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Abstract. Multi-Layer Networks (MLN) generalise the traditional, sin-
gle layered networks, by allowing to simultaneously express multiple
aspects of relationships in collective systems, while keeping the descrip-
tion intuitive and compact. As such, they are increasingly gaining popu-
larity for modelling Collective Adaptive Systems (CAS), e.g. engineered
cyber-physical systems or animal collectives. One of the most important
notions in network analysis are centrality measures, which inform us
about the relative importance of nodes. Computing centrality measures
is often challenging for large and dense single-layer networks. This chal-
lenge is even more prominent in the multi-layer setup, and thus motivates
the design of efficient, centrality-preserving MLN reduction techniques.
Network centrality does not naturally translate to its multi-layer coun-
terpart, since the interpretation of the relative importance of nodes and
layers may differ across application domains. In this paper, we take a
notion of eigenvector-based centrality for a special type of MLNs (mul-
tiplex MLNs), with undirected, weighted edges, which was recently pro-
posed in the literature. Then, we define and implement a framework
for exact reductions for this class of MLNs and accompanying eigenvec-
tor centrality. Our method is inspired by the existing bisimulation-based
exact model reductions for single-layered networks: the idea behind the
reduction is to identify and aggregate nodes (resp. layers) with the same
centrality score. We do so via efficient, static, syntactic transformations.
We empirically demonstrate the speed up in the computation over a
range of real-world MLNs from different domains including biology and
social science.

Keywords: Multi-Layer Networks · Centrality measures · Model
reduction · Efficient algorithms

1 Introduction

Traditional network analysis has facilitated key developments in research on Col-
lective Adaptive Systems (CAS). CAS are a focus of important research efforts of
today, such as ensuring the safety of cyber-physical systems, planning for smart
cities, or understanding animal collective behaviour. These systems consist of
a large number of entities which continuously interact with each other and the
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environment, they self-organise and often give rise to a system-level dynamics,
emergent behaviours, which can not be seen by studying individuals in isola-
tion. Network representation of a collective system is intuitive, and it allows to
reason over the different aspects of the modelled system, e.g. information flows,
or its evolution over time. Network analysis often centers around classification
of network components – nodes, edges etc. – wrt. different importance notions.
Importance is defined through a centrality measure, and different algorithms for
computing such measures have been proposed over time. A centrality measure
is a real-valued function which associates nodes to their importance and, there-
fore, allows to rank them accordingly. Historically, the Bonacich index [5,6] (most
often referred to as eigenvector centrality) and other extensions inspired by the
Bonacich index such as Katz centrality [31] and PageRank [42] played a promi-
nent role in network analysis. Other measures of centrality are based accordingly
on different factors such as shortest paths [28], diffusion capability [1] and nodes
with high contagion potential [14]. Although each of these notions measure dif-
ferent features of the nodes, they share common mathematical traits [4].

However, the traditional, single-layered networks allow to capture only one
type of interaction among nodes. In many real-world scenarios, relations among
individuals have multiple facets: in social networks, the same individuals may
communicate via multiple communication platforms (i.e., they can use different
online social networks to spread and gather information [54]). During epidemics,
individuals interact both in the physical world, in which they spread the infec-
tion, and in a virtual communication network, where awareness about the dis-
ease is spread [26]. Moreover, animals belonging to the same collective (herd,
fish school, etc.) can relate to each other differently through different activi-
ties such as grooming, social aggregation, foraging, as shown for baboons [2,23],
dolphins [25] and birds [21].

Any finite, discrete number of different communication aspects among a set
of agents, can be formally captured by adding typed edges or edge colours to the
network description. Enriching the network formalism with multiple views/layers
results in a multi-layer network (MLN) [17]. MLNs offer a novel way to model
interactions among the components of a system as connected layers of differ-
ent types of interactions. General MLNs allow for stacking up a collection of
graphs over possibly different node-sets, through arbitrary coupling relation-
ships between pairs of layers. In this work, we focus on a class of MLNs called
multiplex networks. A multiplex is a collection of graphs over the same set of
nodes but different edge sets, each of which is modelling a different type of inter-
action. Single-layer Networks are conveniently represented as matrices and many
tools from matrix analysis have proven to be useful in identifying important net-
work components. Along these lines, multiplex MLNs can be represented using
tensors.

Carrying over the theory from network analysis to MLNs is desirable but
non-trivial: most of the notions and concepts that are fundamental for single-
layer network centrality do not naturally translate to its multi-layer counterpart,
since the interpretation of the relative importance of nodes and layers may differ
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across application domains. For instance, in an effort to extend the Bonacich
index to MLNs, several eigenvector-based centrality measures have been defined
for multiplexes in the last few years [3,18,19,46]. In this work, we focus on the
extension presented in [50] which is based on eigenvector centrality for undirected
and (potentially) weighted multiplex MLNs. Among the large variety of method-
ologies for single-layer network analysis [29] such as clustering [7], blockmodel-
ing [8] and role-equivalent partitioning [35,53], we here aim for exact, centrality-
preserving network reduction. In general, model reduction techniques aim to
provide a smaller or simpler dynamical model from the original one. Reductions
are exact, when they guarantee an exact, provable relationship between their
respective solutions, without error (otherwise, the reductions are approximate,
when the error is either guaranteed or estimated). Exact, centrality-preserving
network reduction was proposed in the context of single-layer networks [48].
This method is based on efficient model reduction framework for more gen-
eral dynamical systems [27,49]; The core of these frameworks is based on an
efficient partition-refinement procedure of Paige and Tarjan [43]. More specif-
ically, some model reduction techniques based on lumping states have shown
to preserve centrality properties of single-layer networks (such as Eigenvector
centrality, Katz centrality and PageRank centrality) while, at the same time,
relating to a variety of notions from different fields: exact role assignment [53],
equitable partitions [37,38], lumpability [22,24] and bisimulation [44,51].

