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A B S T R A C T

Near Infrared (NIR) spectroscopy is an analytical technology widely used for the non-

destructive characterisation of organic samples, considering both qualitative and quantita-

tive attributes. In the present study, the combination of Multi-target (MT) prediction

approaches and Machine Learning algorithms has been evaluated as an effective strategy

to improve prediction performances of NIR data from wheat flour samples. Three different

Multi-target approaches have been tested: Multi-target Regressor Stacking (MTRS), Ensem-

ble of Regressor Chains (ERC) and Deep Structure for Tracking Asynchronous Regressor

Stack (DSTARS). Each one of these techniques has been tested with different regression

methods: Support Vector Machine (SVM), Random Forest (RF) and Linear Regression (LR),

on a dataset composed of NIR spectra of bread wheat flours for the prediction of quality-

related parameters. By combining all MT techniques and predictors, we obtained an

improvement up to 7% in predictive performance, compared with the corresponding

Single-target (ST) approaches. The results support the potential advantage of MT tech-

niques over ST techniques for analysing NIR spectra.

� 2019 China Agricultural University. Production and hosting by Elsevier B.V. on behalf of

KeAi. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction biomedicine [27,18]. The main advantages of NIR spec-
Near-infrared (NIR) spectroscopy is a consolidated technology

widely applied in several research fields such as food science

[3,2,51,45,4,33,43,39,23,39], agriculture [47,30,42,13,17] and
troscopy include the possibility of performing rapid, mini-

mally invasive, simple, reagent-free and non-destructive

measurements [33,47,42,20]. In this way, NIR analysis is cap-

able of coping with the modernisation of processing indus-

tries, improve health diagnoses, reduce costs towards a

sustainable alternative in food and rawmaterial characterisa-

tion [32,18,41,42].

Essentially, NIR spectroscopy is based on absorption bands

derived from overtones and combinations of fundamental

vibrations of chemical bonds (mainly CAH, NAH, OAH, SAH,
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CAC and C@O) observed in the 780–2500 nm range of the elec-

tromagnetic spectrum [40]. In general, a multivariate statisti-

cal approach is mandatory in order to extract the useful

information from NIR spectra. In this context, multivariate

analysis allows to relate the spectral properties of a represen-

tative set of samples with the desired response and to use the

resulting model to predict new samples [22,8].

Usually, PLS is the multivariate approach more commonly

applied for regression tasks [42]. [33] have highlighted that

PLS is the linear-based methodmore often used for regression

models in NIR spectra analysis [33].

In particular, multivariate linear methods (such as PLS)

can be considered as a branch of Machine Learning (ML)

supervised approaches, which are able to automatically

detect patterns in the data and use these patterns to predict

future data. However, in some situations changes in the phys-

ical and chemical properties of the analysed samples can

cause deviations from linearity. Possible non-linear contribu-

tions may result from changes in temperature, particle size,

viscosity and chemical composition of the samples [47]. In

order to solve this issue, non-linear ML methods have been

successfully applied to model NIR spectra in several scenarios

[5,16,47].

Among non-linear ML algorithms, Support Vector Machi-

nes (SVM) has been proven to be an accurate and reliable

method, often superior to other regression or classification

methods in the field of spectroscopic analysis [45]. [42]

described the improvements obtained with SVM compared

to PLS. However, the same paper also highlighted that gener-

ally, SVM requires a strong optimisation of hyper-parameters

and a feature selection step in order to obtain successful

results.

Other ML techniques, such as Artificial Neural Networks

(ANN), are able to handle non-linear features with a little

advantage in prediction accuracy. [30] compared ANN and

PLS in the prediction of organic carbon, pH and clay content

of soils. The results showed similar performances of both

methods, but some laboratory independent validation and

on-line evaluation proved the over-performance of ANN

models. An important drawback in the use of ANN was high-

lighted by [51]. Indeed, due to the high number of tunable

hyper-parameters and to the limited number of samples usu-

ally available in real applications, ANN is hindered by overfit-

ting problem.

In addition, a drawback of non-linear methods is the lack

of interpretability. As a matter of fact, the relevance of the dif-

ferent spectral features is a very valuable information for the

chemical interpretation of a regression or classification

model. Considering model interpretability, [33], reported that

linear based machine learning methods are superior to non-

linear ones.

In this context, Random Forest (RF) algorithm can combine

both model performances and interpretability, since it gener-

ally leads to highly accurate prediction and it can be helpful in

spectra interpretation by RF importance. RF was proposed by

[10] as a combination of decision tree classifiers in an ensem-

ble. The author describes RF as a trustful method that always

converges, avoiding overfitting problem. In the most common

RF algorithm, split selection for decision tree building is
performed based on the decrease of Gini impurity. This

feature value, named as RF importance, provides a relative

ranking of the spectral features as described in [38]. Therefore,

RF is a useful tool for regression studies and it has a potential

for modelling linear and non-linear spectral responses [24]. [6]

explored eight different ML algorithms for the prediction of

pork meat storage time, with RF achieving the best results.

