
Supplementary material:
Assessing generalisability of deep learning-based
polyp detection and segmentation methods through a
computer vision challenge

Sharib Ali1,2,3,*, Noha Ghatwary5, Debesh Jha6,7, Ece Isik-Polat13, Gorkem Polat13, Chen
YANG14, Wuyang LI14, Adrian Galdran15, Miguel-Ángel González Ballester15, Vajira
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11Université de Versailles St-Quentin en Yvelines, Hôpital Ambroise Paré, 9 Av. Charles de Gaulle, 92100
Boulogne-Billancourt, France
12Faculty of Medicine, University of Alexandria, 21131, Alexandria, Egypt
13Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Turkey
14City University of Hong Kong,Kowloon, Hong Kong
15BCN MedTech, Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, 08018,
Barcelona, Spain
16Department of IT Convergence Engineering, Gachon University, Seongnam 13120, Republic of Korea
17College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
18Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
19Department of Automation, Tsinghua University, Beijing 100084, China
20Smart Sensing & Diagnosis Research Division, Korea Atomic Energy Research Institute, 34057, Republic of
Korea
21Daegu-Gyeongbuk Medical Innovation Foundation, Medical Device Development Center, 427724, Republic of
Korea
22NepAL Applied Mathematics and Informatics Institute for Research (NAAMII), Kathmandu, Nepal
23Computer Science Department, University of Nottingham, Malaysia Campus, 43500 Semenyih, Malaysia
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Supplementary Figures and Tables
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Supplementary Figure 1. Annotation workflow: 600 patients (N = 600) data was used that consisted of both videos and
frames. First 5593 relevant frames for polyp detection and segmentation were extracted. These frames comprised of both single
and sequence data. For details please see Fig. 1 (main manuscript). Review of annotations was done by at least one expert and
the frames were either re-labeled or immediately rejected. A second review was conducted by at least one expert. Here expert
refers to a senior consultant gastroenterologist. Overall, 3762/5593 frames were annotated of which 520 frames from center 6
was directly embedded in the test set. For testing set, a similar strategy was taken for which 257 samples out-of 317 samples
were accepted during the review phase.
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Clear raised polyp Inked polyp region Polyp with instrument
in scene

Pedunculate polyp Flat (sessile) polyp Flat (sessile) polyp

Supplementary Figure 2. Sample annotated images following the annotation protocol. Clear raised polyp, polyp with
the inked region, polyp with the instrument in the scene, pedunculate polyp and flat (sessile) polyps are illustrated.
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Supplementary Figure 3. Precision-recall (PR) curve for detection task. Precision and recall of the participants and
baseline methods are evaluated at intersection-over-union threshold of 0.5. Data 1 consisting of unseen modality with NBI data,
data 2 comprising of single frames of unseen center C6, data 3 consisting of mixed seen center (C1-C5) sequence data and data
4 included sequence data from unseen center C6 are used. Interpolated precision at at a certain recall level is plotted. Higher
area-under the PR curve denotes better performance.
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Supplementary Figure 4. Algorithmic rank-based on across bootstrap test data splits are displayed for each team and
baseline methods. Different circle sizes signifies how much proportion (in %) of each data contribute to the different rankings
(larger the blob size (1%-100%), greater the percentage with 100% be the largest circle). Here, for ranking we have only
considered dice similarity coefficient values.
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Supplementary Figure 5. Size-based semantic segmentation analysis. Dice similarity coefficient (DSC), positive
predictive value (PPV) and recall values are plotted for each team methods and two baseline methods. Red rectangles
demonstrates the robust performance for different polyp sizes by two participating teams. The considered polyp sizes are the
same that is used for detection (i.e., ≤ 100×100 for small, and > 200×200 large and anything in between is medium).
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Supplementary Figure 6. Overall team performances on each data based on Dice similarity coefficient, and
illustration of the worst and the best-performing samples. a) Dice similarity coefficient for each image sample aggregated
for all teams is provided for the test dataset. Additionally, the Histogram bars on the side of each line plot show how much
proportion (in %) of each data contributes to the ranking of each team and baseline method. b) Sample frames for worst and
best-performing frames in each test data sample. Red areas in the worst performing sample indicate the area with a polyp.
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Supplementary Figure 7. Sample images from colonoscopy sequence. Team methods showing variable performance and
false detection of samples with artefacts as polyp instances.
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Dataset Findings # of samples Resolution Modality Study
type

Challenge Availability

CVC-ColonDB1 Polyps 380 images† † 574×500 WLE Single APC by request•

CVC-ClinicDB2 Polyps 612 images† 384×288 WLE Single EndoVis open
academic

CVC-VideoClinicDB3 Polyps 11,954 images† 384×288 WLE Single EndoVis by request•

EDD20204, 5 GI findings
with polyps

386 images variable WLE,
NBI

Multi EndoCV
(2020)

open
academic

ETIS-Larib Polyp DB6 Polyps 196 images† 1224×966 WLE Single EndoVis open
academic

