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Abstract: Moving from the study of plasmonic materials with relaxation, in this work we propose a
fractional Abraham–Lorentz-like model of the complex permittivity of conductor media. This model
extends the Ciancio–Kluitenberg, based on the Mazur–de Groot non-equilibrium thermodynamics
theory (NET). The approach based on NET allows us to link the phenomenological function of
internal variables and electrodynamics variables for a large range of frequencies. This allows us to
closer reproduce experimental data for some key metals, such as Cu, Au and Ag. Particularly, our
fitting significantly improves those obtained by Rakic and coworkers and we were able to operate in
a larger range of energy values. Moreover, in this work we also provide a definition of a substantial
fractional derivative, and we extend the fractional model proposed by Flora et al.

Keywords: permittivity; non-equilibrium thermodynamics; fractional models; internal variables;
differential evolution algorithm

1. Introduction

The electromagnetic behavior of materials is characterized by the electric and magnetic
permittivities. The actual mechanisms that determine this behavior are due to the action
of the forces that interact on the system resulting in dissipative phenomena involving a
large number of microscopic units and a nontrivial dynamics of entropy production. As
such, these phenomena can be usefully described by non-equilibrium thermodynamics
(NET). In particular, the theoretical apparatus proposed by De Groot and Mazur [1,2] is
of particular interest when investigating dynamic irreversible phenomena. Remarkably,
they introduced the concept of internal variables. to model internal dissipative phenomena
at a macroscopic scale. In the framework of the NET [1–3], by extending the works [4–9],
Ciancio and Flora [10] proposed a fractional model of dielectric permittivity that is more
general than the key models of the literature.

As far as metals [11] are concerned, existing fractional models such as [12], although
providing useful insights, are limited by a short range of wavelengths and do not focus on
energy adsorption and scattering.

Given the above-illustrated framework, here we introduce a new fractional model of
relaxation for conductors. Our aim is to show that this new approach is able to perform
better than previous models inferred from quantum mechanics, such as [13]. Moreover,
this improvement is obtained both in a larger number of material and in larger ranges
of energies. We also aim at (i) improving the inference of the surface plasmonic waves;
(ii) improving the inference of the scattered fields by conductors. This work is organized as
follows: in Section 2, we summarize relevant research of interest; in Section 3, we infer the
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fractional substantial derivative, which we later utilize; in Section 4, we extend the fractional
dielectric model of [10]; in Section 5, we apply our framework to plasmonic materials with
relaxation; in Section 6, we propose a new model for media conductors, which employs
classical derivatives; in Section 7, we propose a fractional model for conductors; in Section 8,
we show our result and comparisons with other models. This work is ended by general
conclusions, illustrated in Section 9.

2. Survey of the Ciancio–Kluitenberg Theory of Dielectric Media with Relaxation

In order to set a framework for our study, in this section we briefly summarize
papers [4,5], where dielectric and magnetic relaxation phenomena are discussed in the
framework of the general theory of de Groot and Mazur NET. Interested readers with a more
mathematical background are recommended to read the books [1,2] and the long review [14]
on non-equilibrium thermodynamical phenomena, and books [15–17] on electromagnetic
theory and applications.

In those works, it was shown that a vector internal variable that influences the po-
larization gives rise to dielectric relaxation phenomena. If one linearizes this theory and
neglects cross-effects due to electric conduction, heat conduction and viscosity on electric
relaxation, the following relaxation equation may be obtained:

χ
(0)
(EP)E +

dE
dt

= χ
(0)
(PE)P + χ

(1)
(PE)

dP
dt

+ χ
(2)
(PE)

d2P
dt2 (1)

where χ
(0)
(EP), χ

(0)
(PE), χ

(1)
(PE) and χ

(2)
(PE) are algebraic functions of the coefficients occurring in

the phenomenological equations and in the equations of state. The relaxation equation
represents a balance between the changes of the electric field E and those of the electrical
polarization P, caused by irreversible processes that are associated to diffusion as well as
to electric and thermal conduction; the operator d/dt denotes the substantial derivative,
useful in the case where the mean is not immobile;

E(x, t) = [E1(x, t), E2(x, t), E3(x, t)]T ;

P(x, t) = [P1(x, t), P2(x, t), P3(x, t)]T ;

x = [x1, x2, x3]
T ;

χ
(0)
(EP) = a(1,1)

(P) L(1,1)
(P) ; (2)

χ
(0)
(PE) = a(0,0)

(P)

[
a(1,1)
(P) − a(0,0)

(P)

]
L(1,1)
(P) ; (3)

χ
(1)
(PE) = a(0,0)

(P)

[
1 + L(0,1)

(P) − L(1,0)
(P)

]
+ a(1,1)

(P)

[
L(0,0)
(P) L(1,1)

(P) − L(0,1)
(P) L(1,0)

(P)

]
; (4)

χ
(2)
(EP) = L(0,0)

(P) ; (5)

and where L(0,0)
(P) , L(0,1)

(P) , L(1,0)
(P) , L(1,1)

(P) are the phenomenological coefficients and a(0,0)
(P) , a(1,1)

(P)
are scalar constants.