Although ML non-linear algorithms have been proved to

be profitable for spectroscopy, PLS is still a common strategy

for modelling spectral data thanks to the ability of dealing

with high dimensional and multicollinear data, and the pos-

sibility of identifying the relevant predictors with a gain in

model interpretability [47,26]. Furthermore, spectroscopic

data usually consist of numerous features (wavelengths)

and relatively few samples. In this situation, the optimisation

of manymeta-parameters can easily lead to overfitting [31]. In

order to combine the advantages of PLS and ML non-linear

algorithms, PLS can be used as a sort of data pre-processing

and data compression method to extract the relevant features

from spectroscopic data, which can later be used as predic-

tors for non-linear regression methods.

Another issue of great relevance is that, in practical appli-

cations, NIR spectroscopy can be used to predict multiple

quality parameters of a given sample. In this situation,

Multi-target (MT) approaches of Machine Learning (ML) allow

to obtain better performances compared to traditional single-

target modelling (ST) [43]. Indeed, MT methods gain advan-

tages from the exploration of inter-target influences and

allow to reduce overfitting [9,36,35]. Furthermore, a MT model

provides a global comprehension of a given problem by also

considering the relationships between the different targets,

in addition to the relationships between features and

expected predictions (targets) [9]. [37] highlighted that MT

prediction has the ability to generate models representing a

broad variety of real-world applications, from natural lan-

guage processing to bioinformatics.

In this context, we propose the usage of MT techniques

coupled with ML non-linear algorithms induced on Partial

Least Squares regression (PLS) scores to predict statistically

correlated targets from NIR spectral data. It is possible to

transform NIR data into PLS scores in order to compress hun-

dreds of variables into few relevant features. On the other

hand, Multi-targets techniques coupled with base-learners

from Machine Learning are capable of dealing with non-

linear behaviour and noisy data with a little prediction error.

In the present work, different MT approaches have been

tested: Multi-target Regressor Stacking (MTRS) [46], Ensemble

of Regressor Chains (ERC) [46] and Deep Structure for Tracking

Asynchronous Regressor Stack techniques from Multi-target

(DSTARS) [36]. Each MT technique has been coupled with Sup-

port Vector Machine (SVM), Random Forest (RF) and Linear

Regression (LR) as base-learners to perform non-linear and

linear modelling, respectively. As a case study, the proposed

MT approaches have been tested in the prediction of

quality-related parameters of bread wheat [21].

Results exposed the advantage of Multi-target strategy

reaching an improvement of 7% with ERC and RF. Indepen-

dent of ML algorithm, in all cases, the usage of MT coupled

with SVM or RF increased the predictive performance.
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Predictions obtained from RF overcome the SVM perfor-

mance. Specifically, the MTRS method achieved inferior

results when coupled with an LR.

2. Materials and methods

2.1. NIR datasets

The bread wheat samples considered in this study were col-

lected from experimental fields located in different Italian

regions and derived from two subsequent harvesting years.

On the whole, 391 bread wheat white flour samples were

analysed with a Bruker MPA Multi Purpose FT-NIR Analyzer,

equipped with an integrating sphere (reflectance mode) and

a RT-PbS detector in the 12,500–3600 cm�1 range.

The spectra were acquired following the acquisition

parameters defined in [19] (8 cm�1 resolution, 155 sample

scans). For each white flour sample, four replicate measure-

ments were performed in different days, each time consider-

ing a different 50.0 g aliquot. The sample aliquots were placed

into a glass Petri dish and gently shaken to render the packing

density as much uniform as possible. The FT-NIR instrument

was equipped with a rotating device, in order to acquire an

average signal over a relatively wide sample surface. Between

the different measurement sessions, samples were stored in

sealed plastic bags and put into a plastic box in a dark place

at 4 �C. Finally, the spectrum of each sample was obtained

as the average of the four replicate measurements.

For each sample, the following quality-related parameters

(targets) have been determined using the corresponding refer-

ence methods: Hectolitre weight (HlW, kg hl�1), Falling

Number (FN, s), Protein content (Prot, % dry matter),

Alveographic indexes (W and P/L), and Farinograph stability

(Stab, min). Further details about the quality parameters can

be found in [11].

The linear statistical correlation between the considered

quality parameters (HlW, FN, Prot, W, P/L, and Stab) can be

evaluated in Fig. 1, which reports the Pearson correlation

coefficient calculated for the different parameters.
Fig. 1 – Pearson Correlation from targets of DatasetP.
Kennard-Stone algorithm applied to the principal compo-

nents space was used in order to split the whole dataset of

NIR spectra into two datasets: the training cross-validation

set (DatasetCV) composed of 200 samples and the prediction

set (DatasetP) of 91 samples. The cross-validation set was used

to calculate and optimise the regression models, while the

prediction test set was employed to finally evaluate the pre-

dictive ability of the traditional ST approach compared to

the multi-target ones. This subdivision of the dataset was per-

formed in order to minimise the risk of overfitting.