ASU-Mayo polyp
database7

Polyps 18,781 images† 688×550 WLE Single EndoVis by request•

HyperKvasir8 GI findings
with polyps

110,079 images
& 374 videos

720×576 to
1920×1072

WLE Single NA open
academic

Kvasir-SEG9 Polyps 1000 images† 332×487 -
1920×1072

WLE Single Medico
MedAI

open
academic

GastroVision10 GI findings 8000 frames 720×576 to
1920×1072

WLE,
NBI

Multi NA open
academic

SUN Colonoscopy
Video Database11

Polyp
non-polyp

158,690 frames 1158×1008 to
1240×1080

WLE Single NA by request

Endomapper12 Endoscopies 96 videos No info. WLE Single NA by request
PICCOLO13 Polyps 3,433 frames No. info WLE

NBI
Single NA by request

Polypset (KUMC)14 Polyps 37,899 frames 592×464 to
768×576

WLE Multi NA open
academic

PolypGen15 Polyp
non-polyp

3446 images
including
sequence data†

384×288 to
1920×1080

WLE,
NBI
(test)

Multi EndoCV
(2021)

open
academic

†Including ground truth segmentation masks ‡Contour ⋄Video capsule endoscopy •Not available anymore or unknown
♣Medical atlas for education with several low-quality samples of various GI findings
APC: Automatic polyp classification; EndoVis: MICCAI Endoscopic vision challenge; EndoCV: IEEE ISBI Endoscopic challenge

Supplementary Table 1. An overview of existing gastrointestinal lesion datasets including polyps
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Supplementary Table 2. Data collection information for each center: Data acquisition system and patient consenting
information.

Centers System info. Ethical
approval

Patient consent
type

Recording
system

Ambroise Paré Hospital,
Paris, France Olympus Exera 195

IDRCB: 2019-
A01602-55

Endospectral
study NA

Istituto Oncologico Veneto,
Padova, Italy Olympus endoscope H190 Exempted† Generic patients

consent
ENDOX,
TESImaging

Centro Riferimento Oncologico,
IRCCS, Italy

Olympus VG-165, CV180,
H185 Exempted† Generic patients

consent Exempted†

Oslo University Hospital,
Oslo, Norway

Olympus Evis Exera III,
CF 190 Exempted† Written informed

consent Pix-E5

John Radcliffe Hospital,
Oxford, UK

GIF-H260Z, EVIS Lucera CV260,
Olympus Medical Systems

REC Ref:
16/YH/0247 Universal consent MediCapture

University of Alexandria,
Alexandria, Egypt Olympus Exera 160AL, 180AL Exempted† Written informed

consent NA
† Approved by the data inspectorate. No further ethical approval was required as it did not interfere with patient treatment

Supplementary Table 3. Team results for the detection task with average precision AP computed at IoU thresholds 50
(AP50), 75 (AP75), and [0.50 : 0.05 : 0.95] mean AP (APmean). Size wise AP values are also presented. Top-two values for each
metric are highlighted in bold.

Average precision, AP AP across scales
Data type Teams/Method

APmean AP50 AP75 APsmall APmedium APlarge

D
at

a
1

(N
B

I-
si

ng
le

) AIM_CityU16 0.351 0.537 0.398 0.080 0.321 0.408
GECE_VISION17 0.318 0.526 0.349 0.051 0.186 0.398
HoLLYS_ETRI18 0.474 0.693 0.552 0.130 0.396 0.550
JIN_ZJU19 0.446 0.658 0.498 0.038 0.296 0.586
YOLOv420 0.309 0.447 0.372 0.068 0.254 0.371
RetinaNet (ResNet50)21 0.314 0.562 0.267 0.047 0.223 0.381
EfficientNet-D222 0.201 0.309 0.227 0.029 0.159 0.241

D
at

a
2

(W
L

E
-s

in
gl

e)

AIM_CityU16 0.573 0.784 0.605 0.279 0.483 0.659
GECE_VISION17 0.532 0.785 0.535 0.155 0.459 0.623
HoLLYS_ETRI18 0.578 0.791 0.681 0.385 0.498 0.655
JIN_ZJU19 0.604 0.809 0.664 0.307 0.614 0.721
YOLOv420 0.419 0.599 0.463 0.000 0.334 0.523
RetinaNet21 (ResNet50) 0.407 0.735 0.461 0.000 0.274 0.524
EfficientNet-D222 0.420 0.613 0.464 0.000 0.382 0.512

D
at

a
3

(s
ee

n
se

q.
)

AIM_CityU16 0.529 0.780 0.548 0.003 0.404 0.578
GECE_VISION17 0.372 0.658 0.384 0.005 0.026 0.436
HoLLYS_ETRI18 0.528 0.797 0.575 0.017 0.024 0.599
JIN_ZJU19 0.552 0.725 0.595 0.000 0.151 0.651
YOLOv420 0.298 0.436 0.354 0.000 0.000 0.328
RetinaNet (ResNet50)21 0.312 0.489 0.356 0.000 0.252 0.341
EfficientNet-D222 0.293 0.403 0.375 0.000 0.075 0.323

D
at

a
4

(u
ns

ee
n

se
q.

