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Abstract—Hyperproperties are a modern specification para-
digm that extends trace properties to express properties of sets
of traces. Temporal logics for hyperproperties studied in the
literature, including HyperLTL, assume a synchronous seman-
tics and enjoy a decidable model checking problem. In this
paper, we introduce two asynchronous and orthogonal extensions
of HyperLTL, namely Stuttering HyperLTL (HyperLTLS) and
Context HyperLTL (HyperLTLC ). Both of these extensions are
useful, for instance, to formulate asynchronous variants of
information-flow security properties. We show that for these
logics, model checking is in general undecidable. On the positive
side, for each of them, we identify a fragment with a decidable
model checking that subsumes HyperLTL and that can express
meaningful asynchronous requirements. Moreover, we provide
the exact computational complexity of model checking for these
two fragments which, for the HyperLTLS fragment, coincides
with that of the strictly less expressive logic HyperLTL.

I. INTRODUCTION

Model checking is a well-established formal method tech-
nique to automatically check for global correctness of finite-
state systems [1], [2]. Properties for model checking are
usually specified in classic regular temporal logics such as
LTL, CTL, and CTL∗ [3], [4], which provide temporal modal-
ities for describing the ordering of events along individual
execution traces of a system (trace properties). These logics
lack mechanisms to relate distinct traces, which is required
to express important information-flow security policies. Ex-
amples include properties that compare observations made by
an external low-security agent along traces resulting from dif-
ferent values of not directly observable inputs. These security
requirements go, in general, beyond regular properties.

In the last decade, a novel specification paradigm has been
introduced that generalizes traditional regular trace proper-
ties by properties of sets of traces, the so called hyper-
properties [5]. Hyperproperties relate distinct traces and are
useful to formalize information-flow security policies like
noninterference [6], [7] and observational determinism [8].
Hyperproperties also have applications in other settings, such
as the symmetric access to critical resources in distributed pro-
tocols [9]. Many temporal logics for hyperproperties have been
proposed in the literature [10]–[16] for which model checking
is decidable, including HyperLTL [11], HyperCTL∗ [11],
HyperQPTL [13], [15], and HyperPDL−∆ [16] which extend
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LTL, CTL∗, QPTL [17], and PDL [18], respectively, by
explicit first-order quantification over traces and trace variables
to refer to multiple traces at the same time.

In all these logics, the mechanism for comparing distinct
traces is synchronous and consists in evaluating the tempo-
ral modalities by a lockstepwise traversal of all the traces
assigned to the quantified trace variables. This represents a
limitation in various scenarios [19], [20] where properties
of interest are instead asynchronous, since these properties
require to relate traces at distinct time points which can be
arbitrarily far from each other. Recently, two powerful and
expressively equivalent formalisms have been introduced [20]
for specifying asynchronous linear-time hyperproperties. The
first one, called Hµ, is based on a fixpoint calculus, while
the second one exploits parity multi-tape Alternating Asyn-
chronous Word Automata (AAWA) [20] for expressing the
quantifier-free part of a specification. AAWA allow to spec-
ify very expressive non-regular multi-trace properties. As a
matter of fact, model checking against Hµ or its AAWA-
based counterpart is undecidable even for the (quantifier)
alternation-free fragment. In [20], two decidable subclasses
of parity AAWA are identified which lead to Hµ fragments
with decidable model checking. Both subclasses express only
ω-regular languages over the synchronous product of tuples of
traces with fixed arity. In particular, the first subclass captures
all the multi-trace regular properties and the corresponding Hµ
fragment (the so called k-synchronous fragment for a given
k ≥ 1) is strictly more expressive than HyperLTL, while
the second subclass is non-elementarily more succinct than
the first subclass and leads to a Hµ fragment which seems
expressively incomparable with HyperLTL.

Our contribution: In this paper, we introduce two novel,
more expressive, extensions of HyperLTL for the specifica-
tion of asynchronous linear-time hyperproperties, obtained by
adding intuitive logical features that provide natural modeling
facilities. The first formalism, that we call Stuttering HyperLTL
(HyperLTLS), is useful in information-flow security settings
where an observer is not time-sensitive, i.e. the observer
cannot distinguish consecutive time points along an execution
having the same observation. This requires asynchronously
matching sequences of observations along distinct execution
traces. The novel feature of HyperLTLS consists in temporal
modalities parameterized by finite sets Γ of LTL formulas.
These modalities are evaluated along sub-traces of the given
traces which are obtained by removing “redundant” positions
with respect to the pointwise evaluation of the LTL formulas978-1-6654-4895-6/21/$31.00 ©2021 IEEE
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in Γ. We show that model checking against the alternation-
free fragment of HyperLTLS is already undecidable. On
the positive side, we identify a meaningful fragment, called
simple HyperLTLS , with a decidable model-checking problem,
which strictly subsumes HyperLTL and allows to express
asynchronous variants of relevant security properties such as
noninterference [6] and observational determinism [8]. More-
over, model checking against simple HyperLTLS has the same
computational complexity as model checking for HyperLTL
and is expressively incomparable with the two Hµ fragments
previously described. In particular, unlike these two fragments
and HyperLTL, quantifier-free formulas of simple HyperLTLS
can express some non-regular multi-trace properties.

The second logic that we introduce in this paper, called
Context HyperLTL (HyperLTLC), allows to specify complex
combinations of asynchronous and synchronous requirements.
HyperLTLC extends HyperLTL by unary modalities parame-
terized by a non-empty subset C of trace variables (context)
which restrict the evaluation of the temporal modalities to the
traces associated with the variables in C. Like HyperLTLS ,
model checking against HyperLTLC is undecidable. In this
case we exhibit a fragment of HyperLTLC which is, in a cer-
tain sense, maximal with respect to the decidability of model
checking, and extends HyperLTL by allowing the comparison
of different traces at time points of bounded distance. This
fragment is subsumed by k-synchronous Hµ, and we establish
that for a fixed quantifier alternation depth, model checking
this fragment is exponentially harder than model checking
HyperLTL.

With regard to expressiveness issues, both HyperLTLC
and HyperLTLS are subsumed by Hµ. On the other hand,
questions concerning the comparison of the expressive power
of HyperLTLS and HyperLTLC are left open: we conjecture
that (simple) HyperLTLS and HyperLTLC are expressively
incomparable.

Related work: Another linear-time temporal logic,
called asynchronous HyperLTL (AHyperLTL), for pure asyn-
chronous hyperproperties and useful for asynchronous security
analysis has been recently introduced in [21]. This logic,
which is expressively incomparable with HyperLTL, adds an
additional quantification layer over the so called trajectory
variables. Intuitively, a trajectory describes an asynchronous
interleaving of the traces in the current multi-trace where
single steps of distinct traces can overlap, and temporal modal-
ities, indexed by trajectory variables, are evaluated along the
associated trajectories. The logic has an undecidable model-
checking problem, but [21] identifies practical fragments with
decidable model-checking, and reports an empirical evalua-
tion.

Other known logics for linear-time hyperproperties are the
first-order logic with equal-level predicate FOL[<,E] [22]
and its monadic second-order extension S1S[E] [15]. We
conjecture that these logics are expressively incomparable with
Hµ, HyperLTLC , and HyperLTLS . For instance, we believe
that S1S[E] cannot express counting properties requiring that
two segments along two different traces at an unbounded

distance from each other have the same length. This kind of
requirements can be instead expressed in HyperLTLC and Hµ.
Proving these conjectures are left for future work.

II. PRELIMINARIES

Let N be the set of natural numbers. Given i, j ∈ N, we
write [i, j] for the set of natural numbers h such that i ≤ h ≤ j,
[i, j) for the set of natural numbers h such that i ≤ h < j,
and [i,∞] for the set of natural numbers h such that h ≥ i.

We fix a finite set AP of atomic propositions. A trace is
an infinite word over 2AP. A pointed trace is a pair (π, i)
consisting of a trace π and a position i ∈ N along π.

For a word w over some alphabet Σ, |w| is the length of w
(|w| = ∞ if w is infinite), for each 0 ≤ i < |w|, w(i) is the
(i+1)th symbol of w, and wi is the suffix of w from position
i, i.e., the word w(i)w(i+ 1) . . .

Given n, h ∈ N and integer constants c > 1, Towerc(h, n)
denotes a tower of exponentials of base c, height h, and argu-
ment n: Towerc(0, n) = n and Towerc(h+1, n) = cTowerc(h,n).
For each h ∈ N, we denote by h-EXPSPACE the class of
languages decided by deterministic Turing machines bounded
in space by functions of n in O(Towerc(h, n

d)) for some
integer constants c > 1 and d ≥ 1. Note that 0-EXPSPACE
coincides with PSPACE.

A. Linear-time Temporal Logic (LTL)

We recall syntax and semantics of LTL [3]. Formulas θ of
LTL over the set AP of atomic propositions are defined as
follows:

θ ::= p | ¬θ | θ ∧ θ | Xθ| θ U θ

where p ∈ AP and X and U are the “next” and “until” temporal
modalities respectively. The logic is interpreted over pointed
traces (π, i). The satisfaction relation (π, i) |= θ, meaning that
formula θ holds at position i along π, is inductively defined as
follows (we omit the semantics for the Boolean connectives
which is standard):

(π, i) |= p ⇔ p ∈ π(i)
(π, i) |= Xθ ⇔ (π, i+ 1) |= θ
(π, i) |= θ1 U θ2 ⇔ for some j ≥ i : (π, j) |= θ2 and

(π, k) |= θ1 for all i ≤ k < j

A trace π is a model of θ, written π |= θ, if (π, 0) |= θ.

B. Linear-time Hyper Specifications

In this section, we consider an abstract notion of linear-time
hyper specifications which are interpreted over sets of traces.
For the rest of the discussion, we fix a finite ordered set VAR
of trace variables.