2.2. Learn-based regressors

The training set of NIR spectra (obtained as reported in

Section 2.1) has been firstly analysed by means of PLS. PLS

is a multivariate analysis technique in which the independent

variables are projected onto a small number of latent vari-

ables (LVs) to simplify the relationship between them and a

predictive target [33]. The target variable is actively used in

assessing the LVs to ensure that the first one is most relevant

for predicting the targets. Usually, the relation between the

scores extracted from LVs and the targets are built by a linear

modelling toward prediction of novel samples. The PLS tech-

nique was implemented by SIMPLS algorithm [14]. In particu-

lar, the PLS scores have been extracted from the optimal PLS

model (i.e., for the model with a number of LVs corresponding

to the minimum value of the root mean square error in

cross-validation), calculated on the mean-centred training

set spectra for each one of the auto-scaled target variables.

Subsequently, the test set spectra have been projected on

the e PLS latent variable space and the corresponding scores

have been calculated. These steps are highlighted in the over-

view of procedures as 1 and 2, reported in Fig. 2. In this man-

ner, it was possible to extract the useful information

contained in hundreds of spectral variables into few latent

variables relevant for the prediction of the targets. The ST

models were then calculated considering the PLS scores

selected for each target, while the ensemble of all the PLS

scores was used as input for the subsequent development of

multi-target regression models. In particular, the three differ-

ent MT approaches described in Section 2.3 have been tested

(ERC, MTRS and DSTARS).

MT algorithms require a learn-based regressor in the stack

or chain structure to induce each model. In order to evaluate

the benefits induced by linear and non-linear learn-based

regressors, MT approaches have been coupled with Linear

Regression (LR), Support Vector Machine (SVM) and Random

Forest (RF), as shown in Step a of Fig. 2.

SVM is a regression algorithm from kernel-based methods.

It can be used for solving many types of problems, presenting

high accuracy and ability to treat high-dimensional data.

Through kernel space transformation, this technique has

the flexibility to model diverse data sources [7], increasing

the input dimensional space and data separability. In this

work, the SVM implementation adopted was the e1071 R

package with default parameters.

RF was initially created focusing on classification tasks.

This algorithm consists of a collection of structured tree pre-

dictors, in which all random vectors are independent, identi-

cally distributed and each tree attributes a vote for the most
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popular class as the prediction. On the other hand, for regres-

sion purposes, the RF is composed of trees depending on a

random vector, considering the average result over all trees

in the Forest [10]. Each tree is grown using a bagging

approach, where different training datasets are formed using

bootstrap sampling. The randomForest R package was used

with default parameters in experiments.

Therefore, each regression model has been adapted

according to the requirements of the three MT techniques

(Step b inside Fig. 2).

2.3. Multi-target prediction

The concept of Multi-target (MT) regression is related to the

family of predictive problems with multiple continuous

response variables, called as targets or outputs, following

the assumption of being statistically correlated, i.e. the varia-

tion of a target has interference on the behaviour of the other

responses [1,48,9,46]. Traditionally, MT tasks have been solved

through two different approaches: Algorithm Adaptation and

Problem Transformation [9].

Algorithm Adaptation, also named as multi-output

adapted, is based on the adaptation of single target regression

methods to handle multiple outputs exploring the dependen-

cies among them with an enhancement in the predictive

capability. This strategy is performed by modifying the origi-

nal modelling method, for example changing the optimisa-

tion functions (e.g. SVMs) [34,52,50] or the node splitting

criteria (e.g. Regression Trees) [29]. This type of approach

has been successfully proposed in the last years focusing on

different tasks [28,49,9,25,53].

In general, multi-output adapted models generate effec-

tive predictors by taking advantage of statistical target depen-

dencies to create a single model. However, this approach

could be more challenging since it aims not only to predict

multiple targets but also to model and interpret their relation-

ships at once [36]. [52] proposed the modification of task’s

input space through a virtualisation technique so that a MT

task could be modelled as a wider single target problem.

The authors used a Support Vector Regression (SVR) and

achieved results comparable to ST strategy.

Another approach to address MT scenarios is Problem

Transformation. This approach is based on calculating

independent ST regression models for each target and finally
concatenating the predictions. The calculation of several

independent ST models to represent a single MT problem

involves a strong increase of computational efforts and in

several cases a loss of model interpretation by ignoring the

dependencies between targets. On the other hand, this kind

of approach offers considerable advantages. The first one is

the possibility of applying any base-learner, or even more

than one, toward better predictive performance and appropri-

ate problem addressing. Also, adaptation methods improve

the modularity and conceptual simplicity, with significantly

better predictive performance than state-of-the-art methods

[46].

Tsoumakas et al., in [48], proposed the use of random lin-

ear targets combinations to explore the relations between

output values. This approach increases the original feature

space dimension and solves multiple ST problems in the

transformed space. The predicted values are used to solve a

linear system and obtain the original targets predictions. In

the last years, some MT methods have been modified and

adapted from the area of multi-label classification [9,46].

