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The Tiresia program [1] provides access to numerically accurate solutions of the one-particle Schrödinger 
equation for highly excited states of complex polyatomic molecules, both bound and continuum, that cannot be 
described by conventional Quantum Chemistry approaches. It is based on an expansion of the required solution 
in a local multicentric basis set, with primitive functions built as products of a radial B-spline times a real 
spherical harmonic. In conjunction with Density Functional Theory (DFT), it has been extensively employed in 
a large variety of photoionization studies, also for rather large systems. Highly excited bound states as well as 
wavepacket propagation can also be accurately described. In fact, the flexibility of the basis essentially allows 
accurate solutions of linear operator equations, like Poisson or inhomogeneous perturbative equations, which 
are employed in the code. The program is parallelized with standard MPI-I instructions and makes extensive use 
of the Scalapack linear algebra library. Ancillary programs are available for the evaluation of photoionization 
cross sections and angular distributions from randomly to fully oriented molecules.

Program summary

Program Title: Tiresia
CPC Library link to program files: https://doi .org /10 .17632 /fcrjxwgjxh .1
Licensing provisions: GPLv3
Programming language: Fortran77, Fortran90, MPI
Supplementary material: Program manual document
Nature of problem: Accurate solutions for highly excited and continuum electronic states in complex polyatomic 
molecules. Molecular photoionization cross sections and angular distributions under high energy, high-
intensity radiation pulses from Synchrotron radiation and laser sources, photoelectron imaging in pump-probe 
experiments, basis for electronic wavepackets under ultrafast or nonperturbative excitation.
Solution method: Solution of the Schrödinger and similar linear operator equations in a finite domain is 
obtained via basis set expansion. Flexible basis set, that may approach practical completeness within the domain, 
is obtained as a multicenter set of B-spline radial functions times spherical harmonics. Accurate numerical 
integration is employed for the evaluation of matrix elements, and conventional diagonalization for bound states, 
or Galerkin approach for the full multichannel solution in the continuum. Full hamiltonian and dipole matrices 
in the spectral basis are available for time propagation. DFT many-body description is available, and strong 
correlations in the bound states may be incorporated via Dyson orbitals.
Additional comments including restrictions and unusual features: The code is noted for computational efficiency, 
which allows fast yet reasonably accurate photoionization calculations for medium-sized molecules, allowing,
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e.g., calculations at many molecular geometries as required to describe time-resolved photoelectron spectra in 
pump-probe experiments.
1. Introduction

Many chemical processes involve only the electronic ground state, 
or excited states confined to the manifold of valence orbitals, i.e. or-
bitals, both occupied and virtual, that are physically well described 
within the space spanned by the set of low-lying atomic orbitals of the 
constituent atoms, the so called LCAO basis. These are the domain of 
Quantum Chemistry (QC) [2,3], which has developed an impressive ar-
ray of methods and programs for their description and to attack the 
difficult correlation problem, or many-body effects. At the core of the 
description are basis sets of Gaussian Type Orbitals (GTO), or more 
rarely Slater Type Orbitals (STO), that can be augmented to describe 
polarization and correlation effects.

However, it is difficult for these approaches to describe situations 
where electrons are forced by external perturbations to depart signif-
icantly from the valence manifold, giving states of highly oscillatory 
nature. This is the case of photoionization, not only a landmark in 
the development of Quantum Mechanics since Einstein’s interpretation 
of the photoelectric effect, but actually a very common phenomenon, 
which is the dominant interaction of matter with radiation from VUV 
till very high energies. In fact, for the majority of molecules, the bulk 
of oscillator strength in photoabsorption lies in the photoionization re-
gion [4]. More broadly, the development of radiation sources, lasers 
and Synchrotrons, and more recently free electron lasers (FELs), and 
the concurrent advances in electron detectors, are providing some of 
the most sophisticated tools for the study of molecular structure and 
dynamics, both nuclear and electronic, in the ultrafast domain [5]. 
Short electromagnetic pulses excite nonstationary states whose evolu-
tion is followed in time, mostly through the use of a second, analyzing 
pulse (pump-probe experiments), for which photoionization is one of 
the main probes. More details are provided by angular distributions 
of photoelectrons, which can also probe molecular chirality, from sin-
gle photon to more elaborate ionization experiments. Actually, coinci-
dence techniques in electron/ion detection, and alignment procedures 
via laser pumping provide an additional wealth of angular distribution 
parameters that afford a much richer information on molecular states, 
up to the so-called complete experiment, in which a full set of dipole 
transition matrix elements, including relative phases, can be experimen-
tally obtained [6]. More recently, even energy derivatives of the phases, 
associated with Wigner time delays, can be addressed by several tech-
niques and are actively investigated [7].

It is to this scientific area that the Tiresia program [1] is geared 
to. Several approaches have already been developed for molecular pho-
toionization although becoming generally available quite recently, e.g., 
the ePolyScat [8,9] and the UKRmol+ R-Matrix code [10], to quote 
only the most widespread, or the XCHEM [11,12] that is currently re-
leased. At variance with these approaches, originally aimed at the accu-
rate description of small systems, Tiresia was designed at the outset 
with complex polyatomic molecules in mind. That has demanded some 
compromise with the description of multielectron effects, for which a 
density functional theory (DFT) approach appeared as a computation-
ally effective method, that has proved to give a good description of 
the experimental observables at a rather modest computational cost. 
An effective way to generalize to an accurate description of correlation 
effects in the bound states, notably to allow photoionization from open-
shell systems and excited states, or to multielectron excitations in the 
final states, is the coupling of DFT continua to Dyson orbitals [13–17]
relative to the initial/final bound states couple, which can be accurately 
computed by QC approaches and are now available in several QC codes, 
2

see e.g. Refs. [18–20].
The core problem of approaches aiming to describe the electronic 
continuum is an accurate and efficient algorithm for the solution of the 
one-particle Schrödinger equation

