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Abstract
We provide multiplicity results for the periodic problem associated with Hamilto-
nian systems coupling a system having a Poincaré–Birkhoff twist-type structure with
a system presenting some asymmetric nonlinearities, with possible one-sided super-
linear growth. We investigate nonresonance, simple resonance and double resonance
situations, by implementing some kind of Landesman–Lazer conditions.

Keywords Landesman–Lazer conditions · One-sided superlinear growth · Double
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1 Introduction

We consider the periodic problem associated with a system of the type

⎧
⎪⎨

⎪⎩

q̇ = ∂pH(t, q, p) + ∂p P(t, q, p, u) ,

ṗ = −∂qH(t, q, p) − ∂q P(t, q, p, u) ,

ü + g(t, u) = −∂u P(t, q, p, u) ,

(S)

where all the involved functions are continuous and T -periodic in t .
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We will assume a Poincaré–Birkhoff setting for the planar system

q̇ = ∂pH(t, q, p) , ṗ = −∂qH(t, q, p) , (1)

while for the scalar equation
ü + g(t, u) = 0 (2)

thenonlinearity gwill have an asymmetric behaviour combinedwith someLandesman–
Lazer conditions.

In order to better understand our results, let us first present some historical premises.
Concerning system (1), a modern version of the Poincaré–Birkhoff Theorem reads as
follow, see [20].

Theorem 1 Assume the Hamiltonian functionH to be 2π -periodic in q. If there exist
a < b such that all the solutions of (1) starting with p(0) ∈ [a, b] are defined on
[0, T ] and satisfy {

p(0) = a �⇒ q(T ) − q(0) < 0 ,

p(0) = b �⇒ q(T ) − q(0) > 0 ,

then there are at least two geometrically distinct T -periodic solutions such that p(0) ∈
]a, b[ .

Since we assumed the 2π -periodicity in q of the Hamiltonian function H, the T -
periodic solutions can be collected in equivalence classes made of those solutions
whose q-components differ by an integer multiple of 2π . We say that two T -periodic
solutions are geometrically distinct if they do not belong to the same equivalence class.

Recently, there have been several generalizations of this theorem both in the planar
case and in higher dimensions. In particular, system (1) has been coupled with some
systems presenting different types of behaviours. In [14] the case of a linear nonreso-
nant systemwas considered, while in [3] resonance with respect to one eigenvalue was
addressed assuming an Ahmad–Lazer–Paul condition. In [11, 17] the possibility of
dealing with lower and upper solutions has been tackled, and in [18, 19] the coupling
with some isochronous oscillators has been faced.

As a particular case of an isochronous system, let us mention the classical asym-
metric oscillator

ü + μu+ − νu− = 0 , (3)

where u± = max{±u, 0}. It is well known, since the pioneering works by Fučík [21]
and Dancer [4, 5], that equation (3) has nontrivial T -periodic solutions if and only if
the couple (μ, ν) belongs to the so-called Fučík spectrum

� =
⋃

j∈N
C j ,

where
C0 = {(μ, ν) ∈ R

2 : μν = 0} ,
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and, for j ≥ 1,

C j =
{

(μ, ν) ∈ R
2 : μ > 0 , ν > 0 ,

π√
μ

+ π√
ν

= T

j

}

.

The set � then contains the two axes and an infinite number of curves C j having a
vertical asymptote μ = μ j and a horizontal one ν = ν j with μ j = ν j = ( jπ/T )2.

Assume that the function g in (2) satisfies a linear growth assumption

ν1 ≤ lim inf
u→−∞

g(t, u)

u
≤ lim sup

u→−∞
g(t, u)

u
≤ ν2 ,

μ1 ≤ lim inf
u→+∞

g(t, u)

u
≤ lim sup

u→+∞
g(t, u)

u
≤ μ2 ,

uniformly in t ∈ [0, T ], for some positive constants μ1, μ2, ν1, and ν2. In [7], it
was proved that if the rectangle R = [μ1, μ2] × [ν1, ν2] does not intersect the Fučík
spectrum �, then equation (2) has at least one T -periodic solution. This is a typical
nonresonance situation. See also [6, 22, 31] for related results.

When the setR∩ � consists of only one or both the vertices (μ1, ν1) and (μ2, ν2)

of the rectangle, some additional assumptions are needed. In [8, 9, 12], the so-called
double resonance situation has been treated by assuming some Landesman–Lazer
conditions on both sides (cf. [23, 24]), thus obtaining the existence of a T -periodic
solution. (See also [2, 28] for an in-depth analysis on the Landesman–Lazer condition.)

The possibility of treating the case of an unbounded rectangle of the type R =
[μ1,+∞[×[ν1, ν2] at a positive distance from the Fučík spectrum � was first faced
by Fabry and Habets in [10] (see also [29]).

Usually, the proofs in the above quoted papers mainly rely on the use of some
topological degree arguments. Typically, a homotopy with some nonresonant system
needs to be constructed, and one has to find a priori bounds for the corresponding T -
periodic problems. The Leray–Schauder degree theory can then be applied to obtain
the existence of a solution. In this paper we propose a different approach. The strategy
of the proofs is to wisely modify the original system so to be able to apply a suitable
version of the Poincaré–Birkhoff Theorem. Then, we provide some a priori bounds
so to ensure that the T -periodic solutions of the modified system are indeed solutions
of the original one. In this way, we obtain our multiplicity results by combining
assumptions of Poincaré–Birkhoff twist-type for equation (1) with the resonant/non-
resonant assumptions we have mentioned above for the scalar equation (2).