In this work, we define and implement a framework for exact model reduction
of multiplex MLNs, by lumping states and layers. Reduction is designed so to
preserve the eigenvector centrality for multiplex MLNs, defined in [50] (i.e., two
nodes equivalent in the ODEs enjoy the same eigenvector centrality). While
our proposed framework directly extends the concept used in [48] for single-
layer networks, the major technical challenge arising in the multi-layer setup is
that the iterative scheme for computing eigenvector centrality for MLNs contains
non-linear terms. In addition, two real-valued exponents, introduced to guarantee
convergence, require additional care when lifting from the reduced solution to the
original one. The relevance of our framework is demonstrated by benchmarking
over a number of real-world multiplex MLNs.

Paper outline. Section 2 reviews the background notions, while Sect. 3 intro-
duces the proposed model reduction framework. Section 4 features an experi-
mental evaluation on real-world multiplex MLNs. Section 5 concludes the paper.

2 Background

In this section we provide an overview of the notions that will be used through-
out the paper: single- and multi-layer networks (MLNs), eigenvector centrality
measure for MLNs, IDOL programs for specifying dynamical systems and model
reduction techniques based on Backward Differential Equivalence.
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Notation. Throughout this work, when clear from context, we will use xi both
to denote the i-th element of vector x or the value of the map x(i) (following
Definition 3). For a partition H over a variable set Vp ⊆ {x1, x2, . . .}, induced by
an equivalence relation ∼H⊆ Vp ×Vp, we will denote elements of a partition class
H ∈ H by xH,1, xH,2, . . . , xH,|H|. We denote by ‖·‖1 the 1-norm. We will denote
with VN = {1, . . . , N}, VL = {1, . . . , L} the set of nodes and layers, respectively.
Vectors will be assumed to be written in column notation.

2.1 Networks and Multiplex Multi-Layer Networks

Definition 1. A (weighted, directed) graph is a pair G = (VN , E), where VN is
a set of N ≥ 1 nodes and E : VN ×VN → R≥0 is an edge-weighting function, such
that E(i, j) = 0 reflects that there is no edge in the graphical representation of
the network. In matrix notation, a graph is given by a non-negative adjacency
matrix A = (Aij) ∈ R

N×N
≥0 . Graph G is undirected, if the matrix A is symmetric.

In this paper, we will work with a generalisation of networks called multiplex
networks or edge-colored-graphs, which are useful for simultaneously representing
different kinds of relationships over the same set of nodes. This paper will focus
on weighted, undirected multiplex networks.

Definition 2. A multiplex network with L layers is an ordered collection of L
graphs over the same set of nodes:

G = {G(l) = (VN , E(l))}l∈VL
,

where E(l) : VN × VN → R≥0 are the edge weights at layer l ∈ VL. For every
layer l, we denote the non-negative adjacency matrix of the graph G(l) by A(l) =
(A(l)

ij ) ∈ R
N×N
≥0 . Then, the multiplex network can be represented by a 3rd-order

adjacency tensor :

A = (Aijl) ∈ R≥0
N×N×L, such that Aijl := A

(l)
ij = E(l)(i, j),

that is, Aijl is the weight of the edge from node i to node j in layer l.

Example 1. The adjacency tensor for the multiplex depicted in Fig. 1 left is given

by layers A(1) =

⎛
⎝

0 1 1
1 0 0
1 0 0

⎞
⎠ and A(2) =

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠.

Remark 1. While in this work we will focus on multiplex networks, they are
a special case of a more general notion of interconnected multilayer networks
(MLNs), where layers can have different node sets, and, moreover, they can be
coupled across layers in arbitrary ways. For example, modelling public transport
by different means (e.g. bus, train or metro) requires such a model.
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2.2 Centrality Measures

Given an undirected graph G = (VN , E) and its adjacency matrix A ∈ R
N×N
≥0 ,

we first recall the definition of eigenvector centrality for single-layer networks
[39].

Definition 3. Eigenvector centrality x : VN → R≥0 maps each node to the
weighted sum of eigenvector centralities of all nodes directly reachable from it:
for i ∈ VN , x(i) = 1

λ

∑
j∈Vn

Aijx(j), where 1
λ is some positive constant. In vector

notation, the eigenvector centrality vector x ∈ R
VN

≥0 is such that Ax = λx, that
is, x is the right eigenvector wrt. the adjacency matrix A.