ℎ𝜑 =𝐸𝜑 (1)

for both the bound (𝐸 < 0) and continuum (𝐸 > 0) eigenstates. Here,

ℎ = −1
2
Δ+ 𝑉 (2)

where 𝑉 is a one-particle operator, often a local potential function of 
the electron coordinates 𝑉 (𝐫), or in general non local, like the exchange 
operator in Hartree-Fock (HF). In the atomic case, due to spherical sym-
metry, it is natural to utilize one-dimensional radial grids together with 
analytical angular functions (Spherical Harmonics) and employ finite 
difference approaches for the radial coordinate. The same approach 
(Single Center, or One Center expansion, OCE) can also be useful in 
molecules and has been widely employed [8,21,22]. It has the merit of 
a natural representation of the wave function in the asymptotic region, 
and in general far from the molecular core. However, the loss of spher-
ical symmetry couples different partial waves, and moreover Coulomb 
cusps far from the expansion center are poorly represented by a par-
tial wave expansion, that converges very slowly in the case of heavy 
atoms far from the expansion center. The same problem also plagues full 
three-dimensional grids, generally in Cartesian coordinates, which ad-
ditionally do not give a natural representation of the outer region, while 
it proves difficult to generate and exploit adaptive grids tailored to the 
molecular potential. In fact, the best solution is indicated by the spec-
tacular success of the LCAO approach in molecules, with spherical basis 
functions distributed over all nuclei. Indeed, they generate a smooth 
transition from an almost spherical environment close to one nucleus to 
the analogous environment close to a different one. Therefore, an opti-
mal choice appears to be the use of a multicentric basis set, comprising 
a long-range OCE part with special bases designed to describe the oscil-
latory behavior and reach the asymptotic limit, and a limited number of 
additional sets on each atom to take care of the Coulomb cusp [23,24]. 
The latter sets may be standard or specially designed GTOs or STOs, or 
additional special functions. Different combinations are chosen in re-
cent codes [10,11]. For brevity, we shall refer to a multicentric basis as 
LCAO in the following.

Operators are then represented as matrices on the basis, and bound 
eigenstates may be obtained by conventional diagonalization. In the 
case where actual continuum eigenvectors are needed, specialized al-
gorithms are required to obtain the full set of linearly independent 
degenerate eigenvectors. Several variants are in use, like the R-matrix 
approach [25], the imposition of specific boundary conditions [11], the 
Galerkin approach [26–28]. If the basis is accurate, all these approaches 
will give essentially the same result, although the computational effi-
ciency may vary.

The one-electron hamiltonian may be used as approximate descrip-
tion of the system, like in the static HF or the equivalent DFT for-
mulation, or can be employed in more elaborate descriptions of the 
many-body problem, like RPA [29] or TDDFT [30,31], or in config-
uration interaction formulations, like the well known Close-Coupling 
approach [25]. Transition dipole matrix elements between bound and 
continuum states allow the calculation of fully differential photoion-
ization cross sections, from randomly oriented molecules to various 
degrees of alignment orientation, till the full Molecular Frame Pho-
toelectron Angular Distributions (MFPADS). A numerically accurate 
“complete” basis may also be exploited for the solution of the time-
dependent Schrödinger equation (TDSE), either in the primitive basis, 

or in the spectral basis obtained from a full diagonalization of the hamil-
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tonian, which offers different advantages. Moreover, the ability to fully 
describe eigenstates of the system allows analysis of the composition of 
the final wavepacket, and again the fully differential transition proper-
ties. A complete basis can also afford accurate treatment of perturbative 
formulations, like the Lowest Order Perturbation Theory description of 
multiphoton transitions (LOPT).

We shall now describe the specific features and capabilities of the
Tiresia code based on the DFT hamiltonian.

2. The static DFT approach

The DFT formalism [32] describes the ground state (GS) of a 
molecule through the electron density 𝜌. In practice, the Kohn-Sham 
(KS) approach builds the density as given by one determinant of occu-
pied orbitals:

Φ0 = |𝜙1𝜙2…𝜙𝑁 ⟩, 𝜌 =
∑
𝑖

|𝜙𝑖|2, (3)

which are the solutions of the KS hamiltonian

ℎKS𝜙𝑖 =𝐸𝑖𝜙𝑖 , (4)

with ℎKS defined as usual:

ℎKS = −1
2
Δ+ 𝑉en + 𝑉C(𝜌) + 𝑉XC(𝜌) . (5)

In Eq. (5), the first term represents the kinetic energy operator, the 
second the nuclear attraction, the third the classical Coulomb poten-
tial associated with the density 𝜌, and the fourth is the exchange-
correlation potential, a functional of the density, an unknown quan-
tity for which various approximate forms have been developed. In 
the simplest approximation, it is a local function of the density, i.e., 
𝑉XC(𝐫) = 𝑉XC(𝜌(𝐫)). The equations are very similar to the HF ones, dif-
fering only in the substitution of the ab-initio exchange term, which is 
non local and depends on the full density matrix, with the 𝑉XC potential, 
which only depends on 𝜌. Still, the DFT form succeeds in eliminating 
some pathologies of HF, and in including some correlation in an aver-
age way, giving results either similar to or often improved over the HF 
ones.

The solution of the GS DFT equations requires a self-consistent pro-
cedure, as in the HF case. Once the appropriate density is obtained, it 
defines a “static” KS (or DFT) hamiltonian (eq. (4)) that can be diagonal-
ized to extract excited state eigenvectors, both bound and continuum; 
N-particle excited states are obtained by substituting one (or more) oc-
cupied orbitals with a virtual one, giving, i.e., singly excited states

Φ𝑎
𝑖
= |𝜙1…𝜙𝑖−1𝜙𝑎𝜙𝑖+1…𝜙𝑁 ⟩ = 𝑎†

𝑎
𝑎𝑖Φ0 , (6)

and so on, described as single determinants. A complete set of 𝑁 -
particle states are obtained in this way, as eigenstates of a mean-field 
hamiltonian 𝐻0 = ℎ(1) +⋯ ℎ(𝑁), which could also be used in evaluat-
ing perturbation theory (PT) formulas, or in the solution of the TDSE. 
Dipole matrix elements reduce to single particle matrix elements be-
tween an initial orbital 𝜙𝑖 and a final orbital 𝜙𝑎 (bound or continuum).

