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Abstract
Designing locomotive mechanisms for micro-scale robotic systems could enable new approaches to tackling problems such
as transporting cargos, or self-assembling into pre-programmed architectures. Morphological factors often play a crucial role
in determining the behaviour of micro-systems, yet understanding how to design these aspects optimally is a challenge. This
paper explores how the morphology of a multi-cellular micro-robotic agent can be optimised for reliable locomotion using
artificial evolution in a stochastic environment. We begin by establishing the theoretical mechanisms that would allow for
collective locomotion to emerge from contractile actuations in multiple connected cells. These principles are used to develop
a Cellular Potts model, in order to explore the locomotive performance of morphologies in simulation. Evolved morphologies
yield significantly better performance in terms of the reliability of the travel direction and the distance covered, compared to
random morphologies. Finally, we demonstrate that patterns in evolved morphologies are robust to small imperfections and
generalise well to larger morphologies.

Keywords Morphology · Artificial evolution · Micro-scale · Locomotion

1 Introduction

Locomotion is a crucial ability for micro-scale systems, par-
ticularly in applications that involve the transportation of
cargos, or self-assembling in pre-programmed architectures.
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The ability to produce micro-scale systems composed of
multi-cellular units [1, 2], and functionalise them [3, 4], have
seen several advancements in recent years. Breakthroughs
in the development and understanding of contractile proto-
cells and light-based testing environments bring the promise
of light-controllable, mobile micro-robots closer to reality,
[5–8]. Yet, understanding how to design locomotion from
multi-cellular morphologies is still an open question. Mor-
phology in this context refers to the specific form or structure
of a robot or group of robots [9, 10]. Artificial evolution has
been used to search for optimal robot morphologies in many
studies [11, 12].

Exploring the potential abilities of reactive, micro-scale
systems in simulation is a vital first step towards eventu-
ally deploying new micro-robots in real-world applications.
In this paper, we consider a system of micro-scale cellular
units that can expand and contract in response to a light-
based stimulus, as shown in Fig. 1. This is inspired primarily
by the works of Gobbo et al. [5] and Downs et al. [4],
where similar forms of actuation are presented with proto-
cells and hydrogel structures respectively. Using light as a
control medium is advantageous for independently and pre-
cisely targetingmicro-scale agents [13]. This can be achieved
with open-source technology such as the Dynamic Optical
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Fig. 1 (a) Conceptual illustration of micro-scale, light-reactive, con-
tractile cellular units – different cells (yellow / purple) expand when
exposed to different wavelengths of light. (b) By using artificial evolu-
tion in a stochastic simulator, we seek to optimise the morphology of a
connected group of cells to allow locomotion in a reliable direction in
a stochastic environment

Micro Environment (DOME) [7], which offers closed-loop
control of projected light patterns for illuminating and imag-
ing micro-scale systems.

The ability to control multiple agents reliably and inde-
pendently in a given environment is well studied at the macro
scale [14, 15]. Having access to multiple, independently con-
trollable robots can help to parallelise tasks, or open up new
types of cooperative and higher order behaviours. This can
be of great benefit for application scenarios such as simul-
taneous capture of multiple target cargos [16]. However,
transferring the vast array of abilities that multi-robot plat-
forms are capable of to real systems at the micro-scale is
a challenge. As advancements are made in developing new
types of reactive micro materials [5], it is of interest to inves-
tigate their potential for instigatingmulti-robotic behaviours.

As a first step, mobile morphologies for a collection of
contractile cells were learned in simulation using artificial
evolution, as presented by Uppington et al. [17] (© 2022
IEEE. Reprinted, with permission, from M. Uppington, P.
Gobbo, S. Hauert and H. Hauser). Here, we expand further
on this work by also showing how patterns in our learned
morphologies can be generalised to create newmorphologies
with desired directions of locomotion and increased reliabil-
ity (see Section 4.3).We also investigate how the size of these
morphologies, in terms of the number of constituent proto-
cells, impacts the locomotive performance (see Section 4.3),
and we elaborate further on the mathematical premise of the
actuation model (see Section 3.1).