Spyromitros-Xioufis et al. [46] proposed two techniques based

on Problem Transformation: MTRS (Multi-target Regressor

Stacking) and ERC (Ensemble of Regressor Chains). These

two techniques are widely known and resulted to be adequate

for a diversity of MT scenarios.

Santana et al. [44], proposed the Deep Regressor Stack, an

idea similar to MTRS that consists in using targets

approximations as additional predicting features in naive

deep learning method. However, the drawback of huge mem-

ory requirements, as well as inappropriate dimensionality

growth, preclude its usage associated with NIR spectra analy-

sis. More recently, Santana et al., in a different work [43], pro-

posed a new method, Multi-target Augmented Stacking

(MTAS), addressing multi-target regression to predict twelve

poultry meat characteristics. The authors explored the usage

of Principal Components Analysis (PCA). Different from [43],

in this work, we take advantage of PLS toward exploring

DSTARS [36] MT approach. PLS compression leads to the

extraction of features that are more relevant to target

prediction.

Basically, DSTARS consists in a modification of MTRS built

under the assumption that a model induction by deeper lay-

ers could offer better predictive performances than just one

layer (ST) or two layers (MTRS). Therefore, DSTARS can take
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advantage of different linear and non-linear relations among

the targets, leading to possible improvements in the predic-

tion performances of complex data, such as NIR spectra.

In the following sections a detailed description of MTRS,

ERC and DSTARS algorithms is given.

2.3.1. Multi-target Regressor Stack
MTRS approach is based on additional input features from the

output of ST models induction. In this way, considering a

dataset composed by X = {x1, x2,. . ., xn} input features and

Y = {y1, y2,. . .,yd} target variables, MTRS adds the Y0 = {y01,

y02,. . ., y0d} from ST predictions as inputs, creating a new train-

ing dataset X0 = {x1, x2,. . ., xn, y01, y02,. . ., y0d}. The new training

dataset is used by each y to train another ST predictors layer,

whose outputs are the final predictions.

New income input features are first merged into the first

predictors’ layer to obtain the output approximations. The

approximations compose an augmented dataset toward

forming the second level of predictors for the purpose of per-

forming the final induction. Therefore, MTRS introduces

inter-target relationships by the use of ST outputs into the

modelling, increasing the prediction performance. The train-

ing procedure of MTRS is presented in Algorithm 1.

Algorithm 1 (MTRS training algorithm).
1: function MTRS(X, Y, d)
2: Y0  {}
3: Level0  {}
4: // ST model induction
5: for t = 1 to d do
6: h: X? Yt

7: Y’,t predict(h, X)
8: Level0  {Level0, h}
9: // Augmented training set definition

10: X0  X||Y0

11: Level1  {}
12: for t = 1 to d do
13: h: X0 ? Y t

14: Level1  {Level1, h}
15: mtrs  {Level0, Level1}
16: return mtrs
2.3.2. Ensemble of Regressor Chains

The ERC method consists in building a set of randomly

ordered chains for each target to produce ST models through

a generated sequence [46]. For each chain, initially, a ST

model is induced using the first output prediction of the

sequence. New models are then induced following the chain

order, where each new regressor is trained over the aug-

mented input dataset formed by the original input features

and the previous models’ predictions. This process is

repeated until the end of all chain sequences. After training

all models inside the chain, the predicted value of a novel

sample is the average value obtained from chain’s regressors.

The method prediction for a target yt, t = [1, d], is the aver-

age of the yt predicted values over all chains. Since the output
predictions are composed of values from different sorted

chains, multiple levels of combinations and inter-

dependence between targets are explored. ERC creates all

possible target permutations if their number is less than 10

(d � 3), otherwise, the author suggests to choose ten random

combinations.

The ERC’s training step is presented in Algorithm 2. The

permute procedure refers to a function which receives a set

of elements and returns all their possible permutations. It is

possible to perform all possible permutations without setting

this parameter or to specify the desired number of combina-

tions as an argument (in the original ERC’s formulation, the

mentioned parameter is equal to 10).

Algorithm 2 (ERC training algorithm).
1: function ERC(X, Y, d)
2: targets names(Y)
3: if d � 3 then
4: Chains permute(targets)
5: else
6: Chains permute(targets, 10)
7: for chain in Chains do
8: modelschain  {}
9: // To build augmented training sets

10: Xaug X
11: for t in chain do
12: // ST model induction
13: h : Xaug ? Y t

14: ypred predict(h, Xaug)
15: // Extend training set with ST predictions
16: Xaug Xaug || ypred
17: modelschain  {modelschain, h}
18: erc  {erc, modelschain}
19: return erc
2.3.3. Deep structure for Tracking Asynchronous Regressor
Stack

DSTARS [36] is based on the hypothesis that deeper layers

could emphasise the relationships among targets which are

statistically correlated. Instead of using additional features

from only one single layer as STestimators, or strictly two lay-

ers as MTRS, DSTARS sequentially builds new output predic-

tions from as many layers as those necessary to minimise

the error of a validation set. Iteratively, each best target pre-

diction (evaluated using the validation set) is used as an addi-

tional predictive feature, augmenting the dataset. The

procedure of the DSTARS algorithm can be split into twomain

steps: Tracking and Modelling. The former determines the

best layer depth of targets variable, while the latter builds

the final DSTARS model considering the whole modelling

dataset.