Three choices of local 𝑉XC potentials are available in the code: 
the old Slater’s X𝛼 potential [33], which is still in use [34], the stan-
dard LDA VWN potential [35], and the LB94 potential [36]. The latter 
was developed to improve the description of polarizabilities, and there-
fore excited states, and it has a correct asymptotic behavior producing 
a Coulomb tail at large distances, at variance with the former ones 
that decay exponentially for a neutral system. Actually, better results 
with X𝛼 or VWN are obtained using the so-called transition state po-
tential [33,37] which corresponds to a density with half an electron 
removed from the ionized orbital. Another possibility is the enforce-
ment of a pure Coulomb tail, from a preset radius onward, or when the 
density falls below a prefixed threshold. This procedure becomes neces-
3

sary if very long OCE expansions, in the range of several hundreds of au 
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or larger, are needed, since the evaluation of the 𝑉XC potential becomes 
numerically unstable.

An advantage of the LB94 potential is that, in practice, the GS po-
tential proves an optimal choice for the description of all ionized states, 
so that one single calculation provides results for the cross sections of 
all primary ionic states, from the outer valence to the deep core states. 
The specific functional form of the LB94 potential is, however, tied to 
the assumption of an exponentially decaying density. Numerically, this 
is well satisfied by the use of STO basis functions in the initial density 
calculation, as is implemented in the ADF DFT code [38,39], while the 
use of GTO bases often gives long-range oscillations which can produce 
some unphysical results in the cross sections. Tiresia was historically 
developed based on ADF densities, and an interface to this code is pro-
vided. With GTO bases, it may be better to revert to X𝛼 or VWN that 
are more stable. Examples are provided.

The pure DFT approach gives as a general rule a good description 
of ionization of single-hole (primary) ionic states. In the case of more 
complex ionization processes, such as ionization from open shell or ex-
cited states, or multielectron excitations in the final states (satellites), 
and in general in the case of strong correlation effects in the initial or 
final bound states, the DFT approach can be easily generalized by the 
use of Dyson orbitals [13,14,16]. A Dyson orbital pertains to a couple 
of bound states, an initial 𝑁 -particle Ψ𝑁

0 and a final (𝑁 − 1) particle 
Ψ𝑁−1
𝐼

. It is defined as

𝜑𝐷
𝐼0(1) =

√
𝑁 ∫ Ψ∗

𝐼
(2,… ,𝑁)Ψ0(1,2,… ,𝑁)𝑑𝑥2…𝑑𝑥𝑁 (7)

and can be computed with highly correlated ab initio wavefunctions. 
Generalizing the scattering formalism to a single channel approach, 
with the final state expressed as an antisymmetrized product of a bound 
ionic state and a continuum orbital, Ψ𝑁

𝐼𝐸𝑗
= Ψ𝑁−1

𝐼
𝜙𝐸𝑗 , the many-

particle dipole matrix element reduces to a single-particle one involving 
the continuum and Dyson orbitals, plus a conjugate contribution which 
is generally small and neglected [15,40,17]

𝐷𝐼𝐸𝑗,𝑘 = ⟨Ψ𝐼𝜙𝐸𝑗 |𝐷𝑘|Ψ0⟩ ≃ ⟨𝜙𝐸𝑗 |𝑑𝑘|𝜑𝐷
𝐼0⟩ (8)

In Tiresia, Dyson orbitals computed with ab initio QC codes (for in-
stance, OpenMolcas [41], Q-Chem [42] and e𝑇 [43]) can be read and 
used as initial states for the calculation of dipole amplitudes, with min-
imal modifications.

3. The basis

The primitive basis functions employed in Tiresia are products of 
a radial B-spline function times a real spherical harmonics:

𝜒𝑖𝑙𝑚 = 1
𝑟
𝐵𝑖(𝑟)𝑌 𝑅

𝑙𝑚
(𝜃,𝜙) . (9)

These are used both for the OCE expansion and for the LCAO ones, the 
latter centered on the atomic sites.

B-spline functions are well documented [44,24]. We recall here sim-
ply that they are defined over a given interval, [0, 𝑅] in our case, 
divided into subintervals by a non-decreasing sequence of points, called 
knots. They are made of polynomial pieces of a fixed order 𝑘 (degree 
𝑘 − 1), one over each subinterval, spanning (𝑘 + 1) consecutive knots 
and identically zero outside, joined with chosen continuity across adja-
cent subintervals. They have been designed to approximate arbitrarily 
well any smooth function over the interval by suitably choosing the 
set of knots, i.e., the stepsize of the grid. In this sense, they constitute 
a complete set and usually converge extremely fast. In practice, given 
the order and the interval, the basis is completely defined by the set 
of knots. For our purpose, it is customary to place 𝑘 knots at the end-
points, and single knots inside. This gives a full set of B-splines over the 
interval, of maximum continuity at the inner knots. At each end, the 
first and the last spline are nonzero. To satisfy the boundary condition 

at the origin, the first spline is deleted. This gives, in total, 𝑘 + 𝑛 − 2



D. Toffoli, S. Coriani, M. Stener et al.

functions in the case of 𝑛 subintervals. For bound states also the last 
spline is deleted, ensuring zero at the outer boundary, while it is kept 
for the description of the continuum states, which are generally nonzero 
at the outer boundary. The accuracy of the basis increases sharply with 
𝑘, with a negligible increase on the typical size of the basis. However, 
numerical errors limit the maximum value of 𝑘 that can be employed. 
Our standard choice is 𝑘 = 10, the maximum that proved viable [28]. 
A long range [0, 𝑅𝑚𝑎𝑥0] is employed for the OCE expansion, while short 
ranges [0, 𝑅𝑚𝑎𝑥𝑝] are employed for the LCAO expansions. For the latter, 
actually, some of the last splines (default 𝑚 = 3) are deleted, ensuring 
continuity of the wave function up to the second derivative over the 
whole space. In fact, the range of the LCAO expansions is restricted 
to be non overlapping, but this is in practice no limitation, and often 
shorter ranges are employed, as discussed later.