In the next section we summarise some previous works
related to how locomotion has been achieved with micro-
robots, how their morphologies can be optimised and the
available methods for simulating them. We then begin Sec-

tion 3 by considering theminimal requirements for achieving
locomotion in light-activated contractile cells. These prin-
ciples are translated into a Cellular Potts model using
CompuCell3D as a simulator for micro-scale cellular units
in 2 dimensions. By using artificial evolution, we search
for optimisedmorphologies that display reliable locomotion.
The performance metrics and hyper-parameters used for our
artificial evolution trials are outlined in Sections 3.2 and 3.3
respectively. In Section 4.1 we first show the behaviour of
the simple, two-cell morphology we describe in Section 3.1,
for comparison with the behaviours of evolved morpholo-
gies, which are presented in Section 4.2. We investigate how
patterns in the evolved morphologies can be generalised to
design newmorphologieswith predictable directions of loco-
motion, and explore how well these morphologies scale to
larger numbers of protocells in Section 4.3.We concludewith
a discussion of our results and an outline of potential avenues
for future research.

2 Related work

Designing locomotive micro-scale robots with optimal mor-
phologies has been tackled in many ways and in a variety
of contexts. We begin in Section 2.1 by broadly exploring
howmicro-scale locomotion has been implemented in previ-
ous studies. We discuss the unique advantages of light-based
control, as well as some limitations of existing systems that
use thismethod. Then, Section 2.2 explores the application of
artificial evolution to optimising morphologies. Finally, we
consider some potential simulation platforms with which to
design and implement our virtual experiments in Section 2.3.

2.1 Micro-robot locomotion

Locomotion has been achieved in micro-robots through a
variety of different methods. For example, Downs et al. pre-
sented amulti-responsive hydrogel structure that exemplifies
several stimuli being used together, including light, tempera-
ture and magnetism [4]. In general, magnetic and light-based
control are used, either separately or jointly, by the major-
ity of micro-robotic systems [18]. Magnetism has been used
to design many micro-scale systems whose movements can
be controlled with a high degree of precision [19–21]. How-
ever, a drawback of using magnetism for locomotion is that
a single control signal is applied globally via a magnetic
field, which limits the extent to which multiple agents can
be controlled independently. Some studies such as Xie et al.
have demonstrated that magnetism can be used to operate a
swarm of many micro-robots in tandem, but not with locally
independent behaviours [22].

In contrast, light, when used as a control medium, can
facilitate many independent signals being directed towards
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many different agents.Miskin et al. demonstrated light-based
control withmicro-swarming robots that locomotewhen top-
mounted photo-voltaic receptors are targetedwith light lasers
[13]. As a result, due to the high resolution that is achievable
with laser targeting, each individualmicro-robot in the swarm
can be controlled independently. However as lasers only
actuate either the front or back pairs of legs on each micro-
robot, locomotion is somewhat limited to moving forwards
or backwards. Lv et al. use light to manipulate individual
micro-particles, or aggregate large groups of micro-particles
into a local area with Light Activated Marangoni Tweezers
(LAMT), although only in the presence of a photosurfactant
solution [23]. Zeng et al. also use light to control a micro-
walker, though the locomotive behaviours are also partly
coupled with the surface type of the environement [24].

2.2 Optimisation of morphologies

With an ever increasing arsenal of materials to functionalise
micro-scale systems, the task of optimising their design for a
particular function, such as locomotion, is challenging. Even
with just a small set of building blocks, the range of possible
combinations to construct morphologies makes it difficult to
search efficiently for optimal solutions. One solution is arti-
ficial evolution, which is a machine learning technique that
has a long history of being applied to optimising the design
and behaviour of robots [25]. Mautner and Belew showed
how robot morphology could be evolved in parallel with a
controller in simulation [11]. Since then, a similar concept
of simultaneously evolving morphology and controller has
been applied to physical robots [12].

One challenge is being able to bridge the reality gap
between morphologies evolved in simulation and morpholo-
gies produced in the real world. In the microscopic domain,
Kriegman et al. presented a solution for a scalable pro-
cess for designing and producingmobile morphologies using
artificial evolution [2]. Morphologies were optimised for
locomotion by measuring performance in terms of total dis-
placement achieved in simulation during a given time.Whilst
this does produce mobile micro-robots, called Xenobots,
their trajectories cannot be controlled by external factors
(such as light). Kriegman et al. also note the importance
of testing high performing (simulation) morphologies in the
presence of noise, in order to filter out which simulated mor-
phologies are likely to perform well in the real world [2].

2.3 Cellular simulators

The choice of simulation environment has a significant
impact on how systems can be represented and, therefore,
how they can be optimised with artificial evolution. The
BSim simulator, described by Gorochowski et al., allows
collective behaviours of agent-based, micro-scale systems

to be modelled in complex environments, though it is specif-
ically designed to model bacterial cells [26]. Kriegman et
al. defined morphologies for Xenobots in simulation using a
voxel grid [2]. Voxel grids allow virtual organisms to be con-
structed out of 3-dimensional arrays of customisable, cubic
building blocks [27]. While voxel grids are an intuitive and
effective strategy, other simulation environments are better
tailored to modelling micro-scale systems.