The Tracking step, presented in Algorithm 3, starts with

the subdivision of the dataset into training and validation

sets. The authors recommend the use of a sampling

approach, as the k-fold cross-validation, to increase the

robustness. During the Tracking step, for each target new



I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 7 ( 2 0 2 0 ) 3 4 2 –3 5 4 347
models are calculated using the actual best approximations of

all the targets as extra input variables. DSTARS keeps the

tracking of the models that generated the best performance

on layer l for each target yt. Not all layers need to be used dur-

ing final modelling for a particular target: in general, targets

with low inter-correlations usually require a low layer depth,

while some targets may require a greater layer depth. The

final configuration is determined through a voting scheme,

considering the reduction of the Root Mean Squared Error

(RMSE) of the validation set brought by each layer and target

combination. The tracking process ends when the decrease

of the RMSE value obtained by the addition of a new predic-

tors’ layer l + 1 is smaller than an e parametrised value, lead-

ing to convergence.

Algorithm 3 (DSTARS’s tracking algorithm).
1: function Tracking(X, Y, u, e, Nfolds)
2: // Dynamic regressor layer usage count
3: Track [?, d]
4: for k = 1 to Nfolds do
5: // Cross-validation data split
6: {(Xtr, Ytr), (Xval, Yval)} CV(X, Y, k)
7: errors 1..d  1
8: converged 1..d False
9: layer 0

10: Ttr Tval  {}
11: while !all(converged) do
12: Ttr ’  Ttr

13: Tval ’  Tval

14: for t = 1 to d do
15: // ST model induction
16: mod : Xtr || Ttr ? Y t

tr

17: prd predict(mod, Xval || Tval)
18: // Convergence stopping criteria
19: if RMSE(Y t

val, prd) +e < errors t then
20: converged t False
21: errors t RMSE(Y t

val, prd)
22: // Error improvement counting
23: Track[layer, t] Track[layer t] + 1
24: T t

tr ’  predict(mod, Xtr || Ttr)
25: T t

val ’  prd
26: else
27: converged t True
28: Ttr Ttr ’

29: Tval Tval ’

30: layer layer + 1
31: Track Track/Nfolds // Layer normalisation
32: // Threshold application: True or False values
33: Track Track >u
34: return Track
In Modelling step, a model h l
t that outputs the t-th target

estimation on the l-th layer is included in the final model only

if it was used more than the u percent of times during Track-

ing. New income samples are sequentially subjected to each

layer of regressors and the last layer gives the predicted value

for a specific target.

The usual DSTARS’s structure starts by Tracking step and

goes through the Modelling step presented in Algorithm 4.
Algorithm 4 (DSTARS training algorithm).
1: function DSTARS(X, Y, u, e, Nfolds)
2: T Tracking(X, Y, u, e, Nfolds)
3: dstars  {}
4: Yapprox  {}
5: for l = 1 to number of T rows do
6: Yaux Yapprox

7: for t = 1 to d do
8: if T [l, t] = True then
9: // ST model induction

10: mod : X || Yapprox ? Y t

11: Y t
aux predict(mod X || Yapprox)

12: dstars  {dstars, mod}
13: Yapprox Yaux

14: return dstars
2.4. Performance metrics

The performances of ST and MT methods have been evalu-

ated on the DatasetCV, sampled through a 10-fold cross-

validation approach (CV), and the Prediction set (DatasetP).

In the final models, the whole Training set was used to build

a single prediction model using the best MT hyper-

parameters determined in the CV approach, when consider-

ing the MTRS, ERC and DSTARS techniques.

Six different performance metrics were used to evaluate

the calculated models: Mean Square Error (MSE), Average Rel-

ative Error (ARE), Average Root Mean Squared Error (aRMSE),

Coefficient of Determination (R2), average Relative Root Mean

Square Error (aRRMSE), and Relative Performance (RP).

MSE corresponds to the mean squared difference between

the predicted and the measured values. On the other hand,

ARE was used to exposes the magnitude of the difference

between the actual quality parameter and the prediction.

The aRMSE (Average Root Mean Square Error) is the mean

of the Root Mean Square Error (RMSE) values obtained from

each target. This last acts as a baseline and allows the mea-

surement of the improvement over a shallow predictor. This

metric has been used in various MT works [9] to compare

non-homogeneous targets distributions. The aRRMSE, pre-

sented in Eq. (1), is computed averaging the d targets Relative

Root Mean Square Error (RRMSE), and it was applied in this

research to evaluate the improvement over ST models. The

RRMSE for a given target t is the RMSE normalised by the aver-

age of the corresponding t.

aRRMSE ¼ 1
d

Xd

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNtest

k¼1
ðyk

t � ŷk
t Þ

2

PNtest

k¼1
ðyk

t � ytÞ2

vuuuuuut ð1Þ

The Coefficient of Determination (R2) explains the propor-

tion of the total variation associated with the dependent vari-

able that is predictable from the model. The closer the R2

values are to 1, the greater is the amount of variation of the

dependent variable which is predictable by the regression

model [12].
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The Relative Performance (RP) compares for each target

the aRRMSE of each MT method with the aRRMSE of the cor-

responding ST model. In this sense, it measures the increase

(if RP > 1) or decrease (if RP < 1) in model performances [46].