The sequence of knots can be read as input, but the most common 
is a linear grid. The continuum wavefunction is roughly a plane wave, 
oscillating regularly with a wavelength associated to the electron mo-
mentum 𝑘, 𝐸 = 𝑘2∕2, 𝜆 = 2𝜋∕𝑘. It is thus natural to choose a constant 
step size, of the order of ℎ = 1∕𝑘𝑚𝑎𝑥, related to the maximum electron 
momentum (energy) that one needs to describe. The range of the expan-
sion is determined by the requirement that all bound states of interest, 
as well as the density, are negligible outside it. At this point the poten-
tial is of pure multipolar form, and, for photoionization, is dominated 
by the pure Coulomb term. The neglect of dipolar and higher terms 
when fitting to pure Coulomb asymptotic behavior can be checked by 
repeating calculations with increasing 𝑅𝑚𝑎𝑥0. Normally, also for polar 
molecules, results for cross sections and angular distributions are gen-
erally stable, at the level of one percent or better, after a few tens of 
atomic units. Fig. 1 illustrates this for three valence and one core ion-
ization of H2O, computed with origin on Oxygen, 𝑅𝑚𝑎𝑥0 = 25. and 100. 
au, and Oxygen further displaced on the 𝑧 axis by 1.0 au, 𝑅𝑚𝑎𝑥0 = 25. 
au.

More delicate observables, like individual phase shifts for time delay 
evaluation, may require somewhat longer ranges. The role of multipo-
lar components may become very important in photodetachment, or 
electron scattering, especially at low kinetic energies. While it is not 
problematic to employ very large 𝑅𝑚𝑎𝑥0, the use of a fitting routine in-
cluding the lowest multipoles may be a more efficient alternative. For 
photoionization, a typical range of around 20-30 au is in general ade-
quate, with the total number of B-splines in the order of hundred. For 
special purposes, either very diffuse states or wavepacket propagation, 
larger ranges in the hundreds or thousands of au may be employed, 
without loss of precision or numerical stability. For bound states a nat-
ural grid is exponential, and in fact, with this choice, very high Rydberg 
states can be described. However, the same grid is employed for both 
bound and continuum states in photoionization to ease the computation 
of the dipole matrix elements, so the linear grid is the common choice. 
In summary, both linear and exponential grids for the OCE expansion 
are internally provided, by specifying (in input) the outer radius 𝑅𝑚𝑎𝑥0
and the number of steps (or stepsize). For the short LCAO expansions, 
a linear grid is always used, with similar step sizes as for the OCE. In 
both cases, some additional knots may be required, as explained below.

As angular functions, real spherical harmonics are employed. Our 
definition is

𝑌 𝑅
𝑙𝑚
=

{
1√
2𝜋

𝑃𝑙(cos𝜃),
1√
𝜋
𝑃
|𝑚|
𝑙

(cos𝜃) cos |𝑚|𝜙, 1√
𝜋
𝑃
|𝑚|
𝑙

(cos𝜃) sin |𝑚|𝜙}
(10)

for 𝑚 = 0, 𝑚 > 0, 𝑚 < 0, respectively. For each basis, the full set of 𝑌 𝑅
𝑙𝑚

are employed up to a maximum value 𝐿𝑚𝑎𝑥. For the LCAO basis, 𝐿𝑚𝑎𝑥𝑝

is very low, typically 1 or 2 for light atoms, while 𝐿𝑚𝑎𝑥0 for the OCE 
is generally much larger, up to several tens. This is because of the need 
to describe the short-range anisotropy of the wave function outside the 
4

LCAO expansions, as well as to describe all partial waves that are popu-
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lated in the continuum. The latter increases fast with increasing electron 
momentum.

From all of the above, it follows that the dimension of the basis 
is in general fully dominated by the dimension of the OCE expansion, 
while the LCAO part has only a modest impact on the total dimension. 
It proves nonetheless very important to ensure fast convergence of the 
basis and to describe deep core states. A couple of examples will be 
given later.

The program makes full use of point group symmetry, including the 
nonabelian ones. To this purpose, the primitive basis is fully symmetry 
adapted [45–47]. For the OCE:

𝜒𝑖𝑗𝜆𝜇 = 1
𝑟
𝐵𝑖(𝑟)𝑋𝑗𝜆𝜇(𝜃,𝜙) 𝑋𝑗𝜆𝜇(𝜃,𝜙) =

∑
𝑚

𝑏𝑚𝑗𝜆𝜇𝑌
𝑅
𝑙𝑚
(𝜃,𝜙) 𝑙 = 𝑙(𝑗),

(11)

where (𝜆𝜇) are labels for the irreducible representation and the degen-
erate subspecies, and 𝑗 counts the linearly independent combinations 
of the (2𝑙+1) spherical harmonics within the same irrep. For the LCAO 
part, the linear combination is extended to all atoms which are symme-
try equivalent

𝜒𝑝𝑖𝑗𝜆𝜇 =
∑
𝑞∈𝑝

1
𝑟𝑞
𝐵𝑖(𝑟𝑞)

∑
𝑚

𝑏𝑞𝑚𝑗𝜆𝜇𝑌
𝑅
𝑙𝑚
(𝜃𝑞,𝜙𝑞) 𝑙 = 𝑙(𝑗) (12)

where the index 𝑝 runs over the sets of inequivalent atoms, and 𝑞 over 
the equivalent atoms in set 𝑝. Expansion coefficients 𝑏 are obtained by 
application of the usual projection and shift operators of point group 
theory to the primitive basis. The final basis is

{𝜒𝑖𝑗𝜆𝜇} ∪ {𝜒1𝑖𝑗𝜆𝜇} ∪⋯ ∪ {𝜒𝑟𝑖𝑗𝜆𝜇} (13)

where the first is the OCE basis followed by the LCAO bases, one for 
each of the 𝑟 inequivalent sets of atoms.

