
Complexity issues for timeline-based planning over dense
time under future and minimal semantics

Laura Bozzelli a, Angelo Montanari b, Adriano Peron a,∗
a University of Napoli “Federico II”, Napoli, Italy
b University of Udine, Udine, Italy

a b s t r a c t

Keywords:
Timeline-based planning
Dense time
Complexity
Timed automata
Event-clock automata

The problem of timeline-based planning (TP) over dense temporal domains is known to be
undecidable in the general case. We first prove that the restriction to the future semantics
does not suffice to recover decidability. Then, we introduce two semantic variants of TP,
called strong minimal and weak minimal semantics, and show that they allow one to express
meaningful properties. Both semantics are based on the minimality in the time distances
of the existentially-quantified time events from the universally-quantified reference one,
but the weak minimal variant distinguishes minimality in the past from minimality in
the future. Surprisingly, we show that, despite the (apparently) small differences between
the two semantics, the TP problem is still undecidable for the strong minimal one, while
it is PSPACE-complete for the weak minimal one. Membership in PSPACE is determined
by exploiting a strictly more expressive extension (ECA+) of the well-known robust class
of Event-Clock Automata (ECA), that allows us to encode the weak minimal TP problem
and to reduce it to non-emptiness of Timed Automata (TA). Finally, an extension of
ECA+(ECA++) is considered, proving that its non-emptiness problem is undecidable. We
believe that the two extensions of ECA (ECA+ and ECA++), introduced for technical
reasons, are actually valuable per sé in the field of TA.1

1. Introduction

Timeline-based planning. Timelines provide an approach to planning alternative to the classic action-based one [3,4]. In the
action-based approach of classical planning, the task of the planner is to find a sequence of actions that, applied from an
initial state, allow an actor to achieve a given goal. Timeline-based planning (TP), instead, originates from the integration of
planning and scheduling concepts in the context of space operations. Unlike action-based planning, timeline-based one does
not explicitly distinguish among states, actions, and goals. It models the domain as a set of independent, but interacting,
components, whose behavior over time (the timelines) is ruled by a set of temporal constraints, called synchronization
rules. In such a framework, a solution plan is a set of timelines expressing a behavior of the system components that
satisfies all the rules. Compared to classical action-based temporal planning, TP adopts a more declarative paradigm which
focuses on the constraints that sequences of actions have to fulfil to reach a given goal. The declarative flavor allows

* Corresponding author.
E-mail addresses: lr.bozzelli@gmail.com (L. Bozzelli), angelo.montanari@uniud.it (A. Montanari), adrperon@unina.it (A. Peron).

1 This paper is a revised and extended version of the conference papers [1] and [2], where, among the many improvements, all proofs have been fully
detailed.
1

https://doi.org/10.1016/j.tcs.2021.12.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.12.004&domain=pdf
mailto:lr.bozzelli@gmail.com
mailto:angelo.montanari@uniud.it
mailto:adrperon@unina.it
https://doi.org/10.1016/j.tcs.2021.12.004

Table 1
TP problem with standard semantics.

TP problem Future TP problem

Unrestricted Undecidable Undecidable
Simple trigger rules Undecidable Decidable (non-primitive recursive)
Simple trigger rules,

? EXPSPACE-complete
non-singular intervals
Simple trigger rules,

? PSPACE-complete
intervals in Intv(0,∞)

Trigger-less rules NP-complete NP-complete

knowledge engineers to focus on what has or has not to happen, instead of on what the agent has to do to achieve a
goal. Moreover, the modular structure makes it possible to separately model distinct system components. Over the years,
TP has been successfully applied in many complex tasks, ranging from long- to short-term mission planning to on-board
autonomy [5–10].

In TP, the planning domain is modeled as a set of independent, but interacting, components, each one modeled by a
state variable. The temporal behavior of a single state variable (component) is described by a sequence of tokens (timeline),
where each token specifies a value of the variable (state) and the period of time during which it takes that value. The
overall temporal behavior (set of timelines) is constrained by a set of synchronization rules that specify quantitative temporal
requirements between the time events (start-time and end-time) of distinct tokens. Synchronization rules have a very
simple format: either trigger rules, expressing invariants and response properties (for each token in a given state, called
trigger, there exist some other tokens satisfying some mutual temporal relations), or trigger-less ones, expressing goals (there
exist some tokens satisfying some mutual temporal relations). Notice that the way in which requirements are specified by
synchronization rules corresponds to the “freeze” mechanism in the well-known timed temporal logic TPTL [11], which
uses the freeze quantifier to bind a variable to a specific temporal context (a token in the TP setting).

