
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dataset, and the five-model ensemble configuration giving the
best results, in terms of loss function value, is selected. A sche-
matic representation of this process is depicted in Figure 3.

The training is done using sample batches (of 48 samples) to
limit the memory requirement and to speed up the training
process.

Each model is trained for a maximum of 500 epochs with
early stopping in the case of the validation error not improving
for 50 consecutive epochs, which restores the model weights
from the epoch with the lowest validation error.

The whole process is performed only once for each GMP,
resulting in a multiple ensemble. The model obtained is then
saved and can be exported to other systems (providing that
they operate on the same area). As discussed in Results and
discussion section, the model retraining is necessary only
for major changes in the network geometry or, obviously, if
the area where it would be applied is changed.

RESULTS AND DISCUSSION
ShakeRec provides reliable results in reconstructing the
ground-shaking field with average losses over the test datasets
reported in Table 3. The reconstructions with the highest loss
values are generally relative to very small events, badly con-
strained offshore events, or localized intense events (e.g., linked
to eruptions). Being the results of the upcoming tests similar
for all GMPs considered, they are reported only for the PGA
for the sake of brevity.

To give an example of the capabilities of ShakeRec, the PGA
field for the 30 October 2016Mw 6.5 Norcia earthquake (here-
inafter referred to as theMw 6.5 Norcia earthquake) was recon-
structed. Figure 4a,b shows the reconstruction and uncertainty
map obtained from ShakeRec and (resampled) ShakeMap,
respectively. The overall agreement of the results obtained with
the two methods can be noticed, as also shown by the absolute

difference of the reconstructions reported in Figure 4c. On a
side note, the relatively high value of the uncertainty with
respect to the reconstruction hints to using shaking maps
mainly as a monitoring tool, as already addressed in the
Introduction section. Similar results are obtained for the other
GMPs considered and are reported in the supplemental
material available to this article.

The Mw 6.5 Norcia earthquake is considered the most suit-
able event in the test dataset because the high number of sta-
tions involved reduces the effects of gaps in the network but at
the same time involves an area sufficiently broad to be con-
strained differently by different network geometries (consider-
ing also the resolution of the model). Because both ShakeMap
and ShakeRec provide estimates for the uncertainties of the
ground-shaking field, the agreement of the results is tested
through a T-test for each point on the map. On average by
fixing the confidence level to 0.05, less than 1 grid point value
per map would be rejected. This is also a consequence of,
except for the area proximal to the epicenter, the small values
and relatively high uncertainties that characterize the grid
points. To assess the robustness of the ensemble reconstruc-
tions to noise, different levels of Gaussian noise are added
to the local sensor measurements. Considering the Mw 6.5
Norcia earthquake, the station data are perturbed with
Gaussian noise with an amplitude of a given percentage of
the initial value. To obtain stable results, the process is repeated

Figure 2. (a) Location, (b) magnitude, and (c) depth of the events in the
Istituto Nazionale di Geofisica e Vulcanologia (INGV) shakemap archive
used to develop the training and test datasets. The size of the markers in
panel (a) is proportional to the event magnitude and their color indicates the
event depth, using the same chromatic scale as in panel (c). The color
version of this figure is available only in the electronic edition.
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multiple times, and the mean value and standard deviation of
the loss are taken. The results, reported in Table 4, show good
robustness against noise, with great increase in the loss values
only for low signal-to-noise ratios.

Some interesting features arise from the use of the CNN in
the model architecture. In the case of simultaneous events,
ShakeRec can reconstruct the resulting joint ground-shaking
field, even if the areas affected by the events spatially overlap,
because the reconstruction is a local process. This feature is
tested by simulating the occurrence of earthquakes with target
areas that partially overlap, using data from the 2012 Mw 4.9
Brescello, ML 4.8 Mirandola, and Mw 5.8 Finale Emilia earth-
quakes. In the cases of events of different magnitudes (case I in
Fig. 5) and similar magnitudes (case II in Fig. 5), the proposed
method can reconstruct reasonably well the ground-shaking
field and separate the areas involving the two events. This fea-
ture can be particularly useful during actual real-time monitor-
ing situations when the analysis is performed on moving
windows with lengths that could be involved with more than
one event, especially during seismic sequences. In this situa-
tion, because the analysis is performed on the peak values
recorded at the stations, multiple events occurring in the same
time window are treated as simultaneous, and the ability to
reconstruct their joint ground-shaking field is essential to hav-
ing an accurate representation of their effects.

