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The typical actuation mode of a dielectric elastomer
membrane subjected to an electric field across its
thickness is in-plane expansion. We show that, by
selecting properly the contrast between phases (i.e.
shear moduli and permittivity ratios), a hierarchical
laminate may display longitudinal contraction when
actuated in the same way. In particular, simple and
second rank laminates are investigated. The latter
performs in general better; however, we provide a
guideline on how to optimize the microstructure to
limit the values of the contrast parameters at which
the new ‘non-conventional’ mode becomes available.
As the requirements in terms of permittivity ratio of
the two phases are somewhat extreme, we review the
availability of materials that have been processed so
far to assess the viability of such composite devices.

Introduction
Dielectric elastomer actuators consist of thin elastomer
membranes actuated by a difference in electric potential
across the thickness [1] which induces in-plane expansion
at large strains. They have been exploited in several
fields of engineering, ranging from soft robotics [2–4] to
biomedical devices [5–7] to energy harvesters [8–10] (the
review [11] provides an extended overview of the topic).

A method to improve the actuation performance is
to create a composite material assembled by embedding
a high-dielectric reinforcement in a much softer matrix
[12–14]. In a series of papers, it has been shown
that the most effective microstructure to achieve a
specific performance at equal volume fraction of the
component phases is that of hierarchical laminates
[15–22].
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The goal of this paper is to investigate laminate hierarchical devices made up of soft dielectric
elastomers which exhibit actuation modes that are different from the expected in-plane expansion.
In particular, in our small-strain, plane-strain analysis, we focus on the conditions to reach
the counterintuitive and ‘unconventional’ in-plane contraction actuation mode. A similar mode
has been observed in devices devoted to electromechanical energy conversion; however, the
mechanism exploited in that case is different than that highlighted here being associated with
either transverse expansion due to reduction of voltage across the thickness or phase transition
(see, e.g. [23,24]).

We show the possibility to accomplish contraction in both rank-one and rank-two laminates
by carefully selecting their properties. We first examine the features of the former composite to
achieve the new mode assuming two types of boundary conditions. Its availability is analysed
to understand how each phase deforms. We then compare the features of the latter composite to
the former to show how rank-two laminates are able to enhance this mode of actuation. As the
number of parameters involved is larger, we provide a guideline on how to optimize them to
obtain the desired actuation.

We conclude the paper assessing the viability of such composite devices with an appraisal of
the available materials to be used in principle as a reinforcement in a laminate to achieve the
required values of the contrast parameters to display contraction.

2. Plane-strain linear electro-elastic actuation of rank-one laminates
As pointed out in the Introduction, we deal with small-strain electro-elasticity. We consider
first a rank-one layered composite elastomer slab which is obtained by repeating a unit cell
consisting of two compressible dielectric materials as shown in figure 1a. The soft matrix material
is denoted by ‘a’ whereas the stiffer phase is indicated with ‘b’; the lamination angle for the simply
layered materials is θ1. The composite is defined by the volume fraction of each phase, ca and
cb, respectively, subjected to the constraint ca + cb = 1. The—perfect—interface between the two
materials is singled out by normal and tangential unit vectors, namely n0 and m0, respectively. In
component form, with respect to a orthonormal Cartesian base where axis 1 is longitudinal and
axis 2 is transverse and directed to the top surface, these are

n0 =
(
− sinθ1, cos θ1

)
and m0 =

(
cos θ1, sin θ1

)
. (2.1)

In each phase, E and D designate electric and electric displacement fields, respectively, whereas
the total stress is denoted by S. With the assumption of the absence of both volume charges and
body forces, the governing equations are

divS = 0, divD = 0, curlE = 0, (2.2)

where the last equation implies that E can be derived from the electrostatic potential φ(x) such
that E = −gradφ(x). The electric quantities follow the relationship of an ideal dielectric, D = εE,
where ε is the permittivity of the material that is independent of strain. Continuity across the
interfaces between ‘a’ and ‘b’ can be enforced by imposing the following jump conditions

n0 · [[D]] = 0, n0 × [[E]] = 0, [[S]]n0 = 0, m0 · ([[e]]m0) = 0; (2.3)

in (2.3)4, e denotes the strain tensor. The brackets [[·]] indicate the jump across the interfaces and
are defined as [[ f ]] = f a − f b.

Under the assumption of a homogeneous response in each phase, we can define the
macroscopic average quantities in the whole composite as a sum of the weighed quantities in
each phase. We thus define the average quantities as

Eav = caEa + cbEb, Sav = caSa + cbSb, eav = caea + cbeb. (2.4)
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Figure 1. Sketch of a rank-one (a) and a rank-two (b) laminated dielectric elastomer composite.