A pointed trace assignment Π is a partial mapping over
VAR, assigning to each trace variable x in its domain Dom(Π)
a pointed trace. The assignment Π is initial if for each x ∈
Dom(Π), Π(x) is of the form (π, 0) for some trace π. For a
trace variable x ∈ VAR and a pointed trace (π, i), we denote
by Π[x 7→ (π, i)] the pointed trace assignment having domain
Dom(Π)∪{x} that behaves as Π on the variables in Dom(Π)\
{x} and assigns to x the pointed trace (π, i).
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A multi-trace specification S(x1, . . . , xn) is a specification
(in some formalism) parameterized by a subset {x1, . . . , xn}
of VAR whose semantics is represented by a set Υ of pointed
trace assignments with domain {x1, . . . , xn}. Depending on
the given formalism, one can restrict to consider only initial
pointed trace assignments. We write Π |= S(x1, . . . , xn) for
the trace assignments Π in Υ.

Given a class C of multi-trace specifications, linear-time
hyper expressions ξ over C are defined as follows:

ξ ::= ∃x.ξ | ∀x.ξ | S(x1, . . . , xn)

where x, x1, . . . , xn ∈ VAR, S(x1, . . . , xn) is a multi-trace
specification in the class C, ∃x is the hyper existential trace
quantifier for variable x, and ∀x the hyper universal trace
quantifier for x. Informally, the expression ∃x.ξ requires that
for some trace π in the given set of traces, ξ holds when
x is mapped to (π, 0), while ∀x.ξ requires that all traces
π, ξ holds when x is mapped to (π, 0). We say that an
expression ξ is a sentence if every variable xi in the multi-
trace specification S(x1, . . . , xn) of ξ is in the scope of a
quantifier for the trace variable xi, and distinct occurrences
of quantifiers are associated with distinct trace variables. The
quantifier alternation depth of ξ is the number of switches
between ∃ and ∀ quantifiers in the quantifier prefix of ξ.

For instance, HyperLTL sentences [11] are linear-time hyper
sentences over the class of multi-trace specifications obtained
by LTL formulas by replacing atomic propositions p with
relativized versions p[x], where x ∈ VAR. Intuitively, p[x]
asserts that p holds at the pointed trace assigned to x.

Given a linear-time expression ξ with multi-trace specifica-
tion S(x1, . . . , xn), a set L of traces, and an initial pointed
trace assignment Π such that Dom(Π) contains the variables
in {x1, . . . , xn} which are not in the scope of a quantifier, and
the traces referenced by Π are in L, the satisfaction relation
(L,Π) |= ξ is inductively defined as follows:

(L,Π) |= ∃x.ξ ⇔ for some trace π ∈ L :
(L,Π[x 7→ (π, 0)]) |= ξ

(L,Π) |= ∀x.ξ ⇔ for each trace π ∈ L :
(L,Π[x 7→ (π, 0)]) |= ξ

(L,Π) |= S(x1, . . . , xn) ⇔ Π |= S(x1, . . . , xn)

If ξ is a sentence, we write L |= ξ to mean that (L,Π∅) |= ξ,
where Π∅ is the empty assignment.

C. Kripke Structures and Asynchronous Word Automata

Kripke structures. A Kripke structure (over AP) is a tuple
K = 〈S, S0, E, V 〉, where S is a set of states, S0 ⊆ S is the
set of initial states, E ⊆ S × S is a transition relation which
is total in the first argument (i.e. for each s ∈ S there is a
t ∈ S with (s, t) ∈ E), and V : S → 2AP is an AP-valuation
assigning to each state s the set of propositions holding at s.
The Kripke structure K is finite if S is finite.

A path ν = t0, t1, . . . of K is an infinite word over S such
that t0 ∈ S0 is an initial state and for all i ≥ 0, (ti, ti+1) ∈ E.
The path ν = t0, t1, . . . induces the trace V (t0)V (t1) . . .. A
finite path of K is a non-empty finite infix of some path of

K. A trace of K is a trace induced by some path of K. We
denote by L(K) the set of traces of K. We also consider fair
finite Kripke structures (K, F ), that is, finite Kripke structures
K equipped with a subset F of K-states. A path ν of K is
F -fair if ν visits infinitely many times states in F . We denote
by L(K, F ) the set of traces of K associated with the F -fair
paths of K. We consider the following decision problems for
a given class C of multi-trace specifications:

• Model checking problem: checking for a given finite
Kripke structure K and a linear-time hyper sentence ξ
over C, whether L(K) |= ξ (we also write K |= ξ).

• Fair model checking problem: checking for a given fair
finite Kripke structure (K, F ) and a linear-time hyper
sentence ξ over C, whether L(K, F ) |= ξ.

Note that model checking reduces to fair model checking
for the special case where F coincides with the set of K-states.

Labeled Trees. A tree T is a prefix closed subset of N∗.
Elements of T are called nodes and the empty word ε is the
root of T . For x ∈ T , a child of x in T is a node of the form
x ·n for some n ∈ N. A path of T is a maximal sequence π of
nodes such that π(0) = ε and π(i) is a child in T of π(i− 1)
for all 0 < i < |π|. For an alphabet Σ, a Σ-labeled tree is a
pair 〈T, Lab〉 consisting of a tree and a labelling Lab : T → Σ
assigning to each node in T a symbol in Σ.

Asynchronous Word Automata. We consider a variant of
the framework of alternating asynchronous word automata
introduced in [20], a class of finite-state automata for the
asynchronous traversal of multiple infinite words. Given a set
X , B+(X) denotes the set of positive Boolean formulas over
X , that is, Boolean formulas built from elements in X using
∨ and ∧ (we also allow the formulas true and false). Let
n ≥ 1. A Büchi nAAWA over a finite alphabet Σ is a tuple
A = 〈Σ, q0, Q, ρ, F 〉, where Q is a finite set of (control) states,
q0 ∈ Q is the initial state, ρ : Q × Σn → B+(Q × [1, n])
is the transition function, and F ⊆ Q is a set of accepting
states. Intuitively, an nAAWA has access to n infinite input
words over Σ and at each step, it activates multiple copies.
For each copy, there is exactly one input word whose current
input symbol is consumed, so the reading head of such word
moves one position to the right.

In particular, the target of a move of A is encoded by a pair
(q, i) ∈ A× [1, n], where q indicates the target state while the
direction i indicates on which input word to progress.

Formally, a run of A over an n-tuple w = (w1, . . . , wn)
of infinite words over Σ is a (Q × Nn)-labeled tree r =
〈Tr,Labr〉, where each node of Tr labelled by (q, ℘) with
℘ = (i1, . . . , in) describes a copy of the automaton that is in
state q and reads the (ih + 1)th symbol of the input word wh
for each h ∈ [1, n]. Moreover, we require that
• r(ε) = (q0, (0, . . . , 0)), that is, initially, the automaton is

in state q0 reading the first position of each input word);
• for each τ ∈ Tr with Labr(τ) = (q, (i1 . . . , in)), there is

a set {(q1, d1), . . . , (qk, dk)} ⊆ Q× [1, n] for some k ≥
0 satisfying δ(q, (w1(i1), . . . , wn(in))) such that τ has
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k children τ1, . . . , τk and Labr(τj) = (qj , (i1, . . . , idj +
1, . . . , in)) for all 1 ≤ j ≤ k.

The run r is accepting if each infinite path ν visits infinitely
often nodes labeled by some accepting state in F . We denote
by L(A) the set of n-tuples w of infinite words over Σ such
that there is an accepting run of A over w.

For each k ≥ 1, we also consider k-synchronous Büchi
nAAWA [20], which are Büchi nAAWA such that for each run
r and for each node of r with label (q, ℘), the position vector
℘ = (i1, . . . , in) satisfies |i` − i`′ | ≤ k for all `, `′ ∈ [1, k].
Intuitively, a k-synchronous nAAWA can never be ahead more
than k steps in one direction with respect to the others. Note
that AAWA over 2AP can be seen as multi-trace specifications.
It is known [20] that model checking against linear-time
hyper sentences over Büchi AAWA is undecidable, and the
problem becomes decidable when one restricts to consider k-
synchronous Büchi AAWA. In particular, the following holds.

Proposition II.1 ( [20]). Let d ∈ N. The (fair) model checking
problem against linear-time hyper sentences of quantifier
alternation depth d over the class of k-synchronous Büchi
nAAWA over 2AP (k, n,AP being input parameters of the
problem instances) is (d + 1)-EXPSPACE-complete, and for
a fixed formula, it is (d − 1)-EXPSPACE-complete for d > 0
and NLOGSPACE-complete otherwise.

III. STUTTERING HYPERLTL

In this section we introduce an asynchronous extension of
HyperLTL that we call stuttering HyperLTL (HyperLTLS for
short). The novel logic is obtained by exploiting relativized
versions of the temporal modalities with respect to finite sets
Γ of LTL formulas. Intuitively, these modalities are evaluated
along sub-traces of the given traces which are obtained by
removing “redundant” positions with respect to the pointwise
evaluation of the LTL formulas in Γ. The rest of this section
is organized as follows. In Subsection III-A we introduce
a generalization of the classical notion of stuttering. Then,
in Subsection III-B we define the syntax and semantics of
HyperLTLS and provide some examples of specifications in
this logic. Finally, we investigate the model checking problem
against HyperLTLS . In Subsection III-C, we show that the
problem is in general undecidable, and in Subsection III-D,
we identify a meaningful fragment of HyperLTLS for which
model checking is shown to be decidable.

