
Which fragments of the interval temporal logic HS are
tractable in model checking? ✩

Laura Bozzelli a, Alberto Molinari b,∗, Angelo Montanari b, Adriano Peron a,
Pietro Sala c

a Department of Electronic Engineering and Information Technologies, University of Napoli “Federico II”, Italy
b Department of Mathematics, Computer Science, and Physics, University of Udine, Italy
c Department of Computer Science, University of Verona, Italy

a b s t r a c t

Keywords:
Model checking
Interval temporal logics
Complexity

Since the 80s, model checking (MC) has been applied to the automatic verification of hard-
ware/software systems. Point-based temporal logics, such as LTL, CTL, CTL∗, and the like,
are commonly used in MC as the specification language; however, there are some inher-
ently interval-based properties of computations, e.g., temporal aggregations and durations,
that cannot be properly dealt with by these logics, as they model a state-by-state evolution
of systems.
Recently, an MC framework for the verification of interval-based properties of computa-
tions, based on Halpern and Shoham’s interval temporal logic (HS, for short) and its frag-
ments, has been proposed and systematically investigated. In this paper, we focus on the
boundaries that separate tractable and intractable HS fragments in MC. We first prove that
MC for the logic BE of Allen’s relations started-by and finished-by is provably intractable,
being Expspace-hard. Such a lower bound immediately propagates to full HS. Then, in con-
trast, we show that other noteworthy HS fragments, i.e., the logic AABB (resp., AAEE)
of Allen’s relations meets, met-by, starts (resp., finishes), and started-by (resp., finished-by),
are well-behaved, and turn out to have the same complexity as LTL (Pspace-complete).
Halfway are the fragments AABBE and AAEBE, whose Expspace membership and Pspace

hardness are already known. Here, we give an original proof of Expspace membership, that
substantially simplifies the complexity of the constructions previously used for such a re-
sult. Contraction techniques—suitably tailored to each HS fragment—are at the heart of our
results, enabling us to prove a pair of remarkable small-model properties.

1. Introduction

In the context of automatic system verification, model checking (MC) is one of the most widely applied techniques. It
allows a user to automatically check whether or not some desired properties of a system, specified by a temporal logic
formula, hold over a model of the system, usually represented by a Kripke structure, through an exhaustive enumeration

✩ This paper gives an organic and systematic account of the results originally presented in the conference papers [6] and [7].

* Corresponding author.
E-mail addresses: lr.bozzelli @gmail .com (L. Bozzelli), molinari .alberto @gmail .com (A. Molinari), angelo .montanari @uniud .it (A. Montanari),
1

https://doi.org/10.1016/j.tcs.2018.04.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:lr.bozzelli@gmail.com
mailto:molinari.alberto@gmail.com
mailto:angelo.montanari@uniud.it
mailto:adrperon@unina.it
mailto:pietro.sala@univr.it
https://doi.org/10.1016/j.tcs.2018.04.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2018.04.011&domain=pdf

of all the states reachable by the computations of the system. If some of them is not fulfilled, MC algorithms produce
a counterexample, extremely useful for debugging purposes. MC has been applied in a variety of application domains,
including, e.g., planning [16], communication and security protocols [2,3], embedded reactive systems [13], computer device
drivers [40], testing of railway control systems [4,33], and verification of clinical guidelines [15].

Point-based temporal logics, such as LTL, CTL, and CTL∗ [14,34]—that allow one to state properties of computation
states—are usually adopted in MC as the specification language, as they are easy to understand, and suitable for many prac-
tical purposes. However, some relevant temporal properties, like those involving actions with duration, accomplishments,
and temporal aggregations, are inherently “interval-based” and thus cannot be properly expressed by point-based temporal
logics. This is the case, for instance, of statements like “the robot has to get back to the base in 10 minutes” and “the
average speed of the moving device cannot exceed the established threshold”. Here, interval temporal logics (ITLs) come
into play. In this paper, we focus on MC algorithms for ITLs.

ITLs take intervals, instead of points, as their primitive entities [19,32,38,39]. They have been applied in a variety of
fields, including artificial intelligence (reasoning about action and change, qualitative reasoning, planning, configuration and
multi-agent systems, and computational linguistics [5,16,25,35]), theoretical computer science (formal verification [32,41]),
and databases (temporal and spatio-temporal databases [17]). Halpern and Shoham’s modal logic of time intervals HS [19]
is probably the most famous ITL. It features one modality for each of the 13 possible ordering relations between pairs of
intervals (the so-called Allen’s relations [1]), apart from equality. The problem of satisfiability checking for HS was proved
to be undecidable for all relevant (classes of) linear orders [19], and most HS fragments are undecidable as well [9,21,
26]. However the logic of temporal neighborhood AA and the logic of sub-intervals D [10–12,31] are noteworthy decidable
exceptions.

1.1. Main contributions

In this paper, we address and solve some open issues about the MC problem for HS, which has recently entered the
research agenda [22–24,27–30]. In order to check interval properties of computations, one needs to collect information
about states into computation stretches: each finite path (trace) of a Kripke structure is interpreted as an interval, whose
labeling is defined on the basis of the component states.

In [27], Molinari et al. dealt with MC for full HS over finite Kripke structures (under the homogeneity assumption [36],
according to which a proposition letter holds in a trace if and only if it holds at each occurring state). They introduced
the problem and proved that it is nonelementarily decidable and Pspace-hard. Later, several fragments of HS were studied,
which, similarly to what happens with satisfiability, exhibit better computational complexities. Here, we focus on the border
between computationally good and bad HS fragments.

We first show that the combined use of modalities for interval prefixes B and suffixes E (modalities for Allen’s relations
started-by and finished-by, respectively) is critical. More precisely, we prove that MC for the HS fragment BE, whose modal-
ities can express properties of both interval prefixes and suffixes simultaneously, is Expspace-hard, and this lower bound
immediately propagates to full HS. The result is obtained by a polynomial-time reduction from a domino-tiling problem for
grids with rows of single exponential length [20] to the MC problem for BE.

Then, we show that the complexity of MC for HS fragments where properties of prefixes and suffixes of intervals are
dealt with separately is markedly lower.

In [30], the authors proved that the MC problem for the logic AA of temporal neighborhood, which only considers
properties of future and past intervals (using modalities for meet A and met-by A, respectively) is in PNP. Moreover, as
shown in [28], the addition of modalities for the transposed relations B (for B) and E (for E) to AA, respectively allowing
for interval extensions to the right and to the left, results in the fragment AABE whose MC problem is Pspace-complete.

Here, we prove that MC for the HS fragment AABB (resp., AAEE), that allows one to express properties of future and
past intervals, interval prefixes (resp., suffixes), and right (resp., left) interval extensions, is in Pspace. Since MC for the
HS fragment featuring only one modality for right (resp., left) interval extensions is Pspace-hard [30], Pspace-completeness
immediately follows.

Moreover, as a “byproduct”, we show that if we restrict HS to modalities either for interval prefixes B or for interval
suffixes E only, MC turns out to be co-NP-complete. These results are achieved by means of a small-model property based
on the notion of induced trace. Intuitively, given a trace (finite path) ρ in a Kripke structure and a formula ϕ of AABB/AAEE,
we prove that it is always possible to build, by iteratively contracting the trace ρ , another (induced) trace, whose length is
polynomially bounded in the size of the formula and the Kripke structure, which preserves the satisfiability of ϕ with respect
to ρ .

The lower bound for BE MC shows that there is no way to provide an MC algorithm for the extension of AABB with E
(resp., of AAEE with B) with a “good” computational complexity. The picture is not so clear for the extension of AABB
with E (resp., AAEE with B).

The membership of AABBE (resp., AAEBE) to Expspace was already shown in [29] and the Pspace-hardness of MC for
AABB gives the best (unmatching) lower bound. The Expspace MC algorithm developed in [29] exploits a small exponential-
size model property, that, given any trace of the Kripke structure and a fixed bound k on the nesting depth of B modalities
in AABBE formulas, allows one to find a trace representative, whose length is exponentially bounded by the size of the Kripke
structure, which preserves satisfiability of the original trace for any AABBE formula fulfilling the nesting depth constraint k.
2

As a matter of fact, the proof of the existence of the trace representative is rather involved and it exploits very technical
arguments.

In this paper, we provide a much more understandable and compact proof of the membership to Expspace of the MC
problem for AABBE, which makes use of (a suitable extension of) the notion of induced traces we exploit in the proof of
the small model property for AABB. We expect such a proof technique to be helpful in coping with the problem of finding
a lower upper bound to the MC problem for BE, which is known to be nonelementarily decidable only.

1.2. Related work

In [22–24], Lomuscio and Michaliszyn addressed the MC problem for some fragments of HS extended with epistemic
modalities. Their semantic assumptions are different from those made in [27], making it difficult to compare the two
research lines. In both cases, HS formulas are evaluated over finite paths/intervals of a Kripke structure. However, while in
[27] homogeneity is assumed, in [22,23] truth of proposition letters over an interval depends only on its endpoints.

In [22], they focused on the HS fragment BED of Allen’s relations started-by, finished-by, and contains (since modality 〈D〉
is definable in terms of modalities 〈B〉 and 〈E〉, BED is actually as expressive as BE), extended with epistemic modalities.
They considered a restricted form of MC (local MC), which checks the specification against a single (finite) initial computation
interval. Their goal was indeed to reason about a given computation of a multi-agent system, rather than on all its admissible
computations. They proved that the considered MC problem is Pspace-complete. Moreover, they showed that the same
problem restricted to the pure temporal fragment BED, that is, the one obtained by removing epistemic modalities, is in P.
These results do not come as a surprise: modalities 〈B〉 and 〈E〉 allow one to access only sub-intervals of the initial one,
whose number is quadratic in the length (number of states) of the initial interval.

In [23], they demonstrated that the picture drastically changes with other fragments of HS that allow one to access
infinitely many intervals. In particular, they proved that the MC problem for the HS fragment ABL of Allen’s relations meets,
starts, and before (since modality 〈L〉 is definable in terms of modality 〈A〉, ABL is actually as expressive as AB), extended
with epistemic modalities, is decidable with a non-elementary upper bound. Note that, thanks to modalities 〈A〉 and 〈B〉,
formulas of ABL can possibly refer to infinitely many (future) intervals.

Finally, in [24], they showed how to use regular expressions in order to specify the way intervals of a Kripke structure
get labeled. Such an extension leads to a significant increase in expressiveness, as the labeling of an interval is no more
determined by that of its endpoints, but it depends on the ordered sequence of states the interval consists of. They proved
that there is not a corresponding increase in computational complexity, as the complexity bounds given in [22,23] still hold
with the new semantic variant: (local) MC for BED is still in Pspace, and MC is non-elementarily decidable for ABL.

1.3. Outline of the paper

The paper is organized as follows. In Section 2, we introduce the basic notions of the MC problem for HS (in particular
Kripke structures, abstract interval models, and the interpretation of HS formulas over traces), and, then, we briefly summa-
rize known complexity results about the MC problem for HS fragments. In Section 3, we state the Expspace-hardness of MC
for the HS fragment BE by a reduction from a suitable domino-tiling problem. In Section 4, we first introduce the notion
of induced trace and then we prove, via a contraction technique, a small polynomial-size model property for AABB and
AAEE, which allows us to devise a Pspace MC algorithm for them. In addition, we consider the one-modality fragments B
and E, and prove their co-NP-completeness. In Section 5, we focus on the fragment AABBE and the symmetric fragment
AAEBE. We first define the equivalence relation of trace bisimilarity, and then we introduce the notion of prefix sampling.
With these tools, we prove a small exponential-size model property for AABBE (and AAEBE), resulting into an easier and
more compact proof of the membership of the two fragments to Expspace. We provide an assessment of the work done and
outline future research directions in the conclusions.

2. Preliminaries

We start with some notation. Let N be the set of natural numbers. For all i, j ∈ N, with i ≤ j, we denote by [i, j] the set
of h ∈N such that i ≤ h ≤ j.