We can express the jump condition (2.3)2 in an alternate form, i.e.

Ea − Eb = βn0, (2.5)

where β is a real parameter. We can thus obtain expressions to relate the singular phases to the
average quantity using equation (2.4)1, namely

Ea = Eav + cbβn0 and Eb = Eav − caβn0. (2.6)

An analogous procedure is followed for the mechanical problem giving us the expressions

ea = eav − ω1cb(m0 ⊗ n0 + n0 ⊗ m0) − ω2cbn0 ⊗ n0

and eb = eav + ω1ca(m0 ⊗ n0 + n0 ⊗ m0) + ω2can0 ⊗ n0,

⎫⎬
⎭ (2.7)

where ω1 and ω2 are unknown real parameters.
The constitutive equations should describe a linear electro-elastic isotropic material. To this

end, we refer to the analysis by McMeeking & Landis [25] by assuming the following relationships
in terms of total stress in each phase

Sa
ij = 2Gaea

ij +
(

Ba − 2Ga

3

)
ea

kkδij + εaEa
i Ea

j − εa

2
Ea

kEa
kδij

and Sb
ij = 2Gbeb

ij +
(

Bb − 2Gb

3

)
eb

kkδij + εbEb
i Eb

j − εb

2
Eb

kEb
kδij,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

where G and B are the shear and bulk moduli of the relevant material, respectively, and δij
represents the Kronecker delta. Note that the r.h.s. of the above expressions can be split into the
elastic (first two terms) and electrostatic (last two terms) stresses that are independent of each
other.

We consider composite elastomer membranes which experience electric actuation across their
thickness (i.e. Eav

1 = 0) that are subjected to two types of mechanical boundary conditions. The
first one is called ‘aligned loading’, in which the macroscopic shear strain is imposed to vanish as
well as the normal components of the total stress, namely

eav
12 = 0, Sav

11 = Sav
22 = 0. (2.9)

In the second condition, the external boundary of the membrane is traction-free, then

Sav = 0, (2.10)

is imposed throughout the device.
For all problems addressed, the solution is obtained in closed-form with the help of the

software Mathematica (Wolfram Research, Inc.). For rank-two laminates, the method to achieve
the final condition to be solved is detailed in the Appendix. We conclude by recalling that the
microscopic electric fields Ea and Eb can be easily obtained, once the problem is solved, through
equations (2.4)1 and (2.6). A similar explicit calculation is performed in [20].
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Figure 2. Rank-one actuation under ‘aligned loading’. Actuation response for k2 = 10, ca = 0.8, θ1 = 30◦ at varying k1; the
homogeneous response (i.e. k1 = k2 = 1) is plotted with a dashed line. The curves on the right-hand part (eav11 > 0) denote
elongation, those on the left-hand part (eav11 < 0) contraction.

3. Rank-one laminated composite

(a) Actuation under ‘aligned loading’ boundary conditions
We first undertake the investigation of the occurrence of the new modes for a rank-one laminate
starting from the more restrictive ‘aligned loading’ boundary conditions, equations (2.9).

By assuming an ideal dielectric, we obtain the parameter β using both jump condition in
D (equation (2.3)1) and equation (2.5). Similarly, ω1 and ω2 are calculated from the jump in S
(equation (2.3)3), with the stress in each phase given by equations (2.8). Once the parameters are
calculated, the average strain eav is achieved through boundary conditions where Sav is provided
by equations (2.4)2 and (2.8).

To define the actuation response, we need to set material parameters for the two phases. To this
end, we first replace the bulk modulus with Poisson’s ratio ν with the well-known relationship

B = 2G(1 + ν)
3(1 − 2ν)

.

As elastomers are typically close to being incompressible, a high Poisson’s ratio is chosen for
both phases, i.e. νa = νb = 0.495. To analyse the response to actuation we then fix the material
parameters for the soft matrix to typical values of Ga = 100 kPa and εa = 4.68 ε0, where ε0 = 8.85 ×
10−12 Fm−1. The stiffer material will then have its parameters defined by εb = k1ε

a and Gb = k2Ga,
where k1 and k2 are dimensionless constants.

Figure 2 illustrates the response of a rank-one laminate (k2 = 10, ca = 0.8, θ1 = 30◦) for different
contrast k1. At an increase of the latter parameter, the response modifies and from longitudinal
elongation it transitions to the unconventional one, i.e. longitudinal contraction. For comparison,
the response of a homogeneous material (i.e. k1 = k2 = 1) is also sketched with a dashed line.