The RP formulation is presented in Eq. (2).

RPdðMÞ ¼ aRRMSEðSTÞ
aRRMSEðMÞ ð2Þ

The aRRMSE supports the comparison of possible method

superiority through the application of the Friedman’s statisti-

cal test with significance level at a = 0.05. The null hypothesis

states that the performances of the MT methods are equiva-

lent regarding the averaged aRRMSE per dataset. Any time

the null hypothesis is rejected, the Nemenyi post hoc test

can be applied, stating that the performance of two models

is significantly different if the corresponding average ranks

differ by at least a Critical Difference (CD) value. When multi-

ple models are compared in this way, a graphic representation

can be used to represent the results with the Critical Differ-

ence (CD) diagram, as previously proposed in [15].

Finally, the results obtained from ST and MT approaches

and expressed with the error metrics cited above were anal-

ysed by means of Principal Component Analysis (PCA) in

order to obtain a graphical overview of the whole model per-

formances and evaluate the effectiveness of the different MT

methods.

3. Results and discussion

3.1. Multi-target and Single-target comparison

In order to gain a first overview of the performance of the ST

approach compared with MT, Table 1 reports the results

obtained with linear regression coupled with Single-target

and Multi-target methods. In this context, it must be high-

lighted that the linear regression of the PLS score values in

the ST approach corresponds to the usual PLS regression.

Table 1 shows that DSTARS and ERC resulted to be the best

performing methods, with the lower aRRMSE value and the

higher R2 value obtained on the test set.

In general, the potential improvement induced by the dif-

ferent MT approaches is highlighted in Fig. 3, which reports

the RP improvement for each algorithm (RF, SVM and LR).

ERC led to improvements in all model performances obtain-

ing the best average RP (1.015) from both data sets. The sec-

ond best average RP was obtained by DSTARS (1.010); it did

not improve the predictive performance only for RF in

DatasetCV. However, DSTARS overcame ERC results for LR algo-

rithm in DatasetP, obtaining 1.021 of RP. The worst results were
Table 1 – Average aRRMSE and R2 performances of ST, ERC, MTR
obtained on DatasetCV and DatasetP.

ST ERC

aRRMSE R2 aRRMSE R2

DatasetCV 0.7224 0.4378 0.7121 0.45
Datasetp 0.7454 0.4008 0.7366 0.41
achieved by MTRS with an average RP equals to 0.985. This

approach was only able to contribute using SVM in DatasetCV.

Concerning the different learn-based predictors, SVM took

advantage from MT approaches with an increase of model

performances, except for the case of the prediction of the test

set (DatasetP) coupled with MTRS. RF presented improvements

with ERC, slightly boost coupled with DSTARS in DatasetP, and

no contributions over DatasetCV. LR obtained the best RP with

DSTARS, minor gains when combined with ERC and no

improvements with MTRS.

In order to obtain a general overview of the performances

of all the tested models, a PCA model was calculated on the

results considering the metrics related to error performance

from all the considered combinations of techniques and algo-

rithms, and for both the CV and P datasets.

The optimal number of principal components (PC) has

been found to be equal to 3, retaining the 97.72% of the total

variance. Considering the behaviour of the loadings, essen-

tially PC1 accounts for the errors obtained in prediction

(DatasetP), PC2 is related to the errors in cross-validation

(DatasetCV) and PC3 accounts for the differences between the

error metrics. Fig. 4 reports the biplot of PC1 and PC2 feature

space, explaining 81.90% of the total variance. Concerning the

predictive performance of the learn-based regressors, LR gen-

erally led to a higher error in prediction for both ST and MT

approaches, while RF is the algorithm giving the best predic-

tion results. Considering the comparison between single-

target and multi-target approaches, generally ERC led to the

higher enhancement of model performances, except for LR

algorithm where the results obtained with DSTARS, ERC and

ST are almost the same or inferior (similar to what observed

in Fig. 3). In addition, it is possible to highlight that SVM cou-

pled with ERC or DSTARS is the most stable algorithm since it

led to lower error values in both cross-validation and

prediction.

In order to emphasise a possible superiority of the

different combinations of algorithms and MT strategies,

Friedman’s statistical test and the Nemenyi post hoc test have

been applied to the averaged (P dataset) aRRMSE values. Fig. 5

shows the Critical Difference (CD) diagram obtained from the

statistical test results. The different models are connected

when statistically significant differences are not observed

between them (a = 0.05 and CD = 7.07). Lower rank values

indicate the most accurate (lower aRRMSE) methods, while

higher values indicate the less accurate ones.