Let � be an alphabet and ρ be a finite word over �. We denote by |ρ| the length of ρ . For all 1 ≤ i ≤ j ≤ |ρ|, ρ(i)
represents the i-th letter of ρ (we also say that i is a ρ-position), while ρ(i, j) denotes the finite subword of ρ given by
ρ(i) · · ·ρ(j); ε is the empty word.

If |ρ| = n, we define fst(ρ) = ρ(1) and lst(ρ) = ρ(n). The sets of all proper prefixes and suffixes of ρ are Pref(ρ) =
{ρ(1, i) | 1 ≤ i ≤ n − 1} and Suff(ρ) = {ρ(i, n) | 2 ≤ i ≤ n}, respectively; ρ i represents the suffix ρ(i, |ρ|). (For the sake of
convenience, we will sometimes write ρ1 for ρ .)

The concatenation of two words ρ and ρ ′ is denoted by ρ ·ρ ′ . Moreover, if lst(ρ) = fst(ρ ′), ρ �ρ ′ denotes ρ(1, n −1) ·ρ ′ ,
with n = |ρ| (�-concatenation). In the following, when we write ρ � ρ ′ , we implicitly assume that lst(ρ) = fst(ρ ′).
3

Table 1
Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example

x y

v z

v z

v z

v z

v z

v z

meets 〈A〉 [x, y]RA [v, z] ⇐⇒ y = v

before 〈L〉 [x, y]RL [v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD [v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO [v, z] ⇐⇒ x < v < y < z

2.1. The interval temporal logic HS

In 1983, Allen proposed an interval algebra to reason about intervals and their relative order [1]; then, a few years
later, Halpern and Shoham started a systematic logical study of interval representation and reasoning: they introduced the
interval temporal logic HS, which features one modality for each Allen interval relation, but equality [19]. Table 1 depicts
6 of the 13 Allen’s relations, together with the corresponding HS (existential) modalities. The other 7 relations are the 6
inverse relations (given a binary relation R , the inverse relation R is such that bR a if and only if aR b) and equality.

The language of HS consists of a set of proposition letters AP , the constant � (true), the Boolean connectives ¬ and ∧,
and a temporal modality for each (non-trivial) Allen’s relation, i.e., 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉, and 〈O〉.
HS formulas are formally defined by the grammar

ψ ::= � | p | ¬ψ | ψ ∧ ψ | 〈X〉ψ,

where p ∈ AP and X ∈ {A, L, B, E, D, O , A, L, B, E, D, O }. In the following, we will also exploit the other usual logical con-
nectives (disjunction ∨, implication →, and double implication ↔) as abbreviations, and the constant false ⊥ for ¬�.
Furthermore, for any existential modality 〈X〉, the dual universal modality [X]ψ is defined as ¬〈X〉¬ψ .

The joint nesting depth of B and E in a formula ψ , denoted by dBE(ψ), is defined as:

• dBE(p) = 0, for any p ∈ AP ;
• dBE(¬ψ) = dBE(ψ);
• dBE(ψ ∧ φ) = max{dBE(ψ), dBE(φ)};
• dBE(〈X〉 ψ) = 1 + dBE(ψ), when X = B or X = E;
• dBE(〈X〉 ψ) = dBE(ψ), when X �= B and X �= E .

Given any subset of Allen’s relations {X1, . . . , Xn}, we denote by X1 · · ·Xn the HS fragment closed under Boolean con-
nectives that features (existential and universal) modalities for X1, . . . , Xn only. If we consider formulas ψ of HS fragments
devoid of E (resp., B), the B-nesting depth (resp., E-nesting depth) of ψ , denoted as dB(ψ) (resp., dE(ψ)), accounts for
modality B (resp., E) only, and dB(ψ) = dBE(ψ) (resp., dE(ψ) = dBE(ψ)).

W.l.o.g., we assume the non-strict semantics of HS, which admits intervals consisting of a single point.1 Under such an
assumption, all HS modalities can be expressed in terms of modalities 〈B〉, 〈E〉, 〈B〉, and 〈E〉 [38]. HS can thus be regarded as
a multi-modal logic with these 4 primitive modalities and its semantics can be defined over a multi-modal Kripke structure,
called abstract interval model, where intervals are treated as atomic objects and Allen’s relations as binary relations between
pairs of intervals. Since later we will focus on the HS fragments AAEBE, AAEE which do not feature 〈B〉, and AABBE, AABB
which do not feature 〈E〉, we explicitly add both 〈A〉 and 〈A〉 to the considered set of HS modalities.

Definition 2.1 (Abstract interval model [27]). An abstract interval model is a tuple A = (AP , I, AI, BI, EI, σ), where AP is a set
of proposition letters, I is a possibly infinite set of atomic objects (worlds), AI , BI , and EI are three binary relations over I,
and σ : I �→ 2AP is a (total) labeling function, assigning a set of proposition letters to each world.

In the interval setting, I is interpreted as a set of intervals and AI , BI , and EI as Allen’s relations A (meets), B (started-by),
and E (finished-by), respectively; σ assigns to each interval in I the set of proposition letters that hold over it.

Given an abstract interval model A = (AP , I, AI, BI, EI, σ) and an interval I ∈ I, the truth of an HS formula over I is
inductively defined as follows:

• A, I |= �;
• A, I |= p iff p ∈ σ(I), for any p ∈ AP ;

1 All the results we prove in the paper hold for the strict semantics as well.
4

Fig. 1. The Kripke structure Ka .

• A, I |= ¬ψ iff it is not true that A, I |= ψ (also denoted as A, I �|= ψ);
• A, I |= ψ ∧ φ iff A, I |= ψ and A, I |= φ;
• A, I |= 〈X〉ψ , for X ∈ {A, B, E}, iff there is J ∈ I s.t. I XI J and A, J |= ψ ;
• A, I |= 〈X〉ψ , for X ∈ {A, B, E}, iff there is J ∈ I s.t. J XI I and A, J |= ψ .

2.2. Kripke structures and abstract interval models

In the context of MC, finite state systems are usually modeled as finite Kripke structures. In [27], the authors define a
mapping from Kripke structures to abstract interval models, that allows one to specify interval properties of computations
by means of HS formulas.

Definition 2.2 (Kripke structure and trace). A Kripke structure is a tuple K = (AP , W , δ, μ, w0), where AP is a set of proposition
letters, W is a set of states, δ ⊆ W × W is a left-total relation between pairs of states, μ : W �→ 2AP is a total labeling
function, and w0 ∈ W is the initial state. K is finite if its set of states is finite.

A trace of K is a non-empty finite word ρ over W such that (ρ(i), ρ(i + 1)) ∈ δ for all i ∈ [1, |ρ| − 1]; states(ρ) is the
set of states occurring in ρ . A trace ρ is called initial if it starts from the initial state w0 of K , that is, fst(ρ) = w0. We
denote by TrcK the set of all traces of K .

Intuitively, for all w ∈ W , μ(w) is the set of proposition letters that hold on the state w , while δ is the transition
relation that describes the evolution of the system over time.

Fig. 1 depicts the finite Kripke structure Ka = ({p, q}, {v0, v1}, δ, μ, v0), where δ = {(v0, v0), (v0, v1), (v1, v0), (v1, v1)},
μ(v0) = {p}, and μ(v1) = {q}. A double circle identifies the initial state v0.

An abstract interval model (over TrcK) can be naturally associated with a Kripke structure K by considering the set of
intervals as the set of traces of K . Since K has loops (δ is left-total), the number of traces in TrcK , and thus the number of
intervals, is infinite.

Definition 2.3 (Induced abstract interval model [27]). The abstract interval model induced by a finite Kripke structure K =
(AP , W , δ, μ, w0) is the tuple

AK = (AP , I, AI, BI, EI,σ), where

• I = TrcK ;
• AI = {(ρ, ρ ′) ∈ I × I | lst(ρ) = fst(ρ ′)};
• BI = {(ρ, ρ ′) ∈ I × I | ρ ′ ∈ Pref(ρ)};
• EI = {(ρ, ρ ′) ∈ I × I | ρ ′ ∈ Suff(ρ)};
• σ : I �→ 2AP is such that, for all ρ ∈ I, σ(ρ) =

⋂
w∈states(ρ)

μ(w).

Relations AI, BI , and EI are interpreted as the Allen’s relations A, B , and E , respectively. Moreover, according to the
definition of σ , p ∈ AP holds over ρ = v1 · · · vn if and only if it holds over all the states v1, . . . , vn of ρ . This conforms to
the homogeneity principle [36], according to which a proposition letter holds over an interval if and only if it holds over all
its subintervals.

Definition 2.4 (Satisfiability over traces and model checking). Let K be a Kripke structure and ψ be an HS formula. We say that
a trace ρ ∈ TrcK satisfies ψ , denoted as K , ρ |= ψ , if it holds that AK , ρ |= ψ .

The Kripke structure K is a model of ψ , denoted as K |= ψ , if for all initial traces ρ ′ ∈ TrcK , it holds that K , ρ ′ |= ψ .
The model checking (MC) problem for HS consists of checking whether K |= ψ for a finite Kripke structure K and an HS
formula ψ .

As we already pointed out, MC is not trivially decidable since TrcK is infinite.
Notice that the assumed semantics of HS is a state-based semantics which allows branching both in the future (by

modalities A and B) and in the past (by modalities A and E). For a comparison of different possible semantics for HS—i.e.,
state-based semantics, linear semantics, and computation-tree-based semantics—and an expressiveness comparison with
standard point-based temporal logics LTL, CTL, and CTL∗ , we refer the reader to [8].
5

Fig. 2. The Kripke structure KSched .

Example 2.5. In Fig. 2, we give an example of a finite Kripke structure KSched that models the behavior of a scheduler
serving three processes which are continuously requesting the use of a common resource. The initial state (denoted by a
double circle) is v0: no process is served in that state. In any other state vi and vi , with i ∈ {1, 2, 3}, the i-th process is
served (this is denoted by the fact that pi holds in those states). For the sake of readability, edges are marked either by ri ,
for request(i), or by ui , for unlock(i). Edge labels do not have a semantic value, that is, they are neither part of the structure
definition, nor proposition letters, and they are simply used to ease reference to edges. Process i is served in state vi , then,
after job completion, a transition ui from vi to vi is taken. The scheduler cannot serve the same process twice in two
successive rounds and, for that reason, vi is not directly reachable from vi . A transition r j , with j �= i, from vi to v j is then
taken and process j is served.

We now show how some meaningful properties to be checked against KSched can be expressed in HS, and, in particular,
by formulas of AAEE (a fragment that will be studied in detail in Section 4). In all formulas, we force the validity of
the considered property over all legal computation sub-intervals by using modality [E] (all computation sub-intervals are
suffixes of at least one initial trace). The truth of the next statements can easily be checked (in the following 〈E〉k stands for
k occurrences of modality 〈E〉):

• KSched |= [E](〈E〉3� → (χ(p1, p2) ∨ χ(p1, p3) ∨ χ(p2, p3))
)
, where χ(p, q) stands for 〈E〉〈A〉p ∧ 〈E〉〈A〉q;

• KSched �|= [E](〈E〉10� → 〈E〉〈A〉p3);
• KSched �|= [E](〈E〉5 → (〈E〉〈A〉p1 ∧ 〈E〉〈A〉p2 ∧ 〈E〉〈A〉p3)).

The first formula states that in any suffix, having length at least 4, of an initial trace at least 2 proposition letters are wit-
nessed. KSched satisfies the formula since a process cannot be executed twice in a row. The second formula states that in any
suffix of an initial trace having length at least 11 process 3 is executed at least once in some internal states (non-starvation).
KSched does not satisfy the formula since the scheduler can avoid executing a process ad libitum. The third formula requires
that in any suffix of an initial trace having length at least 6 p1, p2, p3 are all witnessed. The only way to satisfy this prop-
erty is to constrain the scheduler to execute the three processes in a strictly periodic manner (strict alternation), that is,
pi p j pk pi p j pk pi p j pk . . ., i, j, k ∈ {1, 2, 3}, i �= j �= k �= i, but this is not the case. �
2.3. The general picture

We now describe known and new complexity results about the MC problem for HS fragments (see Fig. 3 for a graphical
account).