The paper is organized as follows. In Sect. 2 we state our main results, focusing
our attention on the case when (1) is a planar system and (2) is a scalar second order
equation. The results are then extended to the higher dimensional setting in Sect. 4,
where we also mention some other possible generalizations. The detailed proofs of
the statements are carried out in Sect. 3.
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2 Main results

Let us start by listing all our results related to system (S). The proofs will be postponed
to the next section. Here are our main assumptions.

We first need some periodicity for the Hamiltonian function H.

A1. The function H(t, q, p) is 2π -periodic in q.
We now introduce the twist assumption, adapted to our setting (cf. [11, 18, 19]).

A2. There are a < b such that, for everyC1-functionU : [0, T ] → R, all the solutions

(q, p) of the system
{
q̇ = ∂pH(t, q, p) + ∂p P

(
t, q, p,U(t)

)
,

ṗ = −∂qH(t, q, p) − ∂q P
(
t, q, p,U(t)

)
,

starting with p(0) ∈ [a, b], are defined on [0, T ] and satisfy
{
p(0) = a �⇒ q(T ) − q(0) < 0 ,

p(0) = b �⇒ q(T ) − q(0) > 0 .
(4)

Notice that the inequalities in (4) could also be reversed. Finally, a periodicity and
boundedness condition is assumed for the coupling function.

A3. The function P(t, q, p, u) is 2π -periodic in q and has a bounded gradient with
respect to (q, p, u). In particular, there exists a constant m such that

|∂u P(t, q, p, u)| ≤ m, for every (t, q, p, u).

In order to state our results we distinguish two different situations: the case when
the function g has an asymptotically linear growth and the case when it could have
a one-sided superlinear growth. In Fig. 1 we depict the settings considered in each of
the statements given below, showing the positions of the rectangle R defined in the
Introduction with respect to the Fučík spectrum.

2.1 Asymptotically linear growth

Here we assume the following linear growth assumption.

A4. There exist some positive constants μ1, μ2, ν1, and ν2 for which

ν1 ≤ lim inf
u→−∞

g(t, u)

u
≤ lim sup

u→−∞
g(t, u)

u
≤ ν2 ,

μ1 ≤ lim inf
u→+∞

g(t, u)

u
≤ lim sup

u→+∞
g(t, u)

u
≤ μ2 ,

uniformly in t ∈ [0, T ].
Let us state our main results in this setting. We start with a nonresonance situation.
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An extension of the Poincaré–Birkhoff... 2881

Fig. 1 The Fučík curves and a
sketch of the situation faced in
each statement

Theorem 2 (Nonresonance) Let A1 − A4 hold true, and assume that there exists a
positive integer N such that

T

N + 1
<

π√
μ2

+ π√
ν2

≤ π√
μ1

+ π√
ν1

<
T

N
. (5)

Then there are at least two geometrically distinct T -periodic solutions of system (S),
with p(0) ∈ ]a, b[ .

We now consider the situation of simple resonance from below.

Theorem 3 (Simple resonance from below) Let A1− A4 hold true, and assume that
there exists a positive integer N such that

T

N + 1
<

π√
μ2

+ π√
ν2

≤ π√
μ1

+ π√
ν1

= T

N
.

Moreover, assume the existence of a constant C such that

g(t, u) ≤ ν1u + C if u ≤ 0 ,

g(t, u) ≥ μ1u − C if u ≥ 0 .
(6)

If for every non-zero function w such that ẅ + μ1w
+ − ν1w

− = 0 one has

∫

{w<0}
lim sup
u→−∞

(
g(t, u) − ν1u

)
w(t) dt

+
∫

{w>0}
lim inf
u→+∞

(
g(t, u) − μ1u

)
w(t) dt > m

∫ T

0
|w(t)| dt , (7)

then the same conclusion of Theorem 2 holds.
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As usual, we have used the notation

{w < 0} = {t ∈ [0, T ] : w(t) < 0},

and similarly for {w > 0}. Symmetrically, we can consider the situation of simple
resonance from above.

Theorem 4 (Simple resonance from above) Let A1 − A4 hold true, and assume that
there exists a positive integer N such that

T

N + 1
= π√

μ2
+ π√

ν2
≤ π√

μ1
+ π√

ν1
<

T

N
.

Moreover, assume the existence of a constant C such that

g(t, u) ≥ ν2u − C if u ≤ 0 ,

g(t, u) ≤ μ2u + C if u ≥ 0 .
(8)

If for every non-zero function v such that v̈ + μ2v
+ − ν2v

− = 0 one has

∫

{v<0}
lim sup
u→−∞

(
ν2u − g(t, u)

)
v(t) dt

+
∫

{v>0}
lim inf
u→+∞

(
μ2u − g(t, u)

)
v(t) dt > m

∫ T

0
|v(t)| dt , (9)

then the same conclusion of Theorem 2 holds.

Finally, a double resonance situation is treated.

Theorem 5 (Double resonance) Let A1 − A3 hold true. Assume that there exist a
positive integer N and positive constantsμ1, μ2, ν1, ν2, andC such that conditions (6)
and (8) hold, and

T

N + 1
= π√

μ2
+ π√

ν2
<

π√
μ1

+ π√
ν1

= T

N
. (10)

If for every non-zero function w such that ẅ + μ1w
+ − ν1w

− = 0 one has (7) and
for every non-zero function v such that v̈ + μ2v

+ − ν2v
− = 0 one has (9), then the

same conclusion of Theorem 2 holds.

It will be sufficient to provide the proof of Theorem 5, since Theorems 2, 3, and 4
follow as direct consequences. Indeed, if e.g. we focus our attention on the values μ1
and ν1 in hypothesis (5), it is possible to find ε > 0 such that

π√
μ1 − ε

+ π√
ν1 − ε

= T

N
.
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Setting μ̃1 = μ1 − ε and ν̃1 = ν1 − ε, then

lim
u→−∞

(
ν̃1u − g(t, u)

) = +∞ , lim
u→+∞

(
g(t, u) − μ̃1u

) = +∞ ,

uniformly in t . So we easily verify that (7) holds. Concerning the constants μ2 and
ν2, we can similarly implement the same argument.