For a given graph with adjacency matrix A, eigenvector centrality may not be
well-defined, that is, there may exist no unique non-negative right eigenvector
(up to linear scaling). By the famous Perron-Frobenius result, whenever the
largest real eigenvalue of A is unique, eigenvector centrality is guaranteed to be
well-defined, and it is the respective eigenvector, with all non-negative entries.
When eigenvector centrality is well-defined, it can be efficiently computed with
the power iteration scheme. We restate this well-known result, for the sake of
transparent analogy with the case of MLN’s, which we introduce next.

Theorem 1 ([39]). If there exists a unique, non-negative eigenvector centrality
on A, denoted by x∗, and such that ‖x∗‖1 = 1, it can be computed as a limit of
the power iteration sequence x(k) = Ax(k−1)

‖Ax(k−1)‖1

for k ≥ 0 and initially x(0) = 1N .

In this paper, we will use one possible extension of eigenvector centrality for
multiplex MLNs, proposed in [50]. The authors propose a 2-map, f -eigenvector
centrality, in which the first component of the map represents the centrality
associated to the nodes, while the second component is centrality associated to
the layers.

Definition 4 ([50]). Let A ∈ R
N×N×L
≥0 be the adjacency tensor of an MLN with

weighted, undirected layers, and let α, β > 0 be such that 2
β < (α − 1). Then,

define f = (f1, f2) : RN
≥0 × R

L
≥0 → R

N
≥0 × R

L
≥0 as follows:

f1(x, t)i =

⎛
⎝

N∑
j=1

L∑
l=1

Aijlxjtl

⎞
⎠

1
α

for i ∈ VN , f2(x, t)l =

⎛
⎝

N∑
i=1

N∑
j=1

Aijlxixj

⎞
⎠

1
β

for l ∈ VL.

In words, the centrality xi of node i is a sum of the centralities of each of
its neighbouring nodes, weighted by the product of the edge-weight and the
centrality of the layer at which that connection lies. At the same time, the
centrality of a layer tl is a sum of the centrality of all edges at that layer, where an
importance of an edge is, in addition to its own weight, weighted by the centrality
of the two nodes which constitute it. The parameters α and β are introduced
in order to guarantee convergence and respectively well-definedness in case of
undirected MLNs. Further discussion is beyond the scope of this manuscript
and we refer the interested reader to [50].
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Fig. 1. An example with two MLNs and their respective f -eigenvector centralities.

Similarly as in the case of single-layer networks, a power iteration scheme for
computing f -centrality is desired. Throughout the rest of the work, we will use
a normalised version of f -mapping, denoted by g:

g(x, t) =
(

f1(x, t)
‖f1(x, t)‖1

,
f2(x, t)

‖f2(x, t)‖1

)

We now restate a result from [50], that, for a given MLN with undirected
layers, f -centrality is well-defined and it can be computed as a limit of a power
iterative sequence.

Theorem 2 ([50]). There exists a unique, non-negative fixed point of the map-
ping g. Moreover, this fixed point, denoted by (x∗, t∗) ∈ R

N
≥0 × R

L
≥0, is a limit

of the following iterative scheme1:

(x(k), t(k)) = g(x(k−1), t(k−1)) for k ≥ 1 and initially (x(0), t(0)) = (1N ,1L)
(1)

Notice that, from the definition of g, independently of k ≥ 0, it holds that∥∥x(k)
∥∥

1
=

∥∥t(k)
∥∥

1
= 1, including the limit value (x∗, t∗).

Example 2. Consider the MLN depicted in Fig. 1 (left). The iterative scheme to
compute the f -eigenvector centrality (Definition 4) is the following:

x
(k+1)
1 = (1x

(k)
2 t

(k)
1 + 1x

(k)
3 t

(k)
1 + 1x

(k)
2 t

(k)
2 )

1
α /||f1(x, t)||1

x
(k+1)
2 = (1x

(k)
1 t

(k)
1 + 1x

(k)
1 t

(k)
2 + 1x

(k)
3 t

(k)
2 )

1
α /||f1(x, t)||1

x
(k+1)
3 = (1x

(k)
1 t

(k)
1 + 1x

(k)
2 t

(k)
2 )

1
α /||f1(x, t)||1

t
(k+1)
1 = (2x

(k)
1 x

(k)
2 + 2x

(k)
1 x

(k)
3 )

1
β /||f2(x, t)||1

t
(k+1)
2 = (2x

(k)
1 x

(k)
2 + 2x

(k)
2 x

(k)
3 )

1
β /||f2(x, t)||1

1 We refer the interested reader to the original reference, for a discussion on the error
and rate of convergence.

6



Centrality-Preserving Exact Reductions of Multi-Layer Networks 403

Example 3. In Fig. 1 we show two different MLNs and their respective f -
eigenvector centralities. Adding an edge at Layer 2 changes both the node cen-
trality and the layer centrality scores. More specifically, Node 1 and 3 gain impor-
tance while Node 2 loses importance. Moreover, if in the left example the two
layers had equivalent centralities, in the right one, Layer 2 becomes more impor-
tant because it contains more connections between high-centrality-nodes. This
shows that when we choose f -eigenvector centrality as the measure of choice, the
role played by the nodes and layers is intertwined and therefore the two aspects
of the f mapping can not be computed independently.