TP has been successfully exploited in a number of application domains, including space missions, constraint solving, and
activity scheduling (see, e.g., [12–17]). A systematic study of expressiveness and complexity of TP has been undertaken only
very recently in both the discrete-time and the dense-time settings [18–22].

In the discrete-time case, the TP problem turns out to be EXPSPACE-complete, and expressive enough to capture action-
based temporal planning (see [21,22]).

In this paper we will consider TP over a dense temporal domain, without having recourse to any form of discretization,
which is quite a common trick. A reason for assuming this different version of time domain is, basically, to increase ex-
pressiveness: in this way one can abstract from unnecessary (or even “forced”) details, often artificially added due to the
necessity of discretizing time, and can suitably represent actions with duration, accomplishments and temporally extended
goals. However, despite the simple format of synchronization rules, the shift to a dense-time domain dramatically increases
expressiveness and complexity, depicting a scenario which resembles that of the well-known timed linear temporal logics
MTL and TPTL, under a point-wise semantics, which are undecidable in the general setting [11,23]. Known results about the
TP problem over dense time are reported in Table 1. The problem in its full generality is undecidable [20], undecidability
being caused by the high expressiveness of trigger rules (if only trigger-less rules are used, it is just NP-complete [24]).
Decidability can be recovered by imposing suitable syntactic/semantic restrictions on the trigger rules. In particular, two
significant restrictions have been considered [18,19]: (i) the first one limits the comparison to tokens whose start times
follow the start time of the trigger (future semantics of trigger rules); (ii) the second one imposes that a non-trigger token
can be referenced at most once in the time constraints of a trigger rule (simple trigger rules). By imposing the above two
restrictions, the TP problem becomes decidable with a non-primitive recursive complexity [19] and can be solved by reduc-
ing it to model checking of Timed Automata (TA) [25] against MTL specifications over finite timed words, the latter being a
known decidable problem [26]. It is worth pointing out that both restrictions effectively contribute to decidability. Indeed,
the TP problem is still undecidable when restricted to simple trigger rules [20] and when the future semantics is assumed,
but rules are not constrained to be simple. The latter result is illustrated in the next section; a preliminary account of it
was given in [1]. As in the case of MTL [27], in the setting of simple trigger rules, better complexity results can be obtained
if, in addition, we restrict the type of intervals used to compare tokens in simple trigger rules [18,19]. In particular, the
problem is EXPSPACE-complete when only intervals with a non-null duration are considered (non-singular intervals) and
PSPACE-complete for intervals which start at time 0 or are unbounded (the set of these intervals is denoted by Intv(0,∞)).

Paper contributions. The first contribution of the paper is the already-mentioned proof of undecidability of the TP problem
under the future semantics. Its most relevant contributions are the introduction and systematic investigation of alternative
semantics for the trigger rules in the dense-time setting, called minimal semantics. In the standard semantics of trigger rules,
if there are many occurrences of non-trigger tokens carrying the same specified value, say v , nothing forces the choice of a
specific occurrence for satisfying the given constraints. As an example, suppose that the trigger token represents a prompt
for which a v-valued token is required in response. If many v-valued tokens occur in the timeline, the chosen one is
not guaranteed to be the first token occurring after issuing the prompt. In a reactive context, one is usually interested in
relating an issued prompt to the first response to it and not to an arbitrarily delayed one. In this paper, we define and study
semantics requiring that the rule constraints are satisfied by the suitably-valued tokens occurring close to the trigger one.
2

A similar idea is exploited by Event-Clock Automata (ECA) [28], a well-known robust subclass of Timed Automata (TA) [25].
In ECA, each symbol a of the alphabet is associated with a recorder, or past clock, recording (at the current time) the time
elapsed since the last occurrence of a, and a predictor, or future clock, measuring the time required for the next occurrence
of a.