In [27], the authors show that, given a finite Kripke structure K and a bound k on the structural complexity of HS
formulas, that is, on the (joint) nesting depth of 〈E〉 and 〈B〉 modalities, it is possible to obtain a finite representation
for AK , which is equivalent to AK with respect to the fulfillment of HS formulas with structural complexity less than or
equal to k. Then, by exploiting such a representation, they prove that the MC problem for (full) HS is decidable, providing an
algorithm with non-elementary complexity. Moreover, they show that the problem for the fragment AABE, and thus for full
HS, is Pspace-hard (Expspace-hard if a suitable succinct encoding of formulas is exploited). In [29], the authors study the
HS fragments AABBE and AAEBE, devising for both the fragments an Expspace MC algorithm which finds, for each trace
of the input Kripke structure, a satisfaction-preserving trace of bounded exponential length, i.e., a trace representative. In
this way, the algorithm needs to check only trace representatives instead of traces of unbounded length. Then, in [28], they
prove that the problem for these two fragments is Pspace-hard (if a suitable succinct encoding of formulas is exploited, the
6

Fig. 3. Complexity of the MC problem for HS fragments: known results are depicted in white boxes, new ones in gray boxes. In red: the line between
tractable and intractable fragments. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

algorithm remains in Expspace, but a NExptime lower bound can be given [29]). Finally, they show that formulas satisfying
a constant bound on their B-nesting (resp., E-nesting) depth can be checked in polynomial working space [29].

In [28,30] the authors identify some well-behaved HS fragments, namely, AABE, B, E, AA, A, and A, which are still
expressive enough to capture meaningful interval properties of state-transition systems and whose MC problem has a com-
putational complexity markedly lower than that of full HS. In particular, they prove that the problem is Pspace-complete
for the first three fragments, and in between PNP[O (log n)] and PNP[O (log2 n)] [18,37] for the last three (PNP[O (log n)] and
PNP[O (log2 n)] are the complexity classes of the problems decided by deterministic polynomial-time Turing machines, making
O (log n) and O (log2 n) queries to an NP oracle, respectively).

The first contribution of this paper to the overall picture is the strengthening of the lower bound to the complexity of
MC for full HS obtained by proving the Expspace-hardness of the fragment BE (Section 3).

Then, we prove Pspace-completeness of the MC problem for AABB and AAEE, thus improving the previously-known
Expspace upper bound given in [29] (Section 4). The surprising aspect of this result is that these two fragments are (from a
computational point of view) as complex as the almost minimal fragments B and E.

Next, we show that the one-modality fragments B and E are in co-NP, and thus co-NP-complete, namely, they have the
same computational complexity of Prop (the pure propositional fragment of HS) [28] (Section 4).

Finally, we focus on the MC problem for the fragments AABBE and AAEBE, and we prove in a much simpler way
(compared to that of [29]) its membership to Expspace (Section 5).

3. EXPSPACE-hardness of BE

In this section, we prove that the MC problem for the HS fragment BE, whose modalities can express properties of both
interval prefixes and suffixes, is Expspace-hard. The result is obtained by a polynomial-time reduction from a domino-tiling
problem for grids with rows of single exponential length [20] to the MC problem for BE. Since, MC for full HS is clearly at
least as hard as MC for BE, such a lower bound immediately propagates to full HS, improving the known lower bound.

We start with the definition of the domino-tiling problem. An instance I of a domino-tiling problem for grids with rows
of single exponential length is a tuple I = (C, �, n, dinit, dfinal), where C is a finite set of colors, � ⊆ C4 is a set of tuples
(cdown, cleft, cup, cright) of four colors, called domino-types, n > 0 is a natural number encoded in unary, and dinit, dfinal ∈ � are
two distinguished domino-types (respectively, the initial and final domino-types). The size of I is defined as |C | + |�| + n.
7

Fig. 4. A (generic) instance of the domino-tiling problem, where di
j denotes f (i, j).

Fig. 5. Encoding of a tiling as a word, where di
j denotes f (i, j).

Intuitively, a tiling of a grid is a color labeling of the edges of each grid square element (see Fig. 4). Formally, a tiling of
I is a mapping f : [0, k] × [0, 2n − 1] → �, for some k ≥ 0, that satisfies the following constraints:

• two adjacent cells in a row have the same color on the shared edge, namely, for all (i, j) ∈ [0, k] × [0, 2n − 2],
[f (i, j)]right = [f (i, j + 1)]left;

• two adjacent cells in a column have the same color on the shared edge, namely, for all (i, j) ∈ [0, k − 1] × [0, 2n − 1],
[f (i, j)]up = [f (i + 1, j)]down;

• f (0, 0) = dinit (initialization) and f (k, 2n − 1) = dfinal (acceptance).

It is well-known that checking the existence (resp., the non-existence) of a tiling of I is an Expspace-complete prob-
lem [20].

We now show how the domino-tiling problem can be reduced in polynomial time to the MC problem for BE. In partic-
ular, we show how to build in polynomial time a finite Kripke structure KI and a BE formula ϕI such that there exists an
initial trace of KI satisfying ϕI if and only if there exists a tiling of I . Hence, KI |= ¬ϕI if and only if there is no tiling
of I .

The encoding of tilings exploits the set of proposition letters AP = � ∪ {$, 0, 1}. Proposition letters in {0, 1} are used for
the binary encoding of the value of an n-bit counter numbering the cells of one row of a tiling, while the proposition letter
$ is used as a separator.

In particular, a cell with content d ∈ � and column number j ∈ [0, 2n − 1] is encoded by the word of length n + 1 over
AP given by d b1 · · ·bn , where b1 · · ·bn is the binary encoding of the column number j (bn is the most significant bit). A row
is then represented by the word listing the encodings of cells from left to right, and a tiling f consisting of k + 1 rows
is encoded by the finite word r0$r1 · · ·$rk , where ri is the encoding of the i-th row of f , for all i ∈ [0, k]. See Fig. 5 for a
graphical account of a word encoding of a tiling.

The Kripke structure KI is trivially defined as

KI = (AP ,AP ,AP × AP ,μ,dinit),

where μ(p) = {p}, for any p ∈ AP . Thus, the initial traces of KI correspond to the finite words over AP which start with
the initial domino type dinit .

In order to build the BE formula ϕI , we use some auxiliary formulas, namely, lengthi , beg(p), end(p), φcell , and θ j(b, b′),
where i ∈ [1, 2n + 2], j ∈ [2, n + 1], p ∈ AP , and b, b′ ∈ {0, 1}.

The formula lengthi has size linear in i and it characterizes the traces of length i. It can be expressed as follows:

lengthi := (〈B〉 . . . 〈B〉︸ ︷︷ ︸
i−1

�) ∧ ([B] . . . [B]︸ ︷︷ ︸
i

⊥).

The formula beg(p) (resp., end(p)) captures the traces of K which start (resp., end) in the state p:

beg(p) := (p ∧ length1) ∨ 〈B〉(p ∧ length1), end(p) := (p ∧ length1) ∨ 〈E〉(p ∧ length1).
8

Fig. 6. Encoding of a trace ρ starting with a cell c = (d 1001) and ending with a cell c′ = (d′ 1101) (here, n = 4). The formula θ2(1, 1) is satisfied by ρ ,
while θ3(1, 0) is not.

The formula φcell captures the traces of KI which encode cells:

φcell := lengthn+1 ∧
(∨

d∈�

beg(d)
)

∧ [E](beg(0) ∨ beg(1)).

Finally, for all j ∈ [2, n + 1] and b, b′ ∈ {0, 1}, the formula θ j(b, b′) is defined as:

θ j(b,b′) := 〈B〉(length j ∧ end(b)) ∧ 〈E〉(lengthn− j+2 ∧ beg(b′)).

The formula θ j(b, b′) is satisfied by a trace ρ if |ρ| ≥ j +1, |ρ| ≥ n − j +3, ρ(j) = b, and ρ(|ρ| −n + j −1) = b′ . In particular,
for a trace ρ starting with a cell c and ending with a cell c′ , θ j(b, b′) is satisfied by ρ if the (j − 1)-th bit of c is b and the
(j − 1)-th bit of c′ is b′ . See Fig. 6 for an example.

Additionally, we use the derived operator 〈G〉 and its dual [G], which allow us to select arbitrary subtraces of the given
trace, including the trace itself:

〈G〉ψ := ψ ∨ 〈B〉ψ ∨ 〈E〉ψ ∨ 〈B〉〈E〉ψ.

The formula ϕI is defined as follows:

ϕI := ϕb ∧ ϕreq ∧ ϕinc ∧ ϕrr ∧ ϕrc.

The conjunct ϕb checks that the given trace starts with a cell with content dinit and column number 0, and ends with a cell
with content dfinal and column number 2n − 1:

ϕb := 〈B〉φcell ∧ beg(dinit) ∧ 〈E〉(φcell ∧ beg(dfinal)) ∧
n+1∧
j=2

θ j(0,1).

The conjunct ϕreq ensures the following two requirements: (i) each occurrence of $ in the given trace is followed by a cell
with column number 0 and (ii) each cell c in the given trace is followed either by another cell, or by the separator $, and
in the latter case c has column number 2n − 1. The first requirement is encoded by the formula:

[G]((lengthn+2 ∧ beg($)) −→ 〈E〉(φcell ∧ [E]beg(0))
);

the second one by the formula:

[G]
{
(lengthn+2 ∧

∨
d∈�

beg(d)) −→
(
〈B〉φcell ∧ (end($) ∨

∨
d∈�

end(d)) ∧ (end($) −→ [E](beg($) ∨ beg(1)))
)}

.

The conjunct ϕinc checks that adjacent cells along the given trace have consecutive columns numbers:

ϕinc := [G]
(
φtwo_cells −→

n+1∨
j=2

[
θ j(0,1) ∧

j−1∧
h=2

θh(1,0) ∧
n+1∧

h= j+1

∨
b∈{0,1}

θh(b,b)
])

,

where φtwo_cells is given by length2n+2 ∧ 〈B〉φcell ∧ 〈E〉φcell .
Note that ϕreq and ϕinc ensure that column numbers are correctly encoded.
The conjunct ϕrr checks that adjacent cells in a row have the same color on the shared edge:

ϕrr := [G]
(
φtwo_cells −→

∨
(d,d′)∈�×�|dright=d′

left

(beg(d) ∧ 〈E〉(lengthn+1 ∧ beg(d′)))
)
.

Finally, the conjunct ϕrc checks that adjacent cells in a column have the same color on the shared edge. For this, it suffices
to require that the following condition holds:

• for each subtrace of the given one containing exactly one occurrence of $, starting with a cell c, and ending with a
cell c′ , if c and c′ have the same column number, then dup = d′ , where d (resp., d′) is the content of c (resp., c′).
down

9

Fig. 7. A trace π induced by ρ .

Accordingly, the formula ϕrc is defined as follows, where we use the formulas θ j(b, b), with j ∈ [2, n + 1] and b ∈ {0, 1}, to
express that c and c′ have the same column number:

ϕrc := [G]
{ (

φone($) ∧ 〈B〉φcell ∧ 〈E〉φcell ∧
n+1∧
j=2

∨
b∈{0,1}

θ j(b,b)
)

−→
∨

(d,d′)∈�×�|dup=d′
down

(beg(d) ∧ 〈E〉(lengthn+1 ∧ beg(d′)))
}
,

where φone($) is defined as (〈B〉end($)) ∧ ¬(〈B〉(end($) ∧ 〈B〉end($))).
It is worth pointing out that ϕI has size polynomial in the size of I .
By construction, a trace ρ of KI satisfies ϕI if and only if ρ encodes a tiling. Since the initial traces of KI are the finite

words over AP starting with dinit , it follows that there exists a tiling of I if and only if there exists an initial trace of KI
which satisfies ϕI . The above-given reduction proves the following theorem.