An important issue is the numerical linear independence of the ba-
sis, which is vital for the numerical stability of the algorithms. The OCE 
basis, independently of its size, is always well conditioned, because of 
the limited overlap of the B-spline functions and the orthonormality of 
the spherical harmonics. Adding LCAO functions strongly worsens the 
situation, as it can become in principle overcomplete. This is signaled 
by a strong decrease of the smallest eigenvalues of the overlap (𝑆) ma-
trix. It is for this reason that the range of the LCAO functions has to 
be severely limited. The problem is most severe for centers close to the 
origin, but eases for more distant centers, precisely where larger ranges 
are more important. It also worsens with increasing 𝐿𝑚𝑎𝑥0 of the OCE 
expansion, which then requires shorter LCAO ranges. This problem is 
common to all LCAO approaches and it is often tackled by diagonal-
izing the 𝑆 matrix, transforming to the basis of its eigenvectors, and 
deleting those relative to eigenvalues smaller than a given threshold. 
We found this procedure not very safe. Instead, the flexibility of a full 
B-spline basis allows us to control relatively easily the degree of over-
lap by restricting the LCAO ranges without loss of precision, although it 
may require some experimentation, monitoring the 𝑆 matrix eigenval-
ues in difficult cases.

In summary, the present basis has shown the ability to accurately 
describe rather large and complex systems, including heavy atoms and 
deep core states, up to large electron kinetic energies (several keV [48]) 
with any energy resolution required, and good numerical stability. It 
may be easily tailored to the specific problem of interest.

4. Evaluation of matrix elements

Extensive numerical integrations are employed. For integrals in-
volving only OCE functions, which are factorized into a radial and an 

angular part, preliminary partial wave decomposition of integrands is
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Fig. 1. Convergence of the cross section 𝜎 (Mbarn, left panels) and asymmetry parameter 𝛽 (right panels) of three valence and one core ionization of H2O computed 
when varying 𝑅𝑚𝑎𝑥0.
performed. Given an arbitrary function 𝑓 (𝑥, 𝑦, 𝑧), one obtains

𝑓 (𝑟, 𝜃,𝜙) =
∑
𝑗𝜆𝜇

𝑓𝑗𝜆𝜇(𝑟)𝑋𝑗𝜆𝜇(𝜃,𝜙) (14)

𝑓𝑗𝜆𝜇(𝑟) = ∫ 𝑋𝑗𝜆𝜇(𝜃,𝜙)𝑓 (𝑥, 𝑦, 𝑧) sin 𝜃 𝑑𝜃 𝑑𝜙 (15)

and
5

⟨𝜒𝑖𝑗𝜆𝜇|𝑓⟩ = ∫ 𝐵𝑖(𝑟)𝑓𝑗𝜆𝜇(𝑟)𝑟𝑑𝑟 (16)
or

⟨𝜒𝑖𝑗𝜆𝜇|𝑓 |𝜒𝑖′𝑗′𝜆′𝜇′⟩ = (17)∑
𝑗′′𝜆′′𝜇′′

∫ 𝐵𝑖(𝑟)𝑓𝑗′′𝜆′′𝜇′′ (𝑟)𝐵𝑖′ (𝑟)𝑑𝑟∫ 𝑋𝑗𝜆𝜇𝑋𝑗′′𝜆′′𝜇′′𝑋𝑗′𝜆′𝜇′ sin𝜃 𝑑𝜃 𝑑𝜙

where the angular integrals can be expressed in terms of three spherical 
harmonics, that reduces to a combination of 3𝑗 symbols.

Radial integrals over B-splines are obtained with high accuracy by 

Gauss-Legendre (GL) integration over each subinterval, provided that 
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the integrand is smooth. In case of singularities, as happens with the 
cusps in the molecular potential due to off center nuclei, to maintain 
accuracy it is very important that such radial points occur at the end-
points of the subintervals. This is easily accomplished by adding to the 
original knot sequence additional points corresponding to the radial 
coordinates of the off-center atoms. In the case of very heavy nuclei, a 
couple of closely spaced knots around their radial positions may be nec-
essary for the highest accuracy. That is also needed if a heavy atom is 
present at the origin. The same logic applies to the angular integration 
over the surface of a sphere, eq (15). Here, the two-dimensional domain 
[0, 𝜋] × [0, 2𝜋] in (𝜃, 𝜙) variables is integrated by a product of two GL 
integrations in each dimension. To avoid singularities, however, each 
angular domain is split into subdomains having as inner points the po-
lar coordinates of the off-center atoms, e.g., [0, 𝜙1], [𝜙1, 𝜙2], … Again, 
if heavy atoms are present, adding a couple of closely spaced points 
around its coordinates may be required for high accuracy. This is also 
the case at the endpoints, like 0 or 2𝜋 if an atom lies on such points. 
Generally, with such choices, very accurate results are obtained. It may 
be monitored by the value of the numerically integrated electron charge 
density, which is usually recovered up to 8 or more significant digits. 
In the case of symmetry, actually, the angular integration range can be 
restricted to a symmetry unique domain for a totally symmetric inte-
gral. The same technique can be employed for non totally symmetric 
integrands, if a sum over all degenerate subspecies is employed.