In more detail, the minimal semantics of trigger rules is based on the minimality in the time distances of the start
times of existentially quantified tokens from the start time of the trigger token in a trigger rule. In fact, the minimality
constraint can be used to express two alternative semantics: the weak minimal semantics, which distinguishes minimality in
the past, with respect to the trigger token, from minimality in the future, and the strong minimal semantics, which considers
minimality over all the start times (both in the past and in the future). Surprisingly, this apparently small difference in the
definitions of weak and strong minimal semantics leads to a dramatic difference in the complexity-theoretic characterization
of the TP problem: while the TP problem under the strong minimal semantics is still undecidable, the TP problem under the
weak minimal semantics turns out to be PSPACE-complete (which is the complexity of the emptiness problem for TA and
ECA [25,28]). PSPACE membership of the weak minimal TP problem is shown by a non-trivial exponential-time reduction
to non-emptiness of TA. To handle the trigger rules under the weak minimal semantics, we exploit, as an intermediate step
in the reduction, a strictly more expressive extension of ECA, called ECA+ . This novel extension of ECA is obtained by
allowing a larger class of atomic event-clock constraints, namely, diagonal constraints between clocks of the same polarity
(past or future) and sum constraints between clocks of opposite polarity. In [29], these atomic constraints are used in event-
zones to obtain symbolic forward and backward analysis semi-algorithms for ECA, which are not guaranteed to terminate.
We show that, in analogy to ECA, ECA+ are closed under language Boolean operations and can be translated in exponential
time into equivalent TA with an exponential number of control states, but a linear number of clocks. We also investigate an
extension of ECA+ , called ECA++ , where the polarity requirements in the diagonal and sum constraints are relaxed, and
we show that the nonemptiness problem for such a class of automata is undecidable.

To summarize, the proposed weak minimal semantics allows one to solve the TP problem in the dense-time setting
with a reasonable computational complexity, without imposing any syntactic restriction to the format of synchronization
rules. Moreover, it turns out to be still quite expressive and relevant for practical applications. As a by-product, two original
extensions of ECA (ECA+ and ECA++) have been introduced to prove the main complexity results, which are interesting
per se, as they shed new light on the landscape of event-clock and timed automata.

Outline. The paper is organized as follows. In Section 2, we recall the TP framework, we proof the undecidability of the TP
problem under the future semantics and, then, we introduce the strong and weak minimal semantics. In Section 3, we prove
that the TP problem under the strong minimal semantics is still undecidable. Next, in Section 4, we introduce ECA+ and
ECA++and study their expressiveness and complexity. Finally, in Section 5, by exploiting the results for ECA+ , we prove
PSPACE-completeness of the weak minimal TP problem. Conclusions provide an assessment of the work done and outline
future research themes.

2. The timeline-based planning problem

In this section, we first recall the standard TP framework, as described in [9,21,18], and then we introduce the strong
and weak minimal semantics.

2.1. The standard TP problem

In TP, the domain knowledge is encoded by a set of state variables, whose behavior over time is described by transition
functions and constrained by synchronization rules. We will adopt the following notation. Let N be the set of natural
numbers, R+ be the set of non-negative real numbers, and Intv be the set of intervals in R+ whose endpoints are in
N ∪ {∞}. Given a finite word w over some alphabet (or, equivalently, a finite sequence of symbols), |w| denotes the length
of w and for all 0 ≤ i < |w|, w(i) is the (i + 1)-th letter of w .

Definition 1. A state variable x is a triple x = (V x, Tx, Dx), where V x is the finite domain of the variable x, Tx : V x → 2V x is
the value transition function, which maps each v ∈ V x to the (possibly empty) set of successor values, and Dx : V x → Intv is
the constraint function that maps each v ∈ V x to an interval.

Example 1. As an example of state variable, we consider the modeling of the temporal behavior of an autonomous elevator
which operates between two floors. The elevator can stop either at the first floor or the second floor. When the elevator
arrives at a certain floor, its door automatically open. It takes at least 2 seconds from its arrival before the door opens but
the door must definitely open within 5 seconds. Whenever the elevator’s door is open, passengers can enter. The door can
close only 4 seconds after the last passenger entered. After the door closes, the elevator travels up or down to the other
floor. It takes at least 4 seconds for moving from a floor to the other floor.

The requested elevator behavior can be described by the state variable x = (V x, Tx, Dx), where the domain V x consists of
the states open1, open2, close1, close2, enter1, enter2, up, and down. For each i = 1, 2, the values openi and closei describes
the door operations (opening and closure) at floor i, while enteri describes the entering of passengers at floor i. Moreover,
the value up (resp., down) represents the movement of the elevator from the first to the second floor (resp., from the
3

unA
(0,∞)

r_lA[m, M]w_lA[m, M]

iK
(0,∞)

rlK
(0, T out]wlK

(0, T out]

ruK[m, M]wuK[m, M]

Fig. 1. State variables xA and xK .