Another interesting feature of the model is that it is not nec-
essary to specify a GMPEs (or multiple ones for different tec-
tonic and regional conditions) as this selection is implicit in the
training data used. Because INGV uses different GMPEs for
different regional and tectonic settings, ShakeRec will implic-
itly learn a mixture of the main features of such models.
ShakeRec can deal with network geometry changes over time.
This feature is particularly useful when dealing with real data
because changes in the seismic network, both temporary (e.g.,
offline stations and temporary stations) and permanent (e.g.,
addition or removal of stations), can be handled with low loss
increase and no need for model retraining. The effects of the
network geometry, both in terms of the number of stations and
station distribution, are tested considering the Mw 6.5 Norcia

earthquake. The test is performed considering trained and
untrained station positions. Fixing the number of stations
Ns, the test is then repeated 100 times choosing different ran-
dom configurations to study the effect of different station dis-
tributions. The results in Figure 6 show that the mean loss
follows an hyperbolic growth with respect to the number of
affected stations L ∝ 1

Ns
; the standard deviation values increase

as the number of the affected station Ns decreases as an effect
of the lower station coverage and the increasing importance of
the station geometry. The importance of the network geometry
also is reflected in the better performance obtained using
untrained network positions, which densely populate the
affected area in the test.

One of the downsides of the use of CNNs is that the values
recorded at the stations are not maintained in the
reconstruction. Even though this can be solved by reintroduc-
ing such values in the final output, because there is an overall
agreement of the values at the stations, the smoother CNN
reconstruction was preferred.

Finally, the reconstruction ability of ShakeRec based on data
available in real time is tested by reconstructing the PGA field
for theMw 6.5 Norcia event from the values extracted from the
recorded waveforms. In Figure 7, the reconstructions based on

TABLE 3
Average Ensemble Loss Over the Test Dataset

Peak Ground Parameter Average Loss

PGA 0.160
PGV 0.175
SA03 0.170
SA10 0.229
SA30 0.222

Figure 3. Workflow of ShakeRec training: the process is performed once for
each GMP ensemble and defines the best five-model ensemble, in terms of
loss over the test dataset, by testing all possible combinations of models,
each trained using different training and validation datasets.
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the data available at different times ΔT after the event are
shown. It is noticeable how the reconstruction changes only
at further epicentral distances as more time elapses since
the event. This simulation represents the optimal scenario

in which no delays due to data transmission or computation
are introduced. In practice, the same reconstructions would
be obtained with a few seconds delay with respect to the time
shown.

Figure 4. Reconstruction of the peak ground acceleration (PGA) field for the
Mw 6.5 Norcia earthquake: (a) the (resampled) reconstruction and
uncertainty from ShakeMap, (b) the reconstruction and uncertainty obtained

with ShakeRec, and (c) the absolute difference of the two reconstructions.
All figures share the same colormap. The color version of this figure is
available only in the electronic edition.

Figure 5. Reconstruction of the PGA field for multievent scenarios: Mw 4.9
Brescello and Mw 5.8 Finale Emilia earthquakes (case I), and Mw 4.9
Brescello and ML 4.8 Mirandola (case II) are assumed simultaneous. (a,c) The

superposition of the shakemaps for the two events computed independently.
(b,d) The ShakeRec reconstructions of the multievent scenarios. The color
version of this figure is available only in the electronic edition.
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A fully operational real-time implementation of this method is
being tested at the Department of Mathematics and Geosciences
(DMG) of the University of Trieste, where it has been integrated
with Antelope. The raw data from multiple accelerometric net-
works (i.e., RAN, RAF, ISNet, RR, and Hareia, see Data and
Resources), for a total of about 400 active stations, are retrieved
from the Antelope buffer memory and processed; the GMP at
each station over a predefined time window, alongside the infor-
mation of the active stations, is used to produce the Voronoi tes-
sellation and the station map. Because preprocessing involves
standard procedures for the real-time analysis of the data, it could
be shared with other running processes to reduce computational
costs. Such maps are passed to ShakeRec, which updates its out-
puts in under 2 s, considering a single GMP. Figure 8 shows the
workflow of ShakeRec implementation at DMG.

CONCLUSIONS
Rapid ground-shaking field reconstruction is an essential task
for postearthquake emergency management and response. A
data-driven approach, adapted from the literature, is used to
develop an algorithm with real-time reconstruction capabilities
that can fill the information gap between the arrival of the data
at the data center and the generation of shaking maps using
traditional algorithms (e.g., ShakeMap).