Ciancio–Kluitenberg’s Ordinary Dielectric Model (CK-O)

In this subsection, we summarize the main features of the Ciancio–Kluitenberg’s
ordinary dielectric model (CK-O). Let D be the electrical induction and ε0 be the dielectric
constant in the void, replacing the constitutive equation of P:

P = D− ε0E (6)
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in the (1), with χ
(2)
PE 6= 0, we obtain:

ε0

 d2

dt2 E +
(1 + ε0)χ

(1)
PE

ε0χ
(2)
PE

d
dt

E +

[
χ
(0)
(EP) + χ

(0)
(PE)

]
ε0χ

(2)
PE

E

 =
d2

dt2 D +
χ
(1)
(PE)

χ
(2)
PE

d
dt

D +
χ
(0)
(PE)

χ
(2)
PE

D (7)

Setting:
χ
(0)
(ED)

= χ
(0)
(EP) + χ

(0)
(PE) (8)

χ
(1)
(ED)

= (1 + ε0)χ
(1)
(PE) (9)

χ
(0)
(DE) = χ

(0)
(PE) (10)

χ
(1)
(DE) = χ

(1)
(PE) (11)

χ(2) = χ
(2)
(PE) (12)

one obtains the CK-O’s model:

ε0χ(2) d2

dt2 E + χ
(1)
(ED)

d
dt

E + χ
(0)
(ED)

E = χ(2) d2

dt2 D + χ
(1)
(DE)

d
dt

D + χ
(0)
(DE)D (13)

3. Inference of the Fractional Substantial Derivative

In this section, we infer the fractional substantial derivative. This is a mathematical
tool that is useful for the determination of the distribution of vector fields in a fractional
space. We employ it in order to obtain an analytical formula for the computation of the
complex permittivity.

In the unidimensional case, the substantial derivative of a (scalar or vectorial) field
reads as follows:

d
dt

φ(x, t) = v∂xφ(x, t) + ∂tφ(x, t) (14)

There are many definitions of fractional derivative [18] (see Appendix A). We adopted
the Caputo derivative, since we believe that it well suits the problems related to high-
frequency electromagnetic fields. Indeed, the Caputo fractional derivative has a kernel
particularly fit to describe the surface propagation of polarons; a second and important
reason: the Caputo fractional derivative [19] is particularly fit to describe phenomena
with memory [20]. Fractional derivatives based on non-singular kernels would not be
appropriate. Apart from the above-mentioned reasons, we think (and results seems to
agree with our vision) that the use of the Caputo derivative in the model allows a better
phenomenological of the behavior of plasmonic media. In particular, the association to
the inter-band interplay electron–electron, electron–phonon and in the surface scattering
can be easily described without recurring to a full quantum description. Thus, the use of a
fractional approach allowed us to better fit experimental data. In the framework of Caputo
fractional calculus [19], the partial derivatives of a field reads as follows

C∂
(α)
t φ(x, t) =

1
Γ(1− α)

∫ t

0

∂τφ(x, τ)

(t− τ)α
dτ (15)

C∂
(α)
x φ(x, t) =

1
Γ(1− α)

∫ x

0

∂ξ φ(ξ, t)
(ξ − x)α

dξ (16)

where α is an order non-integer of the fractional derivative, Γ(1− α) is Euler Gamma
function, (t− τ)−α is the fractional temporal kernel and (ξ − x)−α is the fractional spatial
kernel. Spherical coordinates are useful from a computational point of view, for example,
to determine the differential equation of the scalar potential that solves the problem of the
field absorbed and scattered by a spherical particle of metal [21]. In this section, we report
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a new expression of substantial derivative that depends on the metric of fractional space
and on the position of a material point with respect to a system of spherical coordinates.

Let us consider a plane wave propagating in an isotropic space. In this case, the
fractional order depends only on the propagation direction found by the unitary vector ûr.
It is shown that if v = 0 then the substantial fractional derivative coincides with the partial
derivative relative to time.

3.1. Distance of a Material Point from the Origin

The concept of metric intervenes in geometry whenever it becomes necessary to
measure certain geometric entities that belong to a given space. For example, the distance
of a point from the origin, the area of a surface, etc... In a fractional space, we calculate the
distance of an object placed in point A from the origin of a reference system in spherical
coordinates, Figure 1, by means the fractional integral of Caputo.

Figure 1. Reference system in spherical coordinates: distance OA.

The Caputo integral of a f (r) function is given by:

Iα
r [ f (r)] =

1
Γ(α)

∫ r

0
f (r) (r− ξ)α−1 dξ

Using spherical coordinates, the distance of a point in the position r with respect to the
origin is given by:

Iα
r [1] =

1
Γ(α)

∫ r

0
(r− ξ)α−1 dξ (17)

The integral is immediate (17). Setting:

ζ = r− ξ

we have:
dζ = − dξ

ξ = 0⇒ ζ = r

ξ = x ⇒ ζ = 0
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therefore the (17) becomes:

Iα
r [1] = −

1
Γ(α)

∫ 0

r
ζα−1 dζ =

1
Γ(α)

∫ r

0
ζα−1 dζ (18)

i.e.,
Cl(α)(r) = Iα

r [1] =
rα

Γ(1 + α)
(19)

representing the distance, in fractional space, of point P in the position r with respect
to the origin of a reference system in spherical coordinates [22]. If α = 1 we observe:
Γ(n + 1) = n!, with n ∈ N , then: Γ(α + 1) = Γ(2) = 1.