) AIM_CityU16 0.346 0.472 0.376 0.000 0.272 0.522
GECE_VISION17 0.314 0.499 0.330 0.000 0.278 0.472
HoLLYS_ETRI18 0.384 0.540 0.432 0.000 0.309 0.580
JIN_ZJU19 0.309 0.425 0.330 0.000 0.315 0.656
YOLOv420 0.236 0.311 0.281 0.000 0.208 0.349
RetinaNet (ResNet50)21 0.248 0.449 0.265 0.001 0.176 0.385
EfficientNet-D222 0.278 0.381 0.336 0.000 0.264 0.407
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Supplementary Table 4. Team results for the polyp segmentation methods proposed by the participating teams as well as
for the baseline methods. All results are given for sets data 1, 2, 3 and 4. Jaccard Index (JC), Dice Similarity Coefficient (DSC),
F2-Score (F2), Positive Predictive Value (PPV), Recall, Accuracy (ACC) and Hausdorff dimension (Hd) are provided. Top-two
values for each metric are highlighted in bold. Standard deviations in each metric are shown at two decimal places..

Data
type Teams/Method JC ↑ DSC ↑ F2 ↑ PPV ↑ Recall ↑ ACC ↑ Hd ↓

D
at

a
1,

N
B

I-
si

ng
le

aggcmab 0.634 ± 0.33 0.709 ± 0.33 0.719± 0.34 0.752 ± 0.34 0.804 ± 0.27 0.967 ± 0.05 0.441 ± 0.20
AIM_CityU 0.652 ± 0.28 0.741 ± 0.28 0.733 ± 0.29 0.757 ± 0.28 0.817 ± 0.26 0.971 ± 0.05 0.407 ± 0.16
HoLLYS_ETRI 0.586 ± 0.35 0.658 ± 0.36 0.656 ± 0.36 0.682 ± 0.37 0.862 ± 0.24 0.963 ± 0.06 0.435 ± 0.21
MLC_SimulaMet 0.616 ±0.35 0.684 ± 0.36 0.691 ± 0.37 0.717 ± 0.37 0.872 ± 0.21 0.967 ± 0.06 0.437 ± 0.21
sruniga 0.667 ± 0.31 0.744 ± 0.31 0.751 ± 0.31 0.815 ± 0.27 0.776 ± 0.30 0.965 ± 0.08 0.371 ± 0.16
DeepLabV3+ (R50) 0.531 ± 0.33 0.621 ± 0.34 0.601 ± 0.36 0.624 ± 0.36 0.832 ± 0.27 0.964 ± 0.06 0.397 ± 0.17
FCN8 0.505 ± 0.32 0.599 ± 0.34 0.603 ± 0.34 0.644 ± 0.35 0.644 ± 0.35 0.957 ± 0.06 0.433 ± 0.17
PraNet 0.561 ± 0.33 0.651 ± 0.33 0.695 ± 0.32 0.638 ± 0.30 0.828 ± 0.27 0.928 ± 0.10 0.374 ± 0.19
PSPNet 0.452 ± 0.33 0.543 ± 0.35 0.518 ± 0.36 0.544 ± 0.36 0.766 ± 0.33 0.956 ± 0.05 0.417 ± 0.16
ResNetUNet (R34) 0.521 ± 0.35 0.602 ± 0.36 0.584 ± 0.38 0.593 ± 0.38 0.855 ± 0.25 0.963 ± 0.05 0.386 ± 0.17