2.3 Intermediate Drift Oriented Language (IDOL)

The Intermediate Drift Oriented Language (IDOL) is a language for describing
non-linear, first-order, autonomous and explicit finite systems of coupled ordi-
nary differential equations (ODEs). We here report the fragment of the syntax
and semantics of IDOL which is useful for presenting this work.

Syntax. An IDOL program p over a set of variables Vp is written in the following
syntax:

p :: = ε | x′
i = η, p

η :: = n | xi | η + η | η · η

where xi ∈ Vp, n ∈ Z and ε is used to define the end of the program.

Semantics. We will consider conventional ODE semantics for a given IDOL
program p, as the solution of the system of ODE’s that it represents. The solution
map �·� : R|Vp|

≥0 → (Vp → ([0, T ) → R≥0)) will (deterministically) map each initial
condition and a variable to a trace from the time domain with horizon T ∈ R≥0

to a value. For simplicity, we will denote the solution for variable xi by �xi�x0 ,
and we omit the dependency on initial condition x0 ∈ R

|Vp|
≥0 when clear from

context.

2.4 Backward Differential Equivalence

Backward differential equivalence (BDE) is a model reduction technique for
dynamical systems written in IDOL [9,12]. BDE groups IDOL variables which
are exact fluid lumpable - they have the same ODE semantics whenever they are
given the same initial assignment. Finding the (largest) BDE amounts to finding
the coarsest partition over the variable set, which ensures that the semantic cri-
terion is met. This criterion allows to construct a smaller IDOL program, using
only one representative variable from each partition class. The reduction algo-
rithms proposed in [9,12] are only syntactically manipulating the IDOL program,
and they are of polynomial complexity in the number of variables of the program.
We propose in this paper to use BDE reductions, to reduce the computation of
f -centrality measure for MLNs.
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Definition 5. We call x ∈ R
|Vp|
≥0 constant on H if for all H ∈ H and all xi, xj ∈

H, it holds that xi = xj .

Definition 6. Let p be an IDOL program and H a partition over the variable
set Vp. Then, the IDOL program p is exact fluid lumpable wrt. partition H, if
�x�x0(t) is constant on H for all t ≥ 0, whenever x0 is constant on H. Then, we
will call H a BDE partition of Vp.

Following [9], the coarsest BDE partition can be computed in polynomial
time complexity, for any IDOL program which corresponds to a set of chemical
reactions with mass-action kinetics.

We now state the result which shows how to use a BDE to construct a reduced
IDOL program, operating over only the representative variables (BDE quotient).

Theorem 3 ([10]). Let p be an IDOL program and H a BDE partition over
its variable set Vp, and T > 0 a time horizon. The backward reduced program
of p with respect to H, denoted by p̃H, is defined over a set of variables VpH =
{x̃1, . . . , x̃|H|}, and with the following update functions:

x̃′
H = ηH,1[xH̄,1/x̃H̄ , . . . , xH̄,|H̄|/x̃H̄ : H̄ ∈ H], for H ∈ H,

where, xH̄,i/x̃H̄ denotes the action of renaming variable xH̄,i by x̃H̄ .

Originally designed for reducing ODEs, BDE techniques have also been
applied for reducing single-layer networks, continuous-time Markov chains
(CTMCs) and differential algebraic equations. In particular, in [48], a property-
preserving exact model reduction algorithm for networks is shown. The given
network is first transformed into an IDOL program, and then a BDE reduction
ensuring exact fluid lumpability is applied. We restate a Theorem showing that
BDE reduction also preserves the measure of eigenvector centrality.

Theorem 4 ([48]). Given a graph G = (VN , E) with adjacency matrix A, let
pG be the IDOL program over the set of variables VN :

x′
i =

∑
1≤j≤n

Aij · xj , for all i ∈ VN .

Let x∗
i denote the eigenvector centrality of node i. Then, H is a BDE of pG if

and only if, for all H ∈ H and for all xi, xj ∈ H, it holds that x∗
i = x∗

j .

In words, the transformation from network to IDOL program is such that
the equation for the derivative of variable xi is the weighted sum of its direct
(outgoing) edges2. So, the key idea in the transformation from the network to
an IDOL program is that the equations in the IDOL program exactly match the
iterative scheme for computing the centrality measure of interest.

Notice that the obtained IDOL program contains only linear transforma-
tions over its variables. We next propose an analogue of Theorem4 for multiplex
MLNs. The translation to an IDOL program will encode the iterative scheme
for computing f -centrality, which involves non-linear terms (of second order).
2 In case of symmetric graphs, ingoing and outgoing edges will be indistinguishable

and overall neighbours are accounted for.
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3 Centrality-Preserving MLN Reduction

Given a multi-layered network, its f -centrality can be computed with the itera-
tive scheme g presented in Theorem 2 (Eq. 1) . Our aim is to bypass the direct
computation and instead compute the f -centrality indirectly, by first detecting
sets of variables which evolve equivalently throughout the iterations, and then
proposing a reduced iterative scheme g̃, where only one representative variable
is kept for each set of equivalent ones.