3.2. The Substantial Fractional Derivative of Caputo

From the definition of a substantial ordinary derivative of a vector function V(r, t):

dV(r, t)
dt

= ∂t V(r, t) + ∂r V(r, t)
dr
dt

The fractional derivative of Caputo is:

CD
(α)

t [V(r, t)] =
1

Γ(1− α)

∫ t

0

dV(r, τ)

dτ
(t− τ)α

dτ (20)

Applying the equation to the expression of the ordinary substantive derivative, replacing
the ’classical’ partial derivative with the partial fractional derivative and taking into account
the metric yields:

CD
(α)

t [V(r, t)] = C∂
(α)

t V(r, t) + C∂
(α)

r V(r, t) CD
(α)

t

[
rα

Γ(1 + α)

]
(21)

where the fractional partial derivatives with respect to t and s are given, respectively,
from (15) and (16), with:

CD
(α)

t [rα] =
1

Γ(α)Γ(1− α)

∫ t

0

rα−1v(τ)
(t− τ)α

dτ (22)

From the (21) and (15), (16) and (22), the substantial fractional derivative is:

CD
(α)

t [V(r, t)] =
1

Γ(1− α)

∫ t

0

∂tV(r, τ)

(t− τ)α
dτ +

1
Γ(α)Γ(1− α)

∫ t

0

rα−1v(τ)
(t− τ)α

dτ
∫ r

0

∂ξ V(ξ, t)
(r− ξ)α

dξ (23)

In the particular case where v(τ) = const., we have:

r = v t

i.e.,:∫ t

0

rα−1v(τ)
(t− τ)α

dτ = vα tα−1
∫ t

0

1
(t− τ)α

dτ =
∫ t

0

rα−1v(τ)
(t− τ)α

dτ = vα tα−1 t1−α = vα

CD
(α)

t [V(r, t)] =
1

Γ(1− α)

∫ t

0

∂tV(r, τ)

(t− τ)α
dτ +

vα

Γ(α)Γ(1− α)

∫ r

0

∂ξ V(ξ, t)
(r− ξ)α

dξ (24)
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Finally, if v = 0 the substantial fractional derivative coincides with the partial fractional
derivative respect to t, expressed by the (15). In the case of v(τ) = const., the complete
Laplace transform of the (24) is:

LTr LTt

{
CD

(α)

t [V(r, t)]
}
=

(
sα +

(vk)α

Γ(α)

)
V̂(k, s) (25)

4. Extending the Ciancio–Kluitenberg’s Fractional Dielectric Model (CK-F)

The above illustrated Ciancio–Kluitenberg theory for dielectrics was developed by
using classical derivatives. Here, we aim at widening its scope by employing fractional
derivatives.

We assume that the electromagnetic field is represented by means of plane electromag-
netic waves propagating along x1. Putting:

A1 =
a1

a2
; A0 =

a0

a2
; C1 =

c1

c2
; C0 =

c0

c2

where:
a2 = ε0χ(2)

a1 = χ
(1)
(ED)

a0 = χ
(0)
(ED)

c2 = χ(2)

c1 = χ
(1)
(DE)

c0 = χ
(0)
(DE)

Substituting the ordinary substantial derivative in the equation with the fractional substan-
tial derivative (21) implied that the (13) becomes:

ε0

(
CD

(2α)

t E + A1
CD

(α)

t E + A0E
)
= CD

(2α)

t D + C1
CD

(α)

t D + C0D (26)

with: E = E(x1, t) and D = D(x1, t).
By moving the two-dimensional Laplace transformation to both sides, we obtain the

CK-F’s model in the Laplace domain (0, k, s):

ε0(ξ2(k, s) + A1ξ1(k, s) + A0))Ê(k, s) = (ξ2(k, s) + C1ξ1(k, s) + C0)D̂(k, s) (27)

where:

Ê(k, s) =
∫ +∞

0

∫ +∞

0
E(x1, t) exp(−kx1) exp(−st) dx1 dt (28)

D̂(k, s) =
∫ +∞

0

∫ +∞

0
D(x1, t) exp(−kx1) exp(−st) dx1 dt (29)

ξ2(k, s) = (s + vk)2α (30)

ξ1(k, s) = (s + vk)α (31)

with: s = <(s) + iω.
If the reference system is fixed, i.e., v = 0, the substantial derivative shall be equal to

the Eulerian derivative:
v = 0⇐⇒ CD

(α)

t (·) = C∂
(α)

t (·) (32)

and in the case <(s) = 0, one has:

ξ2(ω) = (iω)2α (33)
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ξ1(ω) = (iω)α (34)

Therefore Equation (27) becomes:

ε0

(
(iω)2α + A1(iω)α + A0)

)
E(k, ω) =

(
(iω)2α + C1(iω)α + C0

)
D(k, ω) (35)

According to the constitutive equation:

D(k, ω) = ε(ω; α)E(k, ω) (36)

by (35), one has:

ε(ω; α) = ε0
(iω)2α + A1(iω)α + A0

(iω)2α + C1(iω)α + C0
(37)

representing the fractional permittivity of order α.