Fig. 2. A multi-timeline for the state variables xA , xK and xH of Example 2.

second to the first floor). The value transition function Tx is deterministic and is defined as follows: (i) Tx(openi) = {enteri}
and Tx(enteri) = {closei} for each i = 1, 2, (ii) Tx(close1) = {up} and Tx(up) = {open2}, and (iii) Tx(close2) = {down} and
Tx(down) = {open1}.

Finally, the constraint function Dx is defined as: (i) Dx(openi) = [2, 5], Dx(enteri) = (0, ∞), and Dx(closei) = [4, ∞) for
each i = 1, 2, and (ii) Dx(up) = Dx(down) = [4, ∞).

A token for a variable x is a pair (v, d) consisting of a value v ∈ V x and a duration d ∈ R+ such that d ∈ Dx(v). For
a token t = (v, d), value(t) denotes the first component v of t . Intuitively, a token for x represents an interval of time
where the state variable x takes value v . The behavior of the state variable x is specified by means of timelines, which
are non-empty sequences of tokens π = (v0, d0) . . . (vn, dn) consistent with the value transition function Tx , that is, such
that vi+1 ∈ Tx(vi), for all 0 ≤ i < n. We associate with the i-th token (0 ≤ i ≤ n) of the timeline π two punctual events:
(i) the start point, whose timestamp (start time), denoted by s(π, i), is 0 if i = 0, and

∑i−1
h=0dh otherwise (i.e., the sum of

the durations of the tokens preceding the ith one along π), and (ii) the end point whose timestamp (end time), denoted by
e(π, i), is e(π, i) := s(π, i) + di .

Given a finite set S V of state variables, a multi-timeline of S V is a mapping � assigning to each state variable x ∈ S V a
timeline for x.

Example 2. Let us consider a set of transactions, e.g., database transactions, that access a common shared resource A for
read/write operations. The resource A can be unlocked (unA), read_locked (r_lA), or write_locked (w_lA). A state variable
xA = (V A, T A, D A), with V A = {unA, r_lA, w_lA}, is used to describe the availability/locking of the resource A over time. The
value transition function T A is represented as a graph in Fig. 1 (left). Each node is labeled by a value v and by the constraint
D A(v). The constants m and M are the lower and upper bound, respectively, for the duration of read/write locking.

A state variable xK = (V K , T K , D K), with K ranging over transaction names, describes the read/write locking re-
quests issued by transaction K for the use of the resource A. A transaction can be idle (iK), issuing a read or write
lock for accessing the resource (rlK or wlK , respectively), or reading or writing the resource (ruK or wuK , respec-
tively). We have V K = {iK , rlK , wlK , ruK , wuK }. An issued lock request can be accepted, thus allowing the use of the
resource, or reejected. There is a timeout T out for waiting the availability of the resource. The value transition and
constraint functions T K and D K are depicted in Fig. 1 (right). A multi-timeline for the state variables xA (shared re-
source A), xK and xH (for two transactions K and H accessing A) is depicted in Fig. 2. Each rectangle of width d
corresponds to a token of duration d. For instance, the timeline for xA represented in Fig. 2 is the sequence of tokens
(unA, 1.5), (r_lA, 2.5), (unA, 1), (w_lA, 2), (unA, 1.5), (w_lA, 2), (unA, 2), (r_lA, 1.5).

Synchronization rules. Let S V be a finite set of state variables. Multi-timelines of S V can be constrained by a set of
synchronization rules, which relate tokens, possibly belonging to different timelines, through temporal constraints on the
start/end-times of tokens (point constraints) and on the difference between start/end-times of tokens (difference con-
straints). The synchronization rules exploit an alphabet � of token names to refer to the tokens along a multi-timeline,
and are based on the notions of atom and existential statement.

An atom is either a clause of the form ev(o) ∈ I (point atom), or of the form ev(o) − ev′(o′) ∈ I (difference atom), where
o, o′ ∈ �, I ∈ Intv, and ev, ev′ ∈ {s, e}. Intuitively, an atom ev(o) ∈ I asserts that the ev-time (i.e., the start-time if ev = s, and
4

the end-time otherwise) of the token referenced by o is in the interval I , while an atom ev(o) − ev′(o′) ∈ I requires that
the difference between the ev-time and the ev′-time of the tokens referenced by o and o′ , respectively, is in I . Formally, an
atom is evaluated with respect to a �-assignment λ� for a given multi-timeline � of S V which is a mapping assigning to each
token name o ∈ � a pair λ�(o) = (π, i) such that π is a timeline of � and 0 ≤ i < |π | is a position along π (intuitively,
(π, i) represents the token of � referenced by the name o). An atom ev(o) ∈ I (resp., ev(o) − ev′(o′) ∈ I) is satisfied by λ� if
ev(λ�(o)) ∈ I (resp., ev(λ�(o)) − ev′(λ�(o′)) ∈ I).