Figure 3 shows the domains where the two actuation modes occur in a plot where k1 varies
with the lamination angle θ1. The drawn curves set the absence of longitudinal strain, eav

11 = 0 (i.e.
no longitudinal actuation at all), for two different shear moduli ratios, k2 = 10 and 100. In both cases,
the volume fraction of the composite is set to ca = 0.8. The optimum value of the lamination angle
which enhances the unconventional behaviour is approximately 30◦ for both values of k2. The
two curved lines share an asymptote at θ1 ≈ 45◦ (above this angle the actuation can be only the
conventional one) and are very close to each other. The latter circumstance means that the leading
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Figure3. Rank-oneactuationunder ‘aligned loading’. Domains showing theactuationbehaviour as k1 andθ1 are varied.Orange
and blue curves indicate inversion of the responses for k2 = 10 and k2 = 100, respectively. Both composites have a volume
fraction of ca = 0.8.

material parameter that set the behaviour of the laminate is the ratio of permittivities k1, with k1
being approximately 50–60 when the lamination angle is close to optimum.

To better comprehend how the switch between elongation and contraction occurs, we analyse
local rotation and stretching of each phase. For our examination we select the geometric and
material parameters of θ1 = 30◦, k2 = 10 and ca = 0.8, and try to represent how the two materials
deform as we increase the permittivity ratio k1. Strains are computed through equation (2.7);
we then calculate the vector of principal strains ê and the angle α, taken w.r.t. the longitudinal
direction (i.e. axis 1), which singles out the principal directions of strain. In particular, the latter is
given by

tan(2α) = 2e12

e11 − e22
. (3.1)

As a way to select the value of the electric fields, the elastomer is subjected to the external
macroscopic field Eav

2 = 100 MV m−1. Figure 4 shows how angle α varies with k1 in each phase
and, similarly, figure 5 reports the principal strains. It is to note that for the chosen parameters the
transition between responses occurs at a value of k1 ≈ 51.812. The figures show that the principal
directions rotate dramatically about this value, coupled with the principal strains reaching their
minima in absolute value. As we move away from the transition value, each material in the
composite tends to stabilize in its response, showing linear behaviour of the strains and constant
angle α. To better illustrate the underlying mechanisms, figure 6 displays how a unit cell deforms
as k1 increases. The deformed unit cell is sketched with the axes aligned with the principal
directions of strain; therefore, the angle of inclination corresponds to α, whereas the lengths of
the sides are proportional to the principal strains ê11 and ê22.

The first set of cases concerns θ1 = 30◦. At low values of k1 the conventional response appears
clearly, with both materials elongating longitudinally. The matrix experiences almost no rotation
whereas the direction of the highest principal strain of the stiff inclusion is inclined of about
24◦. At an increase of the permittivity ratio, the principal directions of the inclusion start to
rotate clockwise until they stabilize at an angle of about −65◦, with those of the matrix material
rotating counter-clockwise up to an angle of approximately 87◦. During this rotation the strains
are relatively small and the leading cause of the transition to the non-conventional response is
rotation of the principal directions of strain. When looking at a high value of k1, e.g. k1 = 70, both
phases are clearly rotated in such a way that the macroscopic elongation occurs transversally. In
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Figure 5. Rank-one actuation under ‘aligned loading’. Principal strains of the two phases as k1 is varied. Parameters of θ1 =
30◦, k2 = 10 and ca = 0.8 are adopted; the elastomer is actuated with Eav2 = 100 MV m−1.

the neighbourhood of the transition value of k1 ≈ 51.812 large changes in rotation occur at very
small changes of k1 in both constituents, with the stiff inclusion leading the matrix. Moreover, we
note that at k1 ≈ 48.711, because of the ‘aligned’ boundary conditions, there is a point in which
both angles α vanish and, as a consequence, so are shear strains in each phase.

Lamination angles θ1 = 10◦ and θ1 = 50◦ are also investigated in figure 6 to represent
configurations for which the change in longitudinal actuation does not occur. For both, the
response of the two selected composites (i.e. k1 = 20, 70) is elongation and is almost independent
of the contrast k1.

(b) Actuation under traction-free boundary conditions
We next examine boundary conditions where shear strains are not limited. The analysis follows
the previous one with the difference being that no constraint are specified on the average strain
and equation (2.10) are used. The same material and geometrical parameters adopted in the
previous section are selected and similar figures plotted.
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Figure6. Rank-one actuation under ‘aligned loading’. Diagram showinghowaunit cell of eachmaterial phase is deformed and
rotated for increasing values of k1. Parameters of k2 = 10 and ca = 0.8 are adopted for all cases; from top to bottom: θ1 = 30◦,
Eav2 = 100 MV m−1, θ1 = 10◦, Eav2 = 100 MV m−1 and θ1 = 50◦, Eav2 = 50 MV m−1 are displayed.