The same integration is performed for integrands involving the 
LCAO functions, in spherical coordinates relative to the corresponding 
center. Here, no singularities exist in the domain, apart from the origin, 
and no special points have to be added for the angular domain integra-
tion. However, for very high accuracy, each angular domain is linearly 
divided into a number of subintervals (default is 24). Since the LCAO 
ranges do not intersect, only two center integrals between an OCE and 
an LCAO function appear. These are also evaluated in spherical coordi-
nates around the LCAO center. In the case of two-center integrals, the 
reference systems are rotated so that the new 𝑍 axis is from the origin 
to the LCAO center, and the spherical harmonics are accordingly ro-
tated [23]. This allows to exploit the local cylindrical symmetry, so that 
𝜙 integration becomes analytical. The integrals are then rotated back to 
the original reference. Moreover, in the case of equivalent centers, in-
tegrals are computed only for the first center, the others are obtained 
by appropriate rotations. Finally, they are combined with the appropri-
ate coefficients to generate the integrals relative to symmetry adapted 
functions.

It is worth mentioning the evaluation of the matrix elements of 
the molecular potential. While the nuclear attraction 𝑉en and the 𝑉XC
potentials are simple functions (𝑉en also has an analytic multipolar ex-
pansion), the Coulomb part 𝑉C requires more work. We exploit the 
completeness of the basis to obtain 𝑉C by solving the Poisson equation 
in the same basis. By writing the full basis simply as {𝜒𝜈}

𝑉 =
∑
𝜈

𝑉𝜈𝜒𝜈 𝜌𝜇 = ⟨𝜒𝜇|𝜌⟩ (18)

one obtains∑
𝜈

Δ𝜇𝜈𝑉𝜈 = −4𝜋𝜌𝜇 (19)

which is a linear inhomogeneous equation that is easily solved for 
the coefficients 𝑉𝜈 of the potential expansion. The matrix elements ⟨𝜒𝜇|𝑉C|𝜒𝜎⟩ are evaluated as above from this representation of 𝑉C. The 
ability of the basis to accurately represent solutions not only of the 
operator eigenvalue equation but also of inhomogeneous ones is an im-
portant asset, that can be exploited, for instance in PT formulations. 
Note also the ease of implementation of specific boundary conditions 
on the solution, by taking appropriate linear combinations of the last 
basis elements. In the case of 𝑉C, multipolar boundary conditions, 
6

𝑉 ′
𝑙𝑚
∕𝑉𝑙𝑚 → −(𝑙 + 1)∕𝑟, are enforced.
Computer Physics Communications 297 (2024) 109038

Diagonalization of the bound states, removing the last spline, can 
be efficiently performed with standard linear algebra (LA) routines 
(Scalapack [49]), up to hamiltonian matrix dimensions up to about 
105. In the case of continuum states, we note that the full hamilto-
nian matrix is no longer hermitian, because of the nonzero value of 
the last spline at the outer boundary. Several algorithms are avail-
able to obtain the full set, equal to the number 𝑛𝑜 of asymptotic 
channel functions, of linearly independent continuum eigenvectors. We 
implemented the Galerkin approach, originally proposed by Froese-
Fischer [26,50] in the single channel, and later generalized to the 
multichannel case [27,28,51]. It aims at the approximate eigenvectors 
of the matrix 𝐴(𝐸) = 𝐻 − 𝐸𝑆 having minimum eigenvalue (close to 
zero), i.e., minimizing the residual

𝐴(𝐸)𝑐 = 𝑎𝑐 (20)

with the smallest 𝑎. They can be obtained by inverse iteration starting 
from an arbitrary guess, iterating the solution of the linear system

𝐴𝑦𝑘+1
𝑖

= 𝑥𝑘
𝑖

(21)

starting from 𝑛𝑜 independent (orthonormal) guess vectors, 𝑥0
𝑖
, 𝑖 = 1, 𝑛𝑜, 

and reorthonormalizing at each step. We actually found that better per-
formance is obtained employing the product 𝐴(𝐸)𝑇 𝐴(𝐸), which more-
over is hermitian (symmetric). In practice, one finds that, with a good 
basis and 𝑛𝑜 open channels, the lowest 𝑛𝑜 eigenvalues are extremely 
small and separated from the next by several orders of magnitude, and 
the inverse iteration usually converges very fast. Occasional instabili-
ties may occur, especially with large calculations involving hundreds of 
channels, and disappear by slightly changing the energy. In practice this 
is not an issue, as the cross section is very smooth, and one easily de-
tects an erratic point. Difficult convergence may also occur at very low 
energies, if the number of channels is “too large”, meaning that the high 
𝑙 components have very small amplitude (they do not penetrate the cen-
trifugal barrier) at those energies. Still, cross sections are usually fine, 
as those high 𝑙 channels contribute insignificantly. Alternatively, those 
instabilities disappear by reducing the 𝐿𝑚𝑎𝑥0 value.

A grid of continuum energies 𝐸𝑛 of interest is selected, and the pro-
cess is repeated for each of them. As

𝐴𝑇𝐴 =𝐻𝑇𝐻 −𝐸(𝐻𝑇𝑆 +𝑆𝑇𝐻) +𝐸2𝑆𝑇 𝑆 (22)

we found convenient to precalculate the three energy-independent 
product matrices, 𝐻𝑇𝐻, (𝐻𝑇𝑆 + 𝑆𝑇𝐻), 𝑆𝑇 𝑆 and build 𝐴𝑇𝐴 by just 
summing the three contributions. Then, at each 𝐸, an LU decomposi-
tion of 𝐴𝑇𝐴 is performed, and the inverse iteration is very fast. Since the 
𝑛𝑜 eigenvectors are degenerate, an arbitrary mixture is obtained at the 
end of the iteration. To fix them uniquely, one has to fix the asymptotic 
form, and we chose to normalize them to the 𝐾 -matrix boundary condi-
tion, which has the advantage of keeping the eigenvectors real [46,27]. 
That is, by fitting the radial parts of the obtained eigenvectors to a 
linear combination of the regular (𝑓𝑙) and irregular (𝑔𝑙) asymptotic so-
lutions close to the outer boundary, the following form of the solutions 
is obtained