Theorem 3.1. The MC problem for BE formulas over finite Kripke structures is Expspace-hard (under polynomial-time reductions).

4. A polynomial-size model-trace property for AABB and AAEE

In this section, we show that the MC problem for the fragments AABB and AAEE is Pspace-complete. Moreover, we
prove that MC for the smaller fragments B and E is co-NP-complete.

We first prove the membership to Pspace of the MC problem for the fragments AABB and AAEE by showing that they
enjoy a polynomial-size model-trace property, that is, we show that if a trace ρ of a finite Kripke structure K satisfies a given
formula ϕ of AAEE or AABB, then there exists a trace π , whose length is polynomial in the sizes of ϕ and K , starting from
and leading to the same states as ρ , that satisfies ϕ . In the following, we focus on the fragment AAEE, being the case of
the fragment AABB completely symmetric.

Let K = (AP , W , δ, μ, w0) be a finite Kripke structure. We start by introducing the basic notions of induced trace and
well-formed trace, that will be extensively used to prove the polynomial-size model-trace property. Intuitively, we say that a
trace π ∈ TrcK is induced by a trace ρ ∈ TrcK if it can be obtained from ρ by suitably contracting it, that is, by concatenating
some subtraces of ρ . Well-formedness adds a condition on the suffixes of an induced trace.

Definition 4.1 (Induced and well-formed trace). Let K = (AP , W , δ, μ, w0) be a finite Kripke structure and let ρ ∈ TrcK , with
|ρ| = n. We say that a trace π ∈ TrcK is induced by ρ if there exists an increasing sequence of ρ-positions i1 < . . . < ik ,
with i1 = 1 and ik = n, such that π = ρ(i1) · · ·ρ(ik). For j = 1, . . . , k, the π -position j and the ρ-position i j are called
corresponding positions. Moreover, we say that an induced trace π is well-formed (with respect to ρ) if for all π -positions j,
with corresponding ρ-positions i j , and all proposition letters p ∈ AP , it holds that K , π j |= p if and only if K , ρ i j |= p.

As an example, let us consider Fig. 7. The trace π = ρ(1)ρ(4)ρ(5)ρ(7)ρ(10) is induced by ρ , provided that both ρ and
π are traces of a Kripke structure K , and the positions 1, 2, 3, 4, and 5 of π correspond to the positions i1 = 1, i2 = 4,
i3 = 5, i4 = 7 and i5 = 10 of ρ . Note that if π is induced by ρ , then fst(π) = fst(ρ), lst(π) = lst(ρ), and |π | ≤ |ρ| (|π | = |ρ|
if and only if π = ρ).

Well-formedness implies that the suffix of π starting from position j and that of ρ starting from the corresponding
position i j agree over all the proposition letters in AP , that is, they have the same “satisfaction pattern” of proposition
letters. In particular, for all p ∈ AP , K , π |= p if and only if K , ρ |= p. It can be easily checked that the well-formedness
relation is transitive.

The following proposition shows how it is possible to contract a trace while preserving the same satisfaction pattern of
proposition letters with respect to suffixes. Such a criterion represents a “basic step” in a contraction process that will allow
us to prove the polynomial-size model-trace property.

Proposition 4.2. Let K = (AP , W , δ, μ, w0) be a finite Kripke structure. For any trace ρ ∈ TrcK , there exists a well-formed (with
respect to ρ) trace π ∈ TrcK such that |π | ≤ |W | · (|AP | + 1).
10

Fig. 8. The contraction step of Proposition 4.2 (with AP (ρ,k) = {p ∈ AP | K ,ρk |= p}).

Proof. Let ρ ∈ TrcK , with |ρ| = n. If n ≤ |W | · (|AP | + 1), the thesis trivially holds. Let us assume n > |W | · (|AP | + 1). We
show that there exists π ∈ TrcK , with |π | < n, which is well-formed with respect to ρ .

Since n > |W | · (|AP | + 1), there is some state w ∈ W occurring in ρ at least |AP | + 2 times. Assume that for all
ρ-positions i and j, with j > i, if ρ(i) = ρ(j) = w , then there exists some p ∈ AP such that K , ρ j |= p and K , ρ i �|= p.
This assumption leads to a contradiction, as the suffixes of ρ may feature at most |AP | + 1 distinct satisfaction patterns of
proposition letters (due to the homogeneity principle in Definition 2.3), while there are at least |AP | + 2 occurrences of w .
As a consequence, there are two ρ-positions i and j, with j > i, such that ρ(i) = ρ(j) = w and, for all p ∈ AP , K , ρ j |= p if
and only if K , ρ i |= p. (See Fig. 8 for a graphical account.) It is easy to see that π = ρ(1, i) � ρ(j, n) ∈ TrcK is well-formed
with respect to ρ and |π | < n. If |π | ≤ |W | · (|AP | + 1), the thesis is proved; otherwise, the same basic step can be iterated
a finite number of times, and the thesis follows by transitivity of the well-formedness relation. �

The next definition identifies some distinguished positions in a trace, called witness positions. As we will see in the
proof of Theorem 4.4, if we perform a contraction (see the proof of Proposition 4.2, and its graphical account in Fig. 8)
between a pair of such positions, we get a trace which is equivalent to the original one with respect to the satisfiability
of the considered AAEE formula. In the following, we restrict ourselves to formulas in negation normal form (NNF), namely,
formulas where negation is applied only to proposition letters. By using De Morgan’s laws and the dual modalities [E], [E],
[A], and [A] of 〈E〉, 〈E〉, 〈A〉, and 〈A〉, respectively, we can trivially convert in linear time a formula into an equivalent one
in NNF, having at most double length.

Definition 4.3 (Witness position). Let K = (AP , W , δ, μ, w0) be a finite Kripke structure, ρ ∈ TrcK , and ϕ be a formula of
AAEE. Let us denote by E(ϕ, ρ) the set of subformulas of the form 〈E〉ψ of ϕ such that K , ρ |= 〈E〉ψ . The set W t(ϕ, ρ) of
witness positions of ρ for ϕ is the minimal set of ρ-positions satisfying the following constraint: for each 〈E〉ψ ∈ E(ϕ, ρ), the
greatest ρ-position i > 1 such that K , ρ i |= ψ belongs to W t(ϕ, ρ).2

It is easy to see that the cardinalities of E(ϕ, ρ) and of W t(ϕ, ρ) are at most |ϕ| − 1. We are now ready to prove the
polynomial-size model-trace property.

Theorem 4.4 (Polynomial-size model-trace property for AAEE). Let K = (AP , W , δ, μ, w0) be a finite Kripke structure, ρ, σ ∈ TrcK ,
and ϕ be an AAEE formula in NNF such that K , ρ � σ |= ϕ . Then, there exists π , induced by ρ , such that K , π � σ |= ϕ , and
|π | ≤ |W | · (|ϕ| + 1)2 .

As a preliminary remark, we note that the theorem holds in particular if |σ | = 1, and thus ρ � σ = ρ and π � σ = π . In
such a case, if K , ρ |= ϕ , then K , π |= ϕ , where π is induced by ρ and |π | ≤ |W | · (|ϕ| + 1)2. The more general statement
of Theorem 4.4 is needed for technical reasons in the soundness/completeness proofs of the algorithms for MC given in the
following.

Proof. W.l.o.g., we restrict ourselves to the proposition letters occurring in ϕ , thus having |AP | ≤ |ϕ|. Let W t(ϕ, ρ � σ) be
the set of witness positions of ρ � σ for ϕ , let {i1, . . . , ik} be the ordering of W t(ϕ, ρ � σ) such that i1 < . . . < ik , and let
i0 = 1 and ik+1 = |ρ � σ |. Hence, 1 = i0 < i1 < . . . < ik ≤ ik+1 = |ρ � σ |.

If |ρ| ≤ |W | · (|ϕ| + 1)2, the thesis trivially holds. Let us assume that |ρ| > |W | · (|ϕ| + 1)2. We show that there exists a
trace π induced by ρ , with |π | < |ρ|, such that K , π � σ |= ϕ .

W.l.o.g., we can assume that, for some j ≥ 0, i0 < i1 < . . . < i j are ρ-positions, while i j+1 < . . . < ik+1 are (ρ � σ)-
positions not in ρ . Then, either (i) there exists t ∈ [0, j − 1] such that it+1 − it > |W | · (|ϕ| + 1) or (ii) |ρ(i j, |ρ|)| >
|W | ·(|ϕ| +1). By way of contradiction, suppose that neither (i) nor (ii) holds. We need to distinguish two cases. If ρ �σ = ρ ,
then |ρ| = (ik+1 − i0) +1 ≤ (k +1) · |W | ·(|ϕ| +1) +1; otherwise (|ρ| < |ρ �σ |), |ρ| = (i j − i0) +|ρ(i j, |ρ|)| ≤ j · |W | ·(|ϕ| +1) +
|W | · (|ϕ| + 1) ≤ (k + 1) · |W | · (|ϕ| + 1). The contradiction follows since (k + 1) · |W | · (|ϕ| + 1) + 1 ≤ |ϕ| · |W | · (|ϕ| + 1) + 1 ≤
|W | · (|ϕ| + 1)2.

Let (α, β) = (it , it+1) in case (i), and (α, β) = (i j, |ρ|) in case (ii) and let ρ ′ = ρ(α, β). In both cases, |ρ ′| > |W | ·
(|ϕ| + 1) ≥ |W | · (|AP | + 1), being |AP | ≤ |ϕ|. By Proposition 4.2, there exists a trace π ′ of K , well-formed with respect

2 Note that such a ρ-position exists by definition of E(ϕ, ρ).
11

Fig. 9. Representation of the contraction step of Theorem 4.4—case (i).

to ρ ′ , such that |π ′| ≤ |W | · (|AP | + 1) < |ρ ′|. Let π be the trace induced by ρ obtained by replacing the subtrace ρ ′ of ρ
by π ′ (see Fig. 9 for a graphical account). Since |π | < |ρ|, it remains to prove that K , π � σ |= ϕ .

Let us denote π �σ by π and ρ �σ by ρ . Let H : [1, |π |] → [1, |ρ|] be the function mapping positions of π into positions
of ρ in such a way that positions “outside” π ′ , i.e., outside the interval [α, α + |π ′| − 1], are mapped into their original
positions in ρ while those “inside” π ′ , i.e., in [α, α+|π ′| −1], are mapped into the corresponding positions in ρ ′ (exploiting
well-formedness of π ′ with respect to ρ ′):

H(m) =

⎧⎪⎨
⎪⎩

m if m < α;
α + �m−α+1 − 1 if α ≤ m < α + |π ′|;
m + (|ρ ′| − |π ′|) if m ≥ α + |π ′|,

(1)

where �s is the ρ ′-position corresponding to the π ′-position s, with �s ∈ [1, |ρ ′|] and s ∈ [1, |π ′|].
It is easy to check that the map H satisfies the following properties:

1. H is strictly monotonic, i.e., for all j, j′ ∈ [1, |π |], j < j′ iff H(j) < H(j′);
2. for all j ∈ [1, |π |], π(j) = ρ(H(j));
3. H(1) = 1 and H(|π |) = |ρ|;
4. W t(ϕ, ρ) ⊆ {H(j) | j ∈ [1, |π |]}, i.e., all witness positions are preserved;
5. for each j ∈ [1, |π |] and p ∈ AP , K , π j |= p iff K , ρH(j) |= p.

The fact that K , π |= ϕ is an immediate consequence of the following claim, considering that H(1) = 1, K , ρ |= ϕ ,
ρ1 = ρ , and π1 = π .

Claim. For all j ∈ [1, |π |], all subformulas ψ of ϕ , and all u ∈ TrcK , it holds that if K , u � ρH(j) |= ψ, then K , u � π j |= ψ .