A. LTL-Relativized Stuttering

Classically, a trace is stutter-free if there are no consecutive
positions having the same propositional valuation unless the
valuation is repeated ad-infinitum. We can associate to each
trace a unique stutter-free trace by removing “redundant”
positions. In this subsection, we generalize these notions with
respect to the pointwise evaluation of a finite set of LTL
formulas.

Definition III.1 (LTL stutter factorization). Let Γ be a finite
set of LTL formulas and π a trace. The Γ-stutter factor-
ization of π is the unique increasing sequence of positions

{ik}k∈[0,m∞] for some m∞ ∈ N∪{∞} such that the following
holds for all j < m∞:
• i0 = 0 and ij < ij+1;
• for each θ ∈ Γ, the truth value of θ along the segment

[ij , ij+1) does not change, i.e. for all h, k ∈ [ij , ij+1),
(π, h) |= θ iff (π, k) |= θ, and the same holds for the
infinite segment [m∞,∞] in case m∞ 6=∞;

• the truth value of some formula in Γ changes along
adjacent segments, i.e. for some θ ∈ Γ (depending on
j), (π, ij) |= θ iff (π, ij+1) 6|= θ.

Thus, the Γ-stutter factorization {ik}k∈[0,m∞] of π parti-
tions the trace in adjacent non-empty segments such that the
valuation of formulas in Γ does not change within a segment,
and changes in moving from a segment to the adjacent ones.
This factorization induces in a natural way a trace obtained by
selecting the first positions of the finite segments and all the
positions of the unique infinite segment, if any. Formally, the
Γ-stutter trace of π, denoted by stfrΓ(π), is defined as follows:
• stfrΓ(π)

def
= π(i0)π(i1) . . . if m∞ =∞;

• stfrΓ(π)
def
= π(i0)π(i1) . . . π(im∞−1)·πim∞ if m∞ 6=∞.

As an example, assume that AP = {p, q, r} and let Γ =
{pU q}. Given h, k ≥ 1, let πh,k be the trace πh,k = phqkrω .
These traces have the same Γ-stutter trace given by prω . This
is because for all h′, k′ ≥ 1, both ph

′
qk

′
rω and qk

′
rω satisfy

p U q, while rω does not. Hence, the {p U q}-factorization of
πh,k consists of two segments: the first one is phqk (the first
position has valuation p) and the second one is rω .

We say that a trace π is Γ-stutter free if it coincides with
its Γ-stutter trace, i.e. stfrΓ(π) = π. Note that if Γ = ∅, each
trace is ∅-stutter free, i.e. stfr∅(π) = π.

For each finite set Γ of LTL formulas, we define the
successor function succΓ as follows. The function maps a
pointed trace (π, i) to the trace (π, `) where ` is the first
position of the segment in the Γ-stutter factorization of π
following the i-segment if the i-segment is not the last one;
otherwise, ` is i+ 1. Formally,

Definition III.2 (Relativized Successor). Let Γ be a finite
set of LTL formulas, π a trace with Γ-stutter factorization
{ik}k∈[0,m∞], and i ≥ 0. The Γ-successor of the pointed
trace (π, i), denoted by succΓ(π, i), is the trace (π, `) where
position ` is defined as follows: if there is j < m∞ such that
i ∈ [ij , ij+1), then ` = ij+1; otherwise (note that in this case
m∞ 6=∞ and i ≥ im∞ ), ` = i+ 1.

B. Syntax and Semantics of Stuttering HyperLTL
Stuttering HyperLTL (HyperLTLS) formulas over the given

finite set AP of atomic propositions and finite set VAR of trace
variables are linear-time hyper expressions over multi-trace
specifications ψ, called HyperLTLS quantifier-free formulas,
where ψ is defined by the following syntax:

ψ ::= > | p[x] | ¬ψ | ψ ∧ ψ | XΓψ | ψ UΓ ψ

where p ∈ AP, x ∈ VAR, Γ is a finite set of LTL formulas
over AP, and XΓ and UΓ are the stutter-relativized versions
of the LTL temporal modalities.
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When Γ is empty, we omit the subscript Γ in the temporal
modalities. Informally, p[x] asserts that p holds at the pointed
trace assigned to x, while the relativized temporal modalities
XΓ and UΓ are evaluated by a lockstepwise traversal of
the Γ-stutter traces associated with the currently quantified
traces. We also exploit the standard logical connectives ∨
(disjunction) and → (implication) as abbreviations, and the
relativized eventually modality FΓψ

def
= > UΓ ψ and its

dual GΓψ
def
= ¬FΓ¬ψ (relativized always). The size |ξ| of

a HyperLTLS (quantifier-free) formula ξ is the number of
distinct sub-formulas of ξ plus the number of distinct sub-
formulas of those LTL formulas occurring in the subscripts of
the temporal modalities.

For each finite set Γ of LTL formulas, we denote by
HyperLTLS [Γ] the syntactical fragment of HyperLTLS where
the subscript of each temporal modality is Γ. Note that stan-
dard HyperLTL corresponds to the fragment HyperLTLS [∅].
In the following, for each HyperLTLS formula ϕ, we denote
by HyperLTL(ϕ) the HyperLTL formula obtained from ϕ by
replacing each relativized temporal modality in ϕ with its ∅-
relativized version.

Semantics of HyperLTLS Quantifier-free Formulas. Given
a finite set Γ of LTL formulas, we extend in a natural
way the relativized successor function succΓ to pointed trace
assignments Π as follows: the Γ-successor succΓ(Π) of Π is
the pointed trace assignment with domain Dom(Π) associating
to each x ∈ Dom(Π) the Γ-successor succΓ(Π(x)) of the
pointed trace Π(x). For each j ∈ N, we use succ jΓ for the
function obtained by j applications of the function succΓ.

Given a HyperLTLS quantifier-free formula ψ and a pointed
trace assignment Π such that Dom(Π) contains the trace
variables occurring in ψ, the satisfaction relation Π |= ψ is
inductively defined as follows (we omit the semantics of the
Boolean connectives which is standard):

Π |= p[x] ⇔ Π(x) = (π, i) and p ∈ π(i)
Π |= XΓψ ⇔ succΓ(Π) |= ψ
Π |= ψ1 UΓ ψ2 ⇔ for some i ≥ 0 : succ iΓ(Π) |= ψ2 and

succ kΓ (Π) |= ψ1 for all 0 ≤ k < i

In the following, given a set Γ of LTL formulas, we also
consider the model checking problem against the fragment
HyperLTLS [Γ] of HyperLTLS . For this fragment, by the
semantics of HyperLTLS , we deduce the following fact, where
for a set L of traces, stfrΓ(L) denotes the set of Γ-stutter traces
over the traces in L, i.e. stfrΓ(L)

def
= {stfrΓ(π) | π ∈ L}.

Remark III.1. A set L of traces is a model of a HyperLTLS [Γ]
sentence ϕ if and only if stfrΓ(L) is a model of the HyperLTL
sentence HyperLTL(ϕ).

Let LTLS be the extension of LTL obtained by adding
the stutter-relativized versions of the LTL temporal modal-
ities. Note that LTLS formulas correspond to one-variable
HyperLTLS quantifier-free formulas. We can show that LTLS
has the same expressiveness as LTL, as established by the
following Proposition III.1 (missing proofs of all the claims

in this paper can be found in [23]). On the other hand,
HyperLTLS quantifier-free formulas are in general more ex-
pressive than HyperLTL quantifier-free formulas. Indeed, mul-
tiple traces of fixed arity (i.e., the number of distinct variables
in the quantifier-free formula) can be seen as single traces
where one considers a copy of propositions for each trace.
With this encoding, quantifier-free HyperLTL can express only
LTL properties. On the other hand, quantifier-free HyperLTLS
can express powerful non-regular properties. For instance,
let AP = {p} and for all n,m, k ≥ 1, let πk,m and π′n
be the traces defined as: πk,m = ∅k({p}∅)m∅ω and π′n =
∅({p}∅)n∅ω . Evidently, the language L = {(πk,n, π′n) | k, n ≥
1} is not regular. On the other hand, L can be easily captured
by a two-variable quantifier-free formula in HyperLTLS [AP].

Proposition III.1. Given a LTLS formula, one can construct
in polynomial time an equivalent LTL formula.

We now show that HyperLTLS is strictly less expressive
than the fixpoint calculus Hµ introduced in [20]. Indeed, Hµ
cannot be embedded into HyperLTLS since for singleton trace
sets, Hµ characterizes the class of ω-regular languages, while
HyperLTLS corresponds to LTL, which consequently, captures
only a strict subclass of ω-regular languages. Moreover, by the
following result and the fact that parity AAWA are equivalent
to Hµ quantifier-free formulas [20], we obtain that HyperLTLS
is subsumed by Hµ.

Proposition III.2. Given a HyperLTLS quantifier-free formula
ψ with trace variables x1, . . . , xn, one can build in polynomial
time a Büchi nAAWAAψ such that L(Aψ) is the set of n-tuples
(π1, . . . , πn) of traces so that ({x1 7→ (π1, 0), . . . , x1 7→
(πn, 0)}) |= ψ.

Proof. By exploiting the dual RΓ (relativized release) of the
until modality UΓ, we can assume without loss of generality
that ψ is in negation normal form, so negation is applied only
to relativized atomic propositions. Given a finite set Γ of LTL
formulas, let ξΓ be the following LTL formula

ξΓ =
∧
ξ∈Γ

G(ξ ↔ Xξ) ∨
∨
ξ∈Γ

(ξ ↔ ¬Xξ)

The LTL formula ξΓ has as models the traces π such that the
first segment in the factorization of π is either infinite or has
length 1. For each i ∈ [1, n], we can easily construct in linear
time (in the number of distinct sub-formulas in Γ) a Büchi
nAAWA AΓ,i accepting the n-tuples (π1, . . . , πn) of traces
so that the ith component πi is a model of ξΓ. Similarly, we
can also define AΓ,i accepting the n-tuples (π1, . . . , πn) of
traces so that the ith component πi is not a model of ξΓ.