Figure 7 summarizes the findings for this relevant case. We note first that, differently from
before, the minimum value of k1 at which contraction occurs is strongly dependent on the contrast
in shear moduli. In comparison with the ‘aligned loading’ case, for k2 = 10 and θ1 = 30◦ the value
of k1 to expect contraction is almost doubled, k1 = 99.62, whereas for k2 = 100 it is larger than 500.
A second outcome is that the minimum of the curves displayed in the figure (i.e. optimum angle
of the laminate) also depends on the contrast in shear moduli: it ranges from approximately 30◦
for k2 = 1 to 18◦ for k2 = 100. However, as before, there is an asymptotic behaviour for all curves
at θ1 ≈ 45◦.

Figures 8 and 9 deal with orientation of principal direction of strains and principal strains
as a function of k1. With fewer restraints imposed by the current boundary conditions, about
the transition value of k1 = 99.62 there is no drastic change in orientation of principal directions.
Unlike before, both material phases rotate clockwise, with the stiff inclusion rotating remarkably
right from the start and the soft material phase undergoing a much longer drawn out rotation as k1
increases. The functions of the two angles intersect at a value of k1 = 14.155; however, this happens
at an angle of −14.64◦ unlike previously, where they both aligned at 0◦. Looking at the principal
strains does not provide much insight to the occurrence of the response transition. The strains
in the stiff inclusion seem to have a minimum of their principal value at k1 = 14.214, about the
value where the orientation angles intercept. However, this is far from the transition value, where
the curves of principle strains show a linear trend. Looking at both graphs we can understand
that the transition occurs because of an interplay between the slowly rotating soft bulk material
coupled with the material experiencing higher strains.
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There are also some additional behaviours to note that are not highlighted in the figures. When
the shear strains are not limited, the composite experiences high values of shear strain, which
makes it the dominant deformation.

4. Rank-two laminated composites

(a) Homogenization of rank-two laminates
The goal of this section is to assess if a rank-two laminate can (i) confirm and—possibly—(ii)
enhance the behaviour of the previously discussed rank-one composite. Because of the electro-
elastic small-strain setting, we follow the work done by Tian [26] and Tevet-Deree [27] that
introduced an iterative procedure to compute the effective response of a laminate with a generic
rank.
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θ1 = 30◦, k2 = 10 and ca = 0.8 are adopted; the elastomer is actuated with Eav2 = 100 MV m−1.

Figure 1b shows a sketch of the composite under investigation that is made up of a core phase,
which is a rank-one material with soft and stiff materials, and an—outer—matrix phase which
consists of the same soft material. The core has a lamination angle of θ1, that is independent of θ2,
which in turn describes the grade of the matrix. The field equations to be satisfied in each phase
are still (2.2)1,2; however, now it is convenient to write the constitutive equations as

D = ME, S = Ce + AE ⊗ E, (4.1)

where M is the second-order tensor of dielectric moduli, while C and A are the fourth-order
tensors of elastic moduli and electromechanical coupling, respectively. For a homogeneous phase,
their non-zero components are

C1111 = C2222 = B + 4G
3

, C1122 = C2211 = B − 4G
3

,

C1212 = C1221 = C2112 = C2121 = G,

A1111 = A2222 = ε

2
, A1122 = A2211 = − ε

2
, A1212 = A1221 = A2112 = A2121 = ε

2
,

M11 = M22 = ε. (4.2)

To deal with homogenization of sub-rank laminates, we also introduce the electrostatic and
elastic concentration tensors g and G, respectively, relating the fields in each phase to the average
ones in the composite, componentwise

Ei = gijE
av
j , eij = Gijkle

av
kl . (4.3)

It has been shown in [16] that the effective coupling and elastic moduli tensors for a rank—N
material can be obtained using the expressions

Aav
ijkl =

N∑
r=1

c(r)A(r)
mnpqG(r)

mnijg
(r)
pk g(r)

ql and Cav
ijkl =

N∑
r=1

c(r)C(r)
ijpqG(r)

pqkl. (4.4)

These effective coupling tensors allow us to calculate the effective macroscopic strain tensor. By
using equation (4.1)2, we obtain the relationship

eav
ij = Cav−1

abij (Aav
abklE

av
k Eav

l ), (4.5)
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which lets us compute the strain knowing just elastic moduli and coupling tensors. As C
av−1

may
be hard to calculate, in the Appendix we provide a method to solve this equation. It may also be
useful to have at hand the effective dielectric moduli, given by

Mav =
N∑

r=1

c(r)M(r)g(r). (4.6)

(b) Transition to contraction actuation mode in rank-two laminates
We analyse a rank-two laminate where the matrix is the same as the soft material in the core. The
equivalent properties of the core will be indicated by subscript c whereas those of the matrix by
subscript d, so that the relevant volume fractions satisfy the expression cc + cd = 1. To compare
the performance of a rank-two composite to that of a simple laminate, we define an equivalent
volume fraction ceq, which would be the rank-one volume fraction ca to achieve the same overall
percentage of soft to stiff material in the two composites. The volume fractions of the current
composite relate to the rank-one equivalent by

(1 − ca)cc = 1 − ceq. (4.7)

By fixing ceq one can obtain ca and vice-versa. To obtain a solution in terms of strain for the rank-
two composite, we first follow the procedure set for the simple laminate, explained in §3a, to
achieve parameters β, ω1 and ω2.