Proof. Assume that K , u � ρH(j) |= ψ . Note that u � ρH(j) is defined if and only if u � π j is defined. We prove by induction
on the structure of ψ that K , u � π j |= ψ . Since ϕ is in NNF, only the following cases occur:

• ψ = p or ψ = ¬p for some p ∈ AP . By Property 5 of H , K , π j |= p iff K , ρH(j) |= p. Hence, K , u � π j |= p if and only if
K , u � ρH(j) |= p, and the result holds.

• ψ = θ1 ∧ θ2 or ψ = θ1 ∨ θ2, for some AAEE formulas θ1 and θ2: the result directly follows from the inductive hypothesis.
• ψ = [E]θ . We need to show that for each proper suffix η of u � π j , K , η |= θ . We distinguish two cases:

– η is not a proper suffix of π j . Hence, η is of the form uh � π j for some h ∈ [2, |u|]. Since K , u � ρH(j) |= [E]θ , then
K , uh � ρH(j) |= θ . By the inductive hypothesis, K , uh � π j |= θ .

– η is a proper suffix of π j . Hence, η = πh for some h ∈ [j + 1, |π |]. By Property 1 of H , H(h) > H(j), and since
K , u � ρH(j) |= [E]θ , we have that K , ρH(h) |= θ . By the inductive hypothesis, K , πh |= θ .

Therefore, K , u � π j |= [E]θ .
• ψ = 〈E〉θ . We need to show that there exists a proper suffix of u � π j satisfying θ . Since K , u � ρH(j) |= ψ , there exists

a proper suffix η′ of u � ρH(j) such that K , η′ |= θ . We distinguish two cases:
– η′ is not a proper suffix of ρH(j) . Hence, η′ is of the form uh �ρH(j) for some h ∈ [2, |u|]. By the inductive hypothesis,

K , uh � π j |= θ . Hence, K , u � π j |= 〈E〉θ .
– η′ is a proper suffix of ρH(j) . Hence, η′ = ρ i for some i ∈ [H(j) + 1, |ρ|], and K , ρ i |= θ . Let i′ be the greatest position

of ρ such that K , ρ i′ |= θ . Hence i′ ≥ i and, by Definition 4.3, i′ ∈ W t(ϕ, ρ). By Property 4 of H , i′ = H(h) for some
π -position h. Since H(h) > H(j), it holds that h > j (Property 1). By the inductive hypothesis, K , πh |= θ , and we
obtain that K , u � π j |= 〈E〉θ .

Therefore, in both the cases, K , u � π j |= 〈E〉θ .
• ψ = [E]θ or ψ = 〈E〉θ : the thesis holds as a direct consequence of the inductive hypothesis.
• ψ = [A]θ , ψ = 〈A〉θ , ψ = [A]θ , or ψ = 〈A〉θ . Since u � π j and u � ρH(j) start at the same state and lead to the same

state (by Properties 2 and 3 of H), the thesis trivially follows. This concludes the proof of the claim. �
12

Algorithm 1 ModCheck(K , ψ).

1: for all initial traces σ ∈ TrcK such that |σ | ≤ |W | · (2|ψ | + 3)2 do
2: if Check(K , ψ, σ) = 0 then
3: return 0: “K , σ �|= ψ” � Counterexample found
4: return 1: “K |= ψ”

Algorithm 2 Check(K , ψ, σ).
1: if ψ = p, for p ∈ AP then
2: if p ∈ ⋂

s∈states(σ) μ(s) then
3: return 1 else return 0
4: else if ψ = ¬ϕ then
5: return 1 − Check(K , ϕ, σ)

6: else if ψ = ϕ1 ∧ ϕ2 then
7: if Check(K , ϕ1, σ) = 0 then
8: return 0
9: else

10: return Check(K , ϕ2, σ)

11: else if ψ = 〈A〉ϕ then
12: for all π ∈ TrcK such that fst(π) = lst(σ), and |π | ≤ |W | · (2|ϕ| + 1)2 do
13: if Check(K , ϕ, π) = 1 then
14: return 1
15: return 0
16: else if ψ = 〈E〉ϕ then
17: for each proper suffix π of σ do
18: if Check(K , ϕ, π) = 1 then
19: return 1
20: return 0
21: else if ψ = 〈E〉ϕ then
22: for all π ∈ TrcK s.t. lst(π) = fst(σ), and 2 ≤ |π | ≤ |W | · (2|ϕ| + 1)2 do
23: if Check(K , ϕ, π � σ) = 1 then
24: return 1
25: return 0
26: . . . � ψ = 〈A〉ϕ is analogous to ψ = 〈A〉ϕ

We have shown that K , π |= ϕ , with |π | < |ρ|. Now, if |π | ≤ |W | · (|ϕ| + 1)2, the thesis is proved; otherwise, the above
contraction step can be iterated a finite number of times, until the bound is reached, proving the thesis of Theorem 4.4. �

By exploiting the polynomial-size model-trace property stated by Theorem 4.4, it is easy to define a Pspace MC algorithm
for AAEE. The main MC procedure for AAEE formulas is ModCheck(K , ψ) (Algorithm 1). All the initial traces σ , obtained
by visiting the unraveling of K from w0 up to depth |W | · (2|ψ | + 3)2, are checked with respect to ψ by the function
Check(K , ψ, σ) (Algorithm 2) which decides whether K , σ |= ψ . The Check function is iteratively called until either
some initial trace is found that does not satisfy ψ or all bounded initial traces satisfy ψ (and thus K |= ψ). The call of
Check(K , ψ, σ) (Algorithm 2) decides whether K , σ |= ψ by recursively calling itself on the sub-formulas of ψ either over
σ or over (bounded) traces obtained by unraveling K forward (starting from lst(σ)) for occurrences of the modality 〈A〉 and
backward (starting from fst(σ)) for occurrences of the modalities 〈A〉 and 〈E〉.

Note that the considered bound on the length of initial traces is actually |W | · (2|ψ | + 3)2 ≥ |W | · (|N N F (¬ψ)| + 1)2 (first
line of the ModCheck procedure). The reason is that the correctness proof of the algorithm exploits the polynomial bound
of Theorem 4.4 for the formula ¬ψ that has to be reduced in NNF.

We now prove soundness and completeness of the proposed procedures starting from the function Check of Algo-
rithm 2.

Lemma 4.5. Let ψ be an AAEE formula, K be a finite Kripke structure, and σ ∈ TrcK . Then, Check(K , ψ, σ) = 1 if and only if
K , σ |= ψ .

Proof. The proof is by induction on the structure of ψ . The base case where ψ = p, for some p ∈ AP , directly follows from
the definition (line 2 of Algorithm 2). The cases in which ψ = ¬ϕ and ψ = ϕ1 ∧ ϕ2 are also trivial and thus omitted. We
focus on the remaining cases.

• ψ = 〈A〉ϕ . If K , σ |= ψ , then there exists a trace ρ ∈ TrcK such that lst(σ) = fst(ρ) and K , ρ |= ϕ . By Theorem 4.4, there
exists a trace π ∈ TrcK , with |π | ≤ |W | · (|ϕ′| + 1)2 and fst(π) = fst(ρ)(= lst(σ)), such that K , π |= ϕ′ , where ϕ′ is the
NNF of ϕ . Thus, being |π | ≤ |W | · (2|ϕ| + 1)2, such trace π is considered in the for-loop at line 12. By the inductive
hypothesis, Check(K , ϕ, π) = 1 and thus Check(K , ψ, σ) = 1.
Vice versa, if Check(K , ψ, σ) =1, then there exists a trace π ∈TrcK , with lst(σ) = fst(π), such that Check(K , ϕ, π) = 1.
By the inductive hypothesis, K , π |= ϕ , hence K , σ |= ψ .
13

• ψ = 〈A〉ϕ is analogous to the previous case.
• ψ = 〈E〉ϕ . If K , σ |= ψ , there exists a trace π ∈ Suff(σ) such that K , π |= ϕ . By the inductive hypothesis,
Check(K , ϕ, π) = 1. Since all the proper suffixes of σ are checked (line 17), Check(K , ψ, σ) = 1.
Vice versa, if Check(K , ψ, σ) = 1, then for some π ∈ Suff(σ), it holds that Check(K , ϕ, π) = 1. By the inductive
hypothesis K , π |= ϕ implying that K , σ |= ψ .

• ψ = 〈E〉ϕ . If K , σ |= ψ , then there exists a trace ρ ∈ TrcK , with |ρ| ≥ 2, such that K , ρ � σ |= ϕ . By Theorem 4.4, there
exists a trace π ∈ TrcK induced by ρ , with |π | ≤ |W | · (|ϕ′| + 1)2, such that K , π � σ |= ϕ′ , where ϕ′ is the NNF of ϕ .
Such trace π is considered in the for-loop at line 22, since |π | ≤ |W | · (2|ϕ| + 1)2 and |π | ≥ 2 as it is induced by ρ . By
the inductive hypothesis, Check(K , ϕ, π � σ) = 1 implying that Check(K , ψ, σ) = 1.
Vice versa, if Check(K , ψ, σ) = 1, then there exists a trace π ∈ TrcK , with |π | ≥ 2, such that Check(K , ϕ, π � σ) = 1.
By the inductive hypothesis, K , π � σ |= ϕ , hence K , σ |= ψ . �

We prove now soundness and completeness of Algorithm 1.

Theorem 4.6. Let ψ be an AAEE formula and K be a finite Kripke structure. Then, ModCheck(K , ψ) = 1 if and only if K |= ψ .

Proof. (⇐) If K |= ψ , then, for all initial traces ρ ∈ TrcK , we have that K , ρ |= ψ . By Lemma 4.5, it follows
that Check(K , ψ, ρ) = 1. Now, since the for-loop at line 1 considers a subset of the initial traces, it holds that
ModCheck(K , ψ) = 1.

(⇒) If ModCheck(K , ψ) = 1, then, for any initial trace ρ considered by the for-loop at line 1, that is, with |ρ| ≤
|W | · (2|ψ | + 3)2, it holds that Check(K , ψ, ρ) = 1. Let us assume by contradiction that K �|= ψ , that is, there exists an
initial trace ρ ′ ∈ TrcK such that K , ρ ′ |= ¬ψ , or, equivalently, K , ρ ′ |= ψ , where ψ is the NNF of ¬ψ . Thus, by Theorem 4.4,
there exists an initial trace σ , with |σ | ≤ |W | · (|ψ | + 1)2 ≤ |W | · (2|ψ | + 3)2, such that K , σ |= ψ , namely, K , σ �|= ψ . By
Lemma 4.5, it holds that Check(K , ψ, σ) = 0, leading to a contradiction and proving that K |= ψ . �

The model checking procedures require polynomial working space, since:

• ModCheck needs to store only a trace no longer than |W | · (2|ψ | + 3)2 (obviously, many traces are generated while
visiting the unraveling of K , but only one at a time needs to be stored);

• every recursive call to Check (possibly) needs space for a trace no longer than |W | ·(2|ϕ| +1)2, where ϕ is a subformula
of ψ such that |ϕ| ≤ |ψ | − 1;

• at most one call to ModCheck and |ψ | calls to Check can be simultaneously active.

Therefore, the maximum space needed by the given algorithms is (|ψ | + 1) · O (log |W |) · (|W | · (2|ψ | + 3)2) bits, where
O (log |W |) bits are needed to represent a state of K .

Theorem 4.6, along with the above space analysis and the fact that MC for the fragment E is known to be
Pspace-hard [30], entail the following corollary.

Corollary 4.7. The MC problem for AAEE formulas over finite Kripke structures is Pspace-complete.

The same result, that is, Pspace-completeness, clearly holds also for any sub-fragment of AAEE which features the modal-
ity E.

We now conclude the section by showing that the MC problem for the fragments B and E is in co-NP, that is, they have
the same complexity as the purely propositional fragment Prop. We focus on the fragment E, as the case of B is completely
symmetric. As we shall see, the MC algorithm heavily rests on the polynomial-size model-trace property.