D
at

a
2,

W
L

E
-s

in
gl

e

aggcmab 0.770 ± 0.27 0.827 ± 0.27 0.819 ± 0.28 0.828 ± 0.27 0.923 ± 0.16 0.983 ± 0.04 0.346 ± 0.18
AIM_CityU 0.672 ± 0.31 0.746 ± 0.31 0.739 ± 0.31 0.775 ± 0.29 0.849 ± 0.26 0.964 ± 0.11 0.312 ± 0.16
HoLLYS_ETRI 0.670 ± 0.33 0.737 ± 0.33 0.723 ± 0.33 0.742 ± 0.32 0.908 ± 0.21 0.971 ± 0.08 0.331 ± 0.17
MLC_SimulaMet 0.777 ± 0.26 0.835 ± 0.27 0.843 ± 0.27 0.863 ± 0.26 0.893 ± 0.17 0.985 ± 0.02 0.397 ± 0.19
sruniga 0.744 ± 0.28 0.807 ± 0.28 0.806 ± 0.28 0.869 ± 0.21 0.837 ± 0.28 0.984 ± 0.02 0.353 ± 0.16
DeepLabV3+ (R50) 0.754 ± 0.26 0.823 ± 0.25 0.812 ± 0.26 0.808 ± 0.27 0.911 ± 0.17 0.978 ± 0.06 0.362 ± 0.18
FCN8 0.676 ± 0.29 0.758 ± 0.28 0.746 ± 0.29 0.745 ± 0.30 0.902 ± 0.16 0.973 ± 0.06 0.425 ± 0.20
PraNet 0.709 ± 0.30 0.778 ± 0.30 0.803 ± 0.32 0.759 ± 0.30 0.913 ± 0.17 0.933 ± 0.15 0.330 ± 0.22
PSPNet 0.744 ± 0.25 0.819 ± 0.24 0.805 ± 0.25 0.801 ± 0.25 0.905 ± 0.17 0.976 ± 0.06 0.366 ± 0.19
ResNetUNet (R34) 0.738 ± 0.27 0.808 ± 0.26 0.790 ± 0.27 0.782 ± 0.28 0.914 ± 0.20 0.976 ± 0.07 0.329 ± 0.18

D
at

a
3,

se
en

se
q.

aggcmab 0.781 ± 0.27 0.834 ± 0.28 0.824 ± 0.28 0.821 ± 0.29 0.954 ± 0.07 0.958 ± 0.06 0.452 ± 0.24
AIM_CityU 0.506 ± 0.36 0.587 ± 0.36 0.543 ± 0.37 0.546 ± 0.36 0.877 ± 0.29 0.881 ± 0.13 0.487 ± 0.25
HoLLYS_ETRI 0.543 ± 0.36 0.623 ± 0.36 0.595 ± 0.36 0.607 ± 0.36 0.908 ± 0.23 0.891 ± 0.12 0.480 ± 0.26
MLC_SimulaMet 0.830 ± 0.23 0.878 ± 0.23 0.866 ± 0.24 0.860 ± 0.24 0.966 ± 0.05 0.975 ± 0.03 0.429 ± 0.22
sruniga 0.656 ± 0.36 0.714 ± 0.37 0.713 ± 0.37 0.788 ± 0.32 0.783 ± 0.34 0.943 ± 0.07 0.531 ± 0.23
DeepLabV3+ (R50) 0.746 ± 0.26 0.817 ± 0.24 0.826 ± 0.24 0.851 ± 0.25 0.877 ± 0.19 0.959 ± 0.03 0.473 ± 0.22
FCN8 0.625 ± 0.27 0.726 ± 0.27 0.713 ± 0.26 0.736 ± 0.27 0.869 ± 0.23 0.932 ± 0.06 0.528 ± 0.23
PraNet 0.731 ± 0.30 0.793 ± 0.29 0.821 ± 0.28 0.771 ± 0.27 0.928 ± 0.14 0.927 ± 0.12 0.418 ± 0.20
PSPNet 0.732 ± 0.27 0.805 ± 0.26 0.818 ± 0.25 0.853 ± 0.23 0.852 ± 0.23 0.957 ± 0.03 0.501 ± 0.22
ResNetUNet (R34) 0.669 ± 0.29 0.751 ± 0.29 0.741 ± 0.29 0.746 ± 0.31 0.916 ± 0.17 0.937 ± 0.06 0.529 ± 0.26

D
at

a
4,

un
se

en
se

q.