Let Υ be the set of subscripts Γ occurring in the temporal
modalities of ψ. Then by exploiting the automata AΓ,i and
AΓ,i where Γ ∈ Υ and i ∈ [1, n], we construct a Büchi
nAAWA Aψ satisfying Proposition III.2 as follows. Given an
input multi-trace (π1, . . . , πn), the behaviour of the automaton
Aψ is subdivided in phases. At the beginning of each phase
with current position vector ℘ = (j1, . . . , jn), Aψ keeps track
in its state of the currently processed sub-formula θ of ψ.
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By the transition function, θ is processed in accordance with
the ‘local’ characterization of the semantics of the Boolean
connectives and the relativized temporal modalities. Whenever
θ is of the form θ1 UΓ θ2 or θ1RΓθ2, or θ is argument of a
sub-formula of the form XΓθ, and Aψ has to check that θ
holds at the position vector (succΓ(π1, j1), . . . , succΓ(π1, j1)),
Aψ moves along the directions 1, . . . , n in turns. During the
movement along direction i ∈ [1, n], the automaton is in state
(θ, i,Γ) and guesses that either (i) the next input position is
in the current segment of the Γ-factorization of πi and this
segment is not the last one, or (ii) the previous condition
does not hold, hence, the next input position corresponds to
succΓ(π1, j1). In the first (resp., second case) case, it activates
in parallel a copy of the auxiliary automaton AΓ,i (resp., AΓ,i)
for checking that the guess is correct and moves one position
to the right along πi. Moreover, in the first case, Aψ remains in
state (θ, i,Γ), while in the second case, the automaton changes
direction by moving to the state (θ, i+1,Γ) if i < n, and starts
a new phase by moving at state θ otherwise.

Examples of Specifications. Stuttering HyperLTL can express
relevant information-flow security properties for asynchronous
frameworks such as distributed systems or cryptographic pro-
tocols. These properties specify how information may propa-
gate from input to outputs by comparing distinct executions of
a system possibly at different points of time. Assume that each
user is classified either at a low security level, representing
public information, or at a high level, representing secret
information. Moreover, let LI be a set of propositions for
describing inputs of low users, LO propositions that describe
outputs of low users, and HI be a set of propositions for
representing inputs of high users. As a first example, we con-
sider the asynchronous variant of the noninterference property,
as defined by Goguen and Meseguer [6], asserting that the
observations of low users do not change when all high inputs
are removed. In an asynchronous setting, a user cannot infer
that a transition occurred if consecutive observations remain
unchanged. In other terms, steps observed by a user do not
correspond to the same number of steps in different executions
of the system. Thus, since a low user can only observe the low
output propositions, we require that for each trace π, there is
a trace π′ with no high inputs such that the LO-stutter traces
of π and π′ coincide, that is, π and π′ are indistinguishable to
a low user. This can be expressed in HyperLTLS as follows,
where proposition p∅ denotes absence of high input.

∀x.∃y.Gp∅[y] ∧GLO

∧
p∈LO

(p[x]↔ p[y])

Assuming that the observations are not time-sensitive, nonin-
terference cannot in general be expressed in HyperLTL unless
one only considers systems where all the traces are LO-stutter
free. Another relevant example is generalized noninterference
as formulated in [7] which allows nondeterminism in the low-
observable behavior and requires for all system traces π and
π′, the existence of an interleaved trace π′′ whose high inputs
are the same as π and whose low outputs are the same as π′.

This property can be expressed in HyperLTLS as follows:

∀x.∀y.∃z.GHI

∧
p∈HI

(p[y]↔ p[z]) ∧GLO

∧
p∈LO

(p[y]↔ p[z])

Another classical security policy is observational determinism
specifying that traces which have the same initial low inputs
are indistinguishable to a low user. The following HyperLTLS
formula captures observational determinism with equivalence
of traces up to stuttering as formulated in [8].

∀x.∀y.
∧
p∈LI

(p[x]↔ p[y])→ GLO

∧
p∈LO

(p[x]↔ p[y])

Lastly, an interesting feature of HyperLTLS is the possibil-
ity of combining asynchrony and synchrony constraints. We
illustrate this ability by considering an unbounded time re-
quirement which has application in the analysis of procedural
software: “whenever a procedure A is invoked, the procedure
terminates, but there is no bound on the running time of A
that upper-bounds the duration of A on all traces”. In other
words, for every candidate bound k there is a trace in which A
is invoked and terminates with a longer duration. We assume,
crucially, that procedure A can be activated at most once along
an execution, and we let cA characterize the call to A and
rA the return from A. This requirement can be expressed in
HyperLTLS as follows.

∀x.∃y.FcA[x]→

FcA[y] ∧ X{FcA}

¬rA[x] ∧ ¬rA[y]
U{FcA}

rA[x] ∧ ¬rA[y]


Essentially, we claim there is always a call to A that runs for a
longer period of time than any candidate maximum duration.
Note that the occurrence of the relativized until U{FcA} in the
previous formula can be equivalently replaced by the standard
until U. We have used the relativized until since the previous
formula is in the fragment investigated in Subsection III-D
below which enjoys a decidable model checking problem.

C. Undecidability of Model Checking HyperLTLS

In this section, we establish the following negative result.

Theorem III.1. The model checking problem for HyperLTLS
is undecidable even for the HyperLTLS fragment where the
quantifier alternation depth is 0 and the stutter-relativized
temporal modalities just use two sets of LTL-formulas where
one is empty and the other one consists of atomic propositions
only.

Theorem III.1 is proved by a reduction from the Post’s
Correspondence Problem (PCP, for short) [24]. We fix an
instance I of PCP which is a tuple

I = 〈〈u1
1, . . . , u

1
n〉, 〈u2

1, . . . , u
2
n〉〉

where n ≥ 1 and for each 1 ≤ i ≤ n, u1
i and u2

i are non-empty
finite words over a finite alphabet Σ. Let [n] = {1, . . . , n}. A
solution of I is a non-empty sequence i1, i2, . . . , ik of integers
in [n] such that u1

i1
· u1

i2
· . . . · u1

ik
= u2

i1
· u2

i2
· . . . · u2

ik
. PCP
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consists in checking for a given instance I, whether I admits
a solution. This problem is known to be undecidable [24].

Assumption. We assume without loss of generality that each
word u`i of I, where i ∈ [n] and ` = 1, 2, has length at least
2. Indeed, if this assumption does not hold, we consider the
instance I ′ of PCP obtained from I by replacing each word
u`i of the form a1 . . . an with the word a1a1 . . . anan (i.e., we
duplicate each symbol occurring in u`i ). Evidently I ′ has a
solution if and only if I has a solution.

In order to encode the PCP instance I into an instance
of the model checking problem for HyperLTLS , we ex-
ploit the following set AP of atomic propositions, where
#, p1, . . . , pn, q1, q2 are fresh symbols not in Σ.

AP def
= Σ ∪ {#} ∪ {p1 . . . , pn} ∪ {q1, q2}

Intuitively, for each i ∈ [n] and ` = 1, 2, propositions pi
and q` are exploited to mark each symbol of the word u`i
of the instance I, while proposition # is used to mark only
the last symbol of u`i . Thus, for the word u`i , we denote by
[u`i , pi, q`] the finite word over 2AP of length |u`i | obtained
from u`i by marking each symbol of u`i with propositions pi
and q` and, additionally, by marking the last symbol of u`i
with proposition #. Formally, [u`i , pi, q`] is the finite word
over 2AP having length |u`i | such that for each 0 ≤ h <
|u`i |, [u`i , pi, q`](h) = {u`i(h), pi, q`} if h < |u`i | − 1, and
[u`i , pi, q`](h) = {u`i(h), pi, q`,#} otherwise.

Given a non-empty sequence i1, i2, . . . , ik of integers in [n]
and ` = 1, 2, we encode the word u`i1 · u

`
i2
· . . . · u`ik by the

trace, denoted by π`i1,...,ik , defined as:

π`i1,...,ik
def
= {#} · [u`i1 , pi1 , q`] · . . . · [u

`
ik
, pik , q`] · {#}ω

Let Γ be the set of atomic propositions given by Γ =
{#, p1, . . . , pn}. We crucially observe that since each word
of I has length at least 2, the projection of the Γ-stutter trace
stfrΓ(π`i1,...,ik) of π`i1,...,ik over Γ is given by

{#} · {pi1} · {pi1 ,#} · . . . · {pik} · {pik ,#} · {#}ω

Hence, we obtain the following characterization of non-
emptiness of the set of I’s solutions, where a well-formed
trace is a trace of the form π`i1,...,ik for some non-empty
sequence i1, i2, . . . , ik of integers in [n] and ` = 1, 2.

Proposition III.3. I has some solution if and only if there
are two well-formed traces π1 and π2 satisfying the following
conditions, where Γ = {#, p1, . . . , pn}:

1) for each ` = 1, 2, π` does not contain occurrences of
propositions q3−`, i.e. for each h ∈ N, q3−` /∈ π`(h);

2) the projections of π1 and π2 over Σ coincide, i.e. for each
h ∈ N and p ∈ Σ, p ∈ π1(h) iff p ∈ π2(h);

3) the projections of stfrΓ(π1) and stfrΓ(π2) over Γ coincide,
i.e. for each h ∈ N and p ∈ Γ, p ∈ stfrΓ(π1)(h) iff
p ∈ stfrΓ(π2)(h).

