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Abstract 
 

In a recent meta-analysis, Harrison, Noble and Jennions (2022; Biological Reviews, 97, 
679-707) set out to test the greater male variability hypothesis with respect to personality in non-
human animals. Based on their non-significant results, they concluded that there is no evidence 
to support the hypothesis, and that biological explanations for greater male variability in human 
psychological traits should be called into question. Here, we show that these conclusions are 
unwarranted. Specifically: (a) in mammals, birds, and reptiles/amphibians, the magnitude of the 
sex differences in variability found in the meta-analysis is entirely in line with previous findings 
from both humans and non-human animals; (b) the generalized lack of statistical significance 
does not imply that effect sizes were too small to be considered meaningful, as the study was 
severely underpowered to detect effect sizes in the plausible range; (c) the results of the meta-
analysis can be expected to underestimate the true magnitude of sex differences in the variability 
of personality, because the behavioral measures employed in most of the original studies contain 
large amounts of measurement error; and (d) variability effect sizes based on personality scores, 
latencies, and proportions suffer from lack of statistical validity, adding even more noise to the 
meta-analysis. In total, Harrison et al.’s study does nothing to disprove the greater male 
variability hypothesis in mammals, let alone in humans. To the extent that they are valid, the data 
remain compatible with a wide range of plausible scenarios. 

 
Keywords: Animal personality; greater male variability; measurement error; sex 

differences; sexual selection. 
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Introduction 

 
In their recent paper, Harrison et al. (2021) set out to test the greater male variability 

hypothesis with respect to personality in non-human animals (220 species of mammals, birds, 
reptiles/amphibians, fish, and invertebrates), along five dimensions of activity, aggression, 
boldness, exploration, and sociality. Based on the non-significant results of their meta-analysis, 
the authors concluded that “personality-like behavioural traits are, in general, not more variable 
in males than females” (p. 17) and that “there is no evidence to support the ‘greater male 
variability’ hypothesis in any taxonomic group for any of the five personality axes” (p. 18). The 
authors also argued that their findings have important implications for human psychology; 
specifically, they “raise doubts about the extent to which evolved biological differences between 
the sexes, arising from past sex differences in sexual and natural selection, should be used to 
explain why men have greater trait variation than women for certain behavioural traits” (p. 17). 
These conclusions were amplified in a sensationalistic press release for the study (ANU 
Communication & Engagement, 2021). Puzzlingly, the press release—titled sexist 
“sexplanation” for men’s brilliance debunked—focused heavily on sex differences in the 
variability of IQ scores (which were also mentioned in the paper), despite the fact that the study 
was limited to animal personality and did not include any data on cognitive ability.1 

 
In this commentary, we reconsider the results presented by Harrison et al. and show that 

their conclusions are unwarranted. Specifically, we note that (a) in mammals, birds, and 
reptiles/amphibians, the magnitude of the sex differences in variability found in the meta-
analysis is entirely in line with previous findings from both humans and non-human animals; (b) 
the generalized lack of statistical significance does not imply that effect sizes were too small to 
be considered meaningful, as the study was severely underpowered to detect effect sizes in the 
plausible range; (c) the results of the meta-analysis can be expected to underestimate the true 
magnitude of sex differences in the variability of personality, because the behavioral measures 
employed in most of the original studies contain large amounts of measurement error; and (d) 
variability effect sizes based on personality scores, latencies, and proportions suffer from lack of 
statistical validity, adding even more noise to the meta-analysis.  

 
Despite these limitations, the study by Harrison et al. makes a valuable contribution to the 

literature; however, it does nothing to disprove the greater male variability hypothesis in 
mammals, let alone in humans. To the extent that they are valid, the data are compatible with a 
wide range of plausible scenarios—including the possibility that, at least in some taxonomic 
groups, sex differences in the variability of personality may be larger than those in the variability 
of morphological traits. Note that, in this commentary, we focus specifically on the statistical and 
methodological limitations of Harrison et al.’s study, which we believe are sufficient to 
undermine the authors’ main conclusion. We do not address other potentially relevant issues, 
such as the differences between personality and cognitive ability or the potential theoretical 
explanations of greater male variability. 