Cickovski et al. introduced CompuCell3D as a flexible
simulation environment for micro-scale, cellular systems
[28]. The underlying model is Cellular Potts; a powerful,
generalised framework for simulating micro-scale systems
using a pixel grid [29, 30]. Cellular Potts models are intrin-
sically stochastic meaning that the need to introduce noise,
as highlighted by Kriegman et al., is satisfied naturally. In
addition, CompuCell3D provides a powerful Python based
interface, with built-in optimisation tools to manage CPU
usage and modular run-time functionalities.

These are desirable features for balancing computational
speed versus complexity when running demanding artificial
evolution algorithms and, therefore, was chosen as our sim-
ulation environment. The next section describes how our
protocell-like contractile cells were simulated using Com-
puCell3D.

3 Methods

3.1 Contratile cell model

We use CompuCell3D to define a Cellular Potts model of a
connected group of generalised cells. In Cellular Potts mod-
els, cells are represented by a region of pixels within a grid
and the simulation is progressed incrementally in Monte
Carlo Steps (MCS). In each MCS, each pixel in the grid
attempts to copy their value to a nearby pixel with some prob-
ability of success. The core principle behind Cellular Potts
models is that interactions between entities can be defined
in terms of energy equations that determine the probability
of successful pixel copies [28–30]. These energy equations
most commonly take the form of a quadratic equation,

Ei (vi ) = Mi (vi − Ci )
2 , (1)

where vi is some variable that is measured in the system
(such as the volume of a given cell) and Ei (vi ) is the energy
term related to this variable. The parameter Ci represents the
equilibrium value that the variable vi is driven towards, and
the coefficient Mi determines how quickly energy is accu-
mulated as vi deviates from its equilibrium value. In general,
pixel copies that act to reduce the total energy in the system,∑

i Ei (vi ), have a higher probability of success. By adjusting
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the values of Mi and Ci in Eq. 1 for certain variables over
time, dynamic and reactive behaviours can be simulated.

Our model is inspired by protocells introduced by Gobbo
et al. [5], that have since been developed further into
protocellular materials suspended in water (see Galanti et
al. [6]). In this paper, we use “cell” to refer to a contractile
protocellular agent, rather than a cell in a biological context.
We assume that each cell is able to increase its radius up to its
maximum when exposed to a stimulating control signal. So,
we introduce an energy equation to control the length of a
cell in its primary (longest) axis and secondary (orthogonal to
primary) axis.We take a hypothetical 10μm wide protocell at
room temperature as inspiration for the width of a cell when
unstimulated, as introduced by Gobbo et al. [5]. The stochas-
ticity in Cellular Potts models will mean that the exact shape
of a given cell will change slightly with each simulation step.
To ensure a cell does not deviate unrealistically from roughly
uniform shapes (circular in 2D), additional energy equations
are included to govern the perimeter and surface area of the
cell as a function of its radius. To ensure neighbouring cells
remain connected, the ideal distance between their centres
of mass is defined as the sum of their radii (see Eq. 4 further
down). Note that these connections, referred to as focal point
plasticity links, are loose, meaning that cells can freely rotate
about other cells, unless otherwise constrained. In addition,
to prevent cells from being absorbed into each other, energy
equations are introduced to apply a small repulsive force
between pixels belonging to different cells. The balance of
these interactions allows cells to stay physically connected at
their surface, whilst each maintaining integrity and roughly
uniform shapes.

To understand how a system consisting of these types of
cellular units could locomote, we start by considering the
simplest possible case, i.e. a connected group of just two
cells. If each cell were assumed to be perfectly spherical and
surrounded by a viscous, stationary fluid, then their dynamics
can be modelled using Stoke’s law [31],

F(t) = 6πμr(t)
dx(t)

dt
, (2)

where F is the force experienced by the cell,μ is the dynamic
viscosity of the fluid, r(t) is the radius of the cell and x(t) is
the position of the cell relative to the fluid. For two cells, at
positions x1(t) and x2(t), with corresponding radii r1(t) and
r2(t), their one-dimensional motion can be described using
Eq. 2 as,

6πμr1(t)
dx1(t)

dt
+ 6πμr2(t)

dx2(t)

dt
= 0 . (3)