2.2 One-sided superlinear growth

We now assume the following growth condition.

A5. There exist some positive constants μ1, ν1, and ν2 satisfying

ν1 ≤ lim inf
u→−∞

g(t, u)

u
≤ lim sup

u→−∞
g(t, u)

u
≤ ν2 ,

μ1 ≤ lim inf
u→+∞

g(t, u)

u
,

uniformly in t ∈ [0, T ].
Let us state our main results in this setting.

Theorem 6 (Nonresonance) Let A1 − A3 and A5 hold true, and assume that there
exists a positive integer N such that

T

N + 1
<

π√
ν2

<
π√
μ1

+ π√
ν1

<
T

N
. (11)

Then the same conclusion of Theorem 2 holds.

As a consequence of the previous statement we have the following.

Corollary 7 Let A1− A3 hold true. Assume that there are two constants ν2 ≥ ν1 > 0
and a positive integer N such that

ν1 ≤ lim inf
u→−∞

g(t, u)

u
≤ lim sup

u→−∞
g(t, u)

u
≤ ν2 ,

lim
u→+∞

g(t, u)

u
= +∞ , (12)

uniformly in t ∈ [0, T ], and
(
Nπ

T

)2

< ν1 ≤ ν2 <

(
(N + 1)π

T

)2

.

Then the same conclusion of Theorem 2 holds.
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Indeed, by (12), it is easy to find a sufficiently large constant μ1 so to apply Theo-
rem 6.

Clearly enough, a symmetrical version of Theorem 6 can be stated exchanging the
roles of μ and ν. It is depicted in Fig. 1 as Th. 6†.

2.3 Some examples

As a possible example of application we propose a system coupling a pendulum-type
equation with a perturbed harmonic oscillator

{
q̈ + A sin q = ∂qP(t, q, u) ,

ü + μu+ − νu− + h(u) = ∂uP(t, q, u) ,
(13)

where A, μ, ν are positive,
π√
μ

+ π√
ν

= T

N
,

for a certain positive integer N , and the function P(t, q, u) is T -periodic in t and
continuously differentiable in (q, u). We assume the existence of the finite limits

lim
u→−∞ h(u) = h(−∞) , lim

u→+∞ h(u) = h(+∞) .

In particular, h is bounded, hence (6) holds, with g(u) = μu+ − νu− + h(u).
As a consequence of Theorem 3 with μ1 = μ2 = μ and ν1 = ν2 = ν, we have the

following.

Corollary 8 If P(t, q, u) is 2π -periodic in q, it has a bounded gradient with respect
to (q, u), and there exists a constant m such that

|∂uP(t, q, u)| ≤ m <
h(+∞)ν − h(−∞)μ

μ + ν
, for every (t, q, u) ∈ R

3 , (14)

then system (13) has at least two geometrically distinct T -periodic solutions.

Proof It can be seen that the nontrivial solutions of the differential equation ẅ +
μw+ − νw = 0 are of the type w(t) = c φ(t − θ) with c > 0 and θ ∈ [0, T

N ], where
φ : R → R is the T

N -periodic function such that

φ(t) =

⎧
⎪⎨

⎪⎩

1√
μ
sin

(√
μ t

)
if t ∈

[
0, π√

μ

]
,

− 1√
ν
sin

(√
ν

(
t − π√

μ

))
if t ∈

[
π√
μ
, T
N

]
.

Then, condition (7) becomes

h(−∞)

∫

{φ<0}
φ(t) dt + h(+∞)

∫

{φ>0}
φ(t) dt > m

∫ T

0
|φ(t)| dt . (15)
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Noting that
∫ π√

μ

0
φ(t) dt = 2

μ
,

∫ T
N

π√
μ

φ(t) dt = −2

ν
,

condition (15) becomes

−h(−∞) N
2

ν
+ h(+∞) N

2

μ
> m N

(
2

ν
+ 2

μ

)

,

which is equivalent to (14). Hence Theorem 3 applies. ��

As an application of Theorem 6 we suggest the following system

{
q̈ + A sin q = ∂qP(t, q, u) ,

ü + μu+ − νu− + eu | sin u| + h(u) = ∂uP(t, q, u) ,
(16)

where now the positive constants μ, ν satisfy

T

N + 1
<

π√
ν

<
π√
μ

+ π√
ν

<
T

N
,

for a certain positive integer N . As above we assume that A > 0, h is bounded, and
the function P(t, q, u) is T -periodic in t and continuously differentiable in (q, u). In
this case ν1 = ν2 = ν, μ1 = μ,

g(u) = μu+ − νu− + eu | sin u| + h(u),

and so lim sup
u→+∞

g(u)
u = +∞.

Corollary 9 If P(t, q, u) is 2π -periodic in q and has a bounded gradient with respect
to (q, u), then system (16) has at least two geometrically distinct T -periodic solutions.

3 Proofs

The proofs of Theorems 5 and 6 are based on a result by the first author and Ullah (see
[18, Theorem 1.1 and Corollary 3.3]), which we recall for the reader’s convenience.

Theorem 10 Let A1 − A3 hold true for the system

⎧
⎪⎨

⎪⎩

q̇ = ∂pH(t, q, p) + ∂p P(t, q, p, u) ,

ṗ = −∂qH(t, q, p) − ∂q P(t, q, p, u) ,

ü + χ1u+ − χ2u− = −∂u P(t, q, p, u) .

(17)
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2886 A. Fonda et al.