The boundary conditions adopted are traction-free, therefore, comparison of performance is
carried out with results from §3b for the simple laminate. The various tensors g, C, G and A are
determined from equations (2.6) and (2.8) for each phase of the core. These are then inserted in
equations (4.4) and (4.6) to obtain the effective coupling and moduli tensors for the core material.
As a rank-one layout is recovered if the core is all filled with the stiff material, we have checked
that equation (4.5) provides identical strains to those determined previously for a simple laminate.
For all the analyses, we confirm the material parameters already adopted, namely Ga = Gd = 100
kPa and εa = εd = 4.68 ε0. The stiff material is again defined by variables k1 and k2.

When comparing actuation strains for the two types of composites, by adopting for example
values either k1 = k2 = 10 or k1 = k2 = 100, data in full agreement with that calculated in
[16,19,20,28] have been attained.

For our goal of enhancing the transition between longitudinal elongation and contraction, we
note that for the rank-two composite we can take advantage of the fact that multiple parameters
that can be varied independently come into play. In this section, we define an ‘optimum’
rank-two laminate having the various parameters combined to minimize k1 at the transition
between conventional and unconventional responses. The lamination angles greatly affect this
minimization, other parameters being equal, as shown in figures 10 and 11. Both of these figures
are for a rank-two composite with ceq = 0.5 and cd = 0.1 which is compared to the simple laminate
with ca = 0.5 and optimum angle θ1 = 30◦.

In the former figure, the grades of the two laminates are set by angles θ1 = 30◦ and θ2 = 25◦, a
choice that is not related to any optimization. Here, the simple laminate exhibits the inversion at
lower values of variable k1 over the whole domain. It is also evident in the figure that the domain
of inversion of actuation for the rank-two composite is a region located on the left-hand side of
the diagram for which there is no change in actuation for relatively large values of k2 (k2 > 28).
This occurs for θ1 > θ2, whereas an enhanced performance is found for the opposite case, namely
θ2 > θ1. When the two angles coincide, matrix and core align with each other and the rank-one
response is captured.

Figure 11 shows a response for a rank-two composite in which the angles are optimized. For
this type of configuration, the curve of inversion is almost flat and has a horizontal asymptote as
k2 increases. The parameters are selected (θ1 = 48◦ and θ2 = 93◦) to lower this asymptote such that
the transition between elongation and contraction appears with as low a k1 as possible.
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Figure 11. Domains showing inversion of actuation for rank-one and rank-two composites with optimum parameters for both.
Volume fractions are ca = 0.5 for the former and ceq = 0.5, cd = 0.1 for the latter. The adopted lamination angles areθ1 = 30◦

for the simple laminate and θ1 = 48◦, θ2 = 93◦ for the rank-two one.

Figure 12 displays a similar picture with optimum parameters chosen for ceq = 0.84 and cd =
0.17. For the rank two they are θ1 = 50◦ and θ2 = 95◦, whereas the usual θ1 = 30◦ is adopted for
the simple laminate. The enhanced response is very similar to that determined for the previous
configuration with a higher percentage of stiff material, as the graph is only shifted upwards.

Figure 13 shows how the volume fraction of the rank-two laminate, with a given equivalent
fraction, relates to the value of k1 needed for the inversion of actuation. In this analysis the contrast
in shear moduli, k2, is set to 100 as this is representative of the horizontal asymptote displayed in
previous figures for ‘optimum’ laminates. For each value of cd, the lamination angles needed to
be duly computed to give the lowest possible value k1. When cd → 0 and cd = ceq the composite
exhibits the response of the simple laminate. This is expected as either the matrix vanishes or the
core has to be made up of only the stiff material. The figure shows that for all the volume fractions
in between these two limits the optimized rank-two laminate exhibits the inversion of actuation
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Figure 12. Domains showing inversion of actuation for rank-one and rank-two composites with optimumparameters for both.
Volume fractions are ca = 0.84 for the former and ceq = 0.84, cd = 0.17 for the latter. The adopted lamination angles areθ1 =
30◦ for the simple laminate and θ1 = 50◦, θ2 = 95◦ for the rank-two one.
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Figure 13. Domains showing the actuation behaviour and lines of inversion for optimum rank-one and rank-two composites
for cases ceq = 0.5 and 0.84 as cd is varied against k1. A value of k2 = 100 is adopted. Lamination angles are optimized for each
computed case.