Here, it is assumed that the cells are not influenced by any
external forces, so the resultant is 0. Due to symmetry, it is
assumed that motion occurs only along the one dimensional

axis passing through the centres of both cells. For two agents
that are connected to each other, an additional constraint can
be applied to ensure their surfaces stay in contact,

|x2(t) − x1(t)| = r1(t) + r2(t). (4)

Note that cells have no direct control over their position;
a cell responds to a control signal by varying its radius only
(see Fig. 1). So, isolated agents that undergo isotopic expan-
sions and contractions would not be expected to locomote.
In order to move, cells will need to exploit the local interac-
tions that arise from their physical connection as they expand
and contract. The trajectory traced by the morphology’s geo-
metric centre, xC(t) = 1

G

∑G
i=1 xi (t), is indicative of it’s

locomotive potential. Here, G = 2 for our example with two
cells. Using this definition, the velocity of the morphology
can be found by solving Eqs. 3 and 4. Hence the velocity of
our two-cell morphology is

dxC(t)

dt
= 1

2

r1(t) − r2(t)

r1(t) + r2(t)

(
dr1(t)

dt
+ dr2(t)

dt

)

. (5)

It is assumed here, without loss of generality, that cell 2
is positioned to the right of cell 1, and that velocities are
measured as being positive to the right. Eq. 5 shows that two
connected cells cannot locomote if their radii remain equal,
even when expanding or contracting, ∀t : r1(t) = r2(t) ⇒
dxC(t)
dt = 0. Eq. 5 also shows no motion can be expected if

one cell is expanding at the same rate as the other cell is
contracting, ∀t : dr1(t)

dt = − dr2(t)
dt ⇒ dxC(t)

t = 0. We assume
that expansions and contractions are reversible and occur at
the same rate. Therefore, in order to locomote, it is necessary
that cells do not maintain equal radii and that expansions and
contractions do not always occur simultaneously.

Figure 2 shows an example of a simple pair of asyn-
chronous control signals that minimise the time that cells
spend with equal radius whilst also avoiding simultaneous
expansions and contractions. In a practical implementation
with protocells, these control signals could be transmitted
with different wavelengths of light (compare Fig. 1). Alter-
natively, different cells could be individually stimulated with
the same wavelength of light at different times, which is pos-
sible, for example, with the DOME technology [7].

Here, a morphology that is optimised for locomotion
should exploit the actuation shown inFig. 2 to be able to travel
the greatest possible distance. However, to maximise trans-
ferability to the real-world, morphologies should also be able
to overcome the effects of noise - their locomotion should be
repeatable. To evaluate the performance ofmorphologies, we
define a fitness function for reliable locomotion in the next
section.
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3.2 Performancemetric

The goal of optimisation is to find morphologies that can
locomote the greatest distance most reliably. Therefore, the
locomotive performance of a morphology can be quantified
using the displacement of themorphology’s geometric centre
after a certain number of simulation steps. To drive locomo-
tion, the radii of each cell in a given morphology is varied
according to their type, as shown in Fig. 2 for 400 MCS;
this will correspond to one cycle of actuation. By simulat-
ing a morphology for T actuation cycles, we can obtain a
vector describing the final position of the morphology’s geo-
metric centre, with respect to it’s initial position, p. The
direction of the morphology’s motion is indicated by the
angle that this final position vector makes with the horizontal
axis, θ . Given the stochastic nature of Cellular Potts models,
tracking the average performance not just over multiple actu-
ation cycles, but also over multiple independent simulations
provides a more valuable description of the morphology’s
expected behaviour. So, running K simulations of a given
morphology provides us with a set of independently sam-
pled displacement vectors, p1, ...,pK with corresponding
directions θ1, ..., θK . To optimise only over the total distance
covered we could simply take the averagemagnitude of these
vectors, i.e., D = 1

K

∑K
j=1 |p j |. However, here in order to

encourage morphologies also to travel in a reliable direction,
we want to minimise the variation over the direction (i.e., the
spread / deviation in θ ). Therefore, we define the following

Fig. 2 Graph showing asynchronous control signals with a period of
400 simulation steps (MCS). The early (yellow, lower) and late (purple,
middle) signals cause cells radii to oscillate between a normalised min-
imum value, and a maximum value. Passive cells (turquoise, upper)
are not stimulated. A cell’s maximum radius is based on the scal-
ing coefficient that would double the volume of a spherical cell. Thus
max(ri (t))
min(ri (t))

= 2
1
3 ≈ 1.26 (not shown to scale)

fitness function,

F = 1

T

∣
∣
∣
∣
∣
∣

K∑

j=1

p j

K

∣
∣
∣
∣
∣
∣

. (6)

We divide by T to average over the number of actua-
tion cycles that morphologies are simulated for. By taking
the magnitude of the averaged vector (instead of the average
of the vector magnitudes), morphologies are penalised for
travelling in random directions, but rewarded for travelling
further in similar directions in each run. Note that this fitness
function is bounded by the average distance covered, F ≤ D

T ,

since
∣
∣
∣
∑K

j=1 p j

∣
∣
∣ ≤ ∑K

j=1 |p j | via the triangle inequality.