Moreover, assume that χ1 > 0, χ2 > 0, and

T

π

√
χ1 χ2√

χ1 + √
χ2

/∈ N .

Then there are at least two geometrically distinct T -periodic solutions of system (17),
with p(0) ∈ ]a, b[ .

The strategy of our proofs is as follows. We first modify system (S) and apply
Theorem 10 so to obtain two periodic solutions of the modified system. Then, we
prove that such periodic solutions are indeed solutions of the original system.

3.1 Proof of Theorem 5

First note that, as a consequence of (6) and (8), defining the continuous functions

pζ (t, u) =
{
max

{
μ1, min

{ g(t,u)
u , μ2

} }
if u ≥ 1,

max{μ1, min{g(t, 1), μ2} } if u < 1,

qζ (t, u) =
{
max

{
ν1, min

{ g(t,u)
u , ν2

} }
if u ≤ −1,

max{ν1, min{g(t,−1), ν2} } if u > −1,

we can write

g(t, u) = pζ (t, u)u+ − qζ (t, u)u− + h(t, u),

with

μ1 ≤ pζ (t, u) ≤ μ2, ν1 ≤ qζ (t, u) ≤ ν2,

for some bounded continuous function h(t, u).
We modify system (S) as follows. For any ρ > 1, we define

gρ(t, u) = pζρ(t, u)u+ − qζρ(t, u)u− + h(t, u) , (18)

where

pζρ(t, u) =

⎧
⎪⎨

⎪⎩

pζ (t, u) if |u| ≤ ρ ,

(ρ + 1 − |u|)pζ (t, u) + (|u| − ρ) 12 (μ1 + μ2) if ρ ≤ |u| ≤ ρ + 1 ,
1
2 (μ1 + μ2) if |u| ≥ ρ + 1 ,

123



An extension of the Poincaré–Birkhoff... 2887

and

qζρ(t, u) =

⎧
⎪⎨

⎪⎩

qζ (t, u) if |u| ≤ ρ ,

(ρ + 1 − |u|)qζ (t, u) + (|u| − ρ) 12 (ν1 + ν2) if ρ ≤ |u| ≤ ρ + 1 ,
1
2 (ν1 + ν2) if |u| ≥ ρ + 1 .

Note that, by construction, we have

μ1 ≤ pζρ(t, u) ≤ μ2, ν1 ≤ qζρ(t, u) ≤ ν2,

for every (t, u) and for every ρ > 1.
The modified system we are going to consider is

⎧
⎪⎨

⎪⎩

q̇ = ∂pH(t, q, p) + ∂p P(t, q, p, u) ,

ṗ = −∂qH(t, q, p) − ∂q P(t, q, p, u) ,

ü + gρ(t, u) = −∂u P(t, q, p, u) .

(Sρ)

The following proposition has a central role in the proof of Theorem 5.

Proposition 11 There exists a constant ρ̄ > 1 such that, for all ρ ≥ ρ̄, every T -
periodic solution (q, p, u) of (Sρ) satisfies ||u||∞ ≤ ρ̄.

Proof Assume by contradiction that for every positive integerm there is a ρm ≥ m and
a T -periodic solution (qm, pm, um) of (Sρm ) such that ||um ||∞ > m. Letwm = um||um ||∞ .
Then, wm is T -periodic and satisfies

ẅm + pκm(t)w+
m − qκm(t)w−

m + h
(
t, ||um ||∞wm

)

||um ||∞
= −∂u P(t, qm, pm, ||um ||∞wm)

||um ||∞ , (19)

where

pκm(t) = pζρm (t, ||um ||∞wm(t)) and qκm(t) = qζρm (t, ||um ||∞wm(t)).

Notice that μ1 ≤ pκm(t) ≤ μ2 and ν1 ≤ qκm(t) ≤ ν2.
From the differential equation (19) and the properties of pκm , qκm and h, the sequence

(wm)m is bounded in W 2,2(0, T ); therefore there exists a function w such that, up to
a subsequence, wm → w in C1([0, T ]). Since the sequences (pκm)m and (qκm)m are
bounded, we can suppose that, up to a subsequence, they converge weakly in L2(0, T )

to some functions pκ and qκ , respectively with μ1 ≤ pκ(t) ≤ μ2 and ν1 ≤ qκ(t) ≤ ν2,
almost everywhere on [0, T ]. So, ||w||∞ = 1, and passing to the weak limit in (19),
it solves

ẅ + pκ(t)w+ − qκ(t)w− = 0 .
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By [8, Lemma 3] either

pκ(t) = μ1 a.e. on {w > 0} and qκ(t) = ν1 a.e. on {w < 0} ,

or
pκ(t) = μ2 a.e. on {w > 0} and qκ(t) = ν2 a.e. on {w < 0} .

Let us consider the first case, the second one being treated similarly. So,

ẅ + μ1w
+ − ν1w

− = 0 . (20)

The nontrivial solution (w(t), ẇ(t)) of (20) makes exactly N rotations around the
origin as t varies from 0 to T . This is also true for (wm(t), ẇm(t)), if m is large
enough, and so also for (um(t), u̇m(t)).

We now write (um, u̇m) in the following modified polar coordinates:

um =

⎧
⎪⎪⎨

⎪⎪⎩

1√
μ1

rm cos θm , if um ≥ 0 ,

1√
ν1

rm cos θm , if um ≤ 0 ,

u̇m = rm sin θm .

We compute the derivatives

θ̇m =

⎧
⎪⎪⎨

⎪⎪⎩

√
μ1

ümum − u̇2m
μ1u2m + u̇2m

if um > 0 ,

√
ν1

ümum − u̇2m
ν1u2m + u̇2m

if um < 0 .