By exploiting Proposition III.3, we construct a finite Kripke
structure KI and a HyperLTLS sentence ϕI over AP whose

quantifier alternation depth is 0 and whose temporal modal-
ities are parameterized either by the empty set or by Γ =
{#, p1, . . . , pn} such that I has a solution if and only if
KI |= ϕI . Note that Theorem III.1 then follows directly by
the undecidability of PCP.

First, we easily deduce the following result concerning the
construction of the Kripke structure KI .

Proposition III.4. One can build in time polynomial in the
size of I a finite Kripke structure KI over AP satisfying the
following conditions:
• the set of traces of KI contains the set of well-formed

traces;
• each trace of KI having a suffix where # always holds

is a well-formed trace.

Finally, the HyperLTLS sentence ϕI is defined as follows,
where Γ = {#, p1, . . . , pn}:

ϕI ::= ∃x1.∃x2. FG(#[x1] ∧#[x2])∧
G(¬q2[x1] ∧ ¬q1[x2])∧∧
p∈Σ

G(p[x1]↔ p[x2]] ∧
∧
p∈Γ

GΓ(p[x1]]↔ p[x2])

Assume that ϕI is interpreted over the Kripke structure KI of
Proposition III.4. Then, by Proposition III.4, the first conjunct
in the body of ϕI ensures that the two traces π1 and π2 of
KI selected by the existential quantification are well-formed
traces. Moreover, the other three conjuncts in the body of ϕI
correspond to Conditions (1)–(3) of Proposition III.3 over the
selected traces π1 and π2. Hence, KI |= ϕI if and only if
there are two well-formed traces that satisfy Conditions (1)–
(3) of Proposition III.3 if and only if I admits a solution. This
concludes the proof of Theorem III.1.

D. A Decidable Fragment of HyperLTLS
In the previous section, we have shown that the model

checking problem is undecidable for the HyperLTLS sentences
whose relativized temporal modalities exploit two distinct sets
of LTL formulas. In this section, we establish that the use of a
unique finite set Γ of LTL formulas as a subscript of the tempo-
ral modalities in the given formula leads to a decidable model
checking problem. In particular, we consider the fragment of
HyperLTLS , we call simple HyperLTLS , whose quantifier-free
formulas ψ satisfy the following requirement: there exists a
finite set Γ of LTL formulas (depending on ψ) such that
ψ is a Boolean combination of quantifier-free formulas in
HyperLTLS [Γ] and one-variable HyperLTLS quantifier-free
formulas. Simple HyperLTLS strictly subsumes HyperLTL and
can express interesting asynchronous security properties like
asynchronous noninterference [6] and observational determin-
ism [8]. In particular, the HyperLTLS sentences at the end
of Subsection III-B used for expressing noninterference (but
not generalized noninterference), observational determinism,
and the unbounded time procedural requirement are simple
HyperLTLS formulas.

We solve the (fair) model checking for simple HyperLTLS
by a reduction to HyperLTL model checking, which is known
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to be decidable [11]. Our reduction is exponential in the size
of the given sentence. As a preliminary step, we first show, by
an adaptation of the standard automata-theoretic approach for
LTL [25], that the problem for a simple HyperLTLS sentence
ϕ can be reduced in exponential time to the fair model
checking against a sentence in the fragment HyperLTLS [Γ]
for some set Γ of atomic propositions depending on ϕ.

Reduction to the Fragment HyperLTLS [Γ] with Γ being
Propositional. In order to prove the reduction from simple
HyperLTLS to HyperLTLS [Γ] for propositional Γ (formally
expressed in Theorem III.2 below), we need some prelimi-
nary results. Recall that a Nondeterministic Büchi Automaton
(NBA) is a tuple A = 〈Σ, Q,Q0,∆,Acc〉, where Σ is a finite
alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of initial
states, ∆ ⊆ Q×Σ×Q is the transition function, and Acc ⊆ Q
is the set of accepting states. Given a infinite word w over Σ,
a run of A over w is an infinite sequence of states q0, q1, . . .
such that q0 ∈ Q0 and for all i ≥ 0, (qi, w(i), qi+1) ∈ ∆.
The run is accepting if for infinitely many i, qi ∈ Acc. The
language L(A) accepted by A consists of the infinite words
w over Σ such that there is an accepting run over w.

Fix a non-empty set Γ of LTL formulas over AP. The
closure cl(Γ) of Γ is the set of LTL formulas consisting of
the sub-formulas of the formulas θ ∈ Γ and their negations
(we identify ¬¬θ with θ). Note that Γ ⊆ cl(Γ). Without
loss of generality, we can assume that AP ⊆ Γ. Precisely,
AP can be taken as the set of propositions occurring in the
given simple HyperLTLS sentence and cl(Γ) contains all the
propositions in AP and their negations. For each formula
θ ∈ cl(Γ) \ AP, we introduce a fresh atomic proposition not
in AP, denoted by at(θ). Moreover, for allowing a uniform
notation, for each p ∈ AP, we write at(p) to mean p itself.
Let APΓ be the set AP extended with these new propositions.
By a straightforward adaptation of the well-known translation
of LTL formulas into equivalent NBA [25], we obtain the
following result, where for an infinite word w over 2APΓ ,
(w)AP denotes the projection of w over AP.

Proposition III.5. Given a finite set Γ of LTL formulas over
AP, one can construct in single exponential time an NBA AΓ

over 2APΓ with 2O(|APΓ|) states satisfying the following:
1) let w ∈ L(AΓ): then for all i ≥ 0 and θ ∈ cl(Γ), at(θ) ∈

w(i) if and only if ((w)AP, i) |= θ.
2) for each trace π (i.e., infinite word over 2AP), there exists

w ∈ L(AΓ) such that π = (w)AP.

Let K = 〈S, S0, E, V 〉 be a finite Kripke structure over
AP and F ⊆ S. Next, we consider the synchronous product
of the fair Kripke structure (K, F ) with the NBA AΓ =
〈2APΓ , Q,Q0,∆,Acc〉 over 2APΓ of Proposition III.5 asso-
ciated with Γ. More specifically, we construct a Kripke
structure KΓ over APΓ and a subset FΓ of KΓ-states such
that L(KΓ, FΓ) is the set of words w ∈ L(AΓ) whose
projections over AP are in L(K, F ). Formally, the Γ-extension
of (K, F ) is the fair Kripke structure (KΓ, FΓ) where KΓ =
〈SΓ, S0,Γ, EΓ, VΓ〉 and FΓ are defined as follows:

• SΓ is the set of tuples (s,B, q, `) ∈ S×2APΓ×Q×{1, 2}
such that V (s) = B ∩ AP;

• S0,Γ = SΓ ∩ (S0 × 2APΓ ×Q0 × {1});
• EΓ consists of the following transitions:

– ((s,B, q, 1), (s′, B′, q′, `)) such that (s, s′) ∈ E,
(q,B, q′) ∈ ∆, and ` = 2 if s ∈ F and ` = 1
otherwise;

– ((s,B, q, 2), (s′, B′, q′, `)) such that (s, s′) ∈ E,
(q,B, q′) ∈ ∆, and ` = 1 if q ∈ Acc and ` = 2
otherwise.

• for each (s,B, q, `) ∈ SΓ, VΓ((s,B, q, `)) = B;
• FΓ = {(s,B, q, 2) ∈ SΓ | q ∈ Acc}.

By construction and Proposition III.5(2), we easily obtain the
following result.

Proposition III.6. For each infinite word w over 2APΓ , w ∈
L(KΓ, FΓ) if and only if w ∈ L(AΓ) and (w)AP ∈ L(K, F ).
Moreover, for each π ∈ L(K, F ), there exists w ∈ L(KΓ, FΓ)
such that (w)AP = π.

For each Γ′ ⊆ Γ, let Γ′prop be the set of propositions
in APΓ associated with the formulas in Γ′, in other words
Γ′prop

def
= {at(θ) | θ ∈ Γ′}. By Propositions III.5–III.6, we

deduce the following result which allows to reduce the fair
model checking against a simple HyperLTLS sentence to the
fair model checking against a HyperLTLS sentence in the
fragment HyperLTLS [Γ′prop] for some set Γ′prop of atomic
propositions.

Lemma III.1. The following holds:
1) For each θ ∈ Γ and w ∈ L(KΓ, FΓ), at(θ) ∈ w(0) iff

(w)AP |= θ.
2) For all Γ′ ⊆ Γ and w ∈ L(KΓ, FΓ), (stfrΓ′

prop
(w))AP =

stfrΓ′(π) where π = (w)AP.

Proof. Property 1 directly follows from Proposition III.5(1)
and Proposition III.6. Now, let us consider Property 2. Let
Γ′ ⊆ Γ, w ∈ L(KΓ, FΓ), and π = (w)AP. By Proposition III.6,
w ∈ L(AΓ). Moreover, by Property (1) of Proposition III.5,
for all i ≥ 0 and θ ∈ Γ′, at(θ) ∈ w(i) if and only if
(π, i) |= θ. Since Γ′prop

def
= {at(θ) | θ ∈ Γ′}, it follows that

(stfrΓ′
prop

(w))AP = stfrΓ′(π), and the result follows.

We can now prove the desired result.

Theorem III.2. Given a simple HyperLTLS sentence ϕ and a
fair finite Kripke structure (K, F ) over AP, one can construct
in single exponential time in the size of ϕ, a HyperLTLS sen-
tence ϕ′ having the same quantifier prefix as ϕ and a fair finite
Kripke structure (K′, F ′) over an extension AP ′ of AP such
that |ϕ′| = O(|ϕ|), ϕ′ is in the fragment HyperLTLS [AP ′′] for
some AP ′′ ⊆ AP ′, |K′| = O(|K| ∗ 2O(|ϕ|)), and L(K′, F ′) |=
ϕ′ if and only if L(K, F ) |= ϕ.