This maximum limit is approached as the standard deviation

in travel directions σ =
√

1
K

∑K
j=1(θ j − θ̄ )2 approaches

zero, where θ̄ = 1
K

∑K
j=1 θ j is the average direction. Thus,

higher performing morphologies are identified as those that
travel larger distances on average and have smaller devia-
tions in travel directions. With a fitness function defined, we
outline the setup for our evolutionary algorithm in the next
section.

3.3 Evolutionary setup

To explore a large space of possible morphologies, analytical
methods quickly become infeasible. For a given arrangement
of G cells that can be in one of S states, the number of pos-
sible morphologies scales with SG . Whilst intuition might
suggest morphologies that could perform well, having a sys-
tematic approach provides a tool to explore a wider range of
morphologies. However, simply using exhaustive search to
find optimal morphologies within such a vast set of possi-
ble solutions is not feasible either, due to being prohibitively
time-consuming. Artificial evolution provides a solution, by
starting with a batch of randommorphologies, called the ini-
tial population or first generation. These morphologies are
evaluated using the performancemetric defined inSection 3.2
(see Eq. 6). This produces a single numerical value for each
morphology, allowing them to be ranked from best (highest
value) to worst (lowest value). A new generation can then be
created by replacing poorly performing morphologies with
random combinations of the better performingmorphologies
(crossover), sometimes with random changes (mutations).
The best morphologies from one generation are carried over
to the next generation unaltered. By iteratively repeating this
process for subsequent generations the performance can be
gradually increased over multiple generations.

To establish the search space of morphologies, we arrange
the initial positions of cells into a 5 × 5 Cartesian formation,
as shown in Fig. 3. Each position either is occupied by a cell
that expandswhen stimulated by one of the two active control
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Fig. 3 Diagram showing howa randommorphologywith a 5 × 5Carte-
sian grid structure can be represented as a genome of length G = 25.
First, each row of cells is listed in order, starting from the top, moving
down the grid (a). Each cell state in the ordered list is then represented
with an index (b): ‘E’ = early actuating cell (yellow), ‘L’ = late actuating
cell (purple), ‘P’ = passive cell (turquoise), and ‘N’ = no cell (white)

signals described in Fig. 2, is occupied by a passive cell that
does not expand, or does not contain a cell. By considering
‘no cell’ as a fourth cell state, the size of the search space
is defined by S = 4 and G = 25. This leads to SG = 425

possible morphologies. Figure 3 explains how morphologies
are encoded by listing rows of cell states from top to bottom.
This allows the morphologies in the 5 × 5 Cartesian format
to be uniquely expressed as genomes of length G = 25.

To generate an initial population of morphologies for
the evolutionary algorithm, 32 randomly generated genomes
were created. By experimenting with different values for K
and T , we found that simulating for T = 10 actuation cycles,
repeated K = 4 times, offered an appropriate balance of
reliability in the fitness score verses simulation run time dur-
ing evolution. The performance of a genome was calculated
as a function of the sampled vectors collected from these
repeated simulations according to Eq. 6. When progressing
from one generation to the next, we selected the top 6 best
performing genomes to survive. The worst 13 genomes were
overwritten with new randomised sequences of cell states.
The remaining 13 genomes were replaced with combina-
tions of parent genome pairs (selected from the best 6) using
uniform crossover. To analyse the performance of specific
morphologies in more detail after evolution, we simulated
morphologies for T = 50 actuation cycles, over K = 10
independent runs.

In the next section, we evaluate the performance of our
simple two-cell morphology and the morphologies obtained
from artificial evolution trials. to 6 physically neighbouring
agents in a hexagonal formation, compared to just 4 with a
cartesian. Due to the stochasticity of the simulation, the same
cartesian morphology may settle in to different hexagonal
formations on subsequent repeats. Hence, in order to increase

the stability of the agents initial states, the cartesian grid is
rearranged to match the hexagonal lattice seen in the later
stages of simulation.

4 Results

All experimental results were collected by running our sim-
ulator on an Acer Aspire E15 laptop with a 4-core, Intel
I5-7200U CPU and 8GB DDR4 memory for periods of up
to 6 hours; implemented using CompuCell3D v4.2.1-v4.2.4
and Python 3.