Since the couple (um, u̇m) performs N rotations around the origin in the interval
[0, T ], we have

πN√
μ1

=
∫

{um>0}

[
pζρm (t, um)um + h(t, um) + ∂u P(t, qm, pm, um)

]
um + u̇2m

μ1u2m + u̇2m

=
∫

{um>0}

[
(pζρm (t, um) − μ1)um + h(t, um) + ∂u P(t, qm, pm, um)

]
um

μ1u2m + u̇2m
+ meas({um > 0}) ,

where meas denotes the Lebesgue measure. Similarly,

πN√
ν1

=
∫

{um<0}

[(
qζρm (t, um) − ν1

)
um + h(t, um) + ∂u P(t, qm, pm, um)

]
um

ν1u2m + u̇2m
+ meas({um < 0}) .

So, setting

bm(t, um) := (
pζρm (t, um) − μ1

)
u+
m − (

qζρm (t, um) − ν1
)
u−
m + h(t, um),
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summing the above two identities and using (10), we get

∫ T

0

[
bm(t, um) + ∂u P(t, qm, pm, um)

]
um

μ1(u
+
m)2 + ν1(u

−
m)2 + u̇2m

= 0 .

Recalling that wm = um||um ||∞ , we have

∫ T

0

[
bm(t, um) + ∂u P(t, qm, pm, um)

]
wm

μ1(w
+
m )2 + ν1(w

−
m )2 + ẇ2

m

= 0 .

Since μ1(w
+(t))2 + ν1(w

−(t))2 + ẇ(t)2 is positive and constant in t , and

lim
m→∞

(
μ1(w

+
m )2 + ν1(w

−
m )2 + ẇ2

m

) = μ1(w
+)2 + ν1(w

−)2 + ẇ2 ,

uniformly in [0, T ], by Fatou’s Lemma,

∫ T

0
lim inf

m

[
bm(t, um) + ∂u P(t, qm, pm, um)

]
wm

μ1(w
+
m )2 + ν1(w

−
m )2 + ẇ2

m

≤ 0.

So, it has to be

∫ T

0
lim inf

m

[
bm(t, um) + ∂u P(t, qm, pm, um)

]
wm ≤ 0 .

Then,

∫ T

0
lim inf

m
bm(t, um)wm ≤ m

∫ T

0
|w(t)| dt,

so equivalently

∫ T

0
lim inf

m

[
gρm (t, um(t)) − (

μ1u
+
m(t) − ν1u

−
m(t)

)]
wm(t) dt

≤ m
∫ T

0
|w(t)| dt . (21)

Let us now fix t ∈ [0, T ] such that w(t) < 0; so wm(t) < 0 and um(t) < 0, for
sufficiently large m. We claim that

lim inf
m

[
ν1um(t) − gρm (t, um(t))

] ≥ lim inf
u→−∞

[
ν1u − g(t, u)

]
. (22)

In order to prove this, we consider some different cases.
Case 1. If |um(t)| ≤ ρm then, recalling the definition of gρ in (18), we have

ν1um(t) − gρm (t, um(t)) = ν1um(t) − g(t, um(t)),
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and we easily conclude, since um(t) → −∞.
Case 2a. If |um(t)| ≥ ρm + 1 and ν1 < ν2 then, since h is bounded and um(t) →

−∞, we get

lim
m

[
ν1um(t) − gρm (t, um(t))

] = lim
m

[
ν1−ν2

2 um(t) − h(t, um(t))
] = +∞.

Case 2b. If |um(t)| ≥ ρm + 1 and ν1 = ν2, the identities qζ (t, u) = qζρm (t, u) = ν1
hold and we simply have

ν1um(t) − gρm (t, um(t)) = ν1um(t) − g(t, um(t)).

So, (22) follows also in this case.
Case 3. If ρm < |um(t)| < ρm + 1 we get

ν1um(t) − gρm (t, um(t)) = [
ν1 − qζρm (t, um(t))

]
um(t) − h(t, um(t))

≥ [
ν1 − min

{
qζ (t, um(t)) , ν1+ν2

2

}]
um(t) − h(t, um(t)) .

If min
{
qζ (t, um(t)) , ν1+ν2

2

} = qζ (t, um(t)) we have

ν1um(t) − gρm (t, um(t)) ≥ ν1um(t) − g(t, um(t)),

otherwise we get

ν1um(t) − gρm (t, um(t)) ≥ ν1−ν2
2 um(t) − h(t, um(t)),

and we can apply one of the previous arguments.
The claim is thus proved.
From (22) we deduce, for every t ∈ [0, T ] with w(t) < 0,

lim inf
m

[
gρm (t, ||um ||∞wm(t)) − (

μ1u
+
m(t) − ν1u

−
m(t)

)]
wm(t)

≥ lim inf
u→−∞

(
ν1u − g(t, u)

)|w(t)| .

Similarly, ifw(t) > 0 for some t , thenwm(t) > 0 and um(t) > 0 for sufficiently large
m, and we can prove that

lim inf
m

[
gρm (t, ||um ||∞wm(t)) − (

μ1u
+
m(t) − ν1u

−
m(t)

)]
wm(t)

≥ lim inf
u→+∞

(
g(t, u) − μ1u

)
w(t) .
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Finally, by (21),

m
∫ T

0
|w(t)| dt

≥
∫

{w<0}
lim inf
u→−∞

(
ν1u − g(t, u)

)|w(t)| dt +
∫

{w>0}
lim inf
u→+∞

(
g(t, u) − μ1u

)
w(t) dt,

a contradiction with (7), thus proving Proposition 11. ��
Now we are ready to conclude the proof of Theorem 5. We fix ρ > ρ and notice

that gρ can be written as

gρ(t, u) = χ1u
+ − χ2u

− + pρ(t, u),

where χ1 = 1
2 (μ1 + μ2), χ2 = 1

2 (ν1 + ν2), and the function pρ is bounded. By
applying Theorem 10 with P(t, q, p, u) replaced by

Pρ(t, q, p, u) := P(t, q, p, u) +
∫ u

0
pρ(t, s)ds,

we conclude that system (Sρ) has at least two geometrically distinct T -periodic solu-
tions, with p(0) ∈ ]a, b[ . By Proposition 11, these solutions are indeed solutions of
the original system (S).