To do so, we first introduce an assignment of an IDOL program to a given
MLN. Then, given an IDOL program, we compute its BDE-equivalent quotient,
as described in Sect. 2. BDE equivalence guarantees that the original and smaller
IDOL programs have the same differential, continuous-step semantics. On the
other hand, the iterative scheme g defines a discrete-step semantics over the
variables of the MLN. Our proposal is to compute the centrality measure of
the original MLN using the smaller IDOL program. To do so, we need to show
that the reduced iterative scheme g̃ over the BDE-quotient of the original IDOL
program, preserves the solutions of the iterative scheme g. A diagram of the
workflow of the proposed framework is presented in Fig. 2.

The following theorem shows which are the quantities that we should account
for when we search for equivalences among the centrality scores.

Theorem 5. For i ∈ VN , define the quantity of interest

x̄
(k)
i :=

N∑
a=1

L∑
l=1

Aialx
(k)
a t

(k)
l ,

Fig. 2. An illustration of the proposed methodology. The arrows are used for illus-
trative purpose and they are not to be formally interpreted. For a given MLN G, its
f -centrality vector (x∗, t∗) can be computed directly through the iterative map g (dot-
ted line). Alternatively, as depicted with thick full arrows, the equations in g can first
be translated into an IDOL program p with variables, and its BDE quotient program
pH is used to define a reduced iterative scheme g̃ over a reduced set of variables, the
solution of which, (x̃∗, t̃

∗
), allows to exactly reconstruct the f -centrality of the original

MLN.
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which is the right hand side of the mapping f from Definition 4, without the
exponential operator α. Then, for all pairs of nodes i, j ∈ VN , it holds that

if x̄
(k)
i = x̄

(k)
j then x

(k+1)
i = x

(k+1)
j , for all k ≥ 0.

The key idea is to go from the definition of the multilayer network eigenvector
centrality obtained with the iterative scheme (1) to an IDOL program p such that
there is a correspondence between the node and the layer eigenvector centrality
and the variables of the IDOL program.

Definition 7. (IDOL translation) Let G be a multiplex network and let Aijl be
the 3-rd order adjacency tensor of the multiplex G. We define an IDOL program
p, with Vp = VN ∪ VL, as follows:

x′
i =

N∑
j=1

L∑
l=1

Aijlxjtl t′
l =

N∑
i=1

N∑
j=1

Aijlxixj

for all i ∈ VN and for all l ∈ VL. With x0 = 1N and t0 = 1L.

We now want to identify which nodes in the MLN have identical f -eigenvector
centrality. This holds if they follow equivalent equations in the iterative scheme
used for computing them. Similarly to the result presented in Theorem4 which
shows a similar translation for single layer networks, the iterative scheme equa-
tions used to compute the f -eigenvector centralities on MLNs can be translated
to an IDOL program. The major technical difference is that the MLN trans-
lation contains non-linear terms, and the exponents α and β. Once we have
obtained the corresponding IDOL program we can apply the general technique
for computing the equivalences among its variables.

The next Theorem shows how to write an IDOL program, such that if two
variables have the same semantics in the dynamical system of the IDOL program,
then, the respective nodes in the iterative scheme of a given MLN have identical
centrality scores over all the steps of the computation, provided the equivalence
over initial conditions.

Theorem 6. Let G be a multiplex network and let Aijl be the 3-rd order adja-
cency tensor of the multiplex network G. Let f be the mapping as defined in
Definition 4, and let g its normalized version. Let (x∗, t∗) be the unique solution
(the centrality scores). Given any initial conditions (x(0), t(0)) ∈ R

N
≥0 ×R

L
≥0 and

(x(k+1), t(k+1)) = g(x(k), t(k)), the following holds:

lim
k→∞

(x(k), t(k)) = (x∗, t∗)

Then, in the IDOL program p obtained via Definition 7, for some i, j ∈
{1, . . . , N} and l, q ∈ {1, . . . , L}, the following holds:

– If ∀t ∈ [0, T ) . �xi�(t) = �xj�(t) in the IDOL program p, then ∀k ∈ N . x
(k)
i = x

(k)
j

– If ∀t ∈ [0, T ) . �tl�(t) = �tq�(t) in the IDOL program p, then ∀k ∈ N . t
(k)
l = t

(k)
q

10
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From Theorem 6 we now know that we can build a non-linear IDOL program p
such that if two variables are equal in the IDOL program then, the corresponding
nodes (or layer) centrality are equal. Now, we can use the established results on
the IDOL program and calculate the BDE partition H on the IDOL program p
generated with Theorem 6. With the next Theorem we show that, because of the
relationship established by Theorem6 and the established results on the notion
of BDE, we can carry over the results that we obtain on the IDOL program to
the procedure to calculate the multilayer node (or layer) centrality.

Up to this point, starting from a multiplex graph G we provided a procedure
to translate it into an IDOL program and we provided a technique to calculate a
BDE partition H on the IDOL program. Now, we introduce the following lemma
and definition to formally translate partition H, which is defined over the IDOL
program’s variables, to its counterpart H∗ defined over the nodes and the layers
of the multiplex graph G.