5. Plasmonic Materials with Relaxation

As we have seen in Section 2, the De Groot and Mazur NET theory has been applied to
dielectric media with memory in [3,5,23,24]. This was performed through the link between
internal variables and phenomenological coefficients, and allowed us to derive an analytical
representation of electromagnetic properties and, in particular, the complex permittivity
and the wave vector of the electromagnetic field. The above theory, in agreement with the
second principle of thermodynamics, leads to a relaxation equation of the general form (see
formula (1.3) [25]):

χ
(0)
(EP)E + χ

(1)
(EP)

d E
dt

+ · · ·+ d n E
dt n = χ

(0)
(PE)P + χ

(1)
(PE)

d P
dt

+ · · ·+ χ
(n+1)
(PE)

d (n+1) P
dt (n+1)

. (38)

The above equation may be extended in the case of plasmonic materials, through internal
variables and associated phenomenological coefficients, if the following conditions are met:

• The electric field E trend depends only on the polarization P and the instantaneous
variations of P.

• The polarization induced by the incident electromagnetic field generates a radiant
field that opposes the inelastic behavior due to interactions near the surface of the
metal, at the microscopic level, to electron–electron, electron–phonon and electron–
surface scattering. This apparent field source produces a radiant reaction force Frad,
(see formula (11.80) in [16]) proportional to the instantaneous derivative of the third
order of polarization due to the concentration of free electrons near the surface:

Frad ∝
d3r
dt3

being:
P = Nqr

where N is the concentration of electrons and q the electric charge, it follows that:

Frad ∝
d3P
dt3

As a result, instantaneous changes of the polarization that are above the third order
can be overlooked.

The first condition implies that:

χ(1)
(EP)

d E
dt

+ χ(2)
(EP)

d2 E
dt2 + · · ·+ χ(n−1)

(EP)

dn−1 E
dtn−1 +

dn E
dtn = 0 (39)
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that replaced in (38) gives:

χ
(0)
(EP)E = χ

(0)
(PE)P + χ

(1)
(PE)

d P
dt

+ χ
(2)
(PE)

d 2 P
dt 2 + · · ·+ χ

(n+1)
(PE)

d (n+1) P
dt (n+1)

(40)

If the above conditions are met, the general relaxation Equation (38) in the case of perfectly
conductive materials becomes:

χ
(0)
(EP)E = χ

(0)
(PE)P + χ

(1)
(PE)

d P
dt

+ χ
(2)
(PE)

d 2 P
dt 2 + χ

(3)
(PE)

d 3 P
dt 3 (41)

6. A New Ordinary Derivatives-Based Model for Conductors

Thanks to the new concepts introduced in Section 5, we are able now to develop a new
model applicable to conductors and based on classical derivatives.

Transforming both members of the (41) with respect to time, since the E field moves
away from the conductor, we have:

P(k, ω) =
χ
(0)
(EP)(

χ
(0)
(PE) − χ

(2)
(PE) ω2

)
− i ω

(
χ
(1)
(PE) − χ

(3)
(PE) ω2

) E(k, ω) (42)

Applying Fourier transform to Equation (6) yields:

P(k, ω) = D(k, ω)− ε0 E(k, ω) = (ε − ε0) E(k, ω) (43)

from the comparison of (42) with the (43) we obtain the ordinary Ciancio–Kluitenberg
model that represents the complex relative permittivity of the conductive media:

ε = ε0


1−

χ
(0)
(EP)

ε0 χ
(2)
(PE)ω2 −

χ
(0)
(PE)

χ
(2)
(PE)

+ i ω

 χ
(1)
(PE)

χ
(2)
(PE)

−
χ
(3)
(PE)

χ
(2)
(PE)

ω2




(44)

If we impose:

ω2
p =

χ
(0)
(EP)

ε0 χ
(2)
(PE)

; ω2
0 =

χ
(0)
(PE)

χ
(2)
(PE)

; Γ =
χ
(1)
(PE)

χ
(2)
(PE)

;
Γs

me
=

χ
(3)
(PE)

χ
(2)
(PE)

(45)

then we obtain the Abraham–Lorentz model [26]

ε = ε0

1−
ω2

p(
ω2 −ω2

0
)
+ i ω

(
Γ − Γs

me
ω2
)
 (46)

where Γ is damping factor, ωp is plasmon pulsation, ω0 is pulsation of the natural oscillation,

me is mass of the electron and Γs =
q2

6 π ε0 c3 is the damping factor component due to the

radiation reaction, which depends on the square of the angular pulsation. This formulation
has previously been derived, in another way, by using the concept of radiation reaction
force, which contradicts Newton’s third principle as discussed in [16]. The theory of NET
overcomes this contradiction.
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If the coefficient χ
(3)
(PE) = 0, i.e., the radiation reaction is not considered, the Drude–

Lorentz model is obtained:

ε = ε0


1−

χ
(0)
(EP)

ε0 χ
(2)
(PE)ω2 −

χ
(0)
(PE)

χ
(2)
(PE)

+ i ω

 χ
(1)
(PE)

χ
(2)
(PE)




(47)

that is, for the first three relations of the (45):

ε = ε0

(
1−

ω2
p(

ω2 −ω2
0
)
+ i ω Γ

)
(48)

which represents the Drude–Lorentz model in the form obtained by another way in [17]. If
the natural oscillation pulsation (ω0) is negligible, we obtain the Drude model.