𝜙𝐸𝑗′𝜆𝜇 =
∑
𝑗

𝑅𝑗𝑗′𝜆(𝑟)𝑋𝑗𝜆𝜇 (23)

𝑅𝑗𝑗′𝜆(𝑟) = 𝑓𝑙(𝑘𝑟)𝐴𝜆
𝑗𝑗′

+ 𝑔𝑙(𝑘 𝑟)𝐵𝜆
𝑗𝑗′

(24)

The two matrices (fitting coefficients) 𝐴 and 𝐵 are obtained by equating 
the values of 𝑅𝑗𝑗′𝜆(𝑟𝑖) to a combination of 𝑓𝑙(𝑘𝑟𝑖) and 𝑔𝑙(𝑘𝑟𝑖) at the last 
two interior knots of the interval. Choosing the last two knots, or the 
logarithmic derivative at the outer boundary, produces the same result. 
Then, by transforming

�̄� =𝑅𝐴−1 , (25)
the 𝐾 -matrix form is obtained:
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�̄�→ 𝛿𝑗𝑗′𝑓𝑙 +𝐾𝜆
𝑗𝑗′

𝑔𝑙 𝐾 = 𝐵𝐴−1 . (26)

It is simple then to transform the resulting eigenvectors, or simply the 
relative dipole matrix elements, to any other asymptotic form, like the 
𝑆-matrix

𝑆 = (1 + 𝑖𝐾)(1 − 𝑖𝐾)−1 (27)

or its adjoint 𝑆†, corresponding to incoming waves 𝜙(−)
𝐸𝑗𝜆𝜇

which are 
the correct form to describe photoionization, and are obtained from the 
𝐾 -matrix normalized solutions by

𝜙(−) = 𝜙(1 + 𝑖𝐾)−1 . (28)

The dipole matrix elements

𝐷𝐸𝑗𝜆𝜇,𝑘,𝑖𝜆′𝜇′ = ⟨𝜙(−)
𝐸𝑗𝜆𝜇

|𝑑𝑘|𝜙𝑖𝜆′𝜇′⟩ (29)

can be transformed accordingly. For each energy 𝐸𝑛, the 𝐾 -matrix 
(actually, its eigenvalues and eigenvectors) together with the 𝐾 -
normalized dipoles are written on an external file (fort.20). They 
contain all information needed to extract any kind of differential cross 
section in one-photon ionization, and are processed by additional pro-
grams. The dipole matrices are computed for all initial states and 
continuum channels in all symmetries, and are relatively small. It is 
useful, in multiphoton PT calculations or wavepacket propagation via 
numerical solution of the TDSE, to employ the spectral basis obtained 
by a full diagonalization of the bound hamiltonian, and fully transform 
the dipole matrix elements to this basis. This is available as a separate 
facility inside the code. While we do not provide at this time a TDSE 
propagation algorithm, such approaches have been repeatedly used to 
study strong field or ultrafast pump-probe processes [52–54]. Also, a 
facility to analyze a wavepacket at the end of the pulse, by projecting 
onto continuum states, is available.

The program is parallelized using standard MPI instructions. The 
computationally intensive parts are numerical integrations and LA op-
erations. Integration requires evaluation and sum of the integrands at 
a large number of points, that parallelizes trivially, assigning separate 
groups to each processor, and then collecting the partial sums with an
MPIREDUCE operation. This parallelizes very efficiently and scales lin-
early. For LA operations on vectors and matrices parallel BLAS and
SCALAPACK routines [49] are employed. This is a bit more complex, 
as it requires distributing arrays over processors according to the block 
cyclic decomposition (BCD) [49], which does not map naturally on the 
block structure of the matrices in the B-spline basis. Some special rou-
tines have been devised to transform back and forth between subblocks 
of the global arrays and local matrices in the BCD structure. Also, LA op-
erations then parallelize quite efficiently, provided that the local blocks 
are not too small, so that useful parallelism scales up naturally with the 
size of the problem. Up-to-date tests up to 4K processors have been per-
formed. Typical memory per core needed is about 2GB, larger values 
may be required in large calculations.

5. Input and program structure

Extensive details are provided in the accompanying manual, as well 
as illustration of the examples enclosed. For a normal photoionization 
calculation, most defaults internally provided are generally adequate, 
and the input is then rather simple.

The minimal input required from the user comprises

• specification of the molecular geometry
• specification of the symmetry group and maximum OCE angular 

momentum (𝐿𝑚𝑎𝑥0)
• specification of the OCE radial grid (typically 𝑅𝑚𝑎𝑥0 and number of 

subintervals for a linear grid)
• specification of the active symmetries (irreps) and number of occu-
7

pied orbitals in each symmetry
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• specification of the LCAO grid for each nonequivalent atom
• for the continuum, specification of the energy points.

In addition, specification of the angular grid for OCE integration is re-
quired, but one can use the defaults provided, which are often quite 
accurate, and in any case give a good starting point for further refine-
ments, if needed. See the manual for commented examples.

The program is relatively large, with several hundred routines. It can 
be divided into logically connected blocks, each comprising many rou-
tines, generally under control of a driver routine. We may schematize it 
as follows

Parameter ibound=0 directs to a bound state calculation, ibound=1 to 
a continuum calculation, ibound=2 to bound followed by continuum 
calculation in a single run.

• mpispllcao is the main program, initializes and directs the flow
• input_new directs all input, read from file ‘input’. Reads param-

eters specifying the flow and several options, performs symmetry 
analysis, defines the basis, computes array dimensions, and initial-
izes them

• mpildadrive computes the molecular potential. Reads the exter-
nal density, computes the Coulomb potential solving the Poisson 
equation, and the partial wave decomposition of the full potential 
for computing OCE matrix elements. Write results on file fort.23

• lcao computes one- and two-center matrix elements involving 
LCAO functions, and writes on file fort.22. Then symmetrizes 
the matrix elements.