Lemma 1. Let G be a multiplex network and let p be the IDOL program defined
in Theorem 6 and let H = (Hx,Ht) be a BDE partition over the set of variables
such that there is no overlap between the nodes and the layers, i.e. Hx is a
partition over the node variables {x1, . . . , xN} and Ht is a partition over the
layer variables {t1, . . . , tL}. Then, for all initial conditions the following holds:

– ∀t ∈ [0, T ), ∀xi, xj ∈ Hx, ∀Hx ∈ Hx . �xi�(t) = �xj�(t) =⇒ ∀k ∈ N . x
(k)
i = x

(k)
j

– ∀t ∈ [0, T ), ∀tl, tq ∈ Ht, ∀Ht ∈ Ht . �tl�(t) = �tq�(t) =⇒ ∀k ∈ N . t
(k)
l = t

(k)
q

Moreover, let G be the corresponding multiplex graph and we define H∗ =
(H∗

x,H∗
t ) as the corresponding partition over the node and layer variables

{x1, . . . , xN , t1, . . . , tL} of G. We define H∗ as follows:

∀i, j ∈ {1, . . . , N},Ha,x ∈ Hx . xi, xj ∈ Ha,x =⇒ H∗
a,x ∈ H∗ . xi, xj ∈ H∗

a,x

∀i, j ∈ {1, . . . , L},Ha,t ∈ Ht . ti, tj ∈ Ha,t =⇒ H∗
a,t ∈ H∗ . ti, tj ∈ H∗

a,t

Example 4. If we go back to the running example presented in the left of Fig. 1
and we apply Theorem6 we obtain the following IDOL program p:

x′
1 = 1x2t1 + 1x3t1 + 1x2t2 t′

1 = 2x1x2 + 2x1x3

x′
2 = 1x1t1 + 1x1t2 + 1x3t2 t′

2 = 2x1x2 + 2x2x3

x′
3 = 1x1t1 + 1x2t2

We consider the following partition H = {{x1, x2}, {x3}, {t1}, {t2}}, which is a
BDE of p and we shall use x̃1 as the representative of block {x1, x2}, x̃2 as the
representative of block {x3} and r1, r2 representatives of the blocks {t1}, {t2},
respectively. The IDOL quotient of p given H is the following:

y′
1 = 1y1r1 + 1y2r1 + 1y1r2 r′

1= 2y1y1 + 2y1y2

y′
2 = 1y1r1 + 1y1r2 r′

2= 2y1y1 + 2y1y2

11
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Now that we established the relationship between the partitions we proceed
to define the proper reduced system to calculate the multiplex node and layer
centrality as follows.

Definition 8. Let (x(k), t(k)) = g(x(k−1), t(k−1)) be the iterative scheme and let
H = (Hx,Ht) be the BDE partition on the IDOL program p obtained using The-
orem 6 and Lemma 1. Let H∗ = (H∗

x,H∗
t ) be the corresponding partition on the

iterative scheme as defined in Lemma 1. We define (y(k), r(k)) = g̃(y(k−1), r(k−1))
as the Reduced iterative scheme with respect to H∗:

f̃ 1 = f 1[xHx,1/yHx , . . . , xHx,|Hx|/yHx , tHt,1/rHt , . . . , tHt,|Ht|/rHt : Hx ∈ Hx , Ht ∈ Ht]

f̃ 2 = f 2[xHx,1/yHx , . . . , xHx,|Hx|/yHx , tHt,1/rHt , . . . , tHt,|Ht|/rHt : Hx ∈ Hx , Ht ∈ Ht]

Next, we define ȳ
(k)
i , similarly as we previously defined x̄

(k)
i , and the reduced

computation to retrieve the values of x(k):

ȳ
(k)
i =

N∑
j=1

L∑
l=1

Aijly
(k−1)
Hx,j

r
(k−1)
Ht,l

, x(k) =
x̄(k)

∥∥x̄(k)
∥∥

1

=
ȳ(k)

∑m
j=1 |Hx,j |ȳ(k)

j

= y(k).

where, Hx,j = i if xj ∈ Hx,i and Ht,q = l if tq ∈ Ht,l. We can now focus
on the second component of the mapping and we define r̄

(k)
l and its reduced

computation:

r̄
(k)
l =

N∑
i=1

N∑
j=1

Aijly
(k−1)
Hx,i

y
(k−1)
Hx,j

, t(k) =
t̄
(k)

∥∥∥t̄(k)
∥∥∥

1

=
r̄(k)

∑Q
j=1 |Ht,j |r̄(k)

j

= r(k).

where, Hx,j = i if xj ∈ Hx,i.

Example 5. If we consider the running example presented in the left of Fig. 1, we
know that the partition H = {{x1, x2}, {x3}, {t1}, {t2}} is a BDE of the IDOL
program p and we obtained the following reduced IDOL program:

y′
1 = 1y1r1 + 1y2r1 + 1y1r2 r′

1= 2y1y1 + 2y1y2

y′
2 = 1y1r1 + 1y1r2 r′

2= 2y1y1 + 2y1y2

In order to compute the original f -eigenvector centrality values we set up the
following iterative scheme:

ȳ
(k)
1 = 1y

(k−1)
1 r

(k−1)
1 + 1y

(k−1)
2 r

(k−1)
1 + 1y

(k−1)
1 r

(k−1)
2 r̄

(k)
1 = 2y

(k−1)
1 y

(k−1)
1 + 2y

(k−1)
1 y

(k−1)
2

ȳ
(k)
2 = 1y

(k−1)
1 r

(k−1)
1 + 1y

(k−1)
1 r

(k−1)
2 r̄

(k)
2 = 2y

(k−1)
1 y

(k−1)
1 + 2y

(k−1)
1 y

(k−1)
2

4 Experimental Results

In this section we present the results of our experimental evaluation on some
real world case studies. We measure the performance of our approach in terms
of model reduction ratio and we measure the speed up in the computation of the
desired centrality measures.