7. A Fractional Conductor Model

Here we change paradigm by employing fractional derivatives in our model.
Considering the fractional differential equation corresponding to the (41), substituting

the ordinary derivative for the fractional one, we obtain the fractional relaxation equation
for plasmonic materials:

χ
(0)
(EP)E = χ

(0)
(PE)P + χ

(1)
(PE)

CD
(α)

t P + χ
(2)
(PE)

CD
(2α)

t P + χ
(3)
(PE)

CD
(3α)

t P (49)

Applying the properties of the Laplace transform and keeping in mind that the E field moves
away from the conductor, we immediately obtain the Ciancio–Kluitenberg’s fractional
model expression of the relative complex permittivity to the media perfectly conductive:

ε = ε0 +

χ
(0)
(EP)

χ
(2)
(PE)

(iω)2α +
χ
(0)
(PE)

χ
(2)
(PE)

− (i ω)α

 χ
(1)
(PE)

χ
(2)
(PE)

+
χ
(3)
(PE)

χ
(2)
(PE)

(i ω)2α

 (50)

The electromagnetic behavior of conductors depends on quantum phenomena and atomic
interactions, such as those between electron–electron and electron–phonon, whose de-
scription is very complex. Applying the theory of the joint density of states, the resulting
models has more than 30 variable parameters, whose determination is difficult and labori-
ous (see [13]). An alternative semi-quantum theory, describing the behavior of conductor
materials, has been formulated in [27,28].

The fractional order of the derivative allows to determine the values of algebraic
functions that, within the fixed limits of the considered interval and taking into account the
increase in entropy, gives a good approximation of the relative complex permittivity. To
describe phenomena that occur on electronic scale (from 1015 @ 1018 Hz) the system must
be represented by a system of m fractional relaxation equations, where m depends on the
material. The first Equation (51) describes intra-band interaction while the remaining m− 1
equations describe inter-band transitions:

χ
(0,0)
(EP)E = χ

(1,0)
(PE)

CD
(α0)
t P + χ

(2,0)
(PE)

CD
(2α0)
t P (51)

χ
(0,1)
(EP)E = χ

(0,1)
(PE)P + χ

(1,1)
(PE)

CD
(α1)
t P + χ

(2,1)
(PE)

CD
(2α1)
t P + χ

(3,1)
(PE)

CD
(3α1)
t P (52)
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· · ·

χ
(0,q)
(EP)E = χ

(0,q)
(PE)P + χ

(1,q)
(PE)

CD
(αq)
t P + χ

(2,q)
(PE)

CD
(2αq)
t P + χ

(3,q)
(PE)

CD
(3αq)
t P (53)

· · ·

χ
(0,m−1)
(EP) E = χ

(0,m−1)
(PE) P + χ

(1,m−1)
(PE)

CD
(αm−1)
t P + χ

(2,m−1)
(PE)

CD
(2αm−1)
t P + χ

(3,m−1)
(PE)

CD
(3αm−1)
t P (54)

Applying the Fourier transform to the above equations, we easily obtain the complex
relative permittivity:

εAL
r (ω, T) = εAL

rIntraband
(ω, T) + εAL

rInterband
(ω, T) (55)

where:

εAL
rIntraband

(ω, T) = 1 +
f0 ω2

p

(iω)2α0 − (iω)α0(Γ̃0 + (iω)2α0 Γ0,s)
(56)

εAL
rInterband

(ω, T) =
m−1

∑
q=1

fq ω2
p

(iω)2αq + ω
2αq
q − (iω)αq

(
Γq + (iω)2αq Γq,s

) (57)

where ωq is the pulsation of the natural oscillation. Note that the phenomenological
coefficients associated with the state variables represent the physical quantities of a system
consisting of oscillators characterized by their own elastic mass proportional to the plasmon
pulsation ωp of the material, from a damping factor Γq and a resonant frequency ωq, with
q = 1, 2, ..., m− 1. The damping factor, Γ̃0, depends on electron–electron, electron–phonon
and surface scattering:

Γ̃0 = Γ0 + Γ(T)− Γ(T0) (58)

where T0 = 293.15 K is the room temperature. Taking:

α0 = 1

the term f0 ω2
p may be seen as the square of an effective plasmonic angular frequency

Ωp(T; γ):

Ω2
p(T; γ) =

f0 ω2
p

1 + 3γ(T − T0)
(59)

where γ volumetric expansion coefficient of the metal that for gold is equal to
14.2× 10−6 K−1.

The intra-band damping factor, Γ(T), is given by:

Γ(T) = Γe−e + Γe−ph + ΓSur f (60)

where:

Γe−e(T) =
π3 Φ ∆
12} EF

[
(KB T)2 +

(
}ω

2π

)2
]

(61)

for gold (Au): Φ = 0.55; ∆ = 0.77; EF = 5.5 [eV]; KB ≈ 1.381× 10−23 [J][T]−1, where EF is
Fermi’s level.

Γe−ph(T) = Γib

[
2
5
+

4T5

Θ5
D

∫ ΘD/T

0

(
z4

ez − 1

)
dz

]
(62)

for Au: Γib = 0.07 [eV]; ΘD = 170 [K]

ΓSur f =
A v f

Le f f
(63)
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with: Le f f =
4V
S

. The DL model is obtained by canceling the damping factor due to the
Abraham–Lorentz force:

εDL
r (ω, T) = 1 +

f0 ω2
p

(iω)2α0 − (iω)α0 Γ̃0
+

m−1

∑
q=1

fq ω2
p

(iω)2αq + ω
2αq
q − (i ω)αq Γq

(64)

8. Results

In this section, we validate our model. Namely, here we report the results of our
simulations related to the fractional models of Drude–Lorentz and Abraham–Lorentz and
we compare them with the ordinary model of Drude–Lorentz obtained by Rakic [29]. We
assume that the parameters vary slowly with temperature. Table 1 defines the nomenclature
of the model parameters:

Table 1. Nomenclature of the model parameters.