The algorithm is based on the non-deterministic procedure CounterExE(K , ψ) (Algorithm 3) which searches for coun-
terexamples to the input E formula ψ (initial traces satisfying ¬ψ). If such a counterexample is found, clearly K �|= ψ .
First, the procedure generates in a non-deterministic way an initial trace ρ , whose length is at most |W | · (2|ψ | + 3)2, by
means of A_trace(K , w0, |ψ |). Then, the deterministic function CheckE(K , ψ, ρ), reported in Algorithm 4, evaluates ψ
over ρ . If CheckE returns ⊥, a counterexample has been found and CounterExE returns Yes (thus the non-deterministic
computation of the algorithm is successful). Otherwise, it returns No (the computation fails).

As for the function CheckE, the following statement holds.

Proposition 4.8. Let ψ be an E formula, K be a finite Kripke structure, and ρ be a trace of K . Then, CheckE(K , ψ, ρ) = � if and
only if K , ρ |= ψ .

CheckE exploits a Boolean table T with an entry for each pair consisting of a subformula of ψ and the starting position
of a suffix of ρ (the size of T is then |ψ | × |ρ|). The function scans all the subformulas ϕ of the input ψ by increasing
length, and it stores in the Boolean entry T [ϕ, i], for 1 ≤ i ≤ |ρ|, whether K , ρ i |= ϕ or not. Note that the result of the
evaluation of ψ over ρ is stored in T [ψ, 1], as ρ1 = ρ . Since subformulas of ψ are considered by increasing length order,
14

Algorithm 3 CounterExE(K , ψ).

1: ρ ← A_trace(K , w0, |ψ |) � a trace of K from w0 of length ≤ |W | · (2|ψ | + 3)2

2: if CheckE(K , ψ, ρ) = ⊥ then
3: return Yes: “K , ρ �|= ψ” � Counterexample found
4: else
5: return No: “K , ρ |= ψ” � Counterexample not found

Algorithm 4 CheckE(K , ψ, ρ).
1: T ← New_Bool_Table(|ψ |, |ρ|) � creates new table of |ψ | × |ρ| Boolean entries
2: for all subformulas ϕ of ψ by increasing length do
3: if ϕ = p, for p ∈ AP then
4: T [p, |ρ|] ← p ∈ μ(lst(ρ))

5: for i = |ρ| − 1, . . . , 1 do
6: T [p, i] ← T [p, i + 1] and p ∈ μ(ρ(i))

7: else if ϕ = ¬ϕ1 then
8: for i = |ρ|, . . . , 1 do
9: T [ϕ, i] ← not T [ϕ1, i]

10: else if ϕ = ϕ1 ∧ ϕ2 then
11: for i = |ρ|, . . . , 1 do
12: T [ϕ, i] ← T [ϕ1, i] and T [ϕ2, i]
13: else if ϕ = 〈E〉ϕ1 then
14: T [ϕ, |ρ|] ← ⊥
15: for i = |ρ| − 1, . . . , 1 do
16: T [ϕ, i] ← T [ϕ, i + 1] or T [ϕ1, i + 1]
17: return T [ψ, 1]

during an iteration starting at line 2, when a subformula ϕ of ψ is being processed, it holds that T [ξ, i] is defined, for all
other subformulas ξ processed in some previous iteration, and T [ξ, i] = � if and only if K , ρ i |= ξ . This implies that, at the
end, T [ψ, 1] = � if and only if K , ρ |= ψ .

We can now prove that the procedure CounterExE is sound and complete. If CounterExE(K , ψ) has a successful
computation, then there exists an initial trace ρ such that CheckE(K , ψ, ρ) = ⊥. This means that K , ρ �|= ψ , and thus
K �|= ψ . Conversely, if K �|= ψ then there exists an initial trace ρ such that K , ρ �|= ψ . By Theorem 4.4, there exists an initial
trace π , whose length is bounded by |W | · (|ψ ′| + 1)2 ≤ |W | · (2|ψ | + 3)2, such that K , π |= ψ ′ , where ψ ′ is the NNF of
¬ψ . Now, some non-deterministic instance of A_trace(K , w0, |ψ |) generates exactly such π , being |π | ≤ |W | · (2|ψ | +3)2.
Moreover, CheckE(K , ψ, π) = ⊥, and thus CounterExE(K , ψ) has a successful computation.

CounterExE(K , ψ) is in NP, as the generated trace(s) ρ has (have) a length polynomial in |W | and |ψ |, and can thus
be computed in polynomial time. Subsequently, CheckE performs a polynomial number of steps, since all it has to do is
filling in the table T , which features |ψ | · |ρ| entries.

Corollary 4.9. The MC problem for E formulas over finite Kripke structures is co-NP-complete.

Proof. Since CounterExE(K , ψ) has a successful computation if and only if K �|= ψ , and such a procedure runs in (non-
deterministic) polynomial time, the MC problem belongs to co-NP. The co-NP-hardness derives immediately from that of
the purely propositional HS fragment Prop, as proved in [28]. �
5. An exponential-size model-trace property for AABBE and AAEBE

In this section, we prove that the fragments AABBE and AAEBE enjoy an exponential-size model-trace property. Such a
property ensures that, for each h ≥ 0 and trace ρ of a finite Kripke structure K = (AP , W , δ, μ, w0), it is always possible to
find another trace of K induced by ρ , whose length is at most (|W | + 2)h+2, which is indistinguishable from ρ with respect
to the satisfiability of any AABBE (resp., AAEBE) formula ϕ with B-nesting depth dB(ϕ) (resp., E-nesting depth dE(ϕ)) at
most h.

To prove such a property, we first introduce the notion of h-prefix bisimilarity (resp., h-suffix bisimilarity), which defines
an equivalence relation over TrcK ensuring that equivalent traces satisfy the same AABBE (resp., AAEBE) formulas with
B-nesting (resp., E-nesting) depth at most h.

Then, we show how to determine, for a given trace ρ , a subset of positions of ρ that allow us to build another trace ρ ′ ,
with length at most (|W | + 2)h+2, such that ρ and ρ ′ are h-prefix bisimilar (resp., h-suffix bisimilar). We call such a set of
ρ-positions prefix (resp., suffix) sampling of ρ . Intuitively, they play a role which is analogous to that of witness positions
(Definition 4.3) exploited in the previous section.

Let h ≥ 0. The notions of h-prefix bisimilarity and h-suffix bisimilarity between a pair of traces ρ and ρ ′ of a Kripke
structure are defined as follows.
15

Definition 5.1 (Prefix-bisimilarity and suffix-bisimilarity). Let h ≥ 0. Two traces ρ and ρ ′ of a finite Kripke structure K are
h-prefix bisimilar if the following conditions inductively hold:

• for h = 0: fst(ρ) = fst(ρ ′), lst(ρ) = lst(ρ ′), and states(ρ) = states(ρ ′);
• for h > 0: ρ and ρ ′ are 0-prefix bisimilar and for each proper prefix ν of ρ (resp., proper prefix ν ′ of ρ ′), there exists

a proper prefix ν ′ of ρ ′ (resp., proper prefix ν of ρ) such that ν and ν ′ are (h − 1)-prefix bisimilar.

The notion of h-suffix bisimilarity is defined in a symmetric way by considering suffixes, instead of prefixes, of traces.

As it will be proved in Proposition 5.5 below, h-prefix (resp., h-suffix) bisimilarity is a sufficient condition for two traces
ρ and ρ ′ to be indistinguishable with respect to the satisfiability of AABBE (resp., AAEBE) formulas with B-nesting (resp.,
E-nesting) depth at most h.

The following property can be easily shown.

Property 5.2. Given a finite Kripke structure K , for all h ≥ 0, h-prefix (resp., h-suffix) bisimilarity is an equivalence relation
over TrcK .

The following property states that h-suffix bisimilarity and h-prefix bisimilarity “propagate downwards”.

Property 5.3. Let h > 0, and ρ and ρ ′ be two h-prefix (resp., h-suffix) bisimilar traces of a finite Kripke structure K . Then,
ρ and ρ ′ are also (h − 1)-prefix (resp., (h − 1)-suffix) bisimilar.

As stated by the following Proposition, the relations of h-prefix and h-suffix bisimilarity are preserved by left and right
�-concatenation with a constant string. The property can be easily proved by induction on h ≥ 0.

Proposition 5.4. Let h ≥ 0, and let ρ and ρ ′ be two h-prefix (resp., h-suffix) bisimilar traces of a finite Kripke structure K . Then, for
each trace ρ ′′ of K ,

1. ρ ′′ � ρ and ρ ′′ � ρ ′ are h-prefix (resp., h-suffix) bisimilar;
2. ρ � ρ ′′ and ρ ′ � ρ ′′ are h-prefix (resp., h-suffix) bisimilar.

By Proposition 5.4 and a straightforward induction on the structural complexity of formulas, we obtain that h-prefix
(resp., h-suffix) bisimilarity preserves the satisfiability of AABBE (resp., AAEBE) formulas with B-nesting (resp., E-nesting)
depth at most h. In other words, h-prefix (resp., h-suffix) bisimilarity is a sufficient condition for two traces to be indistin-
guishable with respect to any AABBE (resp., AAEBE) formula ψ with dB(ψ) ≤ h (resp., dE(ψ) ≤ h).

Proposition 5.5. Let h ≥ 0, and let ρ and ρ ′ be two h-prefix (resp., h-suffix) bisimilar traces of a finite Kripke structure K . Then, for
each AABBE (resp., AAEBE) formula ψ with dB(ψ) ≤ h (resp., dE(ψ) ≤ h), it holds that K , ρ |= ψ if and only if K , ρ ′ |= ψ .

In the remaining part of the section, we shall focus on the fragment AABBE (the case of AAEBE is completely symmetric).
We shall show how to determine a subset of positions of a trace ρ (a prefix sampling of ρ), starting from which it is possible
to build another trace ρ ′ , of bounded exponential length, which is indistinguishable from ρ with respect to the satisfiability
of AABBE formulas up to a given B-nesting depth (exponential-size model-trace property). We start by introducing the notions
of prefix-skeleton sampling and h-prefix sampling, and prove some related properties. In the following, we fix a finite Kripke
structure K = (AP , W , δ, μ, w0), and, given a set I of natural numbers, by “two consecutive elements of I” we mean a pair
of elements i, j ∈ I such that i < j and I ∩ [i, j] = {i, j}.

Definition 5.6 (Prefix-skeleton sampling). Let ρ be a trace of K . Given two ρ-positions i and j, with i ≤ j, the prefix-skeleton
sampling of ρ(i, j) is the minimal set P of ρ-positions in the interval [i, j] satisfying the conditions:

• i, j ∈ P ;
• for each state w ∈ W occurring in ρ(i + 1, j − 1), the least position k ∈ [i + 1, j − 1] such that ρ(k) = w belongs to P .

Fig. 10 gives a graphical account of the prefix-skeleton sampling of a trace.
From Definition 5.6, it immediately follows that the prefix-skeleton sampling P of (any) trace ρ(i, j) is such that |P | ≤

|W | + 2, and if i < j, then i + 1 ∈ P .

Definition 5.7 (h-prefix sampling). Let ρ be a trace of K . For each h ≥ 1, the h-prefix sampling of ρ is the minimal set Ph of
ρ-positions inductively satisfying the following conditions:
16

Fig. 10. The set P is the prefix-skeleton sampling of ρ(i, j) = w4
1 w2 w1 w3 w1 w2 w3 w1 w3.

• for h = 1: P1 is the prefix-skeleton sampling of ρ;
• for h > 1: (i) Ph ⊇ Ph−1 and (ii) for all pairs of consecutive positions i, j in Ph−1, the prefix-skeleton sampling of ρ(i, j)

belongs to Ph .

The following upper bound to the cardinality of prefix samplings easily follows from Definition 5.7.