12
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Implementation and Environment. The tools used for the experiments are MAT-
LAB and ERODE [11], a state-of-the-art tool for model reduction for systems of
ODEs and Chemical Reaction Networks. The input is the list of edges E(l) for
all l ∈ {1, ..., L} representing a multiplex network G = {G(l) = (VN , E(l))}l∈VL

.
ERODE accepts the input as a file that encodes an ODE system or a Chemical
Reaction Network (CRN). Due to a bottleneck in the processing of files in the
ODE format we had to input the files in the CRN format. A MATLAB script
translates the list of edges in the CRN. ERODE then proceeds with the model
reduction and provides the reduced CRN as its output. The centrality scores
are computed with a MATLAB script and another MATLAB script is used to
convert the reduced CRN into the reduced model and used to calculate the cen-
trality score on the reduced model. All the experiments have been conducted on
a MacBook Pro with a 2.6 GHz Intel Core i7 with 16 GB of RAM.

The Instances. In order to provide some real-world case studies we ran our
proposed reduction technique on multiplex MLNs retrieved from the CoMuNe
Lab repository (https://comunelab.fbk.eu). The results for both undirected and
directed instances are presented in Table 1. We first present the undirected graphs
instances. These instances are undirected in the repository.

– Padgett-Florentine-Families (1): this multiplex describes the relationships
between Florentine families in the Renaissance, the two layers represent mar-
riage alliances and business relationships, respectively [41].

– CS-Aarhus (2): this multiplex social network consists of five kinds of relation-
ships between the employees of the Computer Science department at Aarhus
university. The layers represent the following relationships: Facebook, Leisure,
Work, Co-Authorship and Lunch [36].

– London-Transport (3): the nodes in this multiplex represent the train stations
in London and edges encode existing routes between stations. The layers
represent the Underground, Overground and DLR stations, respectively [16].

– EUAirTrainsportation (4): the multilayer network is composed by thirty-
seven different layers each one corresponding to a different airline operating
in Europe [13].

– PierreAuger (5): this instance represents the different working tasks carried
out over a two years span within the Pierre Auger Collaboration between
the CoMuNe Lab and the Pierre Auger observatory. Each layer represents 16
different topics based on the keywords and the content of each submission [20].

– arxiv-netscience (6): this multiplex consists of layers corresponding to dif-
ferent arXiv categories. Nodes represent authors and edges represent the
weighted co-authorship relationship [20].

Due to the fact that many of the undirected instances are small we do not obtain
sensible reductions nor speed up in the computation. Despite this, we can observe
a meaningful reduction for the largest of the undirected instances, namely the
arxiv-netscience instance. We now present the instances that in the repository
are directed. It is worth noting that, because of the fact that the centrality
measure we considered throughout this paper is defined for the undirected case
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only, we modified these instances to make them undirected in order to prove the
effectiveness of our proposed methodology. Another reason to do so is the fact
that there is a small number of undirected instances. Moreover, the undirected
instances present a limited variety of nodes, edges and layer sizes.

– Krackhardt-High-Tech (7): this multiplex social network describes the rela-
tionships between managers of an high-tech company. The layers represent
advice, friendship and “reports to” relationships, respectively [33].

– Vickers-Chan-7thGraders (8): this data was collected from 29 seventh grade
students in a school in Victoria, Australia. Students were asked to nominate
their classmates on a number of relations including the following three (lay-
ers): Who do you get on with in the class? Who are your best friends in the
class? Who would you prefer to work with? [52].

– Kapferer-Tailor-Shop (9): this instance represents the interactions in a tailor
shop in Zambia over a period of ten months. The layers represent two differ-
ent types of interactions, recorded at two different times. The relationships
captured by this multiplex are instrumental (work-related) and sociational
(friendship, socio-emotional) interactions [30].

– Lazega-Law-Firm (10): this multiplex social network consists of three kinds
of relationships between partners and associates of a corporate law part-
nership. The layers represent co-work, friendship and advice relationships,
respectively [34,45].

– Genetic interaction instances (11-28): we consider a variety of genetic inter-
actions networks that are present in the CoMuNe Lab repository [15]. In turn,
these instances were taken from the Biological General Repository for Interac-
tion Datasets (BioGRID) and represent different types of genetic interactions
for organisms [47]. More specifically, according to the nomenclature used in
the repository we present experimental results on the following instances:
HepatitusC (11), DanioRerio (12), HumanHerpes4 (13), CElegans Connec-
tome (15), Bos (16), Candida (17), Xenopus (18), HumanHIV1 (19), Plas-
modium (20), Rattus (21), CElegans (22), Sacchpomb (23), Sacchere (24),
Arabidopsis (25), Mus (26), Drosophila (27), Homo (28).

– CKM-Physicians-Innovation (14): this multiplex describes how new drugs
adoption spreads in a community of physicians.