4.1 Two-cell morphology

To establish a benchmark for locomotive performance, we
first simulate the two-cell morphology described in section
Section 3.1. Figure 4 shows a sample of displacement vectors
as well as some typical trajectories travelled by the two-cell
morphology (morphology is depicted in top, left corner).
While the morphology does achieve locomotion to some
degree, the direction of travel appears to be highly unpre-
dictable with a large standard deviation, σ = 79.0◦. The
average distance travelled, D = 6.8μm, also seems relatively
small, compared to the diameter of a single unstimulated
cell (10μm). The chaotic nature of the morphology’s typical
trajectories provides some context for these measurements,
suggesting that the two-cell morphology is poorly suited to

Fig. 4 Sampled displacement vectors of the geometric centre of a
two-cell morphology – one early actuating cell (yellow) and one late
actuating cell (purple). Vectors were measured after T = 50 actua-
tion cycles, in K = 10 independent runs. Three typical full trajectories
of the morphology’s geometric centre are shown. The other runs are
shown only by their resulting performance vectors, p j . The black scale
bar shows the diameter of one unstimulated cell. As one can see, the
two-cell model travels very little and with an inconsistent direction. The
average distance covered was D = 6.8μm, and the standard deviation
in travel direction was σ = 79.0◦
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overcoming the inherent noise in the stochastic simulator.We
therefore extend to more complex (G = 25) morphologies
to produce more reliable locomotion in the next subsection.

4.2 Evolvedmorphologies

Following the evolution protocol outlined in Section 3.3 it
was found that 50 generations was sufficient to allow fitness
values to increase significantly. The top 20% of recorded
fitness values in a sample of three typical runs of artificial evo-
lution is shown in Fig. 5. The best performing genomes show
rapid increase in fitness values for early generations with a
plateaubeing reachedby around30generations.At this point,
evolved morphologies seem to have achieved roughly a 3 to
4 fold increase in fitness score, compared to the initial pop-
ulation of random morphologies. This indicates that about
50 generations is sufficient to allow the artificial evolution
algorithm to converge.

Figures 6, 7 and 8 show the highest performing evolved
morphologies from three independent evolution trials. In
general, the trajectories of the evolved morphologies are able
to travel farther than the two-cell morphology. The average
distances covered by the evolved morphologies shown range
between 21.7μm ≤ D ≤ 36.1μm. Given that the resting
height / width of the morphologies are equal to 5× 10μm =
50μm, this equates to between 43.4% − 72.2% of the mor-
phology’s body length. Moreover, the measured standard
deviation in travel direction is significantly lower for the
evolvedmorphologies, ranging between 30.1◦ ≥ σ ≥ 24.2◦.
This demonstrates that the evolved morphologies are able to
travel more consistently in a predictable direction.

Fig. 5 Graph showing the range (vertical bars) and average of the top
20% of recorded fitness values per generation for 3 artificial evolution
trials. In each generation, each genome was simulated for T = 10
actuation cycles, over K = 4 independent runs. Fitness was calculated
according to Eq. 6

Fig. 6 Sampled displacement vectors of the geometric centre of an
evolved morphology (see bottom right) from independent trial 1. Nota-
tion and simulation parameters are as described in Fig. 4

A common feature that has been seen in each of the
high performing evolvedmorphologies is the relatively small
number of ‘no cell’ and passive cell types, compared to either
of the two active cell types. Figure 9 shows how the distribu-
tion of cell states in the 6 highest performing morphologies
changes over the course of a typical artificial evolution trial.
Again, a steady state seems to be reached after roughly 30
generations, corresponding to the formation of a plateau in
fitness values (see Fig. 5) at around the same point. Simi-
lar trends were consistently found in multiple independent
evolution trials, each with different, random starting config-
urations. This suggests that an evolutionary advantage has
been found in increasing the proportion of active cells in a
given morphology. Another observation is that active cells of
a given type seem to cluster together with other cells of the

Fig. 7 Sampled displacement vectors of the geometric centre of an
evolvedmorphology (see bottom left) from independent trial 2.Notation
and simulation parameters are as described in Fig. 4
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Fig. 8 Sampled displacement vectors of the geometric centre of an
evolved morphology (see top left) from independent trial 3. Notation
and simulation parameters are as described in Fig. 4

same type. Furthermore, the late actuating cells (purple) seem
to cluster towards the side of the morphology that faces the
average direction of travel. In the next subsection, we explore
how these seemingly general patterns can be exploited to
create new, hand-craftedmorphologieswith predictable loco-
motive behaviours.