 
 

 
1 The authors of the study were contacted with questions, and confirmed that they had approved the press release 
and its focus on IQ scores (Lauren Harrison and Michael Jennions, personal communication, December 22, 2021). 
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Effect Sizes, Statistical Power, and the Precision of Estimates 
 

Before researchers “embrace the null” by interpreting statistical non-significance as 
evidence against the existence of an effect, it is imperative that they ask if the study had 
sufficient power to reliably detect the effect of interest. Surprisingly, Harrison et al. did not 
address the issue of statistical power (or precision) at all, either in the main text or in the 
supporting information. The question of statistical power to detect meaningful effect sizes 
requires specification of a meaningful effect size. To quantify sex differences in variability, the 
authors used the natural logarithm of the ratio between the coefficients of variation of males and 
females (lnCVR); positive values indicate greater male variability, whereas negative values 
indicate greater female variability. They labeled the effects found in the meta-analysis as “small 
in magnitude” and “moderate to small” (p. 12-13), but did not provide benchmarks to support 
this interpretation, or compare their estimates with those reported in the rest of the literature.  

 
Then, a crucial question remains: what is the range of plausible effect sizes for sex 

differences in variability? One way to answer is to consider the results of previous large-scale 
studies of non-human animals. In their original meta-analysis of variability in body size, 
Reinhold and Engqvist (2013) found significant sex differences in all the taxonomic groups, with 
lnCVR = 0.02 in mammals and insects, -0.02 in birds, and -0.04 in butterflies. A more 
sophisticated reanalysis of the same data by Nakagawa et al. (2015) yielded lnCVR = 0.04 in 
mammals and -0.06 in birds (all values approximated to two decimals). Wyman and Rowe 
(2014) found significantly greater phenotypic variability in males across species on an 
assortment of morphological, physiological, developmental, and behavioral traits (Table 3 in 
Wyman & Rowe, 2014). To quantify sex differences, these authors used the difference between 
the male and female coefficients of variation. The raw data of the study can be used to calculate 
lnCVR values, whose unweighted mean across traits and species was 0.02.2  

 
Another useful source of information is the research on personality and intelligence in 

humans. This is especially pertinent since Harrison et al. explicitly cited the debate on human sex 
differences as a key motivation for their study. In these fields, the default effect size is the 
variance ratio (i.e., the ratio between the male and female variances). In the largest study of sex 
differences in the variability of “Big Five” personality traits in adults (Borkenau et al., 2013a), 
variance ratios ranged between 1.05 and 1.12 for self-reported Extraversion, Openness, 
Conscientiousness, and Agreeableness; the variance ratio was 0.98 for Neuroticism, indicating 
greater variability in females. Another, smaller study suggested that informant reports of 
personality may yield higher variance ratios than self-reports, up to about 1.20 (Borkenau et al., 
2013b). Large studies of IQ scores found variance ratios of up to 1.20 in children (Arden & 
Plomin, 2006), and 1.13-1.19 in young adolescents (Johnson et al., 2008). The authors of the 
latter study also attempted to estimate the non-clinical distribution of IQ, by removing low scores 
that were likely due to disruptive developmental conditions. After this correction, the estimated 
variance ratios decreased to 1.08-1.09 (see Table 1 in Johnson et al., 2008).  