aggcmab 0.695 ± 0.35 0.749 ± 0.35 0.729 ± 0.35 0.754 ± 0.34 0.924 ± 0.21 0.970 ± 0.05 0.332 ± 0.22
AIM_CityU 0.449 ± 0.38 0.516 ± 0.39 0.487 ± 0.39 0.654 ± 0.36 0.701 ± 0.42 0.952 ± 0.06 0.435 ± 0.19
HoLLYS_ETRI 0.637 ± 0.36 0.700 ± 0.36 0.677 ± 0.35 0.693 ± 0.35 0.914 ± 0.23 0.964 ± 0.04 0.391 ± 0.26
MLC_SimulaMet 0.684 ± 0.36 0.737 ± 0.35 0.718 ± 0.36 0.719 ± 0.36 0.909 ± 0.23 0.972 ± 0.05 0.335 ± 0.22
sruniga 0.472 ± 0.39 0.532 ± 0.41 0.509 ± 0.41 0.752 ± 0.32 0.648 ± 0.44 0.965 ± 0.05 0.452 ± 0.17
DeepLabV3+ (R50) 0.613 ± 0.36 0.680 ± 0.36 0.657 ± 0.36 0.718 ± 0.33 0.852 ± 0.29 0.963 ± 0.05 0.381 ± 0.22
FCN8 0.562 ± 0.37 0.628 ± 0.38 0.597 ± 0.38 0.651 ± 0.36 0.862 ± 0.30 0.960 ± 0.05 0.363 ± 0.23
PraNet 0.483 ± 0.39 0.543 ± 0.41 0.557 ± 0.41 0.554 ± 0.43 0.858 ± 0.23 0.832 ± 0.20 0.483 ± 0.27
PSPNet 0.597 ± 0.37 0.662 ± 0.37 0.632 ± 0.38 0.676 ± 0.35 0.872 ± 0.29 0.962 ± 0.05 0.344 ± 0.22
ResNetUNet (R34) 0.614 ± 0.36 0.678 ± 0.36 0.652 ± 0.37 0.709 ± 0.33 0.878 ± 0.28 0.965 ± 0.04 0.399 ± 0.24

↑: best increasing ↓: best decreasing R34: ResNet34 R50: ResNet50
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Supplementary Table 5. Semantic segmentation results for teams ranking below 5th place on out-of-sample data 1, data 2,
data 3 and data 4.

Data
type Teams/Method JC ↑ DSC ↑ F2 ↑ PPV ↑ Recall ↑ ACC ↑ Hd ↓

D
at

a
1

(N
B

I-
si

ng
le

)

YCH_THU 0.262 ± 0.29 0.340 ± 0.33 0.383 ± 0.36 0.518 ± 0.41 0.343 ± 0.35 0.877 ± 0.09 0.544 ± 0.18
Mah_UNM 0.327 ± 0.31 0.413 ± 0.35 0.404 ± 0.36 0.430 ± 0.39 0.696 ± 0.35 0.946 ± 0.06 0.412 ± 0.15
NDS_MultiUni 0.176 ± 0.26 0.237 ± 0.29 0.259 ± 0.31 0.316 ± 0.38 0.591 ± 0.42 0.912 ± 0.07 0.497 ± 0.17

D
at

a
2

(W
L

E
-s

in
gl

e)

YCH_THU 0.514 ± 0.34 0.599 ± 0.36 0.640 ± 0.36 0.767 ± 0.32 0.575 ± 0.37 0.934 ± 0.08 0.487 ± 0.20
Mah_UNM 0.473 ± 0.32 0.569 ± 0.34 0.588 ± 0.35 0.643 ± 0.36 0.652 ± 0.34 0.947 ± 0.08 0.459 ± 0.18
NDS_MultiUni 0.340 ± 0.28 0.440 ± 0.31 0.459 ± 0.32 0.543 ± 0.36 0.548 ± 0.38 0.918 ± 0.09 0.553 ± 0.20

D
at

a
3

(s
ee

n
se

q.
)

YCH_THU 0.499 ± 0.32 0.598 ± 0.32 0.649 ± 0.33 0.796 ± 0.32 0.586 ± 0.35 0.893 ± 0.09 0.593 ± 0.16
Mah_UNM 0.427 ± 0.35 0.509 ± 0.37 0.536 ± 0.39 0.589 ± 0.43 0.713 ± 0.33 0.865 ± 0.13 0.548 ± 0.24
NDS_MultiUni 0.526 ± 0.32 0.624 ± 0.32 0.674 ± 0.30 0.792 ± 0.29 0.651 ± 0.33 0.915 ± 0.06 0.671 ± 0.19

D
at

a
4

(u
ns

ee
n

se
q.

)

YCH_THU 0.328 ± 0.32 0.409 ± 0.36 0.444 ± 0.38 0.747 ± 0.34 0.414 ± 0.37 0.880 ± 0.12 0.880 ± 0.12
Mah_UNM 0.249 ± 0.32 0.306 ± 0.36 0.302 ± 0.37 0.530 ± 0.43 0.459 ± 0.42 0.928 ± 0.07 0.524 ± 0.19
NDS_MultiUni 0.249 ± 0.34 0.305 ± 0.35 0.294 ± 0.35 0.429 ± 0.41 0.529 ± 0.42 0.920 ± 0.07 0.920 ± 0.07

↑: best increasing ↓: best decreasing
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Supplementary Notes