4.3 Generalisingmorphologies

The morphologies learned by artificial evolution are surpris-
ingly simple. However, the similarities between the evolved
morphologies of multiple independent evolution trials aids

Fig. 9 Graph showing the average composition (i.e., types of cells) of
the best 20% of morphologies over generations. Passive cells and “no
cells” are far less common than either of the actuating cell types in later
generations

further investigation through generalisation. Given the rel-
ative abundance of early and late actuating cells in the
evolved morphologies, compared to passive or absent cells,
we hypothesise that new morphologies consisting of only
active cells could achieve similar or even better perfor-
mances. If passive and ‘no cell’ states could be omitted
whilst maintaining similar performance, this would greatly
simplify the morphological search space. Taking the mor-
phology depicted in Fig. 7 as a starting blueprint, we look to
replace passive cell states with one of the active cell states.
This process is illustrated in Fig. 10. Given that early actuat-
ing cells and late actuating cells each tend to cluster together,
we determine the new cell type based on the most common
active type of nearby cells. By repeating these steps for ‘no
cell’ states, we arrive at a simplifiedmorphology that consists
of active cell types only.

Figure 11 compares the performance of two evolved
morphologies (from Figs. 7 and 8), to the performance of
two rotated variants of the hand-crafted morphology shown
in Fig. 10.The alignment of late actuating cell clusters to
a ‘forward’ direction in the evolved morphologies is also
observed in the new hand-crafted morphologies. Further-
more the hand-crafted morphologies even display slightly
improved performance compared to the original evolved
morphologies. The hand-crafted morphologies travel greater
distances on average, D ≥ 44.0μm (or 88.0% of a body
length), and produce lower standard deviations in their travel
directions, σ ≤ 15.7◦.

These hand-crafted morphologies bare similarities to the
simple two-cell morphology in terms of fundamental struc-
ture, yet their locomotion is improved in regards to both
distance and reliability. The main factor that differentiates
between them is the number of cells they consist of, sug-
gesting that the stochasticity in the simulatoreffects larger

Fig. 10 Illustration showing how a simplified morphology (right) can
be constructed from the evolved morphology from trial 2 (left). Passive
cells are first replaced with the most common active state in neighbour-
ing cells (a). Then, the same procedure is applied to ‘no cell’ states,
leading to a morphology consisting of only active cells (b)
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Fig. 11 Comparison between behaviours of evolved morphologies and
rotated variants of the simplified morphology from Fig. 10. End vectors
are sampled by simulating each morphology for T = 50 actuation
cycles over K = 10 independent runs. The radii of the orange sectors,
working outwards from the centre, represent the minimum, mean and
maximum distances travelled by each morphology. The straight edges
of the orange sectors show the total angular range of directions. The
pink sector represents the standard deviation in directions, centred on
the mean direction

morphologies to a lesser extent. Resilience to noise is a desir-
able property when seeking systems that can be transferred
from simulation to real world scenarios, [2]. To further inves-
tigate how reliability scales with the number of cells, we
replicate the same hand-crafted morphology with larger col-
lections of cells. Figure 12 shows how a ‘right facing’ variant
of the hand-crafted morphology (see Fig. 10) performs when
doubling and tripling themorphology’s dimensions, to obtain
10 × 10 and 15 × 15 cell grids respectively. As the scale of
the morphology’s body length increases, the standard devi-
ation in travel directions indeed decreases, from σ = 14.2◦
for the 5 × 5 morphology, to σ = 9.1◦ for 10 × 10 and
σ = 8.3◦ for 15 × 15. However, the average distance trav-
elled does not increase linearly with the morphology’s body
length; travelling as far as 66.1μm with a body length of
10 × 10μm = 100μm, but only 54.9μm when the body
length reaches 15 × 10μm = 150μm. In fact, when mea-
sured in proportion to the body lengths, the average distance
travelled decreases from 88.0% of a body length for a 5 × 5
morphology down to 66.1% for 10 × 10 and 36.6% for
15 × 15. This reveals that there may in fact be a trade-off
between the number of body lengths that morphologies are

Fig. 12 Comparison between morphologies of different sizes, based
on a rotated version of the simplified morphology in Fig. 10. Sector
representations of sampled end vectors are plotted as in Fig. 11

able to travel (given a certain number of actuation cycles)
and the reliability in their direction of travel.