Property 5.8. Let h ≥ 1 and ρ be a trace of K . The h-prefix sampling Ph of ρ is such that |Ph| ≤ (|W | + 2)h .

Lemma 5.10 and Theorem 5.11 below show how to derive, from any trace ρ of the given finite Kripke structure K ,
another trace ρ ′ , induced by ρ and h-prefix bisimilar to ρ , such that |ρ ′| ≤ (|W | + 2)h+2. By Proposition 5.5, ρ ′ is indistin-
guishable from ρ with respect to the satisfiability of any AABBE formula ψ with dB(ψ) ≤ h.

In order to build ρ ′ , we first compute the (h + 1)-prefix sampling Ph+1 of ρ . Then, for all the pairs of consecutive
ρ-positions i, j ∈ Ph+1, we consider a trace induced by ρ(i, j), with no repeated occurrences of any state, except at most
the first and last ones (hence, it is no longer than |W | + 2). The trace ρ ′ is just the ordered concatenation (by means
of the �-concatenation operator) of all these traces. The aforementioned bound on |ρ ′ | holds as, by Property 5.8, |Ph+1| ≤
(|W | +2)h+1. Lemma 5.10 states that ρ and ρ ′ are indeed h-prefix bisimilar. The proof of such lemma exploits the following
technical result.

Lemma 5.9. Let h ≥ 1, ρ be a trace of K , and let i, j be two consecutive ρ-positions in the h-prefix sampling of ρ . Then, for all
ρ-positions n, n′ ∈ [i + 1, j] such that ρ(n) = ρ(n′), it holds that ρ(1, n) and ρ(1, n′) are (h − 1)-prefix bisimilar.

Proof. The proof is by induction on h ≥ 1.
Base case: h = 1. The 1-prefix sampling of ρ is the prefix-skeleton sampling of ρ . Hence, being i and j consecutive

positions in this sampling, for each position k ∈ [i, j − 1], there is � ≤ i such that ρ(�) = ρ(k). Since ρ(n) = ρ(n′), it holds
that states(ρ(1, n)) = states(ρ(1, n′)), and thus ρ(1, n) and ρ(1, n′) are 0-prefix bisimilar.

Inductive step: h > 1. By definition of h-prefix sampling, there are two consecutive positions i′, j′ in the (h − 1)-prefix
sampling of ρ such that i, j are consecutive positions of the prefix-skeleton sampling of ρ(i′, j′).

If i = i′ , then j = i + 1, and thus, being n, n′ ∈ [i + 1, j], we get that n = n′ , and the result trivially holds.
Let i �= i′ , thus i > i′ . As in the base case, we easily deduce that ρ(1, n) and ρ(1, n′) are 0-prefix bisimilar. It remains to

show that for each proper prefix ν of ρ(1, n) (resp., ν ′ of ρ(1, n′)), there is a proper prefix ν ′ of ρ(1, n′) (resp., ν of ρ(1, n))
such that ν and ν ′ are (h − 2)-prefix bisimilar. Let us consider a proper prefix ν of ρ(1, n) (the proof for the other direction
is symmetric). It holds that ν = ρ(1, m), for some m < n. We distinguish two cases:

• m ≤ i. Hence, ρ(1, m) is a proper prefix of ρ(1, n′) and the result follows.
• m > i. Since i and j are consecutive positions of the prefix-skeleton sampling of ρ(i′, j′), i > i′ , and m ∈ [i + 1, j − 1]

(hence m < j′), there is m′ ∈ [i′ + 1, i] such that ρ(m′) = ρ(m) and m′ is in the prefix-skeleton sampling of ρ(i′, j′). Let
ν ′ = ρ(1, m′). Clearly, ν ′ is a proper prefix of ρ(1, n′) (as n′ ≥ i + 1). Moreover, since m, m′ ∈ [i′ + 1, j′] and i′, j′ are
consecutive positions in the (h − 1)-prefix sampling of ρ , by the inductive hypothesis, ν = ρ(1, m) and ν ′ = ρ(1, m′)
are (h − 2)-prefix bisimilar.

This concludes the proof of Lemma 5.9. �
Lemma 5.10. Let h ≥ 1, let ρ be a trace of K , and let ρ ′ = ρ(i1)ρ(i2) · · ·ρ(ik) be a trace induced by ρ , where 1 = i1 < i2 < . . . < ik =
|ρ| and Ph+1 ⊆ {i1, . . . , ik}, with Ph+1 the (h + 1)-prefix sampling of ρ . Then, for all j ∈ [1, k], ρ ′(1, j) and ρ(1, i j) are h-prefix
bisimilar.

Note that, as a straightforward consequence, ρ and ρ ′ are h-prefix bisimilar.

Proof. Let Q = {i1, . . . , ik} (hence Ph+1 ⊆ Q) and let j ∈ [1, k]. We prove by induction on j that ρ ′(1, j) and ρ(1, i j) are
h-prefix bisimilar. As for the base case (j = 1), the result holds, since i1 = 1.

Let us assume that j > 1. We first show that ρ(1, i j) and ρ ′(1, j) are 0-prefix bisimilar. Clearly, ρ(1) = ρ(i1) =
ρ ′(1), ρ(i j) = ρ ′(j), and states(ρ ′(1, j)) ⊆ states(ρ(1, i j)). Now, if, by contradiction, there was a state w such that
17

w ∈ states(ρ(1, i j)) \ states(ρ ′(1, j)), then for all l ∈ Q , with l ≤ i j , ρ(l) �= w . However, the prefix-skeleton sampling P1
of ρ is contained in Q , and the minimal ρ-position l′ such that ρ(l′) = w belongs to P1. Since w ∈ states(ρ(1, i j)), we have
l′ ≤ i j and we get a contradiction, implying that states(ρ ′(1, j)) = states(ρ(1, i j)).

It remains to prove that:

(1) for each proper prefix ν ′ of ρ ′(1, j), there exists a proper prefix ν of ρ(1, i j) such that ν and ν ′ are (h − 1)-prefix
bisimilar, and

(2) for each proper prefix ν of ρ(1, i j), there exists a proper prefix ν ′ of ρ ′(1, j) such that ν and ν ′ are (h − 1)-prefix
bisimilar.

As for (1), let ν ′ be a proper prefix of ρ ′(1, j). Hence, there exists m ∈ [1, j − 1] such that ν ′ = ρ ′(1, m). By the inductive
hypothesis, ρ ′(1, m) and ρ(1, im) are h-prefix bisimilar, and thus (h − 1)-prefix bisimilar as well by Property 5.3. Since
ρ(1, im) is a proper prefix of ρ(1, i j), by choosing ν = ρ(1, im), (1) follows.

As for (2), assume that ν is a proper prefix of ρ(1, i j). Therefore, there exists n ∈ [1, i j − 1] such that ν = ρ(1, n). We
distinguish two cases:

• n ∈ Ph+1. Since n < i j , there exists m ∈ [1, j − 1] such that n = im . By the inductive hypothesis, ρ(1, n) and ρ ′(1, m) are
h-prefix bisimilar, and thus (h − 1)-prefix bisimilar as well by Property 5.3. Since ρ ′(1, m) is a proper prefix of ρ ′(1, j),
by choosing ν ′ = ρ ′(1, m), (2) follows.

• n /∈ Ph+1. It follows that there exist two consecutive positions i′ and j′ in Ph+1, with i′ < j′ , such that n ∈ [i′ + 1, j′ − 1].
By definition of (h + 1)-prefix sampling, there exist two consecutive positions i′′ and j′′ in the h-prefix sampling of ρ ,
with i′′ < j′′ , such that i′ and j′ are two consecutive positions in the prefix-skeleton sampling of ρ(i′′, j′′).
First, we observe that i′ �= i′′ (otherwise, j′ = i′ + 1, which contradicts the fact that [i′ + 1, j′ − 1] �= ∅, as
n ∈ [i′ + 1, j′ − 1]). Thus, by definition of prefix-skeleton sampling applied to ρ(i′′, j′′), and since n ∈ [i′ + 1, j′ − 1],
there must be � ∈ [i′′ + 1, i′] such that ρ(�) = ρ(n) and � is in the prefix-skeleton sampling of ρ(i′′, j′′). Hence, � ∈ Ph+1
by definition of (h + 1)-prefix sampling. As a consequence, since � < n < i j , there exists m ∈ [1, j − 1] such that � = im .
By applying Lemma 5.9, we deduce that ρ(1, n) and ρ(1, im) are (h − 1)-prefix bisimilar. Moreover, by the inductive
hypothesis, ρ(1, im) and ρ ′(1, m) are (h − 1)-prefix bisimilar. Thus, by choosing ν ′ = ρ ′(1, m), ν ′ is a proper prefix of
ρ ′(1, j) which is (h − 1)-prefix bisimilar to ν = ρ(1, n).

This concludes the proof of Lemma 5.10. �
We are now ready to prove the exponential-size model-trace property.

Theorem 5.11 (Exponential-size model-trace property for AABBE). Let ρ be a trace of a finite Kripke structure K and let h ≥ 0. Then,
there exists a trace ρ ′ induced by ρ , whose length is at most (|W | + 2)h+2 , such that for every AABBE formula ψ with dB(ψ) ≤ h, it
holds that K , ρ |= ψ if and only if K , ρ ′ |= ψ .

Proof. Let Ph+1 be the (h + 1)-prefix sampling of ρ . For all pairs of consecutive ρ-positions i and j in Ph+1, there ex-
ists a trace induced by ρ(i, j), whose length is at most |W | + 2, featuring no repeated occurrences of any internal state.
We now define ρ ′ as the trace of K obtained by an ordered concatenation of all these induced traces by means of the
�-concatenation operator. It is immediate to see that ρ ′ = ρ(i1)ρ(i2) · · ·ρ(ik), for some indexes 1 = i1 < i2 < · · · < ik = |ρ|,
where {i1, . . . , ik} contains the (h + 1)-prefix sampling Ph+1 of ρ . It holds that |ρ ′| ≤ |Ph+1| · (|W | + 2) and since, by
Property 5.8, |Ph+1| ≤ (|W | + 2)h+1, we obtain that |ρ ′| ≤ (|W | + 2)h+2. Moreover, by Lemma 5.10, ρ and ρ ′ are h-prefix
bisimilar. By Proposition 5.5, the thesis follows. �

Theorem 5.11 allows us to easily devise an Expspace MC algorithm for AABBE formulas (and symmetrically for AAEBE
formulas), which can be obtained from Algorithms 1 and 2 by adapting the bounds on the length of considered traces.

In [29], the authors proved—in a much more involved way—the existence of a bound on the length of satisfiability-
preserving traces (called there trace representatives), which is greater than the present one, i.e., O (|W |2h+4).

It is worth observing that the polynomial-size model-trace property for AABB/AAEE of the previous section depends on
the specific formula ϕ we are considering (as input of the MC problem), whereas the exponential-size model-trace property
for AABBE/AAEBE states the existence of a shorter trace ρ ′ equivalent to (a generic) ρ with respect to all formulas up to
a given B/E-nesting depth h. As a matter of fact, the former relies on the witness positions, which are defined on ϕ; the
latter relies on h-prefix/suffix bisimilarity and h-prefix/suffix samplings, which are independent of any formula (they are
only based on h, that is, the maximum B/E-nesting depth of formulas we want to consider). Therefore, we can say that the
latter small-model states a stronger property; however, this may lead to a bound on the length of equivalent traces higher
than necessary: we proved the MC problem for AABBE/AAEBE to be in Expspace, but it is only known to be Pspace-hard
(since E or B are enough for the Pspace-hardness, as shown in [30]). We do not know whether this complexity gap is due
to the small-model proving a loose bound (that might be strengthened by finding another characterization depending on
18

the input formula as well), or to a weak complexity lower-bound (here, exploiting the other modalities A, A and B/E, along
with B and E jointly, may enable us to prove a stronger one)—or to both at the same time.