Related works
Deep learning for detection and localisation of polyps
While frame-based classification methods are used for identifying polyp and non-polyp frames23–25, detection methods provide
both classification and localisation of polyps with in a frame26, 27 which can direct clinicians to the site of interest, and can
be additionally used for counting polyps to assess disease burden in patients. With the advancements in object detection
architectures, recent methods are end-to-end networks providing better detection performance and improved speed. The
state-of-the-art methods are divided into two categories: multi-stage and single-stage. The multi-stage detector methods
include Region proposals-Based Convolutional Neural Network (R-CNN)28, Fast R-CNN29, Faster R-CNN30, Region-based
fully convolutional networks (R-FCN)31, Feature Pyramid Network (FPN)32 and Cascade R-CNN33. On the other hand, the
One-stage detectors directly provide the predicted output (bounding boxes and object classification) from input images without
the region of interest (ROI) proposal stage. The One-stage detector methods include Single-Shot Multibox Detector (SSD)34,
YOLO35, RetinaNet21 and Efficientdet22.

Different studies have been conducted in the literature focusing on polyp detection by employing multi- and single-stage
detectors. Multi-stage Detectors: Shin et al.36 used a transfer learning strategy based on Faster R-CNN architecture with the
Inception ResNet backbone to detect polyps. Qadir et al.26 adapted Mask R-CNN37 to detect colorectal polyps and evaluate
its performance with different CNN including ResNet5038, ResNet10138 and Inception ResNetV239 as its feature extractor.
Despite the speed limitation, multi-stage detectors are widely used in the detection task of endoscopy data challenges due to
their competitive performance on evaluation metrics. Single-stage Detectors: Urban et al.27 used YOLO to detect polyps in
real-time, resulting in high detection performance. Lee et al.40 employed YOLOv241 and validated the proposed approach on
four independent datasets. They reported a real-time performance and high sensitivity and specificity on all datasets. Zhang et
al.42 proposed the ResYOLO network, adding residual learning modules into the YOLO architecture to train deeper networks.
They reported a near-real-time performance for the ResYOLO network depending on the hardware used. Zhang et al.43

proposed an enhanced SSD named SSD for Gastric Polyps (SSD-GPNet) for real-time gastric polyp detection. SSD-GPNet
concatenates feature maps from lower layers and deconvolves higher layers using different pooling techniques. YOLOv344 with
darknet53 backbone and YOLOv4 showed IOU and average precision (AP) over 0.80% and real-time FPS over 45. Moreover,
there exist methods that rely on anchor-free detectors to locate the polyps where they claim to detect polyps without the
definition of anchors such as CornerNet45 and ExtremeNet46. Zhou et al.47 proposed the CenterNet, which treats each object as
a point and increases the speed significantly while ensuring acceptable accuracy. While Wang et al.48 achieved state-of-the-art
results on automatic polyp detection in real-time situations using anchor-free object detection methods. In addition to these
works, Multi-stage, Single-stage and other types of detectors have been widely used by participants teams in different polyp
detection datasets and challenges such as MICCAI’1549, ROBUST-MIS50, EAD201951 and EndoCV202052.

Deep learning for segmentation of polyps
Semantic segmentation is the process of grouping related pixels in an image to an object of the same category. Deep learning
has been very successful in the field of the medical domain, convolutional neural networks (CNN) based techniques were
suggested to generate complete and precise segmentation outputs without requiring any post-processing. In deep learning,
medical segmentation methods can be categorized into four categories: Models based on fully convolutional networks, Models
based on Encoder-Decoder architecture, Models based on Pyramid-based architecture and Models based on Dilated Convolution
Architecture.

Models based on fully convolutional networks: Brandao et al.53 proposed three different FCN-based architectures for
detection and segmentation of polyps from colonoscopy images. Zhang et al.54 proposed multi-step practice for the polyp
segmentation. The former step includes region proposal generation using FCN, and the latter step uses spatial features and
a random forest classifier for the refinement process. A similar method was introduced by Akbari et al.55 which uses patch
selection while training FCN and Otsu thresholding to find the accurate location of polyp. Guo et al.56 describe two methods
based on FCN for Gastrointestinal ImageANALysis (GIANA) polyp segmentation sub-challenge.

Models based on encoder-decoder architecture: Nguyen and Slee57 proposed multiple deep encoder-decoder networks
to capture multi-level contextual information and learn rich features during training. Zhou et al.58 proposed UNet++, a
deeply-supervised encoder-decoder network that showed good results on the polyp segmentation task. Similarly, Jha et. al59

proposed ResUNet++ that combines series of residual blocks, squeeze and excitation network, atrous spatial pyramid pooling,
and attention block. Tomar et al.60 proposed a dual-decoder attention network (DDANet) that utilizes residual learning and
the squeeze and excitation network. Inspired by HRNet61, Srivastava et al.62 proposed multi-scale residual fusion network
(MSRF-Net) that allows information exchange across multiple scales. Mahmud et al.63 integrated dilated inception blocks into
each unit layer and aggregate the features of the different receptive fields to capture better-generalized feature representations.
Huang et al.64 proposed a low memory traffic, fast and accurate method for the polyp segmentation achieving 86 frames per
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second (FPS). Later, Zhang et al.65 proposed a hybrid method combining both transformer-based network and CNN to capture
global dependencies and the low-level spatial features for the segmentation task. Most encoder-decoder architectures were
evaluated only on still images. Ji et al.66 proposed a progressively normalized self-attention network (PNS-Net) for video polyp
segmentation.