5 Discussion

There are several observations that can be made about the
evolved morphologies that could potentially inspire future
designs for micro-scale robots. For example, we see that late
actuating and early actuating cells seem to define front and
back sections of evolved morphologies respectively, in terms
of the direction of forward motion. This, along with the actu-
ation cycles shown in Fig. 2, could provide a blueprint for
generating locomotion in systems of connected, contractile
units. In addition, the symmetries in the found morphologies
suggest that the direction of travel could be changed dynam-
ically be altering how and when each cell is stimulated. In
some ways, this could be seen as analogous to inchworm-
like morphologies seen in nature and other studies inspired
thereby [20, 24]. Though, while these morphological fea-
tures were shown to generate similar behaviours in larger cell
grids, the behaviour of the smaller two-cell morphology was
far less predictable. Continuations of this work could further
explore the relationship between the number of cells and the
locomotive performance of a given morphology, particularly
for smaller grid sizes than 5 × 5.

The higher performing morphologies found in this work
mainly consist of active cell types, with the passive and ‘no
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cell’ states being far less common. This suggests that the
purely structural contribution of passive or absent cells to a
morphology is generally outweighed by the increased loco-
motive potential offered from active cell types,when it comes
to generating larger and more reliable displacements. This is
further supported by the comparable average distance trav-
elled and deviation in direction displayed by hand-crafted
morphologies, which consist exclusively of active cell types.
The existing passive or ‘no cell’ states in evolved morpholo-
gies could also be interpreted as a sign of robustness to
defects. For example, an active cell that loses its sensitivity
to light would effectively become a passive cell, or a mor-
phology that suffers physical damage may lose some cells
by becoming detached. Future studies could look to investi-
gate this further to examine the robustness of morphologies
to different modes of failure. The omission of passive and
‘no cell’ states could also greatly reduce the morphological
search space in subsequent artificial evolution trials, or poten-
tially allow complexity to be introduced elsewhere, such as
exploring more general actuation schemes.

Overall, we find that the evolved and our hand-crafted
morphologies were able to travel significantly greater dis-
tances compared to both random morphologies (see Fig. 5),
and a simple two-cell case. If the distance travelled is
averaged over the number of constituent cells in the mor-
phologies, the two-cell morphology in fact achieves the
greatest average distance per cell, though at the cost of hav-
ing highly chaotic trajectories. On the other hand, evolved
morphologies display a much lower standard deviation in
their travel direction, making their motion much more pre-
dictable. Furthermore, the distance travelled per constituent
cell reduces even further when the size of morphologies are
scaled up. This suggests that there may be some trade-off
between locomotive potential and reliability in direction of
travel when increasing the scale of the morphologies. In
applicationswhere cells, acting as or carrying a cargo, need to
be delivered to a precise area, reliable travel directions would
be important; whereas in applications such as area coverage,
moving fewer cells greater distances in random directions
may suffice, or even benefit.

The artificial evolution algorithm could be improved fur-
ther in many ways. For example, rotationally symmetric
morphologies could be conflated in each generation. This
would reduce the search space significantly but would also
incur an additional computational cost for the pair-wise com-
parisons between all morphologies in each generation. To
investigate more complex morphological search spaces, the
evolutionary algorithm could instead be supplied with larger
building blocks, each consisting of multiple cells. These
building blocks could themselves be inspired by the evolved

morphologies presented here or other handcraftedmorpholo-
gies. Artificial evolution is a versatile tool that could also be
adapted to search for alternate modes of locomotion. For
instance, the fitness function could instead be redefined to
search for morphologies that spin/rotate rather than trans-
late.

We envisage future implementations of these evolved
morphologies in physical systems with protocellular mate-
rials, although other photo-contractible materials could also
be explored such as hydrogel structures [4]. For achieving
closed loop control of these types of light reactive systems,
we see the DOME as a promising and adaptable platform for
future, real world experiments [8].

6 Conclusion

We have shown that artificial evolution can be used to find
morphologies that allow simulated groups of connected, con-
tractile cells to locomote consistently in the presence of noise.
Hand-craftedmorphologies inspired by the evolved solutions
demonstrated even better performance. The patterns shown
in thesemorphologieswere also shown to generalise to differ-
ent sizes of cell grids. However, whilst implementing mobile
morphologies at larger scales seems to increase reliability in
the direction of travel, this may come at the cost of sacri-
ficing distance in terms of the number of body lengths that
can be travelled. This work could inspire future designs for
mobile, mirco-scale robots consisting of light-reactive, con-
tractile units. The ability to illicit controlled locomotion from
optical illuminationwill open up newpossibilities for achiev-
ing swarm-like behaviours in micro-scale systems.
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