According to the results reported in Fig. 5, no statistically

significant differences were observed when comparing ERC

+ RF, DSTARS + RF, ERC + SVM, DSTARS + SVM, MTRS + RF,

ST + RF, ST + SVM, DSTARS + LR and MTRS + SVM.
S and DSTARS approaches coupled with linear regression

MTRS DSTARS

aRRMSE R2 aRRMSE R2

41 0.7238 0.4366 0.7148 0.4506
43 0.7664 0.3680 0.7304 0.4230



Fig. 3 – Relative Performance (RP) comparison of RF, SVM and LR predictor over all datasets (DatasetCV and DatasetP).

Fig. 4 – PC space obtained from techniques (ST, MTRS, ERC

and DSTARS) combined to algorithms (RF, SVM and LR) over

all datasets (CVand P) by Mean Squared Error (MSE), Average

Root Mean Squared Error (ARMSE), Average Relative Root

Mean Squared Error (aRRMSE) and Average Relative Error

(ARE).
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Nevertheless, comparing the aRRMSE value of each regres-

sion algorithm, all the LR solutions obtained inferior results,

including the ST + LR (PLS core). MTRS technique did not

lead to significant prediction improvements; in some cases,

the results obtained with this technique were inferior to

those gained using the ST approach, which in turn was a
competitive solution when coupled with RF and SVM non-

linear algorithms.

3.2. Algorithms prediction improvements

MT prediction problems are composed of targets that present

different prediction complexity and distinct inter-correlation

with each other. Section 2.1 reported the results obtained

from Pearson linear correlation between the targets, which

showed a considerable variation.

In order to evaluate the error reduction achieved by MT

approaches separately for each target, the RPt values obtained

by comparing the RMSE performance between MT techniques

and ST have been calculated for each different target. The

results are shown in Fig. 6, where the RPt values are reported

as a heat map. For each combination of MT approach and

lean-based regressor, a reddish colour is related to a decrease

of model performance compared the corresponding ST

method, while a greenish colour is related to an increase of

model performances.

For both datasets, the predictive performances of Hectolitre

Weight target were enhanced by the use of MT approaches,

except for the case of MTRS + RF and MTRS + LR. In these last

configurations, the target was predicted with inferior result

when compared to ST method with RPt 0.96 and RPt 0.99,

respectively. Similar behaviour was also observed for P/L,

which has been improved with respect to ST strategy, and

partly for Stability, for which improvements were observed

only in cross-validation. Conversely, Protein and W showed

lower error reduction, mainly in the case of MTRS, indepen-

dently from ML algorithm. However, it has to be considered

that the Coefficient of Determination of Protein target

obtained by PLS (ST + LR) was equal to 0.90 (R2), while for

the same target the R2 value in prediction obtained with

DSTARS + RF was equal to 0.91. Therefore, for some targets



Fig. 5 – Comparison of the averaged aRRMSE values from all technique and algorithm according to the Nemenyi test. Groups

of methods that are not significantly different (a = 0.05 and CD = 7.07) are connected.

Fig. 6 – Relative Performance improvement of RMSE from each target of DatasetCVand DatasetP betweenMT techniques and ST.
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standard PLS was sufficient to obtain satisfactory results, and

the use of MT approaches can lead only to slight

improvements.

On the other hand, DSTARS + LR improved the perfor-

mance of Hectolitre Weight from 0.50 (R2) to 0.56 (R2). This

result meets the importance of exploring different levels of

intra-target correlation to perform the target prediction. An

important advantage of DSTARS is the possibility to create a

MT strategy through the correlation between the targets and

to reveal it by the depth of Tracking procedure. For this rea-

son, DSTARS was capable of facing this issue obtaining results

superior to ST by dealing with the different inter-correlation

between the targets as shown in Fig. 7.

Fig. 7 shows the RMSE values associated with the model

layers of each target. In some cases, for example Protein and

P/L, an additional layer is not required to produce good

predictors. However, some targets such as Stability and Falling
Number required an additional layer to improve the overall

prediction. This figure exposes the RMSE of Modeling and

Testing sets split in the kernel of DSTARS strategy as

described in Section 2.3.3. The obtained representations meet

the heat map representation of Fig. 6, since the targets with

smaller improvement from MT approach require a shallow

layer structure of DSTARS. This type of investigation was

not supported by ERC technique; however, this latter allowed

to achieve a better prediction error reduction, as exposed in

Section 3.3.

3.3. Target prediction improvements

Different prediction improvements were obtained for each

target. In Table 2, the RMSE values obtained for all the tested

models are reportedwhere, for each target, the best predictive

performance is highlighted in bold. For cross-validation, no



Fig. 7 – DSTARS depth of layers obtained by the use of SVM as base-learner to predict the samples from DatasetCV.

Table 2 – RMSE obtained for each target from CV and P datasets by performing all algorithms and techniques.