for lower values of k1 as compared to the best rank-one composite. The optimum matrix volume
fraction cd is shown to be 0.1 and 0.17 for an equivalent fraction ceq of 0.5 and 0.84, respectively.
Overall, this analysis shows that to create a rank-two composite capable of enhancing contraction,
parameters to start the iterative optimization procedure are a volume fraction for the matrix of
about 0.1–0.2 and lamination angles of θ1 ≈ 50◦ and θ2 ≈ 95◦.

We next analyse longitudinal and shear strains in both layouts to better understand their
actuation performance. We define the effective strain tensors as e1 and e2 for rank-one or rank-two
composites, respectively. To analyse the strains we use the parameters of the composite adopted
in figure 12 (θ1 = 50◦, θ2 = 95◦) with ceq = 0.84; we fix a value of k2 and range k1, actuating both
composites with a macroscopic electric field of Eav

2 = 100 MV m−1. Figure 14 displays the outcome
with parts (a) and (b) corresponding to k2 = 5 and k2 = 20, respectively. The main difference
between the rank-one and rank-two composites is that for both shear and longitudinal strains
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Figure 14. Strain components sketched against k1 of rank-one and rank-two laminates actuated with Eav2 = 100 MV m−1.
Optimum parameters are adopted with ceq = 0.84. (a) k2 = 5, (b) k2 = 20.

the latter exhibits horizontal asymptotes at large k1 whereas for the former they increase almost
linearly. We will focus in our ensuing comments on permittivity ratios k1 up to ≈ 500.

In part (a), with the contrast in shear moduli being relatively low, up to the point at which
the responses of the two composites diverge, their strains are quite similar, as similar are the
values of k1 of the transition between elongation and contraction. This is no longer verified
for longitudinal strains in part (b), that is for a higher stiffness contrast. In this diagram, the
rank-two outperforms the simple laminate both in elongation and contraction strains. Under the
conventional, elongation regime this is expected as this is the actuation type where hierarchical
laminates have been thoroughly investigated in previous studies [16,18,20,29]. Our work confirms
that this is also the case when the composite displays the contraction actuation mode. We also note
that shear strains are, in magnitude, of the same order of the longitudinal ones.

In both plots of figure 14, the computed strains are for layouts computed to minimize the
value of k1 at the transition as determined, e.g. in figure 12. However, a relevant problem is the
following: how to reach the maximum contraction given the type of constituents? As an example,
in figure 12b we select k1 = 400 and compute the configuration to achieve the lowest possible
longitudinal strain. The parameters are: ceq = 0.84, cd = 0.05, θ1 = 56◦.10, θ2 = 95◦.35, and the
strain at Eav

2 = 100 MV m−1 amounts approximately to −0.065. This example demonstrates that
once we know that longitudinal contraction is possible with the phases at hand, the optimum
configuration should be carefully determined according to the design requirements of the device.

Figure 15 reports two diagrams where the longitudinal strain is sketched against the two
lamination angles for a rank-two composite (volume fractions are cd = 0.17 and ceq = 0.84). It
is notable that when θ1 = θ2 the behaviour of the simple laminate is recovered, highlighted in
both plots with a blue line. The minima of the surfaces are marked with green and blue dots, for
the rank-two and rank-one layouts, respectively. The two figures have different material ratios:
k1 = 300 and k2 = 20 for part (a) and k1 = 300 and k2 = 300 for part (b). The composite is actuated
with a field Eav

2 = 10 MV m−1.
Figure 15a highlights that when k2 < k1, a simple laminate always performs better in elongation

than the rank-two configuration, irrespectively of the grade of phases of the latter. However,
the maximum strain in contraction for optimized configurations of the rank-two layout (i.e.
the minima of the surface that have a negative value) are always larger than those associated
with the simple laminate. In figure 15b, the same material ratios are selected, k1 = k2 = 300.
Here, optimized rank-two configurations perform better for both elongation and contraction.
The simple laminate deforms always with positive longitudinal strain. Overall, the rank-two
composite can outperform the simple laminate, but a careful study of geometry and material
parameters needs to be undertaken as the results may vary greatly, being very sensible to small
changes of the quantities involved. To complete the analysis, we report that the coordinates of
minima for the rank-two in (a) are θ1 = 57◦.98, θ2 = 85◦.08 (the minimum is −0.0364) whereas in
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Figure 15. Plot of the longitudinal strain for rank-two laminates as θ1 and θ2 are varied for cd = 0.17, ceq = 0.84. The blue
line shows the loading path for a simple laminate with the dots marking the minimum strains. The material is actuated with
Eav2 = 10 MV m−1. (a) k1 = 300, k2 = 20, (b) k1 = k2 = 300.