Parameters Description

αi Order fractional derivative non integer
fi Strength oscillator
ωp Plasmon pulsation
ωi Pulsation of the natural oscillation
Γi Damping factor
Γi,s Damping factor due to Abraham’s radiation reaction

The proposed Abraham–Lorentz fractional model (55), considered a system with
m = 6 equations, is characterized by 30 parameters:

θAL = [ fi, bi, Γi, Γi, s , αi ]
i = 5
i = 0

and ωp, since:
b0 = 0

The Drude–Lorentz fractional model, considering a system with m = 6 equations, is
characterized by 24 parameters:

θDL = [ fi, bi, Γi, αi ]
i = 5
i = 0

and ωp, having neglected the six parameters [Γi, s ]
i = 5
i = 0 and being:

b0 = 0

The parameters of the fractional models were obtained by fitting the experimental measure-
ments of permittivity reported in [30]. To fit these data, we used the differential evolution
algorithm (DE) [31–33]. The DE algorithm is an iterative method of stochastic nature
for the search of the possible global optimal solutions on large space of parameters. We
implemented the fitting procedure by using the Python language and its scientific library
scipy [34]. We have chosen the DE algorithms because of its ability to provide trustable
global minima, at variance of classical deterministic optimization algorithms (such as the
gradient method or Newton’s method) that are prone to stuck to local minima. Moreover,
many of the deterministic algorithms additionally require to provide the derivative of the
objective function. In [29,35] the SA (simulation annealing) algorithm has been used, which
requires many experimental values in contrast to the DE. To compare results, unlike the
original target function used:

χ2 =
M

∑
ν=1

(∣∣∣∣ εrR(ων)− ε̂rR(ων)

ε̂rR(ων)

∣∣∣∣+ ∣∣∣∣ εrI(ων)− ε̂rI(ων)

ε̂rI(ων)

∣∣∣∣)2

(65)
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in this work the target functions used are:

χ2
L2

=
1
M

M

∑
ν=1

√(
εrR(ων)− ε̂rR(ων)

ε̂rR(ων)

)2

+

(
εrI(ων)− ε̂rI(ων)

ε̂rI(ων)

)2

(66)

and

χ2
L1

=
1
M

M

∑
ν=1

∣∣∣∣ εrR(ων)− ε̂rR(ων)

ε̂rR(ων)

∣∣∣∣+ ∣∣∣∣ εrI(ων)− ε̂rI(ων)

ε̂rI(ων)

∣∣∣∣ (67)

where M is the number of experimental values related to the real part, ε̂rR(ων), and
imaginary ε̂rI(ων) of the complex permittivity in function of the angular frequency ω
(energy units: Electron volt). In particular, the following metals are considered: Cu, Ag
and Au [30]. With reference to the experimental data on Cu, applying the DE algorithm
and using the objective function given by Equation (66), in Tables 2 and 3, the values of
the parameters of the fractional model DL and AL are given. For the model DL, you have
a ωpDL

= 11.19 eV , whereas for model AL you have a ωpAL
= 10.38 eV. We observe

that the fractional order of the relaxation equation describing the intra-band component,
represented by the Drude model, and the fractional orders of the relaxation equations
related to the inter-band component clearly deviate from the unit. In the left panels of
Figure 2, the trends of the real and imaginary part of the complex permittivity, of the
DL models, of Rakic and of the measurements obtained by Weaver are compared; in the
left panels of the same figure, we compare the trends of the real and imaginary part of
complex permittivity, models of AL, Rakic and measurements obtained by Weaver. One can
observe how the AL model is better than the DL model. In Figure 3, the relative complex
permittivity errors in percent, compared to the corresponding experimental values, are
reported in the left panels (upper panel the real part and lower panel the imaginary part)
of the fractional models DL and Rakic; in the right panels of the same figure (upper panel
the real part and lower panel the imaginary part), we report those of the models AL and
Rakic. It can be observed that the trend of the relative percentage error of the DL fractional
model is 1% lower for both the real and the imaginary part. The real part of the relative
percentage error of the Rakic model is greater than 1% and around 7.5 eV is more than 50%.

Table 2. Parameters of the DL fractional model for copper.

i αi fi Γi ωi

0 1.004730 0.652235 0.022426 0.000000
1 2.149239 0.028789 0.305696 0.346706
2 2.292784 0.417507 0.626524 3.054485
3 1.159858 1.000000 2.563180 5.705190
4 3.096487 1.284043 1.626758 14.777767
5 0.851485 1.811348 22.872457 12.339008

Table 3. Parameters of the AL fractional model for copper.

i αi fi Γi ωi Γi,s

0 1.022008 0.810690 0.010000 0.000000 0.033524
1 2.270495 0.039793 0.299768 0.260940 0.094691
2 2.351334 0.701728 0.729006 3.434902 0.015184
3 1.333996 1.000000 1.585860 5.162526 0.118895
4 1.290008 1.484767 1.863114 9.787234 0.119947
5 0.789522 2.001560 23.401576 9.807689 0.001000
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Figure 2. Permittivity of the copper. Panels left: fractional model DL. Panels right: fractional model
AL. Black line: this work. Line with blue dashed: Rakic. Red dotted line: measures of J.H.Weaver.