 
Personality and intelligence are measured on arbitrary scales that lack a meaningful zero; 

for this reason, it does not make sense to calculate coefficients of variation or derived measures 
 

2 Because sample sizes were not included in the data file, we did not calculate a meta-analytic estimate or correct the 
effect sizes for small-sample bias (see Senior et al., 2020). 
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such as the lnCVR, which assume ratio-level scales. When the male and female means are equal, 
however, the lnCVR is identical to the lnVR or variability ratio (the natural logarithm of the 
ratio of the standard deviations; Nakagawa et al., 2015; Senior et al., 2020). This simplifying 
assumption allows us to make rough comparisons between the psychological data from humans 
and the (largely morphological) data from non-human animals. For self-reported personality 
traits except Neuroticism, lnVR values range from 0.02 to 0.06; the effect for Neuroticism is 
-0.01. Informant reports may yield values as high as 0.09. For IQ scores in adolescents (where 
the assumption of equal means holds to a close approximation; see Johnson et al., 2008), the 
lnVR values are 0.06 to 0.09 for the empirical distribution, and 0.04 for the estimated non-
clinical distribution. Notably, these effect sizes are very similar to the lnCVR values found in 
studies of non-human animals; taken together, the available data suggest a plausible range of 
about 0.02 to 0.09 for traits showing greater male variability.  

 
Crucially, it would make no sense to label these figures as “small” based on arbitrary 

intuitions. First, an effect size is only “large” or “small” relative to a particular research question 
(see Del Giudice, in press). Second, differences in variability of the magnitude described by 
these effect sizes can have dramatic consequences at the extremes of the distribution. Figure 1 
illustrates this concept by showing male and female percentages for normally distributed traits 
with equal means in males and females and lnCVR (or lnVR) values of 0.02, 0.06, and 0.09. For 
an illustration of the same phenomenon with real-world IQ data, see Figure 2 in Johnson et al. 
(2008); for in-depth discussion, see Del Giudice (in press). 

 

 
 
Figure 1. Percentages of males and females at different levels of a normally distributed trait with 
greater male variability. In these examples, the sexes have different variances but equal means, so 
that lnCVR = lnVR. Overlapping male and female distributions are plotted at the bottom of each 
plot. Note: the horizontal axis does not show actual trait values (which have to be positive to 
calculate coefficients of variation), but standard deviations from the mean in the female 
distribution. 
 
 
Effect sizes in this range require very large samples to be reliably detected and estimated 

with precision. To illustrate: with a = 0.05 (two-tailed), the sample size needed to achieve 80% 
power goes from about N = 2,000 for lnCVR = 0.09 to about 40,000 for lnCVR = 0.02 (see 
Appendix A1 for additional assumptions and details). With few exceptions, the meta-analytic 
estimates in the study by Harrison et al. involved dozens if not hundreds of effect sizes each. But 
most of those effects were based on exceedingly small samples: the supplementary data show 
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that the median N per effect size ranged from 33 in mammals to 48 in birds and invertebrates. 
Moreover, most studies included in the meta-analysis contributed multiple non-independent 
effects, reducing the effective size of the dataset. On top of this, the p-values reported in the main 
paper were adjusted upward based on the false discovery rate—a procedure that limits the 
proportion of “false-positive” findings, but (like all corrections for multiple testing) does so at 
the cost of reduced power.3  

 
The validity of these concerns is fully confirmed by the meta-analytic estimates presented 

by Harrison et al. The overall effect sizes across personality dimensions were 0.06 in mammals, 
-0.14 in birds, 0.04 in reptiles and amphibians, 0.00 in fish, and -0.01 in invertebrates (Table 1 
in Harrison et al.). In other words: for mammals, birds, and reptiles/amphibians, the overall 
magnitude of sex differences in variability matched or exceeded that reported in previous studies 
of humans and non-human animals. By definition, the fact that the corresponding tests were not 
statistically significant means that the study was seriously underpowered to detect effects in the 
plausible range. Indeed, two studies can provide very similar estimates of a certain effect, but 
one estimate may be “significant” and the other “non-significant”, just because of differences in 
statistical power. Concluding that the results are inconsistent or mutually contradictory is an all-
too-common fallacy in the interpretation of significance tests (see Amhrein et al., 2019); lack of 
statistical significance implies that the confidence interval overlaps with zero—but does not 
imply a zero or negligible effect size, in and of itself. 