6. Conclusions

In this paper, we have studied the complexity scenario astride the line dividing tractable and intractable fragments of
Halpern and Shoham’s modal logic of time intervals HS with respect to model checking. On one hand, we have shown
that the simultaneous presence of modalities 〈B〉 and 〈E〉 is sufficient for any HS fragment to be Expspace-hard—therefore
provably intractable—and this lower bound immediately propagates to full HS. On the other hand, we have studied two
well-behaved, Pspace-complete fragments, AABB and AAEE, which are quite promising from the point of view of applica-
tions. In between, MC for AABBE and AAEBE turns out to be in Expspace and Pspace-hard.

Membership to Pspace for the former two fragments and membership to Expspace for the latter have been proved by
means of small-models, which, in turn, rely on suitable (depending on the specific fragment) contraction techniques applied
to the traces of a finite Kripke structure. While the first result is novel, the second slightly reduces the bounds for trace
representatives given for the same problem in [29], and substantially simplifies the constructions and the complexity of the
proofs.

As for future work, we would like to precisely characterize the complexity of MC for AABBE and AAEBE. However, an
even larger complexity gap is the one for full HS: we have shown it to be Expspace-hard, but the only known upper bound
is non-elementary [27].

Finally, we want to relax the homogeneity assumption, which limits the expressiveness of HS and its fragments. One
possible direction has been outlined by Lomuscio and Michaliszyn in [24], where the proposition letters that hold on an
interval have been defined by means of regular expressions over the states of a Kripke structure. We expect that, under
this semantic variant, model checking for full HS will remain decidable and that the complexity of some fragments could
increase as a combined effect of the expressive power of regular expressions and of HS modalities.

Acknowledgements

The work by Alberto Molinari, Angelo Montanari, and Pietro Sala has been supported by the GNCS project Logic and
Automata for Interval Model Checking.

References

[1] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983) 832–843.
[2] A. Armando, R. Carbone, L. Compagna, LTL model checking for security protocols, in: CSF, IEEE Computer Society, 2007, pp. 385–396.
[3] D. Basin, C. Cremers, C. Meadows, Model checking security protocols, http://www-oldurls .inf .ethz .ch /personal /basin /pubs /security-modelchecking .pdf,

2015.
[4] M. Benerecetti, R.D. Guglielmo, U. Gentile, S. Marrone, N. Mazzocca, R. Nardone, A. Peron, L. Velardi, V. Vittorini, Dynamic state machines for modelling

railway control systems, Sci. Comput. Program. 133 (2017) 116–153.
[5] H. Bowman, S.J. Thompson, A decision procedure and complete axiomatization of finite interval temporal logic with projection, J. Logic Comput. 13 (2)

(2003) 195–239.
[6] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, P. Sala, Interval temporal logic model checking based on track bisimilarity and prefix sampling, in:

ICTCS, in: CEUR Workshop Proceedings, vol. 1720, 2016, pp. 49–61, CEUR-WS .org.
[7] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, P. Sala, Interval temporal logic model checking: the border between good and bad HS fragments, in:

IJCAR, in: LNCS, vol. 9706, Springer, 2016, pp. 389–405.
[8] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, P. Sala, Interval vs. point temporal logic model checking: an expressiveness comparison, in: FSTTCS, in:

LIPIcs, Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 2016, pp. 26:1–26:14.
[9] D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, G. Sciavicco, The dark side of interval temporal logic: marking the undecidability border, Ann.

Math. Artif. Intell. 71 (1–3) (2014) 41–83.
[10] D. Bresolin, V. Goranko, A. Montanari, P. Sala, Tableau-based decision procedures for the logics of subinterval structures over dense orderings, J. Logic

Comput. 20 (1) (2010) 133–166.
[11] D. Bresolin, V. Goranko, A. Montanari, G. Sciavicco, Propositional interval neighborhood logics: expressiveness, decidability, and undecidable extensions,

Ann. Pure Appl. Logic 161 (3) (2009) 289–304.
[12] D. Bresolin, A. Montanari, P. Sala, G. Sciavicco, What’s decidable about Halpern and Shoham’s interval logic? The maximal fragment ABBL, in: LICS,

IEEE Computer Society, 2011, pp. 387–396.
[13] A. Cimatti, Industrial Applications of Model Checking, Springer, 2001, pp. 153–168, Ch. 6.
[14] E.A. Emerson, J.Y. Halpern, “Sometimes” and “not never” revisited: on branching versus linear time temporal logic, J. ACM 33 (1) (1986) 151–178.
[15] L. Giordano, P. Terenziani, A. Bottrighi, S. Montani, L. Donzella, Model checking for clinical guidelines: an agent-based approach, in: AMIA, 2006,

pp. 289–293.
[16] F. Giunchiglia, P. Traverso, Planning as model checking, in: ECP, in: LNCS, vol. 1809, Springer, 1999, pp. 1–20.
[17] V. Goranko, A. Montanari, G. Sciavicco, A road map of interval temporal logics and duration calculi, J. Appl. Non-Classical Logics 14 (1–2) (2004) 9–54.
[18] G. Gottlob, NP trees and Carnap’s modal logic, J. ACM 42 (2) (1995) 421–457.
[19] J.Y. Halpern, Y. Shoham, A propositional modal logic of time intervals, J. ACM 38 (4) (1991) 935–962.
[20] D. Harel, Algorithmics: The Spirit of Computing, 2nd edition, Wesley, 1992.
[21] K. Lodaya, Sharpening the undecidability of interval temporal logic, in: ASIAN, in: LNCS, vol. 1961, Springer, 2000, pp. 290–298.
[22] A. Lomuscio, J. Michaliszyn, An epistemic Halpern–Shoham logic, in: IJCAI, in: IJCAI/AAAI, 2013, pp. 1010–1016.
[23] A. Lomuscio, J. Michaliszyn, Decidability of model checking multi-agent systems against a class of EHS specifications, in: Frontiers in Artificial Intelli-

gence and Applications, in: ECAI, vol. 263, IOS Press, 2014, pp. 543–548.
19

http://refhub.elsevier.com/S0304-3975(18)30233-0/bib416C6C3833s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib34323731363632s1
http://www-oldurls.inf.ethz.ch/personal/basin/pubs/security-modelchecking.pdf
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4247474D4D3137s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4247474D4D3137s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A6A6F75726E616C732F6C6F67636F6D2F426F776D616E543033s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A6A6F75726E616C732F6C6F67636F6D2F426F776D616E543033s1
http://CEUR-WS.org
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A636F6E662F636164652F426F7A7A656C6C694D4D50533136s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A636F6E662F636164652F426F7A7A656C6C694D4D50533136s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib626D6D7073313663s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib626D6D7073313663s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A6A6F75726E616C732F616D61692F427265736F6C696E4D474D533134s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A6A6F75726E616C732F616D61692F427265736F6C696E4D474D533134s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib42474D533130s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib42474D533130s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib42474D533039s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib42474D533039s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib424D53533131s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib424D53533131s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib43696D6174746932303031s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib656D6572736F6E31393836736F6D6574696D6573s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib47696F7264616E6F3036s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib47696F7264616E6F3036s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A636F6E662F6563702F4769756E636869676C6961543939s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib726F61646D61705F696E74657276616C73s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib676F74746C6F6231393935s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib48533931s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib686172656C3932s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4C6F643030s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4C4D3133s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4C4D3134s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4C4D3134s1

[24] A. Lomuscio, J. Michaliszyn, Model checking multi-agent systems against epistemic HS specifications with regular expressions, in: KR, AAAI Press, 2016,
pp. 298–308.

[25] A. Lomuscio, F. Raimondi, MCMAS: a model checker for multi-agent systems, in: TACAS, in: LNCS, vol. 3920, Springer, 2006, pp. 450–454.
[26] J. Marcinkowski, J. Michaliszyn, The undecidability of the logic of subintervals, Fund. Inform. 131 (2) (2014) 217–240.
[27] A. Molinari, A. Montanari, A. Murano, G. Perelli, A. Peron, Checking interval properties of computations, Acta Inform. 53 (6) (2016) 587–619.
[28] A. Molinari, A. Montanari, A. Peron, Complexity of ITL model checking: some well-behaved fragments of the interval logic HS, in: TIME, IEEE Computer

Society, 2015, pp. 90–100.
[29] A. Molinari, A. Montanari, A. Peron, A model checking procedure for interval temporal logics based on track representatives, in: CSL, in: LIPIcs, Schloss

Dagstuhl—Leibniz-Zentrum fuer Informatik, 2015, pp. 193–210.
[30] A. Molinari, A. Montanari, A. Peron, P. Sala, Model checking well-behaved fragments of HS: the (almost) final picture, in: KR, AAAI Press, 2016,

pp. 473–483.
[31] A. Montanari, G. Puppis, P. Sala, Maximal decidable fragments of Halpern and Shoham’s modal logic of intervals, in: ICALP, in: LNCS, vol. 6199, Springer,

2010, pp. 345–356.
[32] B. Moszkowski, Reasoning About Digital Circuits, Ph.D. thesis, Dept. of Computer Science, Stanford University, Stanford, CA, 1983.
[33] R. Nardone, U. Gentile, M. Benerecetti, A. Peron, V. Vittorini, S. Marrone, N. Mazzocca, Modeling Railway Control Systems in Promela, Springer, 2016,

pp. 121–136, Ch. 1.
[34] A. Pnueli, The temporal logic of programs, in: FOCS, IEEE Computer Society, 1977, pp. 46–57.
[35] I. Pratt-Hartmann, Temporal prepositions and their logic, Artificial Intelligence 166 (1–2) (2005) 1–36.
[36] P. Roeper, Intervals and tenses, J. Philos. Logic 9 (1980) 451–469.
[37] P. Schnoebelen, Oracle circuits for branching-time model checking, in: ICALP, in: LNCS, vol. 2719, Springer, 2003, pp. 790–801.
[38] Y. Venema, Expressiveness and completeness of an interval tense logic, Notre Dame J. Form. Log. 31 (4) (1990) 529–547.
[39] Y. Venema, A modal logic for chopping intervals, J. Logic Comput. 1 (4) (1991) 453–476.
[40] T. Witkowski, N. Blanc, D. Kroening, G. Weissenbacher, Model checking concurrent Linux device drivers, in: ASE, ACM, 2007, pp. 501–504.
[41] C. Zhou, M.R. Hansen, Duration Calculus: A Formal Approach to Real-Time Systems, Monographs in Theoretical Computer Science. An EATCS Series,

Springer, 2004.
20

http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4C4D3136s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4C4D3136s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A636F6E662F74616361732F4C6F6D757363696F523036s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D4D3134s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D4D4D50503135s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D4D50313542s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D4D50313542s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D4D503135s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D4D503135s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D4D50533136s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D4D50533136s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D50533130s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4D50533130s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib6469676974616C5F63697263756974735F746865736973s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4E6172646F6E6532303136s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib4E6172646F6E6532303136s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib706E75656C693139373774656D706F72616Cs1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A6A6F75726E616C732F61692F50726174742D486172746D616E6E3035s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib526F653830s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib7363686E6F6562656C656E32303033s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib56656E3930s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib63686F7070696E675F696E74657276616C73s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib5769746B6F77736B693A32303037s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A7365726965732F65617463732F4368616F6368656E483034s1
http://refhub.elsevier.com/S0304-3975(18)30233-0/bib44424C503A7365726965732F65617463732F4368616F6368656E483034s1

	Which fragments of the interval temporal logic HS are tractable in model checking?
	1 Introduction
	1.1 Main contributions
	1.2 Related work
	1.3 Outline of the paper

	2 Preliminaries
	2.1 The interval temporal logic HS
	2.2 Kripke structures and abstract interval models
	2.3 The general picture

	3 Expspace-hardness of BE
	4 A polynomial-size model-trace property for AABB and AAEE
	5 An exponential-size model-trace property for AABBE and AAEBE
	6 Conclusions
	Acknowledgements
	References