Multiple tests have been conducted to show the features and
limits of the approach. The model is capable of retrieving the
ground-shaking field from sparse GMP data with results com-
parable to those obtained using traditional methods; it presents
good robustness to noise, can reconstruct simultaneous events,
can handle network geometry changes over time, and finally
does not need a GMPE to be specified because it is learned
from the training data.

The applicability of the proposed method to other geographi-
cal areas is feasible after retraining the ensemble members. In
areas where only limited data are available, transfer learning
could be an effective approach, although in-depth analysis must
be conducted to assess the quality of the reconstructions before
implementing them in a monitoring workflow.

The two main limitations of ShakeRec are its inability to
properly reconstruct small and outside of the network events
and the overall smoothness of the outputs, compared with
the ones from ShakeMap. The first is a consequence of the
choices made in processing the training data and is related to
the sole dependence of the model on the station data. The latter
is more closely related to model training and its architecture.
Both of these shortcomings depend ultimately on the choices
made in the development phase and are considered to not
undermine the purpose of the algorithm, which is linked to
potentially destructive events. More sophisticated architecture
could be tested to improve the reconstructions, but careful con-
siderations should be made about the trade-off between the
improvement obtained and the increase in complexity and com-
putational cost, other than considering the real need in a mon-
itoring environment.

ShakeRec outputs can be further used as input to GMICEs
to compute seismic macrointensity maps.

The integration of the algorithm in a real-time monitoring
environment is tested at the Department of Mathematics and
Geosciences of the University of Trieste.

DATA AND RESOURCES
The development and testing of the proposed model were performed
considering the data and metadata from multiple strong-motion net-
works in the Italian territory: the Italian strong-motion network (RAN,
Gorini et al., 2009), Friuli Venezia Giulia accelerometric network (RAF,

TABLE 4
Noise Robustness Test Results*

Noise Level (%) PGA PGV SA03 SA10 SA30

0 0.160 0.175 0.170 0.229 0.222
5 0.163 ± 0.007 0.177 ± 0.005 0.172 ± 0.005 0.230 ± 0.007 0.224 ± 0.004
10 0.169 ± 0.015 0.183 ± 0.009 0.178 ± 0.010 0.237 ± 0.015 0.230 ± 0.007
25 0.214 ± 0.032 0.229 ± 0.032 0.217 ± 0.037 0.270 ± 0.032 0.272 ± 0.022
50 0.355 ± 0.088 0.367 ± 0.091 0.359 ± 0.084 0.375 ± 0.083 0.377 ± 0.046
100 0.669 ± 0.148 0.605 ± 0.144 0.681 ± 0.119 0.560 ± 0.133 0.585 ± 0.079

*Mean and standard deviation of the loss value over 100 trials for the Mw 6.5 Norcia earthquake.

Figure 6. Mean and standard deviation of the loss as a function of the total
number of seismic stations for the Mw 6.5 Norcia earthquake reconstruction
for both trained and untrained station positions. The color version of this
figure is available only in the electronic edition.
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Costa et al., 2009), Irpinia seismic network (ISNet, Iannaccone et al.,
2007), northeast Italy broadband network (NI, OGS [Istituto Nazionale
di Oceanografia e di Geofisica Sperimentale] and University of Trieste,
2002), Reti accelerometriche centri storici italiani (RR, Presidenza del
Consiglio dei Ministri—Dipartimento della protezione civile, 2017),
and Hareia (Hammerl et al., 2012). The Istituto Nazionale di
Geofisica e Vulcanologia (INGV) shakemaps archive that was used

Figure 7. Simulation of the real-time reconstruction of the PGA field forMw 6.5
Norcia earthquake using ShakeRec. The PGA values at the stations are
extracted from the recorded waveforms considering the data available at the
time ΔT since the event. No delays due to data transmission or computation
are considered. The epicenter, marked as a black star on the map, is shown as
an indication of the earthquake location but would not be available in real
time. The color version of this figure is available only in the electronic edition.
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to produce the training and testing datasets is available at http://
shakemap.ingv.it (last accessed February 2022). The proposed model
was developed with Tensorow (Abadi et al., 2015) and deployed into
production by integrating it with BRTT Antelope (https://brtt.com, last
accessed June 2022). The figures were generated using Matplotlib
(Hunter, 2007) and Cartopy (Met Office, 2010–2015). In the supple-
mental material, a comparison between the reconstruction of the
ground-shaking field for different GMPs for the Mw 6.5 Norcia earth-
quake obtained from ShakeRec and ShakeMap for peak ground velocity
(PGV) and spectral acceleration—SA03, SA10, and SA30 is reported.
ShakeRec code is available upon request.
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