 
Within mammals (the taxonomic group that includes our species), the five dimensions of 

personality showed a consistent pattern of greater male variability, with effect sizes ranging from 
0.03 to 0.11 (Table 2 in Harrison et al.). These effect size estimates were not statistically 
significant. But again, these results are not due to the point estimates of effect size being lower 
than a meaningful effect size; they were precisely in a range one could expect (indeed, somewhat 
larger than sex differences in the variability of morphological traits). The results are due to low 
power to detect effect sizes in the plausible range, because of substantial sampling variability and 
other likely sources of noise (see below). Table 1 in Harrison et al. reports confidence intervals 
around the point estimate for mammalian traits, from which one can estimate the standard errors 
and, thereby, power to detect a true effect of meaningful size. For true effect sizes of 0.02, 0.06, 
and 0.09—all within the range of plausible, meaningful effect sizes—the average power in 
mammals (a = 0.05, two-tailed) was roughly 5%, 7%, and 10%, respectively (see Appendix 
A2).4 In fact, the actual power was necessarily even lower, because p-values were adjusted for 
multiple testing. When power is so low, “null” effects do not allow one to be able to make any 
confident statement about whether true effects are meaningful, especially when point estimates 
are in the plausible range. 

 

 
3 In this case, most of the tests were not significant even before adjustment (see the supporting information of 
Harrison et al.); our point is that the costs and benefits of such adjustments should be evaluated carefully when 
working in conditions of low power. 
 
4 Note that these power estimates include all rejections of the null, including the probability of finding significant 
effects in the wrong direction (Type S error, with S standing for “sign”; see Gelman & Carlin, 2014). The 
corresponding probabilities of rejecting the null when the effect was in the right direction ranged from 3% to 9%. 
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The statement that power to detect effects in a plausible, meaningful range is very low is 
equivalent to saying that the standard errors of estimate for true effects are large relative to 
values in the plausible range—that is, true effect sizes are very imprecisely estimated by these 
data. The 95% confidence intervals presented in Table 2 obviously include values of zero; but 
the same intervals also include values in the 0.30-0.40 range, much greater than those typically 
observed for morphological traits—indeed, perhaps an order of magnitude greater than minimum 
values of interest. When estimates do not rule out values much larger than minimum meaningful 
values, it makes little sense to draw the conclusion that meaningful effects do not exist.  

 
The large standard errors of estimate for mean lnCVR values, in turn, partly result from 

large standard errors for estimate of lnCVR in individual studies. Harrison et al. provided a 
formula for the standard error of a sample-specific estimate of lnCVR, taken from Nakagawa et 
al. (2015). That formula was subsequently corrected by Senior et al. (2020). We used the 
corrected formula to estimate that, for the 674 estimates of lnCVR in mammals, the mean 
standard error exceeds 0.50, which is close to the standard deviation of lnCVR estimates in 
mammals (see Harrison et al.’s Figure 2, which shows that > 90% of estimates fall in a vast 
range of -1 to 1; a lnCVR of 1 implies that the CV for males is nearly 3 times the CV for 
females). To be sure, some variation in lnCVR estimates across studies is due to heterogeneity in 
the true effect sizes; one should not expect true effect sizes to be identical across all species and 
across all possible measurements. But most variation, it seems, simply reflects sampling 
variability in individual estimates due to small sample sizes (further amplified when CVs are 
relatively large; see Senior et al., 2020).  

 
The Impact of Measurement Error 

 
By definition, personality refers to patterns of stable individual differences in behavior. 

However, actual personality measurements are also affected by other sources of variability—
including within-individual differences over time and random noise—which together constitute 
the measurement error of personality. In the biological literature, the proportion of “true” 
between-individual variance over the total variance is called repeatability; this is conceptually 
equivalent to the psychometric concept of reliability, and is most closely approximated by test-
retest reliability (i.e., the correlation between two administrations of the same measure at 
different times).  