Figure 3. Copper—relative percentage error: Panels left: fractional model DL. Panels right: fractional
model AL. Black line: this work. Line with blue dashed: Rakic.

With reference to the experimental data on Au, applying the DE algorithm and using
the objective function given by Equation (66), in Tables 4 and 5, the values of the parameters
of the fractional model DL and AL are given. For model DL, it yields ωpDL

= 7.25 eV,
whereas for model AL you have a ωpAL

= 8.00 eV. It is observed how the fractional
order of the relaxation equation described the intraband component, represented by the
Drude model, and the fractional orders of the relaxation equations related to the interband
component clearly deviate from the unit. In the left panels of Figure 4, we compare the the
real and imaginary part trends of the complex permittivity, of the DL models by Rakic and
the measurements obtained by Weaver; in the left panels of the same details are compared
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of the real and imaginary part trends of complex permittivity; the models of AL, Rakic and
measurements obtained by Weaver. One can observe how the AL model is better than the
DL model. In Figure 5, the relative complex permittivity errors in percent, compared to
the corresponding experimental values, are reported in the left panels (upper panel the
real part and lower panel the imaginary part) of the fractional models DL and Rakic; in the
right panels of the same figure (upper panel the real part and lower panel the imaginary
part) we report those of the models AL and Rakic. It can be observed that the trend of the
relative percentage error of the DL fractional model is 1% lower for both the real and the
imaginary part. The real part of the relative percentage error of the Rakic model is greater
than 1% and around 6 eV is more than 50%.

Table 4. Parameters of the DL fractional model for gold.

i αi fi Γi ωi

0 1.001592 0.458696 0.051510 0.000000
1 1.534741 0.010000 0.079482 0.287249
2 0.864357 0.050155 0.715589 0.625423
3 2.729516 0.034324 0.607210 0.308078
4 1.092999 0.375837 2.293299 4.410001
5 0.974247 0.661472 2.199032 14.695663

Table 5. Parameters of the AL fractional model for gold.

i αi fi Γi ωi Γi,s

0 0.978210 0.567509 0.054493 0.000000 0.000000× 100

1 1.921014 0.047362 0.240568 0.055343 9.999300× 10−7

2 1.314503 0.054634 0.690093 0.626431 0.000000× 100

3 2.928077 0.010000 0.418136 1.192927 9.950043× 10−7

4 1.241883 0.833099 0.604626 4.930995 9.993887× 10−7

5 1.045096 3.160085 1.057374 19.794528 0.000000× 100

Figure 4. Permittivity of the gold. Panels left: fractional model DL. Panels right: fractional model
AL. Black line: this work. Line with blue dashed: Rakic. Red dotted line: measures of J.H.Weaver.
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Figure 5. Gold—relative percentage error: Panels left: fractional model DL. Panels right: fractional
model AL. Black line: this work. Line with blue dashed: Rakic.

With reference to the experimental silver data, applying the DE algorithm and using
the objective function given by Equation (66), in Tables 6 and 7, the values of the parameters
of the fractional model DL and AL are given. For model DL, you have a ωpDL

= 11.99 eV,
whereas for model AL, you have a ωpAL

= 11.94 eV. It is observed how the fractional
order of the relaxation equation describing the intraband component, represented by
the Drude model, and the fractional orders of the relaxation equations related to the
interband component, clearly deviate from the unit. In the left panels of Figure 6 of the
real and imaginary part trends of the complex permittivity, the DL models, Rakic and the
measurements obtained by Weaver are compared; in the left panels of the same figure we
compare the real and imaginary part trends of complex permittivity, models of AL, Rakic
and measurements obtained by Weaver. One can observe how the AL model is better than
the DL model. In Figure 7, the relative complex permittivity errors in percent, compared
to the corresponding experimental values, are reported in the left panels (upper panel the
real part and lower panel the imaginary part) of the fractional models DL and Rakic; in the
right panels of the same figure (upper panel the real part and lower panel the imaginary
part), we report those of the models AL and Rakic. It can be observed that the trend of the
relative percentage error of the DL fractional model is 1% lower for both the real and the
imaginary part. The real part of the relative percentage error of the Rakic model is greater
than 1% and around 7.5 eV, 17 eV and 22.5 eV is more than 50%.

Table 6. Parameters of the DL fractional model for silver.

i αi fi Γi ωi

0 0.995369 0.552911 0.020029 0.000000
1 1.607594 0.034764 1.802148 0.354432
2 2.016662 0.084785 0.249750 4.494656
3 1.083126 0.081158 0.046101 5.170580
4 1.200856 0.597546 0.098720 8.022841
5 1.077689 2.352133 6.752901 18.795728
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Table 7. Parameters of the AL fractional model for silver.

i αi fi Γi ωi Γi,s

0 0.997125 0.564385 0.021641 0.000000 1.500000 ×10−4

1 1.900155 0.076945 3.370088 0.467490 3.068187 ×10−6

2 1.932523 0.113004 0.368817 1.942881 2.538806 ×10−6

3 1.085868 0.084649 0.017738 5.215629 1.000000 ×10−8

4 1.195181 0.561334 0.059148 8.017781 2.000000 ×10−5

5 1.088296 2.422089 5.996217 19.064887 1.000000 ×10−10

Figure 6. Permittivity of the silver. Panels left: fractional model DL. Panels right: fractional model
AL. Black line: this work. Line with blue dashed: Rakic. Red dotted line: measures of J.H.Weaver.