Proof. By hypothesis, there is a finite set Γ′ of LTL formulas
such that ϕ is of the form

Qnxn.Qn−1xn−1. . . . .Q1x1. ψ
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where n ≥ 1, Qi ∈ {∃,∀} for all i ∈ [1, n], and ψ is a
Boolean combination of quantifier-free formulas in a set Υ1∪
ΥΓ′ , where Υ1 consists of one-variable HyperLTLS quantifier-
free formulas and ΥΓ′ consists of quantifier-free formulas in
HyperLTLS [Γ′]. By Proposition III.1, we can assume without
loss of generality that the formulas in Υ1 are one-variable
HyperLTL quantifier-free formulas. Let LTL(Υ1) be the set
of LTL formulas corresponding to the formulas in Υ1 (i.e.,
for each θ ∈ Υ1, we take the LTL formula obtained from θ
by removing the unique variable occurring in θ). We define:
• Γ

def
= LTL(Υ1) ∪ Γ′. We assume that Γ is not empty;

otherwise the result is obvious.
• (K′, F ′) def

= (KΓ, FΓ), where (KΓ, FΓ) is the Γ-extension
of (K, F );

• ϕ′
def
= Qnxn. . . . .Q1x1. ψ

′, where ψ′ is defined as
follows: by hypothesis, ψ can be seen as a propositional
formula ψp over the set of atomic formulas Υ1 ∪ ΥΓ′ .
Then, ψ′ is obtained from ψp by replacing (i) each
formula ξ ∈ Υ1 with the x-relativized proposition in
APΓ given by at(LTL(ξ))[x], where LTL(ξ) is the LTL
formula associated with ξ and x is the unique variable
occurring in ξ, and (ii) each formula ξ ∈ ΥΓ′ with the
formula obtained from ξ by replacing each relativized
temporal modality in ξ with its Γ′prop-relativized version.

We show that L(KΓ, FΓ) |= ϕ′ if and only if L(K, F ) |= ϕ.
Hence, Theorem III.2 directly follows. For each i ∈ [1, n],
let ϕi

def
= Qixi. . . . .Q1x1. ψ and ϕ′i

def
= Qixi. . . . .Q1x1. ψ

′.
Moreover, we write ϕ0 (resp., ϕ′0) to mean formula ψ (resp.,
ψ′). The result directly follows from the following claim.

Claim. Let 0 ≤ i ≤ n and w1, . . . , wn−i ∈ L(KΓ, FΓ). Then,
(L(KΓ, FΓ), {x1 7→ (w1, 0), . . . , xn−i 7→ (wn−i, 0)}) |= ϕ′i
if and only if (L(K, F ), {x1 7→ ((w1)AP, 0), . . . , xn−i 7→
((wn−i)AP, 0)}) |= ϕi.

Proof of the Claim. For the base case (i = 0), the result
directly follows from construction and Lemma III.1. For the
induction step, the result directly follows from the induction
hypothesis and the second part of Proposition III.6.

Fair Model Checking against HyperLTLS [Γ] with Γ ⊆ AP.
By Theorem III.2, we can restrict to consider the fair model
checking against the fragments HyperLTLS [Γ] where Γ is a
non-empty finite set of atomic propositions. We show that this
problem can be reduced in polynomial time to a variant of
model checking against HyperLTL.

Definition III.3 (LTL-conditioned model checking). For a
Kripke structure K and a LTL formula θ, we denote by L(K, θ)
the set of traces of K which satisfy θ. The LTL-conditioned
model checking problem against HyperLTL is checking for a
finite Kripke structure K, a LTL formula θ and a HyperLTL
sentence ϕ, whether L(K, θ) |= ϕ.

LTL-conditioned model checking against HyperLTL can be
easily reduced in linear time to HyperLTL model checking
(for details see [23]).

Proposition III.7. Given an LTL formula θ and a HyperLTL
sentence ϕ, one can construct in linear time a HyperLTL
sentence ϕθ having the same quantifier prefix as ϕ such that
for each Kripke structure K, L(K, θ) |= ϕ iff L(K) |= ϕθ.

Let (K, F ) be a fair finite Kripke structure with K =
〈S, S0, E, V 〉 and ϕ be a HyperLTLS [Γ] sentence with Γ ⊆
AP and Γ 6= ∅. Let acc be a fresh proposition not in AP.
Starting from K, F , and Γ, we construct in polynomial time
a finite Kripke structure K̂ over ÂP = AP ∪ {acc} and
an LTL formula θ̂ over ÂP such that the projections over
AP of the traces of K̂ satisfying θ̂ correspond to the traces
in stfrΓ(L(K, F )). By Remark III.1 and since ϕ does not
contain occurrences of the special proposition acc, we obtain
that L(K, F ) is a model of the HyperLTLS [Γ] sentence ϕ iff
L(K̂, θ̂) is a model of the HyperLTL sentence HyperLTL(ϕ).

Intuitively, the Kripke structure K̂ is obtained from K by
adding edges which keep track of the states associated with
the starting positions of adjacent segments along the Γ-stutter
factorizations of (the traces of) the F -fair paths of K. Formally,
let RΓ(K) and RΓ(K, F ) be the sets of state pairs in K defined
as follows:
• RΓ(K) consists of the pairs (q, q′) ∈ S × S such that
V (q) ∩ Γ 6= V (q′) ∩ Γ and there is a finite path of K of
the form q · ρ · q′ such that V (q) ∩ Γ = V (ρ(i)) ∩ Γ for
all 0 ≤ i < |ρ|.

• RΓ(K, F ) is defined similarly but, additionally, we re-
quire that the finite path q · ρ · q′ visits some accepting
state in F .

The finite sets RΓ(K) and RΓ(K, F ) can be easily computed in
polynomial time by standard closure algorithms. By exploiting
the sets RΓ(K) and RΓ(K, F ), we define the finite Kripke
structure K̂ = 〈Ŝ, Ŝ0, Ê, V̂ 〉 over ÂP = AP∪{acc} as follows:
• Ŝ = S × {0, 1} and Ŝ0 = S0 × {0}.
• Ê consists of the edges ((s, `), (s, `′)) such that one of

the following holds:
– either (s, s′) ∈ E ∪RΓ(K) and (`′ = 1 iff s′ ∈ F ),
– or (s, s′) ∈ RΓ(K, F ) and `′ = 1.

• V̂ ((s, 1)) = V (s) ∪ {acc} and V̂ ((s, 0)) = V (s).

Let θ̂ be the LTL formula over ÂP defined as follows:

GFacc ∧G
(∨
p∈Γ

(p↔ ¬Xp) ∨
∧
p∈Γ

G(p↔ Xp)
)

The first conjunct in the definition of θ̂ ensures that proposition
acc holds infinitely often while the second conjunct captures
the traces that are Γ-strutter free. By construction, we easily
obtain the following result.

Proposition III.8. stfrΓ(L(K, F )) coincides with the set of
projections over AP of the traces in L(K̂, θ̂).

Proof. Let π ∈ stfrΓ(L(K, F )). Hence, there is a F -fair path
ν of K such that π = stfrΓ(V (ν)) where V (ν) is the trace
associated with ν. By construction, there is a trace π̂ of K̂
such that acc ∈ π̂(i) for infinitely many i and the projection
of π̂ over AP coincides with π. By construction of the LTL
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formula θ̂, π̂ satisfies θ̂. Hence, π̂ ∈ L(K̂, θ̂). The converse
direction is similar.

By Proposition III.8 and Remark III.1, we obtain that for
each HyperLTLS [Γ] sentence ϕ, L(K, F ) |= ϕ iff L(K̂, θ̂) |=
HyperLTL(ϕ).

By [13] the model checking problem of a finite Kripke struc-
ture K against a HyperLTL sentence ϕ of quantifier alternation
depth d can be done in nondeterministic space bounded by
O(Tower2(d, |ϕ| log(|K|))). Thus, since simple HyperLTLS
subsumes HyperLTL, by Theorem III.2 and Proposition III.7,
we obtain the main result of this section, where the lower
bounds correspond to the known ones for HyperLTL [13].

Theorem III.3. For each d ∈ N, (fair) model checking against
simple HyperLTLS sentences of quantifier alternation depth d
is d-EXPSPACE-complete, and for a fixed formula, it is (d −
1)-EXPSPACE-complete for d > 0 and NLOGSPACE-complete
otherwise.

IV. CONTEXT HYPERLTL

In this section, we introduce an alternative logical frame-
work for specifying asynchronous linear-time hyperproperties.
The novel framework, we call context HyperLTL (HyperLTLC
for short), extends HyperLTL by unary modalities 〈C〉 param-
eterized by a non-empty subset C of trace variables—called
the context—which restrict the evaluation of the temporal
modalities to the traces associated with the variables in C.
Formally, HyperLTLC formulas over the given finite set AP
of atomic propositions and finite set VAR of trace variables are
linear-time hyper expressions over multi-trace specifications ψ,
called HyperLTLC quantifier-free formulas, where ψ is defined
by the following syntax:

ψ ::= > | p[x] | ¬ψ | ψ ∧ ψ | Xψ | ψ U ψ | 〈C〉ψ

where p ∈ AP, x ∈ VAR, and 〈C〉 is the context modality
with ∅ 6= C ⊆ VAR. A context is a non-empty subset of trace
variables in VAR. The size |ξ| of a HyperLTLC (quantifier-
free) formula ξ is the number of distinct sub-formulas of ξ. A
context C is global for a formula ξ if C contains all the trace
variables occurring in ξ.