 
Harrison et al. noted that “[…] evidence has emerged for repeatable and heritable 

behavioural variation among non-human animals that is akin to human personality” (p. 3) and 
that “[b]y definition, personality traits are repeatable” (p. 5). But repeatability is not an all-or-
none property, and can range from almost zero to almost one depending on the trait in question 
and the way it is assessed. When they are measured with well-validated tests, the “Big Five” of 
human personality show high repeatabilities, between .80 and more than .90 depending on the 
time interval (e.g., McCrae et al., 2011). IQ scores obtained from full-scale intelligence tests are 
also extremely repeatable, with test-retest reliabilities consistently over .90 (see Jensen, 1998; 
Roid, 2003; Wechsler, 2008). In non-human animals, aggregate ratings based on multiple 
behaviors can also reach high levels of repeatability (e.g., about .80 in Uher et al., 2008).  
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The same is not true of single behavioral assessments, which are strongly affected by 
within-individual variation and other sources of measurement error. In fact, meta-analyses of 
animal studies have shown that the average repeatability of single behaviors is about .30-.40 
(Bell et al., 2009; Garamszegi et al., 2013); these figures mirror classical psychological findings 
about the consistency between single instances of behavior (see Kenrick & Funder, 1988). Note 
that when repeatability is less than .50, a majority of the variance of the behavioral measure is 
actually error variance, rather than variance attributable to personality. This has obvious 
implications when the goal is to estimate sex differences in variability: measurement error 
inflates the within-sex variance of both sexes, overshadowing the true differences in the 
variability of personality and leading to deflated estimates of the corresponding effect sizes. 
Figure 2 shows the relation between true and measured effect sizes at various levels of 
repeatability, assuming equal means in males and females (and equal amounts of measurement 
error in the two sexes; see Appendix A3 for details).  

 

 
 
Figure 2. Expected relations between true and measured effect sizes at high vs. low levels of 
repeatability. The males and female distributions are assumed to have equal means, so that lnCVR 
= lnVR; measurement error is also assumed to have the same variance in the two sexes. 
Repeatabilities of .80-.90 are typical of well-validated personality and intelligence tests; values of 
.30-.40 are typical of single behavioral assessments.  
 
 
In the meta-analysis by Harrison et al., the vast majority of the effect sizes (about 90% of 

the total) came from single behavioral assessments; unsurprisingly, effect sizes calculated from 
only behavioral assessments were virtually identical to the effect sizes calculated on the 
complete dataset (see Table S2 in Harrison et al.). By assuming an average repeatability of .30-
.40, one can obtain a rough but realistic estimate of the true differences in variability that 
correspond to the measured effect sizes (see Appendix A3). For example, the observed effect 
size of lnCVR = 0.06 in mammals is what one would expect if the true effect size were much 
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larger, quite possibly in the 0.15-0.20 range. In contrast, morphological traits are typically 
measured with very high repeatability; hence, measured sex differences in morphological 
variability (e.g., Reinhold & Engqvist, 2013) are going to be almost identical to the 
corresponding true differences. These considerations underscore the fact that, at least in some 
taxonomic groups, Harrison et al.’s findings are compatible with sex differences in the variability 
of personality even larger than those in morphological variability. 

 
Of course, the attenuating effect of measurement error on measured effect sizes 

contributes to reduce the power and precision of Harrison et al.’s meta-analysis. Even though in 
this commentary we focus specifically on sex differences in variability, measurement error has 
the same effect on standardized mean differences (SMD). Specifically, the measured SMD 
equals the true SMD multiplied by the square root of the repeatability (see Del Giudice, in press). 
Hence, an average repeatability of .30-.40 implies that Harrison et al.’s estimates of the SMD 
would correspond to true values of the SMD almost twice as large. We also note in passing that, 
in addition to their low repeatability, single behavioral assessments often show poor validity and 
consistency (e.g., Beckmann & Biro, 2013); some of the behaviors classified by the authors as 
indicators of personality traits such as “boldness” may not measure the relevant traits at all (see 
e.g., Carter et al., 2012).  