(b) they are θ1 = 59◦.13, θ2 = 86◦.63 (value of the minimum: −0.0344) (in both diagrams points are
doubled as there is a symmetry with respect to the right angle).

5. Viability given currently available materials
The investigation carried out so far was undertaken by changing the material parameters k1 and
k2 to show the whole range of responses for both rank-one and rank-two laminates. However,
a non-secondary aspect to be considered is to know the current availability of materials to be
in principle employed to assess the viability of such composite devices able to display a ‘non-
conventional’ actuation mode. Here we offer a brief view of materials that have already been
processed and investigated which could potentially fit for the purpose.

The composite requires a pair of materials, of which one soft with low dielectric permittivity
and another with a much higher dielectric permittivity. However, an increase in permittivity is
usually achieved by mixing some filler material in a soft elastomer matrix which, in turn, also
causes an increase in stiffness. The soft material is usually made from either silicon or acrylic.
It is currently accepted that acrylic elastomer tends to be the preferred material for large-strain
applications, as shown by Michel et al. [30]. Custom synthetic elastomers can also be used and
in general these materials exhibit similar properties. Various researchers have categorized them
showing that generally these soft materials have a relative dielectric permittivity εr whose value
is in the range 2–10 and a shear modulus μ lying between 50 kPa and 1 MPa [31–33]. Overall, the
material parameters used throughout the paper of μ= 100 kPa and ε= 4.68 ε0 represent a good
approximation for a generic acrylic elastomer to be adopted as a soft phase.

We also showed that in a simple laminate, specially with the traction-free boundary conditions,
k2 needs to be kept as low as possible for a realistic values of k1 at the transition. For a rank-
two composite this requirement is not relevant which makes the latter a much more viable
arrangement to achieve the contraction actuation mode. When looking for a suitable stiff material,
the threshold for the rank-two laminate is k1 ≈ 40.

Two strategies have been developed to improve the dielectric constant of elastomers. The
first one is blending the elastomer material with a highly polarizable ceramic such as barium
titanate [34], titanium dioxide [35] or calcium copper titanate [36]. This method does not seem to
provide very high permittivities, with most of these materials displaying values of k1 limited
to five. The second method consists of improving the permittivity by addition of conductive
fillers into the matrix, such as carbon nanotubes [37–39] and graphene sheets [40–42], to form
conductive filler/polymer composites. These materials seem much more suitable for our goal,
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with permittivity ratios reaching in principle hundred of times. Two examples can be cited: Tian
et al. [41] have proposed a graphene-filled material such that the computed ratios are k1 = 400 and
k2 = 65; George et al. [38] synthesized a carbon nanotube composite that, coupled with the soft
matrix, reaches the values of k1 = 170 and k2 = 12. Both of these materials would be suitable in a
rank-two laminate to display the contraction mode, with the former also able to allow inversion
of actuation when arranged as a simple laminate layout.

6. Conclusion
A method to improve the actuation performance of dielectric elastomer membrane is to create
a composite material in which a phase with a high-dielectric permittivity is embedded in a soft
elastomeric matrix. An efficient way to achieve the goal is to arrange the internal microstructure as
a hierarchical laminate. In this paper we show that for small-strain electro-elasticity in plane strain
a new, ‘non-conventional’ actuation mode consisting of longitudinal contraction could be available
for laminates whose electromechanical and geometrical parameters assume values beyond some
thresholds.

The first part of the investigation is devoted to simple laminates. For this class of composite
we have studied two types of boundary conditions: ‘aligned loading’ and traction-free. For the
former, the threshold for the permittivity ratios is approximately 50 and is almost independent
of the contrast in shear modulus. For the latter, said threshold depends almost linearly on
the contrast in mechanical stiffness. For both, the ideal grade of laminae with respect to the
longitudinal direction is approximately 30◦. The former boundary condition clearly highlights
that the change in actuation mechanism with respect to the conventional elongation mode is due
to the change in the strains that each phase undergoes to allow compatibility of the macroscopic
deformation.

For a rank-two layout the number of variables involved to define the microstructure is higher
and this proved to be advantageous for the optimization of the microstructure in order to limit
the contrast in permittivity to achieve the new actuation mode. We have shown that the optimum
configuration is able to ensure the minimum threshold for the whole range of the stiffness ratio.