– Fao-Trade (29): this multiplex describes different types of trade relationships
among countries, it was originally obtained from the Food and Agriculture
Organization of the United Nations. The worldwide food import/export net-
work is an economic network in which layers represent products, nodes are
countries and edges at each layer represent import/export relationships of a
specific food product among countries. It is worth pointing out that, due to
the nature of this instance, it has the peculiarity that there are more layers
than nodes [15].

– MoscowAthletics2013 (30): this multiplex represents the different types of
social relationships among Twitter users during the 2013 World Champi-
onships in Athletics. The three layers correspond to retweets, mentions and
replies over the time frame of the event. These are the relationships that will
be also used for the following Twitter instances [40].

14
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– NYClimateMarch2014 (31): this instance describes the Twitter interactions
among the users during the People’s Climate March in 2014 [40].

– MLKing2013 (32): this instance describes the Twitter interactions among the
users during the 50th anniversary of Martin Luther King’s speech in 2013 [40].

– Cannes2013 (33): this instance describes the Twitter interactions among the
users during the Cannes Film Festival in 2013 [40].

As expected, similarly to the undirected instances, the small instances do not
provide much insight on the effectiveness of the methodology but, as the size of
the instance increases we can see significant reductions and speed ups. Notably,
when tackling the big instances the proposed methodology yields reductions
that reduce the size of the network to half of its original size and, in the case
of the largest instance we can obtain a reduction that at least provides some
information about which nodes have the same centrality. Such information could
not be retrieved by calculating the centrality directly on the original multiplex
because of the computational cost.

Table 1. Experimental results. Columns show the ID of the instance, the number of
nodes (N), the number of layers (L), the number of nodes in the reduced model (rN), the
number of layers in the reduced model (rL), the time spent to compute the centrality
measure using the original model (Cen), the time spent to do the BDE reduction (BDE)
and the time spent to compute the centrality measure using the reduced model (rCen).

Undirected instances Directed instances

ID N L rN rL Cen(s) BDE(s) rCen(s) ID N L rN rL Cen(s) BDE(s) rCen(s)

(1) 16 2 16 2 0.26 0.00 - (18) 461 5 276 5 0.18 0.01 0.08

(2) 61 5 61 5 0.07 0.01 - (19) 1005 5 137 5 0.51 0.02 0.13

(3) 368 3 366 3 0.14 0.01 0.15 (20) 1203 3 994 3 1.04 0.04 0.94

(4) 450 37 374 37 0.67 0.03 0.55 (21) 2640 6 1264 6 3.50 0.06 1.19

(5) 514 16 351 16 1.28 0.18 0.52 (22) 3879 6 2372 6 7.90 0.10 4.16

(6) 14488 13 8008 13 192.53 0.66 83.71 (23) 4092 7 3613 7 53.71 0.75 59.47

Directed Instances

ID N L rN rL Cen(s) BDE(s) rCen(s)

(7) 21 3 21 3 0.05 0.00 - (24) 6570 7 6087 7 494.21 10.14 428.68

(8) 29 3 29 3 0.06 0.00 - (25) 6980 7 4527 7 32.74 0.11 17.21

(9) 39 4 39 4 0.07 0.01 - (26) 7747 7 4887 7 35.99 0.30 19.58

(10) 71 3 71 3 0.14 0.02 - (27) 8215 7 7397 7 76.42 0.45 72.34

(11) 105 3 11 3 0.06 0.00 0.03 (28) 18222 7 13978 7 747.52 1.97 562.42

(12) 155 5 90 5 0.08 0.00 0.04 (29) 214 364 214 364 49.17 0.50 –

(13) 216 4 46 4 0.09 0.00 0.03 (30) 88804 3 37773 3 3359.26 6.68 1316.53

(14) 246 3 242 3 0.21 0.01 0.18 (31) 102439 3 48018 3 6188.51 5.36 3296.76

(15) 279 3 279 3 0.70 0.05 - (32) 327707 3 63136 3 21289.98 2.51 1806.65

(16) 325 4 162 4 0.12 0.01 0.09 (33) 438537 3 180443 3 >10 h 12.05 >3 h

(17) 367 7 62 7 0.13 0.00 0.09
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5 Conclusions and Future Work

In this paper we have related an extension of eigenvector centrality on undirected
and (possibly) weighted multiplex MLNs to BDE, an exact model reduction tech-
nique for dynamical systems. We have shown that we can use a BDE-inspired
technique to introduce a framework that allows to reduce MLNs while preserving
the f -eigenvector centrality measure. The relevance of the result was demon-
strated by efficiently computing reduction of real-world MLNs and by showing
a speed up in the computation of such measure of interest. Throughout this
work we considered exact reductions although it is worth noting that one of
the possible future directions is to consider approximate reductions which are
already prominent in the study of clustering in networks [7] and approximate
lumping in agent-based models [32]. Future work will focus on the extension of
these results to multiplex MLNs that feature directed layers. Other directions
will include extending the framework to other centrality measures and other fam-
ilies of MLNs. Thanks to the theory established in this paper, we can naturally
approach the study of approximate versions of this reduction technique because
it is known that exact reductions might not yield significant reductions in very
asymmetric real-world case studies. Moreover, this framework is a very versatile
cornerstone work that, with few appropriate changes, can be easily modified to
deal with other types of notions such as extensions of role equivalence on MLNs.
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