 
To clarify, we are not claiming that Harrison et al.’s data show that true effect sizes are in 

the plausible range we identified. As noted above, the low power of their study is due to 
imprecision in the estimation of true effect sizes. For mammals, their estimate of lnCVR = 0.06 
is a best guess for true effect size; but true effect sizes much larger and much smaller than 0.06 
are also compatible with that same estimate. Our point regarding measurement error is that 
Harrison et al.’s estimates are not incompatible with true effects of behavioral lnCVR even larger 
than those observed for morphological traits—yet this conclusion is not what readers will glean 
from Harrison et al.’s presentation of their results. 

 
Invalid Effect Sizes Based on Scores, Latencies, and Proportions 

 
The final problem we want to highlight concerns the statistical validity of a subset of 

variability effect sizes, specifically those based on personality scores, transformed latencies, and 
transformed proportions. About 10% of the effect sizes included in the analysis were not based 
on single behavioral assessment but on personality scores. As we noted earlier, personality 
scores are not ratio scales, because the location of the zero of the scale is arbitrary. When the 
scale of a variable does not have a meaningful zero, the coefficient of variation and derived 
statistics such as lnCVR are meaningless and should not be calculated (Nakagawa et al., 2015; 
Pélabon et al., 2020). Harrison et al. ignored this caveat and calculated lnCVR values from 
personality scores, yielding invalid effect sizes. Fortunately, these effect sizes account for a 
relatively small proportion of the total; as a result, lnCVR estimates based on the complete 
dataset were virtually identical to those calculated excluding scores (except in invertebrates, 
where they were excluded from the analysis; see Table S2 in Harrison et al., 2021). Another 
mitigating factor is that, when the male and female means are equal, the lnCVR reduces to the 
lnVR, which is a meaningful statistic for personality scores if they can be treated as interval 
scales. In a large proportion of effect sizes, mean differences were small or close to zero (see 
Figures 2-6 in Harrison et al.), which probably helped reduce the impact of this error.   
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To normalize the distribution of right-skewed latency data (in about 9% of the effect 

sizes), the authors applied a log-transformation to the means and standard deviations. However, 
if the original variable (latency time) is measured on a ratio scale, the log-transformed variable is 
not, and the coefficient of variation calculated on the transformed data loses its meaning 
(Pélabon et al., 2020). Similarly, about 2% of the effect sizes were based on proportions (e.g., 
proportion of time spent hiding); in about half of the cases, the means and standard deviations 
were logit-transformed to normalize the distribution.5 This transformation changes the location 
of the zero of the scale, so that the coefficient of variation calculated on the transformed variable 
becomes meaningless (see Pélabon et al., 2020). In total, about 20% of the variability effect sizes 
included in the meta-analysis are statistically invalid due to the improper use of the coefficient of 
variation. This must have added even more noise to a study that already suffered from low 
statistical power and high levels of measurement error. 

 
Conclusion 

 
Based on the non-significant findings of their study and their intuitive interpretation of 

effect sizes, Harrison et al. made strong claims about the supposed lack of evidence for the 
greater male variability hypothesis. Here we showed that the data do not support their claims. 
The meta-analysis was underpowered to detect effects in the plausible range; many of the 
estimates were entirely in line with previous findings—which is all the more interesting since 
those estimates had been deflated by the presence of substantial measurement error. We also 
pointed out that about 20% of the effect sizes included in the analysis are statistically invalid.  

 
Taken together, these limitations cast a different light on the study by Harrison et al. 

Importantly, we do not mean to suggest that the study is completely uninformative. The data 
collected by these authors make a useful contribution to the literature, and could be reanalyzed in 
ways that avoid some of the problems with the original analysis. However, they must be 
interpreted with caution and proper consideration of their (large) margins of uncertainty. The 
bottom line of our commentary is that these data simply do not permit confident conclusions 
about the size of sex differences in variability. Not only is it a mistake to rule out meaningful 
effects, but the data are potentially compatible with effect sizes larger than those observed for 
morphological variability. The history of the greater male variability hypothesis has been 
incredibly long and contentious, partly due to the methodological limitations of the early 
research on this topic (see Feingold, 1992; Johnson et al., 2008); injecting more confusion into 
the debate is the last thing we need.  
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Appendix 
 