As far as actuation strains are concerned, the maximization of contraction once one has verified
the possibility of achieving the new mode must be conducted carefully as the outcome may vary
greatly being very sensible to small changes of the quantities involved. In general, however, a
rank-two composite outperforms a simple laminate at same volume fractions of the constituents.

The proposed research can be extended, on the one hand, by encompassing nonlinear electro-
elastic effects, on the other hand, by adapting the framework to different types of active
composite, e.g. magneto-elastic laminates [43–46].
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Appendix A
Here we provide a method to solve the rank-two laminate, equation (4.5), following and adjusting
that proposed by Tian [26]. The main problem to be tackled when solving equation (4.5) is that
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of the explicit determination of C
av−1 and the average elastic concentration tensor G for the

core; with the proposed approach, the latter is calculated implicitly. The jump conditions and
the average quantities, equations (2.3) and (2.4), are used together with the governing equation
(4.1) to obtain the following relationships:

caea + cbeb = eav, m0 · (ea − eb)m0 = 0

and (Caea + A
aEa ⊗ Ea − C

beb − A
bEb ⊗ Eb)n0 = 0.

⎫⎬
⎭ (A 1)

Plugging the first of these into the last two gives

m0 · eam0 = m0 · eavm0

and (ca
C

b + cb
C

a)ean0 = C
aeavn0 − ca[Aa(gaEav ⊗ gaEav) − A

b(gbEav ⊗ gbEav)]n0.

⎫⎬
⎭ (A 2)

From any 2 × 2 matrix ψ , a column vector ψ̂ can be defined as

ψ̂ =

⎡
⎢⎣

ψ11
ψ22

1√
2

(ψ12 + ψ21)

⎤
⎥⎦ . (A 3)

A fourth-order tensor can also be turned into a 2 × 2 matrix with matrices becoming a column
vector. As an example, the elastic constitutive relations can be written as⎡

⎢⎣ S11
S22√
2 S12

⎤
⎥⎦=

⎡
⎢⎣ C1111 C1122

√
2 C1112

C2211 C2222
√

2 C2212√
2 C1211

√
2 C1222 2 C1212

⎤
⎥⎦
⎡
⎢⎣ e11

e22√
2 e12

⎤
⎥⎦ . (A 4)

Using this notation, T is defined as the column vector generated from the matrix m0
i m0

j . For the
goal, the following matrices need also to be defined, i.e.

L(i)
mn = Ab

ijklg
b
kmgb

lnnj − Aa
ijklg

a
kmga

lnnj,

N(i)
kl = (cbCa

ijkl + caCb
ijkl)nj

and O(i)
kl = Cb

ijklnj,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 5)

which come from the various components of equation (A 2)2. Next, the following (3 × 3) matrices
are constructed using the row vector forms of the newly defined matrices L(i), N(i) and O(i), as
follows:

P =

⎡
⎢⎣ 0̂T

cbL̂(1)T

cbL̂(2)T

⎤
⎥⎦ , R =

⎡
⎢⎣ TT

N̂(1)T

N̂(2)T

⎤
⎥⎦ , Q =

⎡
⎢⎣ TT

Ô(1)T

Ô(2)T

⎤
⎥⎦ , (A 6)

where 0̂ is a three-component null vector. equation (A 2)2 can now be rewritten using the
constructed matrices in a simpler manner, i.e.

Rêa = Qêav + PẼ, (A 7)

where Ẽ is the column vector of the matrix Eav
i Eav

j . Solving for e gives

êa = R−1Qêav + R−1PẼ. (A 8)

W is next defined as the matrix form of the fourth-order tensor

caAa
ijklg

a
kmga

ln + cbAb
ijklg

b
kmgb

ln, (A 9)
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which is then used with the constructed quantities to obtain an expression of the average total
stress (equation (4.1)2) as

Ŝav = caŜa + cbŜb = caĈaêa + cbĈbêb + WẼ

= [Ĉb + ca(Ĉa − Ĉb)R−1Q]êav + [ca(Ĉa − Ĉb)R−1P + W]Ẽ. (A 10)

As previously shown, the total stress is made up of two uncoupled terms, the mechanical term
and the electrical one. By inspection, we can thus see that the effective coupling and elastic tensors
for the composite can be obtained using the new available algebraic variables as follows:

Ĉav = Ĉb + ca(Ĉa − Ĉb)R−1Q and Âav = ca(Ĉa − Ĉb)R−1P + W. (A 11)

These moduli can now be used in the expression

êav = Ĉav−1
ÂavẼ, (A 12)

to obtain the average strain. From (A 11) it is trivial now to obtain the inverse of Ĉav and the use
of the modulus G, which was previously used to calculate A

av, has been incorporated implicitly
in the procedure.
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