• mpibdrive runs over symmetries, sets up and diagonalize bound 
state hamiltonian. Writes eigenvectors on external file fort.11, 
or also as parallel MPI file fort.110. Computes dipole matrix el-
ements and transitions between bound states for a limited number 
of eigenvectors.

• mpimodrive reads external orbitals from ab initio GTO calcula-
tions, from input file mofile.dat. These are used to input SCF 
initial density, or, in the case of Dyson orbitals, are projected onto 
the B-spline basis, for calculation of transition dipole matrix ele-
ments

• mpidipdrive transforms dipole matrices to the spectral basis in 
the case of full diagonalization of the hamiltonian, reads from 
fort.11 and fort.110 and writes results on files fort.71 and 

MPI parallel file dipole.parallel
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Fig. 2. 𝜎 and 𝛽 parameters relative to photoionization of the 5𝜎 and 1𝜋 orbitals of CO. DFT calculations with LB94 potential starting from LB94 density and orbitals 
in STO functions (red) or HF density and orbitals in GTO (blue). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)
Fig. 3. MFPADS of 5𝜎 of CO, with parallel and perpendicular polarization.

• mpidipfull is an old version of calculation of dipole matrices be-
tween bound states, less efficient, essentially for checking purpose. 
Can deal with an intermediate number of vectors. Writes results on 
file fort.70

• mpicdrive runs over the symmetries, sets up hamiltonian and 
overlap matrices for the continuum, runs over the energies and 
performs inverse iteration to get continuum eigenvectors. Com-
putes dipole transition matrix elements with the initial states from 
a previous bound state calculation, 𝐾 -matrix normalized. Writes 
𝐾 -matrices and dipole matrices on file fort.20

• input_c if ibound=2, i.e. bound followed by continuum calcu-
lation, after the bound part (mpibdrive, mpimodrive0) reads a 
second set of parameters for the continuum calculation, before en-
tering mpicdrive.
8

The typical flow of a calculation with Tiresia is illustrated below:
6. Photoionization observables

A program (sdipole) is available to print 𝐾 -matrix and dipole 
matrix elements read from fort.20 output from Tiresia, either in 
original form or transformed to incoming wave boundary condition, or 
also to (𝑙𝑚) partial waves, to be used for different analysis purposes. A 
second program, sigma2, is used to compute photoionization param-
eters for randomly oriented molecules, that is, partial cross section 𝜎, 
asymmetry parameter 𝛽 and chiral parameter 𝛽1 for photoionization 
of chiral molecules [55]. For right and left Dyson orbitals, like those 
obtained from a coupled cluster calculation [17], one has to use sig-
malr11 instead of sigma2. A third program, sigmanew, can compute 
in addition cross sections in the molecular frame (MFPADS) from fixed 

in space molecules, following the formulation by Chandra [46,56], the 
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Fig. 4. Cross section (left) and dichroic parameter (right) relative to HOMO photoionization of Camphor.
so called polarized averaged MFPADS [57], and angular parameters fol-
lowing partial alignment from an initial photon absorption [58], to de-
scribe photoionization in pump-probe experiments. Further details are 
in the manual and in the examples provided. Details over more complex 
averages due to alignment/orientation characterized by a probability 
distribution of molecular axes are available from the authors.

A couple of results from the examples accompanying the code are 
briefly illustrated. Fig. 2 reports cross section 𝜎 and asymmetry parame-
ter 𝛽 for CO (over a shorter energy range), relative to the two outermost 
ionizations 5𝜎 and 1𝜋.

Both our standard LB94 DFT results (red curves) and results ob-
tained employing the same potential, but HF density and initial orbitals 
(blue curves) are reported. Plenty of comparisons with experimental 
data are available [59,60], and show quite good agreement with the 
DFT results. Comparison with those from the same potential, but HF 
GTO densities and orbitals, show a fair general agreement, but signif-
icant differences in detail, especially on 𝜎 in the region close to the 
threshold, and some small spurious oscillations that are traced to the 
sensitivity of the density gradient employed in LB94 to inaccurate long-
range behavior of the GTO representation. In general, however, the 
difference is comparable to the overall accuracy of the DFT approach.

An illustration of MFPADS relative to the 5𝜎 ionization in CO, at 
electron kinetic energy KE = 0.2 au (photon energy is 19.8 eV, based on 
the 5𝜎 eigenvalue) is presented in Fig. 3 for both parallel (𝛽 = 0◦) and 
perpendicular (𝛽 = 90◦) orientation of the electric field in the molecu-
lar frame. Although roughly following the electric field orientation, it 
shows a large anisotropy due to the interplay of different partial waves, 
which is generally also strongly energy dependent and is very specific 
of the initial orbital [6].

Finally, cross section 𝜎 and dichroic parameter 𝛽1 are reported in 
Fig. 4 relative to the HOMO ionization of camphor. Of particular inter-
est is the highly structured 𝛽1 profile, which is one of the prominent 
probes of molecular chirality in the gas phase [6]. It can be compared 
to experimental results and previous calculations [34]. It illustrates the 
sensitivity of the low KE region to the specific potential choice. Since 
the 𝛽1 parameter dies fast with increasing KE, the low energy region is 
however very relevant. In this case, we tried the VWN potential with a 
Coulomb tail, and obtained a reasonable description, improving on the 
previous LB94 calculations. It points out the need for further study to 
improve the many-particle description of photoionization close to the 
threshold, amenable to the treatment of complex molecules.

7. Conclusion

The Tiresia program has been presented, and its structure and 
capabilities illustrated. Its main purpose is the fast calculation of pho-
toionization observables for complex molecules at the static DFT level. 
The structure of the LCAO B-spline basis is very accurate and complete, 
and can be used for a variety of additional purposes, including solution 
9

of linear operator equations, homogeneous and inhomogeneous with 
given boundary conditions, PT formulations, and wavepacket propaga-
tion by solution of the TDSE.
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