Models based on pyramid-based architecture: Jia et al.67 proposed a pyramid-based model named Polyp Net (PLPNet)
for automated pixel-level polyp classification in colonoscopy images. Also, Guo et al.68 employed the Pyramid Scene Parsing
Network (PSPNet)69 with SegNet70 and U-Net71 as an ensemble deep learning model. The proposed model achieved a
improvement upto 6.38% compared with a single basic trainer.

Models based on dilated convolution architecture: Sun et al.72 used dilated convolution in the last block of the encoder
while Safarov et al.73 used in all encoder blocks. Though73 used a mesh of attention blocks and residual block as a decoder,
both methods tested there model on CVC-ClinicDB achieving F1-score of 96.106 and 96.043, respectively. Furthermore, nested
dilation network (NDN)74 was designed to segment lesions and tested on the GIANA2018 dataset achieving improvements on
Dice upto 3% compared to other methods.

Advantages and limitations of current methods: Methods based on deep learning have attracted considerable interest
in the detection and segmentation of polyps in colonoscopy images. The proposed approaches provided high accuracy rates,
reducing the risk of missed polyps and enhancing the overall efficacy of colon cancer screening. Limited model generalisability
is a critical limiting factor in currently developed methods. While most methods are supervised, the lack of availability of
large annotated colonoscopy datasets also becomes another limiting factor for applying polyp detection and segmentation
methods, as they tend to be laborious and time-consuming. Additionally, a lack of model interpretability can present difficulties,
potentially giving rise to problems in medical settings where understanding is essential.

Method summary of the participants
Below, we summarise the top teams of the EndoCV2021 generalisability assessment challenge for polyp detection and
segmentation methods using deep learning. Tabulated summaries are also provided, highlighting the nature of the devised
methods and basis of choice in terms of speed and accuracy for detection and segmentation (see Table 3 and Table 4). Methods
are detailed in the compiled EndoCV2021 challenge proceeding75.

Detection Task
• AIM_CityU: The team used one-stage anchor-free FCOS76 as the baseline detection algorithm and adopted ResNeXt-

101-DCN with FPN for their final feature extractor. The input images were rescaled to 512×512. For the model
optimisation, online (random flipping and multi-scale training) and offline (random rotation, gamma contrast, brightness
transformation, etc.) data augmentation strategies were performed to improve the model generalisation. The team
minimised cross-entropy loss and used a Stochastic Gradient Descent (SGD) optimiser. The learning rate was set to
0.00261 with the learning rate decay of 0.0005, the NMS threshold was set to 0.01, and the score threshold was set to
0.3..

• HoLLYS ETRI: Standard Mask R-CNN37 was used with pre-trained weights for the detection and segmentation task.
The input images were rescaled to 608×608. An ensemble learning method based on 5-fold cross-validation was used to
improve the generalisation performance. For training a single Mask R-CNN, only the data acquired from four centres
were used for training and the fifth centre data was used for validation. The final prediction was based on the combination
of inference results from five trained models. The polyp localisation for the detection task was done by using the weighted
box fusion technique77 while For the segmentation task, masks from five models were averaged with IoU threshold of 0.6.
Data augmentation has been applied to increase data size using RandomBrightness, RandomContrast, RandomSaturation,
RandomLighting, RandomCrop, and RandomFlip. The SGD was set as the optimiser to minimise smooth L1-loss with a
learning rate of 0.001 and a learning rate decay of 0.0005.

• JIN_ZJU: The team used the YOLOV578 as the baseline detection algorithm with different data augmentation methods
that included hue adjustment, saturation adjustment, value adjustment, rotating, translation, scaling, up-down flipping,
left-right flipping, mosaic and mixup. The input images were rescaled to 640×640. BECLogits Loss was employed for
the objectness score, while BCEcls loss was for the class probability score. SGD optimisation was chosen with an initial
learning rate of 0.01 with a learning rate decay of 0.0005..