Overall, the fractional models (CK-F) of Drude–Lorentz (DL) and Abraham–Lorentz
(AL) are similar in energy values from tenths of electron volts to a few electron volt units,
with a better fitting of the AL model than the DL model. For low energy values, the Rakic
model condenses experimental data in a similar way to fractional models. For energy
values of more than 5 eV, the Rakic model deviates from the experimental values both for
the real part of permittivity, εR and the imaginary part, εI . As for the fractional models,
there is a better approximation of the AL model for the real part of permittivity than the DL
model, whereas for the imaginary part, the fitting deviates from the experimental values
without ever exceeding 2%; however, it should be noted that this deviation is justified by
the assumption that the temperature at increasing frequency does not vary significantly to
change the intra-band damping factor as foreseen in the previous section. The trend of the
percentage error of the CK-F model is lower than the Rakic model.
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Figure 7. Silver—relative percentage error: Panels left: fractional model DL. Panels right: fractional
model AL. Black line: this work. Line with blue dashed: Rakic.

9. Conclusions

Atoms are excited by high-frequency electromagnetic radiation. This results in a
non-equilibrium scenario naturally fit to be investigated by the theoretical apparatus of
de Groot and Mazur NET. An example in materials with relaxation is the well-known
Raman effect (also known as inelastic scattering), which can be described by NET tools,
which was one of our aims. Namely, in the first part of this work, we gave a theoretical
explanation of the links between the behavior of electromagnetic materials with NET. In
particular, we extend the Ciancio–Kluitenberg model [5] in the framework of fractional
calculus. In physics, a material is endowed with ‘memory’ if the output variable (e.g., strain,
polarization, etc.) does not only depend on the current physical status but also on previous
times. This is mathematically modeled by means of a convolution integral—the Caputo
fractional derivative—whose kernel can be read as a pulse response of the system; thus,
the fractional exponent can be considered as a measure of the memory of the material. For
dielectrics, this index is in the interval (0,1). In metals, the Caputo fractional derivative
represents a larger sensitivity to large frequencies (or, equivalently, energies). In particular,
we think that the intra- and inter-band transition at very high frequencies determine the
above-mentioned memory effect. Our model represents these complex phenomena via a
phenomenological model where multiple components (each with a distinct memory index)
are taken into the account.

After building the above-mentioned theoretical model, we also validated it, and
showed that our approach can be considered as an improvement of previous studies.

Namely, under the hypothesis of quasi-stationarity and superimposability of intra-
band and inter-band interaction, the proposed CK-F model is in good agreement with
experimental data on a frequency spectrum from infrared to ionizing radiation such as X-
rays, i.e., not only in the frequency range typical of mechanical vibrations and for electrically
insulating materials but also for plasmonic materials at electronic frequencies. The system
consists of a number of subsystems each characterized by a fractional differential equation
of relaxation whose overlap is the result of the interaction due to inter-band and intra-band
transitions of electrons.
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Appendix A. Classification of Fractional Derivatives

A number definitions of fractional derivative exist. An interesting classification of
FD has been performed by Tarasov in [18], where he considers: (A) the class of non-local
derivatives, which have an intrinsic fractional order; (B) the class of local FD, which are
amenable to transform of integer order derivatives. Examples of class (A) FDs are the
following FDs: Caputo [19], Riemann-Liouville [36], Letnikov [37], Sonin [38], Weyl [39],
Riesz [40], Erdelyi [41], Kober [42], etc. Examples of class (B) FDs are the following FDs:
the Caputo–Fabrizio [43,44], the conformable FD [45], the so-called “Alternative FD” [46],
the M-FD [47].

Appendix A.1. Some Nonlocal Fractional Derivatives

• Riemann–Liouville:

RL
aD

α
t [ f (t)] =

1
Γ(1− α)

d
d t

∫ t

a
(t− τ)−α f (τ) d τ (A1)

• Caputo:
C

aD
α
t [ f (t)] =

1
Γ(1− α)

∫ t

a
(t− τ)−α d f (τ)

d τ
d τ (A2)

• Grünwald–Letnikov:

GL Dt± [ f (t)] = lim
h→0+

{ 1
|h|

+∞

∑
k=0

(−1)k Γ(α + 1) f (t∓ kh)
Γ(k + 1) Γ(α− k + 1)

} (A3)

Appendix A.2. Some Local Fractional Derivatives

• Conformable:

Tα ( f )(t) = lim
h→0

f (t + h t1−α)

h
(A4)

• Katugampola or alternative:

Dα ( f )(t) = lim
h→0

f (t exp(ht)−α)− f (t)
h

(A5)

• Caputo–Fabrizio:

CF Dα
t [ f (t)] =

M(α)

1− α

∫ t

a
exp

[
− α

1− α
(t− τ)

]
d f (τ)

d τ
d τ (A6)
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