Dataset Technique Algorithm RMSE

HlW FN Prot W P/L Stab

DatasetCV ST RF 2.715 56.816 0.406 66.053 0.517 5.892
DatasetCV MTRS RF 2.831 60.835 0.410 73.469 0.515 6.127
DatasetCV ERC RF 2.615 58.563 0.397 68.285 0.494 5.785
DatasetCV DSTARS RF 2.634 60.285 0.397 66.810 0.521 5.796
DatasetCV ST SVM 2.720 57.565 0.420 66.768 0.497 6.072
DatasetCV MTRS SVM 2.616 56.449 0.458 71.179 0.487 5.863
DatasetCV ERC SVM 2.584 57.401 0.432 66.767 0.479 5.831
DatasetCV DSTARS SVM 2.563 56.788 0.417 67.313 0.482 5.930
DatasetCV ST* LR 2.859 58.744 0.391 68.187 0.525 5.824
DatasetCV MTRS LR 2.875 59.840 0.404 72.922 0.510 5.512
DatasetCV ERC LR 2.726 59.603 0.403 69.854 0.511 5.504
DatasetCV DSTARS LR 2.656 60.154 0.419 70.096 0.514 5.533
Datasetp ST RF 2.643 64.064 0.382 74.097 0.517 5.514
Datasetp MTRS RF 2.702 64.593 0.386 76.650 0.515 5.596
Datasetp ERC RF 2.558 62.935 0.383 74.080 0.506 5.423
Datasetp DSTARS RF 2.638 64.601 0.387 72.587 0.516 5.498
Datasetp ST SVM 2.726 64.045 0.389 75.541 0.532 5.812
Datasetp MTRS SVM 2.669 64.630 0.394 74.805 0.522 6.051
Datasetp ERC SVM 2.633 63.978 0.385 73.915 0.519 5.797
Datasetp DSTARS SVM 2.628 64.045 0.385 73.634 0.532 5.812
Datasetp ST* LR 2.979 66.759 0.419 74.251 0.532 5.689
Datasetp MTRS LR 2.994 66.467 0.434 82.968 0.514 6.066
Datasetp ERC LR 2.769 65.570 0.414 77.101 0.515 5.831
Datasetp DSTARS LR 2.696 66.759 0.419 72.665 0.532 5.689

* Corresponding to the PLS model results.
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one technique significantly outperforms the others. On the

other hand, ERC technique turned out to be superior for the

majority of targets in prediction set. For DatasetCV, SVM algo-

rithm obtained the lowest prediction error for more targets

(HlW, FN and P/L), but in the experiments conducted over

DatasetP the RF algorithms obtained the lowest RMSE for all

targets.

In order to compare the tested combination of MT

approaches and base-learners with usual PLS, the RP values
have also been calculated considering ST + LR results as refer-

ence. The obtained RP values from DatasetP are reported in

Table 3.

All the RP values are superior to usual PLS (RP values

greater than 1), except for MTRS built with LR models. This

result can be due to a naive MTRS modelling obtained by lin-

ear regression, since the linear inter-correlations had already

been explored by PLS scores extraction. In other words, all lin-

ear dependencies between the targets were explored in the



Table 3 – Relative performance comparison based on usual PLS (ST + LR).

LR SVM RF Average*

MTRS 0.97 1.02 1.03 1.01
ERC 1.01 1.04 1.07 1.04
DSTARS 1.02 1.03 1.05 1.04
Average** 1.00 1.03 1.05

* Average calculated from ML algorithms.

** Average calculated from MT techniques.
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first step of the proposed approach, and the addition of

another linear inference layer does not lead to an improve-

ment. On the other hand, by exploring several different

sequential chains and different layers depth, ERC and DSTARS

could improve the performances. Also, the combination of

non-linear ML algorithms and MT techniques allowed to

improve the performance up to 7% (ERC + RF).

Taking into account the results reported in the present

study, we suggest the use of Multi-target over PLS scores mod-

elled by a ML algorithm. Our solution was able to treat some

drawbacks of PLS by non-linear ML modelling. Indeed, RF

could be used to report extra information from RF importance

and requires fewer hyper-parameters than SVM. In the case of

a demand for high predictive power, ERC is the recommended

choice.

4. Conclusion

In the present study, we explored the possibility of taking

advantage frommulti-target approaches for the simultaneous

prediction of different quality-related parameters with NIR

spectroscopy. In particular, two different aspects related to

the analysis of spectral data have been jointly considered:

the benefits of non-linear modelling and the possible advan-

tages of multi-target prediction. Moreover, by means of PLS,

the data dimensionality was reduced and a machine learning

algorithm was applied to deal with non-linearities in NIR

spectra. In addition, the results were further confirmed by a

robust validation procedure, allowing to avoid overfitting.

Finally, by the use of a Multi-target strategy, it was possible

to overcome the actual predictive performance by accounting

for the relationships between the targets. Considering all the

evaluated quality parameters, this procedure allowed to

obtain an increase in the predictive performance up to 7%.
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