Semantics of HyperLTLC quantifier-free formulas. Let Π
be a pointed trace assignment. Given a context C and an offset
i ≥ 0, we denote by Π+C i the pointed trace assignment with
domain Dom(Π) defined as follows:
• for each x ∈ Dom(Π) ∩ C with Π(x) = (π, h), [Π +C

i](x) = (π, h+ i);
• for each x ∈ Dom(Π) \ C, [Π +C i](x) = Π(x).

Intuitively, the positions of the pointed traces associated with
the variables in C advance of the offset i, while the positions
of the other pointed traces remain unchanged.

Given a HyperLTLC quantifier-free formula ψ, a context C,
and a pointed trace assignment Π such that Dom(Π) contains
the trace variables occurring in ψ, the satisfaction relation

(Π, C) |= ψ is inductively defined as follows (we omit the
semantics of the Boolean connectives which is standard):

(Π, C) |= p[x] ⇔ Π(x) = (π, i) and p ∈ π(i)
(Π, C) |= Xψ ⇔ (Π +C 1, C) |= ψ
(Π, C) |= ψ1 U ψ2 ⇔ for some i ≥ 0 : (Π +C i, C) |= ψ2

and (Π +C k,C) |= ψ1 for all k < i
(Π, C) |= 〈C ′〉ψ ⇔ (Π, C ′) |= ψ

We write Π |= ψ to mean that (Π,VAR) |= ψ.

Examples of specifications. The logic Context HyperLTL
extends HyperLTL by allowing to specify complex combi-
nations of asynchronous and synchronous constraints. As an
example, we consider the property [20] that a HyperLTL
quantifier-free formula ψ(x1, . . . , xn) holds along the traces
bound by variables x1 . . . , xn after an initialization phase.
Note that this phase can take a different number of steps
on each trace. The previous requirement can be expressed
by an HyperLTLC quantifier-free formula as follows, where
proposition in characterizes the initialization phase:

〈{x1}〉(in[x1] U (¬in[x1] ∧ 〈{x2}〉(. . .
〈{xn}〉(in[xn] U (¬in[xn] ∧ 〈{x1, . . . , xn}〉ψ)) . . .)))

As another example, illustrating the high expressiveness of
HyperLTLC , we consider the following hyper-bounded-time
response requirement: “for every trace there is a bound k such
that each request q is followed by a response p within k steps.”
This can be expressed in HyperLTLC as follows:

∀x.∀y.
[
Fq[x] ∧

∧
r∈AP

G(r[x]↔ r[y])
]
−→

〈{y}〉F
(
q[y] ∧ 〈{x}〉G

(
q[x]→
{x, y}(¬p[y] U p[x])

) )
Note that x and y refer to the same trace and the context

modalities are exploited to synchronously compare distinct
segments along the same trace, that correspond to different
request-response intervals. This ability is not supported by
Stuttering HyperLTL. On the other hand, we conjecture that
unlike HyperLTLS , HyperLTLC cannot express asynchronous
variants of security properties such as noninterference and
observational determinism (see Subsection III-B).

It is worth noting that the global promptness version (in
the style of Prompt LTL [26]) of the previous bounded-time
response requirement is expressible in HyperLTLC as well.
In this setting, one need to check for a uniform bound k on
the response time in all the traces of the system. This can be
formalized by an HyperLTLC formula obtained by the formula
above by replacing the quantifier prefix ∀x∀y with ∃y∀x and
by removing the equality constraint on the traces for x and y.

A. Undecidability of model checking against HyperLTLC

In this section, we establish that model checking against
HyperLTLC is in general undecidable. Let F0 and F1 be the
fragments of HyperLTLC consisting of the formulas such that
the number of trace variables is 2, the nesting depth of context
modalities is 2, and, additionally, (i) in F0 the quantifier
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alternation depth is 0, and (ii) in F1 the quantifier alternation
depth is 1 and each temporal modality in the scope of a non-
global context is F.

Theorem IV.1. Model checking against HyperLTLC is unde-
cidable even for the fragments F0 and F1.

Theorem IV.1 is proved by a polynomial-time reduction
from the halting problem for Minsky 2-counter machines [27].
Such a machine is a tuple M = 〈Q, qinit, qhalt, ∆〉, where
Q is a finite set of (control) locations, qinit ∈ Q is the
initial location, qhalt ∈ Q is the halting location, and ∆ ⊆
Q × L × Q is a transition relation over the instruction set
L = {inc, dec, zero} × {1, 2}. We adopt the following nota-
tional conventions. For an instruction op = ( , c) ∈ L, let
c(op)

def
= c ∈ {1, 2} be the counter associated with op. For

a transition δ ∈ ∆ of the form δ = (q, op, q′), we define
from(δ)

def
= q, op(δ)

def
= op, c(δ) def

= c(op), and to(δ)
def
= q′.

Without loss of generality, we assume that for each transition
δ ∈ ∆, from(δ) 6= qhalt.

An M -configuration is a pair (q, ν) consisting of a location
q ∈ Q and a counter valuation ν : {1, 2} → N. A computation
of M is a non-empty finite sequence (q1, ν1), . . . , (qk, νk) of
configurations such that for each 1 ≤ i < k, (qi, op, qi+1) ∈ ∆
for some instruction op ∈ L (depending on i) and the following
holds, where c ∈ {1, 2} is the counter associated with the
instruction op: (i) νi+1(c′) = νi(c

′) if c′ 6= c; (ii) νi+1(c) =
νi(c) + 1 if op = (inc, c); (iii) νi+1(c) = νi(c) − 1 if
op = (dec, c) (in particular, it has to be νi(c) > 0); and
(iv) νi+1(c) = νi(c) = 0 if op = (zero, c). M halts if
there is a computation starting at the initial configuration
(qinit, νinit), where νinit(1) = νinit(2) = 0, and leading to
some halting configuration (qhalt, ν). The halting problem
is to decide whether a given machine M halts, and it is
undecidable [27]. We prove the following result, from which
Theorem IV.1 directly follows.

Proposition IV.1. One can build a finite Kripke Structure KM
and a HyperLTLC sentence ϕM in the fragment F0 (resp., F1)
such that M halts iff KM |= ϕM .

Proof. Here, we focus on F0. First, we define an encoding
of a computation of M as a trace where the finite set AP of
atomic propositions is given by AP def

= ∆∪{1, 2, beg1, beg2}.
Intuitively, in the encoding of an M -computation, we keep

track of the transition used in the current step of the com-
putation. Moreover, for each c ∈ {1, 2}, the propositions
in {c, begc} are used for encoding the current value of
counter c. In particular, for c ∈ {1, 2}, a c-code for the
M -transition δ ∈ ∆ is a finite word wc over 2AP of the
form {δ, begc} · {δ, c}h for some h ≥ 0 such that h = 0
if op(δ) = (zero, c). The c-code wc encodes the value for
counter c given by h (or equivalently |wc| − 1). Note that
only the occurrences of the symbols {δ, c} encode units in the
value of counter c, while the symbol {δ, begc} is only used
as left marker in the encoding. A configuration-code w for
the M -transition δ ∈ ∆ is a finite word over 2AP of the form

w = {δ} · w1 · w2 such that for each counter c ∈ {1, 2}, wc
is a c-code for transition δ. The configuration-code w encodes
the M -configuration (from(δ), ν), where ν(c) = |wc| − 1 for
all c ∈ {1, 2}. Note that if op(δ) = (zero, c), then ν(c) = 0.

A computation-code is a trace of the form π = wδ1 · · ·wδk ·
∅ω , where k ≥ 1 and for all 1 ≤ i ≤ k, wδi is a configuration-
code for transition δi, and whenever i < k, it holds that
to(δi) = from(δi+1). Note that by our assumptions to(δi) 6=
qhalt for all 1 ≤ i < k. The computation-code π is initial if the
first configuration-code wδ1 encodes the initial configuration,
and it is halting if for the last configuration-code wδk in π, it
holds that to(δk) = qhalt. For all 1 ≤ i ≤ k, let (qi, νi) be the
M -configuration encoded by the configuration-code wδi and
ci = c(δi). The computation-code π is good if, additionally,
for all 1 ≤ j < k, the following holds: (i) νj+1(c) = νj(c)
if either c 6= cj or op(δj) = (zero, cj) (equality requirement);
(ii) νj+1(cj) = νj(cj) + 1 if op(δj) = (inc, cj) (increment
requirement); (iii) νj+1(cj) = νj(cj)−1 if op(δj) = (dec, cj)
(decrement requirement).
Clearly, M halts iff there exists an initial and halting good
computation-code. By construction, it is a trivial task to define
a Kripke structure KM satisfying the following.

Claim. One can construct in polynomial time a finite Kripke
structure KM over AP such that the set of traces of KM which
visit some empty position (i.e., a position with label the empty
set of propositions) corresponds to the set of initial and halting
computation-codes.

We now define a HyperLTLC sentence ϕM in the fragment
F0 that, when interpreted on the Kripke structure KM , cap-
tures the traces π of KM which visit some empty position
(hence, by the previous claim, π is an initial and halting
computation-code) and satisfy the goodness requirement.

ϕM
def
= ∃x1.∃x2.G

∧
p∈AP

(p[x1]↔ p[x2])∧F
∧
p∈AP

¬p[x1]∧ψgood

where the HyperLTLC quantifier-free sub-formula ψgood is
defined in the following. Intuitively, when interpreted on the
Kripke structure KM of the previous claim, formula ϕM
asserts the existence of two traces π1 and π2 bounded to the
trace variables x1 and x2, respectively, such that (i) π1 and
π2 coincide (this is ensured by the first conjunct); (ii) π1 is
an initial and halting computation-code (this is ensured by the
previous claim and the second conjunct); (iii) π1 satisfies the
goodness requirement by means of the conjunct ψgood.