A1. Sample Size Required to Detect Sex Differences in Variability in a Single Study  

 
Using Monte Carlo simulations, we calculated the power to detect differences in 

variability corresponding to lnCVR values of 0.02, 0.04, 0.06, and 0.09 in a single study, with a 
= 0.05 (two-tailed). For simplicity, we assumed equal means in males and females in the 
population (that is, lnCVR = lnVR); the female coefficient of variation was set to 0.08, which 
approximates the median value for body size across species (McKellar & Hendry, 2009). The 
total sample size was varied from 100 to 100,000; each sample included equal numbers of males 
and females. Figure A1 shows the simulation results. Note that these power calculations include 
all rejections of the null, including the probability of finding significant effects in the wrong 
direction (Type S error; Gelman & Carlin, 2014). This leads to somewhat higher estimates in the 
low-power region of the curve, but has no effect when power is moderate to high.  

 

 
 
Figure A1. Power to detect differences in variability in a single study (a = 0.05, two-tailed). 
 
 
 

A2. Power of Harrison et al.’s Analysis in Mammals 
 

Harrison et al.’s Table 1 reported confidence intervals for lnCVR. From the confidence 
interval reported for mammalian traits, we estimated the standard errors of estimate (where SE is 
roughly ¼ of the width of a confidence interval). The SE was estimated to be .133. Using 
G*power 3.1 (Faul et al., 2009) and this estimated SE, we calculated power to detect true effect 
sizes of .02, .06, and .09. 
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A3. Attenuation of Variability Effect Sizes due to Measurement Error  

 
Repeatability is defined as the between-individual variance (VI) divided by the total 

variance of the measured trait (VT), which in turn is the sum of VI and a residual variance term 
(VR) that includes within-individual variability, random noise, etc. The repeatabilities of males 
and females are: 

 
𝑅! = !"#

!"#	%	!&#
 ,  𝑅" =

!"'
!"'	%	!&'

 . (1) 
 

If the residual variance (i.e., the measurement error) has the same magnitude in the two 
sexes (VRm = VRf = VR), greater male variability at the between-individual level (VIm > VIf) 
implies that males will show higher repeatability than females (Rm > Rf). Indeed, this is a 
common finding in the literature; in one meta-analysis, the effect seemed to be driven by mate 
choice behaviors (Bell et al., 2009), but other studies have found higher male repeatabilities in 
exploration, sociability, and other traits (e.g., Dingemanse et al., 2002; Strickland & Frère, 
2018).  

 
In what follows, we further assume equal means in males and females, so that lnCVR = 

lnVR. With an even sex ratio, the repeatability R calculated on the population as a whole is: 
 

𝑅 =
!"#	%	!"'

(
!"#	%	!"'

( 	%	!&
 . (2) 

 
Rearranging Eq. 2 yields the residual variance VR: 
 

𝑉# =
!"#	%	!"'

( ∙ $%&
&

 . (3) 
 
By definition, the true lnVR (in the population) is:  
 

lnVR = ln)!"#
!"'

 , (4) 

 
while the measured lnVR* is: 
 

lnVR∗ = ln)!)#
!)'

= ln)!"#	%	!&
!"'	%	!&

 . (5) 

 
Define λ as the true variance ratio VIm/VIf, so that VIm = lVIf. From Eq. 4, 
 

λ = 𝑒(∙*+,# . (6) 
 
Substituting Eq. 3 into Eq. 5 yields: 
 



  
 

 15 

lnVR∗ = ln,!"#	%	
!"#	%	!"'

( 	∙	+,&&
!"'	%	

!"#	%	!"'	
( 	∙	+,&&

= ln,-	%	-	%	+( 	∙	+,&&
+	%	-	%	+( 	∙	+,&&

  , (7) 

 
which, together with Eq. 6, can be used to calculate the measured lnVR* from the true 

lnVR and the repeatability R.  
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