The proof of Theorem 5 is thus completed. ��

3.2 Proof of Theorem 6

Without loss of generality we can suitably modify the constants μ1, ν1 and ν2 so to
have

ν2u − C ≤ g(t, u) ≤ ν1u + C if u ≤ 0 ,

μ1u − C ≤ g(t, u) if u ≥ 0 ,

for a certain constant C > 0.
Similarly as in the previous proof, defining the continuous functions

pζ (t, u) =
{
max

{
μ1,

g(t,u)
u

}
if u ≥ 1,

max{μ1, g(t, 1)} if u < 1,

qζ (t, u) =
{
max

{
ν1, min

{ g(t,u)
u , ν2

} }
if u ≤ −1,

max{ν1, min{g(t,−1), ν2} } if u > −1,

we can write

g(t, u) = pζ (t, u)u+ − qζ (t, u)u− + h(t, u),
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with

μ1 ≤ pζ (t, u), ν1 ≤ qζ (t, u) ≤ ν2,

and h(t, u) continuous and bounded.
For any ρ > 1, define

gρ(t, u) = pζρ(t, u)u+ − qζρ(t, u)u− + h(t, u) ,

where

pζρ(t, u) =

⎧
⎪⎨

⎪⎩

pζ (t, u) if |u| ≤ ρ ,

(ρ + 1 − |u|)pζ (t, u) + (|u| − ρ)μ1 if ρ ≤ |u| ≤ ρ + 1 ,

μ1 if |u| ≥ ρ + 1 ,

and

qζρ(t, u) =

⎧
⎪⎨

⎪⎩

qζ (t, u) if |u| ≤ ρ ,

(ρ + 1 − |u|)qζ (t, u) + (|u| − ρ) 12 (ν1 + ν2) if ρ ≤ |u| ≤ ρ + 1 ,
1
2 (ν1 + ν2) if |u| ≥ ρ + 1 .

Notice that
μ1 ≤ pζρ(t, u) , ν1 ≤ qζρ(t, u) ≤ ν2 ,

for every (t, u) ∈ [0, T ] × R and ρ > 1. We now consider the modified system

⎧
⎪⎨

⎪⎩

q̇ = ∂pH(t, q, p) + ∂p P(t, q, p, u) ,

ṗ = −∂qH(t, q, p) − ∂q P(t, q, p, u) ,

ü + gρ(t, u) = −∂u P(t, q, p, u) .

(S̃ρ)

We first need an a priori bound for the minimum distance from the origin in the phase
plane.

Proposition 12 There exist constants ρ̄, R > 1 such that, for allρ ≥ ρ̄, any T -periodic
solution (q, p, u) of (S̃ρ) satisfies

min{u2(t) + u̇2(t) : t ∈ [0, T ]} ≤ R2.

Proof Assume by contradiction that for every positive integer m there is a ρm > m
and a T -periodic solution (qm, pm, um) of (S̃ρm ) such that min{u2m + u̇2m} > m2. We
introduce some modified polar coordinates

um =
⎧
⎨

⎩

1√
μ1

rm cos θm if um ≥ 0 ,

1√
νi

rm cos θm if um ≤ 0 ,
u̇m = rm sin θm ,
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for i = 1 or 2, and observe that

θ̇m =

⎧
⎪⎪⎨

⎪⎪⎩

√
μ1

ümum − u̇2m
μ1u2m + u̇2m

if um > 0 ,

√
νi

ümum − u̇2m
νi u2m + u̇2m

if um < 0 .

Let Km be the integer number of rotations performed by the T -periodic solution
(um(t), u̇m(t)) around the origin as t varies from 0 to T .

Notice that

(
h(t, um(t)) + ∂u P(t, qm(t), pm(t), um(t))

)
um(t)

μ1u2m(t) + u̇2m(t)
→ 0 ,

(
h(t, um(t)) + ∂u P(t, qm(t), pm(t), um(t))

)
um(t)

νi u2m(t) + u̇2m(t)
→ 0 , i = 1, 2 ,

uniformly in t ∈ [0, T ] .
Let us fix ε > 0 such that

N

(
π√
μ1

+ π√
ν1

)

< T − 2ε , (23)

integrating −θ̇m(t) on {um > 0} and {um < 0}, respectively, we get for m large

Kmπ = √
μ1

[∫

{um>0}

pζρm (t, um)u2m + u̇2m
μ1u2m + u̇2m

+
∫

{um>0}

(
h(t, um) + ∂u P(t, qm, pm, um)

)
um

μ1u2m + u̇2m

]

≥ √
μ1

(
meas

({um > 0}) − ε
)
,

Kmπ = √
ν1

[∫

{um<0}

qζρm (t, um)u2m + u̇2m
ν1u2m + u̇2m

+
∫

{um<0}

(
h(t, um) + ∂u P(t, qm, pm, um)

)
um

ν1u2m + u̇2m

]

≥ √
ν1

(
meas

({um < 0}) − ε
)
.