• GECE_VISION: An ensemble-based polyp detection architecture used the EfficientDet22 as the base model. The
bootstrap aggregating (bagging) technique was utilised to aggregate different versions of the predictors (EfficientDet
D0, D1, D2, D3), which were trained on bootstrap replicates of the training set. Data augmentation that included scale
jittering, horizontal flipping, and rotations were used to increase the variance and improve the model’s generalisation
capability. The Adam optimizer was used to minimise focal loss. Learning rate scheduling was implemented, reducing
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the learning rate by a factor of 0.2 from 0.0001 whenever the validation set loss did not decrease over the previous 10
epochs.

Segmentation Task
• aggcmab: The team improved their previously developed cascaded double encoder-decoder convolutional neural

network79 by increasing the encoder representation capability and adapting to a multi-site sampling technique. The
first encoder-decoder generated an initial attempt to segment the polyp by extracting features and downsampling spatial
resolutions while increasing the number of channels by learning convolutional filters. The output from the first network
acted as an input for the second encoder-decoder along with the original image. A binary cross-entropy (BCE) loss was
minimized using the SGD optimiser with a learning rate of 0.01 with rate decay of 1e−8 every 25 epochs. The training
images were resized to 640×512 pixels, and data augmentation, including random rotations, vertical and horizontal
flipping, contrast, saturation and brightness changes, was applied.

• AIM_CityU: The team adopted HRNet61 as the backbone to maintain the high-resolution representations in a multi-scale
feature fusion mechanism. The team proposed a low-rank module to distribute feature maps in the high dimensional
space to a low dimensional manifold to eliminate noisy information in segmentation predictions and enhance model
generalisation. The training images were resized to 256×256 pixels, and various data augmentation strategies, including
random flipping, rotation, colour shift (brightness, colour, sharpness, and contrast) and Gaussian noise, were performed
to improve the model generalisation further. BCE and dice loss (DSC) were utilized to optimise the model. The SGD
optimiser used with a learning rate of 0.01, the momentum of 0.9, and the weight decay of 0.0005.

• HoLLYS_ETRI: The team used the same method for the detection task discussed previously.

• MLC_SimulaMet: Two ensemble models using well-known segmentation models; namely UNet++58, FPN32, DeepLabv380,
DeepLabv3+81 and novel TriUNet for their DivergentNet ensemble model. The TriUNet ensemble model used three
UNet71 architectures in an ensemble fashion. Here, the TriUNet model took a single image as input, which was passed
through two separate UNet models with different randomized weights. The output of both models was then concatenated
before being passed through a third UNet model to predict the final segmentation mask. The whole TriUNet network was
trained as a single unit. The input images were resized to 256×256 with several data augmentation methods applied to
increase data size, such as horizontal flip, shift scale rotation, resizing, additive Gaussian noise, perspective shift, contrast
limited adaptive histogram equalization (CLAHE), random brightness, random gamma, random sharpen, random blur,
random motion blur, random contrast, and hue saturation. The learning rate was set to 0.0001 and reduced to 0.00001
after 50 epochs using Adam optimiser to minimise BCE and DSE loss functions.

• sruniga: A lightweight deep learning-based algorithm was used to meet the real-time clinical need. The proposed
network applied the HarDNet-MSEG64 as the backbone network with reduced shortcuts. Moreover, a proposed data
augmentation strategy for realising an improved generalisable model was used. For training the model, the dataset was
split into 80% training and 20% validation and images were resized to 352×352 pixels. They used an Adam optimiser to
minimise BCE loss with a learning rate of 1e−5 for all experiments.

• Mah_UNM: The team proposed a modified SegNet70 by embedding Gated recurrent units (GRU) units82 within the
convolution layers for the improved segmentation of polyps. The hyperparameters were set to the original SegNet with a
learning rate of 0.005 and batch size of 4. The provided dataset was split into 80% training and 20% validation, and the
weighted cross-entropy loss was optimized using an Adam optimizer. Data augmentation has not been utilized.

• NDS_MultiUni: A cascaded ensemble model made of four different MultiResUNet83 architectures with each model gen-
erating an output mask. Afterwards, the four predicted outputs were averaged together to produce the final segmentation
mask. Each model was trained for 100 epochs with the same hyper-parameter setting. The input images were resized to
256×256 with no data augmentation, and training was done with a batch size of 8. A binary cross-entropy was used as a
loss function optimized using an Adam optimizer with a learning rate 0.001.

• YCH_THU: The team used an existing parallel reverse attention network referred to as “PraNet”84. They extracted
multi-level features from colonoscopy images utilizing a parallel res2Net-based network. Moreover, the segmentation
results were post-processed to remove uncertain pixels and enhance polyp boundaries. The images were resized to
512×512 pixels, and the dataset was split into 80% training and 20% validation. The model was trained for 300
epochs with batch size 20, learning rate of 0.0001 with learning rate decay of 0.1 and using Adam optimizer. No data
augmentation has been applied.
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