We now define the quantifier-free formula ψgood. Let
∆halt

def
= {δ ∈ ∆ | to(δ) = qhalt} be the set of transitions hav-

ing as a target location the halting location. In the definition of
ψgood, we crucially exploit the context modalities. Essentially,
for each position i ≥ 0 along π1 and π2 corresponding to the
initial position of a c-code for a transition δ /∈ ∆halt within a
configuration code wδ , we exploit:
• temporal modalities in the scope of the context modality
〈{x2}〉 for moving the current position along trace π2

(the trace bounded by x2) to the beginning of the c-code
of the configuration code w′ following wδ ,
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• and then we use the temporal modalities in the scope of
the global context {x1, x2} for synchronously ensuring
that for the c-codes associated to the consecutive con-
figuration codes wδ and w′, the equality, increment, and
decrement requirements are fulfilled.

Formally, the HyperLTLC quantifier-free formula ψgood is
defined as follows:

ψgood
def
= G

∧
δ∈∆\∆halt

∧
c∈{1,2}

[
(δ[x1] ∧ begc[x1]) −→

〈{x2}〉X
(
¬begc[x2] U

(
begc[x2]∧

〈{x1, x2}〉(ψ=(δ, c) ∧ ψinc(δ, c) ∧ ψdec(δ, c))
))]

where the sub-formulas ψ=(δ, c), ψinc(δ, c), and ψdec(δ, c)
capture the equality, increment, and decrement requirement,
respectively, and are defined as follows.

ψ=(δ, c)
def
= [c 6= c(δ) ∨ op(δ) = (zero, c)] −→

X[(c[x1] ∧ c[x2]) U (¬c[x1] ∧ ¬c[x2])]

ψinc(δ, c)
def
= op(δ) = (inc, c) −→

X[(c[x1] ∧ c[x2]) U (¬c[x1] ∧ c[x2] ∧ X¬c[x2])]

ψdec(δ, c)
def
= op(δ) = (dec, c) −→

X[(c[x1] ∧ c[x2]) U (c[x1] ∧ ¬c[x2] ∧ X¬c[x1])]

This finishes the proof.

B. Fragment of HyperLTLC with decidable model checking

By Theorem IV.1, model checking HyperLTLC is unde-
cidable even for formulas where F is the unique temporal
modality occurring in the scope of a non-global context op-
erator. This justifies the investigation of the fragment, we call
bounded HyperLTLC , consisting of the HyperLTLC formulas
where the unique temporal modality occurring in a non-
global context is the next modality X. For instance, for each
k ≥ 0, the formula 〈{x1}〉Xk(〈{x1, x2}〉G(p[x1] ↔ p[x2]))
is bounded while the formula 〈{x1}〉F(〈{x1, x2}〉G(p[x1] ↔
p[x2])) is not. Note that bounded HyperLTLC subsumes
HyperLTL and is able to express a restricted form of asyn-
chronicity by allowing to compare traces at different times-
tamps whose distances are bounded (a bound is given by
the nesting depth of next modalities in the formula). As
an example, the after-initialization synchronization require-
ment described after the definition of HyperLTLC can be
expressed by assuming that the lengths of the initialization
phases differ at most a given integer k. We conjecture that
bounded HyperLTLC is not more expressive than HyperLTL.
However, as a consequence of Theorem IV.2 below, for a fixed
quantifier alternation depth, bounded HyperLTLC is at least
singly exponentially more succinct than HyperLTL.

We show that model checking against bounded HyperLTLC
is decidable by a polynomial-time translation of bounded
HyperLTLC quantifier-free formulas ψ into equivalent (|ψ|+
1)-synchronous Büchi AAWA.

Proposition IV.2. Given a HyperLTLC quantifier-free formula
ψ with trace variables x1, . . . , xn, one can build in polynomial
time a Büchi nAAWAAψ such that L(Aψ) is the set of n-tuples
(π1, . . . , πn) of traces so that ({x1 7→ (π1, 0), . . . , x1 7→
(πn, 0)}, {x1, . . . , xn}) |= ψ. Moreover, Aψ is (|ψ| + 1)-
synchronous if ψ is in the bounded fragment of HyperLTLC .

Proof. By exploiting the release modality R (the dual of the
until modality), we can assume without loss of generality that
ψ is in negation normal form, so negation is applied only to
relativized atomic propositions. The construction of the Büchi
nAAWA Aψ is a generalization of the standard translation
of LTL formulas into equivalent standard Büchi alternating
word automata. In particular, the automaton Aψ keeps track
in its state of the sub-formula of ψ currently processed, of
the current context C, and of a counter modulo the cardinality
|C| of C. This counter is used for recording the directions
associated to the variables in C for which a move of one
position to the right has already been done in the current phase
of |C|-steps. By construction, whenever the automaton is in a
state associated with a sub-formula θ of ψ, then Aψ can move
only to states associated with θ or with strict sub-formulas of
θ. In particular, each path in a run of Aψ can be factorized
into a finite number ν1, . . . , νk of contiguous segments (with
νk possibly infinite) such that for each i ∈ [1, k], segment νi
is associated with a sub-formula θi of ψ and a context Ci
occurring in ψ, and the following holds, where the offset of a
position vector ℘ = (j1, . . . , jn) in Nn is the maximum over
the differences between pairs of components, i.e. max({j` −
j`′ | `, `′ ∈ [1, n]}):

• there is some occurrence of θi in ψ which is in the scope
of the context modality 〈Ci〉;

• if i < k, then θi+1 is a strict sub-formula of θi;
• if either Ci is global or the root modality of θi is not in
{U,R}, then the offset at each node along the segment
νi and at the first node of νi+1 if i < k is at most the
offset at the beginning of νi plus one.

Hence, if ψ is in the bounded fragment of HyperLTLC , the
offset at each node of a run is at most |ψ| + 1, i.e. Aψ is
(|ψ|+ 1)-synchronous and the result follows.

By exploiting Propositions II.1 and IV.2, we deduce that
for a fixed quantifier alternation depth d, model checking
against bounded HyperLTLC is (d+ 1)-EXPSPACE-complete,
hence singly exponentially harder than model checking against
HyperLTL. However, for a fixed formula, the complexity of
the problem is the same as for HyperLTL.

Theorem IV.2. Let d ∈ N. The (fair) model checking problem
against bounded HyperLTLC sentences of quantifier alterna-
tion depth d is (d + 1)-EXPSPACE-complete, and for a fixed
formula, it is (d − 1)-EXPSPACE-complete for d > 0 and
NLOGSPACE-complete otherwise.

Proof. The upper bounds directly follow from Propositions
II.1 and IV.2, while since bounded HyperLTLC subsumes
HyperLTL, the lower bound for a fixed formula of alternation
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depth d is inherited from the known one for HyperLTL [13].
Finally, for (d+ 1)-EXPSPACE-hardness, we adapt the reduc-
tion given in [13] for showing that for all integer constants
c > 1 and c′ ≥ 1, model checking against HyperLTL
sentences ϕ with quantifier alternation depth d requires space
at least Ω(Towerc(d, |ϕ|c

′
)). Here, for simplicity, we assume

that c = 2 and c′ = 1. The reduction in [13] for model
checking HyperLTL is based on building, for each n > 1,
an HyperLTL formula of size polynomial in n, with quantifier
alternation depth d over a singleton set AP = {p} of atomic
propositions. This formula is of the form ψd(x, y) for two free
trace variables x and y such that for all traces πx and πy (over
AP), {x 7→ (πx, 0), y 7→ (πy, 0)} |= ψd(x, y) if and only if
p occurs exactly once in πx (resp., πy) and p occurs on πy
exactly g(d+ 1, n) positions after p occurs on πx, where
• g(0, n) = Tower2(0, n) = n;
• g(d+ 1, n) = g(d, n) ∗ Tower2(d+ 1, n).

The construction is given by induction on d, and the formula
ψ0(x, y) for the base case d = 0 and a fixed n > 1 do not
use universal quantifiers (note that ψ0(x, y) requires that p[y]
occurs exactly n ∗ 2n positions after p[x] occurs). Thus, since
bounded HyperLTLC subsumes HyperLTL and g(2, n) = n ∗
2n∗22n

, in order to show that model checking against bounded
HyperLTLC formulas ϕ with quantifier alternation depth d
requires space at least Ω(Tower2(d + 1, |ϕ|)), it suffices to
show the following result.
Claim. Let AP = {p} and n > 1. One construct in time poly-
nomial in n a bounded HyperLTLC formula ψ(x, y) with two
free variables x and y and not containing universal quantifiers
(hence, the quantifier alternation depth is 0) such that for all
traces πx and πy , {x 7→ (πx, 0), y 7→ (πy, 0)} |= ψ(x, y) iff
• p occurs exactly once on πx (resp., πy);
• for each i ≥, p ∈ πx(i) iff p ∈ πy(i+ n ∗ 2n ∗ 22n

).

V. CONCLUSIONS

We have introduced in this paper two extensions of Hyper-
LTL to express asynchronous hyperproperties: HyperLTLS and
HyperLTLC . Even though the model-checking problems of
these logics are in general undecidable, we have identified for
each of them a decidable fragment that subsumes HyperLTL
and allows to express asynchronous properties of interest.

We plan to extend our work in many directions. First, we
intend to settle the question concerning the comparison of the
expressive power of HyperLTLS and HyperLTLC . Second, we
aim to understand the decidability border of model checking
syntactical fragments of the framework resulting by combining
HyperLTLS and HyperLTLC . In particular, the decidability
status of model checking against the fragment obtained by
merging simple HyperLTLS and bounded HyperLTLS is open.
Finally, other goals regard the extensions of the considered
logic to the branching-time setting and the investigation of
first-order and monadic second-order logics for the specifica-
tion of asynchronous hyperproperties in the linear-time and
branching-time settings.
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