Hence, we obtain

Km

(
π√
μ1

+ π√
ν1

)

≥ T − 2ε ,
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so that from (23) we deduce Km > N . Similarly, for sufficiently small ε > 0 and
large m, we obtain

Kmπ = √
ν2

[∫

{um<0}

qζρm (t, um)u2m + u̇2m
ν2u2m + u̇2m

+
∫

{um<0}

(
h(t, um) + ∂u P(t, qm, pm, um)

)
um

ν2u2m + u̇2m

]

≤ √
ν2

(
1 + ε

)
meas

({um < 0})

<
(N + 1)π

T
meas

({um < 0})

< (N + 1)π .

So, we get Km < N + 1.
Hence, it has to be N < Km < N + 1, a contradiction. ��
We now prove an a priori estimate for ‖u‖∞.

Proposition 13 There exists a constant ρ̃ ≥ ρ̄ such that, for all ρ ≥ ρ̃, every T -
periodic solution (q, p, u) of (S̃ρ) satisfies ||u||∞ ≤ ρ̃.

Proof Let us choose ε satisfying

0 < ε <
π√
ν2

(N + 1) − T ,

and fix R1 ≥ R such that

∣
∣
∣
∣
∣

[
h(t, u) + ∂u P(t, q, p, u)

]
u

ν2u2 + v2

∣
∣
∣
∣
∣
≤ ε

T
if u2 + v2 ≥ R2

1 . (24)

We consider a solution of (S̃ρ) such that u(t)2+u̇(t)2 ≥ R2
1 for every t in an interval[τ1, τ2], with τ2 − τ1 ≤ T . Moreover, we assume that the trajectory (u, v) = (u, u̇)

performs K complete rotations around the origin in this interval. Introducing the
modified polar coordinates

u(t) = 1√
ν2

r(t) cos θ(t) , u̇(t) = r(t) sin θ(t) if u(t) ≤ 0 ,

we have

πK√
ν2

=
∫

[τ1,τ2]∩{u<0}

qζρ(t, u)u2 + u̇2

ν2u2 + u̇2
+ h(t, u)u + ∂u P(t, q, p, u)u

ν2u2 + u̇2

≤ T + ε <
π√
ν2

(N + 1) ,
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so that
K < N + 1 . (25)

We will now construct a curve � which guides (u(t), v(t)) = (u(t), u̇(t)) in the
phase plane. This curve will have the shape of a spiral performing N + 2 rotations
around the origin and will have image in {u2 + v2 > R2

1}, see Fig. 2b in the case
N = 1. For this purpose, we define two continuous functions g1, g2 : R → R such
that

g1(u) < gρ(t, u) + ∂u P(t, q, p, u) < g2(u) , (26)

and we denote by G1 and G2 the corresponding primitives. Notice that it is possible
to choose the functions g1 and g2 so to have

lim|u|→∞G1(u) = lim|u|→∞G2(u) = +∞ .

Letting

Hi (u, v) = 1

2
v2 + Gi (u) , i = 1, 2 ,

we can assume that the value R1 introduced in (24) is large enough so to have that
any region {Hi (u, v) ≤ E}, with i = 1, 2, is star-shaped with respect to the origin,
whenever it contains the ball {u2 + v2 ≤ R2

1}. We choose (x1, 0), with x1 > R1, as
a starting point. The first rotation of � is obtained by gluing together the following
level curves

L1,down = {(u, v) ∈ R
2 : H2(u, v) = H2(x1, 0) , v ≤ 0} ,

L1,up = {(u, v) ∈ R
2 : H1(u, v) = H1(ξ1, 0) , v ≥ 0} ,

where (ξ1, 0) is the intersection ofL1,down with the negative x-semiaxis. SettingL1 =
L1,down ∪L1,up we can choose x1 sufficiently large so to have L1 ⊆ {u2 + v2 > R2

1},
cf. Figure 2a. Then, denoting by (x2, 0) the intersection of L1,up with the positive x-
semiaxis, iterating the above procedure we can construct the setL2 = L2,down ∪L2,up
as the second rotation of � in the plane, by defining

L2,down = {(u, v) ∈ R
2 : H2(u, v) = H2(x2, 0) , v ≤ 0} ,

L2,up = {(u, v) ∈ R
2 : H1(u, v) = H1(ξ2, 0) , v ≥ 0} ,

where (ξ2, 0) is the intersection of L2,down with the negative x-semiaxis.
Similarly we may construct L3,L4, . . . ,LN+2. The curve we are looking for is

� = L1 ∪· · ·∪LN+2. Finally, let us fix ρ̃ ≥ ρ̄ so to have � ⊆ {u2 +v2 < ρ̃2}. Notice
that ρ̃ > R1.

Given a solution (q, p, u) of (S̃ρ) we can compute

d

dt
Hi (u(t), u̇(t)) = u̇(t)ü(t) + gi (u(t))u̇(t)

= u̇(t)
(
gi (u(t)) − gρ(t, u(t)) − ∂u P(t, q(t), p(t), u(t))

)
,
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Fig. 2 a) The construction of the set L j . b) The curve guiding the trajectories of system (S̃ρ ), in the case
N = 1

so that, recalling (26), we get

d

dt
H1(u(t), u̇(t)) < 0 if u̇(t) > 0 ,

d

dt
H2(u(t), u̇(t)) < 0 if u̇(t) < 0 .

As a consequence, for any solution (q, p, u) of (S̃ρ), if (u(t0), u̇(t0)) ∈ � at a certain
t0, then the trajectory (u(t), u̇(t)) must cross � “from the outside to the inside” at
t = t0 (cf. Figure2a).

Let us now assume by contradiction that there is a T -periodic solution (q, p, u)

of (S̃ρ), with ρ ≥ ρ̃ such that |u(t1)| > ρ̃ for a certain t1 ∈ [0, T ]. Then, from
Proposition 12, we have the existence of t2 ∈ [t1 − T , t1] such that

u(t2)
2 + u̇(t2)

2 ≤ R2
1 ≤ ρ̃2 ≤ u(t1)

2 + u̇(t1)
2.

Hence, the trajectory (u(t), u̇(t)) must complete at least N + 1 complete rotations
guided by the curve � in the interval [t2, t1], see Fig. 2b. More precisely, we can find
an interval [τ1, τ2], with τ2 − τ1 ≤ T , such that

R2
1 ≤ u(t)2 + u̇(t)2 ≤ ρ̃2, for every t ∈ [τ1, τ2],

and the solution performs exactly K = N + 1 rotations in the interval [τ1, τ2]. We
thus get a contradiction, since we proved in (25) that K < N + 1. Hence, the proof of
Proposition 13 is completed. ��

Nowfixρ > ρ̃.We can conclude by the same argument as in the proof of Theorem5.
Indeed, Theorem 10 applies with χ1 = μ1 and χ2 = 1

2 (ν1 + ν2), so that system (S̃ρ)
has at least two geometrically distinct T -periodic solutions such that p(0) ∈ ]a, b[ .
By Proposition 13, these solutions are indeed solutions of the original system (S).

The proof of Theorem 6 is thus concluded. ��
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4 Further extensions and generalizations

1. Positively homogeneous planar systems.When trying to generalize our results one
could replace the scalar second order equation in system (S) by a planar system whose
nonlinearity is controlled by two positively homogeneous Hamiltonian functions, like
in [12]. This problem will be discussed in [26].

2. The scalar p -Laplace operator. When the second order differential operator ü
is replaced by a scalar p-Laplacian operator d

dt (|u̇|p−2u̇) one could try to make use
of [19, Theorem 4.1] dealing with a planar system ruled by a (p, q)-homogeneous
Hamiltonian function. This will be the argument of a future investigation.

3. Higher order systems - I.Wefirst remark that we can consider system (S) in higher
dimensions, i.e.,

⎧
⎪⎨

⎪⎩

q̇ = ∇pH(t, q, p) + ∇p P(t, q, p, u) ,

ṗ = −∇qH(t, q, p) − ∇q P(t, q, p, u) ,

ü + g(t, u) = −∂u P(t, q, p, u) ,

(SM )

with q = (q1, . . . , qM ) and p = (p1, . . . , pM ). All the involved functions are con-
tinuous and T -periodic in t .

Assumptions A1 − A3 can be adapted as follows.

A1′. The function H(t, q, p) is 2π -periodic in qi for every i ∈ {1, . . . , M}.
A2′. Given the rectangle

D = [a1, b1] × · · · × [aM , bM ],

there exists anM-tuple σ = (σ1, . . . , σM ) ∈ {−1, 1}M such that for everyC1-function
U : [0, T ] → R, all the solutions (q, p) of system

{
q̇ = ∇pH(t, q, p) + ∇p P(t, q, p,U(t)) ,

ṗ = −∇qH(t, q, p) − ∇q P(t, q, p,U(t)) ,

starting with p(0) ∈ D, are defined on [0, T ] and, for every i ∈ {1, . . . , M},
{
pi (0) = ai �⇒ σi (qi (T ) − qi (0)) < 0,

pi (0) = bi �⇒ σi (qi (T ) − qi (0)) > 0.

A3′. The function P(t, q, p, u) is 2π -periodic in qi for every index i ∈ {1, . . . , M},
and has a bounded gradient with respect to (q, p, u). In particular, there exists a
constant m such that

|∂u P(t, q, p, u)| ≤ m, for every (t, q, p, u).

In this new setting we can rephrase Theorem 5.

123



2898 A. Fonda et al.

Theorem 14 Let A1′ − A3′ hold true and assume that there exist a positive integer N
and some positive constants μ1, μ2, ν1, ν2, and C such that (6), (8) and (10) hold. If
for every non-zero function w such that ẅ + μ1w

+ − ν1w
− = 0 one has (7) and for

every non-zero function v such that v̈ + μ2v
+ − ν2v

− = 0 one has (9), then there are
at least M + 1 geometrically distinct T -periodic solutions of system (SM), with p(0)
belonging to the interior of D.

In the same spirit Theorem 6 can be rewritten as follows.

Theorem 15 Let A1′ − A3′ and A5 hold true. If there exist a positive integer N such
that (11)holds, then there are at least M+1geometrically distinct T -periodic solutions
of system (SM), with p(0) belonging to the interior of D.

Condition A2′ can be replaced by some different types of twist conditions (see,
e.g., [13, 14]). We do not enter in such details for briefness.

4. Higher order systems - II. Similar results can also be obtained for systems of the
type ⎧

⎪⎨

⎪⎩

q̇ = ∇pH(t, q, p) + ∇p P(t, q, p, u) ,

ṗ = −∇qH(t, q, p) − ∇q P(t, q, p, u) ,

ü j + g j (t, u j ) = −∂u j P(t, q, p, u) , j = 1, . . . , L ,

(27)

where now u = (u1, . . . , uL). If the functions g j satisfy the assumptions of Theo-
rems 14 or 15, for some positive constants μ1, j , μ2, j , ν1, j , ν2, j , the same conclusions
hold. The proofs are still carried out by applying [18, Theorem 1.1]. Notice that the
integer N in (10) and (11) could depend upon j , as well.

5. Neumann boundary conditions. Similar results could be stated for Neumann-type
boundary value problems associated with (SM ), i.e.,

p(0) = 0 = p(T ), u̇(0) = 0 = u̇(T ),

in the spirit of [15, 16, 19, 25]. It is worth to be noticed that, in this case, the twist con-
dition is unnecessary. We address the reader to [1, 27, 30] for related results involving
the Landesman–Lazer condition in this setting.We do not enter in details for briefness.
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