An existential statement E (for S V) is a statement of the form

E := ∃o1[x1 = v1] · · · ∃on[xn = vn].C
where C is a conjunction of atoms, oi ∈ �, xi ∈ S V , and vi ∈ V xi for each i = 1, . . . , n. The elements oi[xi = vi] are called
quantifiers. A token name used in C , but not occurring in any quantifier, is said to be free. Intuitively, the quantifier oi [xi = vi]
binds the name oi to some token in the timeline for variable xi having value vi . A �-assignment λ� for a multi-timeline
� of S V satisfies E if each atom in C is satisfied by λ� , and for each quantified token name oi , λ�(oi) = (π, h) where
π = �(xi) and the h-th token of π has value vi . A multi-timeline � of S V satisfies E if there exists a �-assignment λ� for
� which satisfies E .

Definition 2. A synchronization rule R for the set S V of state variables has one of the forms

(trigger rule) o0[x0 = v0] → E1 ∨ E2 ∨ . . . ∨ Ek, (trigger-less rule) � → E1 ∨ E2 ∨ . . . ∨ Ek,

where o0 ∈ �, x0 ∈ S V , v0 ∈ V x0 , and E1, . . . , Ek are existential statements. In trigger rules, the quantifier o0[x0 = v0] is called
trigger, and it is required that only o0 may appear free in Ei (for i = 1, . . . , k). For trigger-less rules, it is required that no
token name appears free.

Intuitively, a trigger o0[x0 = v0] acts as a universal quantifier, which states that for all the tokens of the timeline for the
state variable x0 with value v0, at least one of the existential statements Ei must be true. Trigger-less rules simply assert the
satisfaction of some existential statement. Formally, the standard semantics of the synchronization rules is defined as follows.
A multi-timeline � of S V satisfies a trigger-less rule R of S V if � satisfies some existential statement of R. � satisfies a
trigger rule R of S V with trigger o0[x0 = v0] if for every position i of the timeline �(x0) for x0 such that �(x0)(i) = (v0, d),
there is an existential statement E of R and a �-assignment λ� for � such that λ�(o0) = (�(x0), i) and λ� satisfies E .

Trigger-less are usually exploited to express initial conditions or the goals of the problem, while trigger rules are useful
to specify invariants and response requirements.

Example 3. With reference to Example 2, we introduce a set of synchronization rules to guarantee that the shared re-
source A is accessed in mutual exclusion during writing by transactions K and H . We preliminarily define some shorthand
(conjunctions of atoms) to express interval relations between tokens associated with token names o and o:

• during(o, o) := s(o) − s(o) ∈ [0, ∞) ∧ e(o) − e(o) ∈ [0, ∞) requires that the token referenced by o occurs during the
token referenced by o;

• overlap(o, o) := e(o) − s(o) ∈ (0, ∞) ∧ ∧
ev∈{s,e} ev(o) − ev(o) ∈ (0, ∞) states that token o does not start before token o

and crosses the end point of token o.

The pair of trigger-less rules below state the initial conditions: the resource A is initially unlocked and transactions K
and H are idle. The first trigger rule ensures that when transaction K reads resource A, the resource is locked for reading
(the same can be required for H). The second trigger rule requires that when transaction K writes A (wuK), there is a write
locking token (w_lA) of A with the same temporal window as token wuK .

• � → ∃o[xA = unA]. s(o) ∈ [0, 0] and � → ∃o[xK = iK]. s(o) ∈ [0, 0];
• o0[xK = ruK] → ∃o[xA = r_lA].during(o, o0);
• o0[xK = wuK] → ∃o[xA = w_lA].during(o, o0) ∧ during(o0, o).

The two trigger rules above ensure also the mutual exclusion among reads and writes of the resource A by the same
transaction K . The next rule is added to guarantee mutual exclusion when both transactions K and H write A, that is, it
ensures that K and H do not feature tokens of value wuK and wuH , respectively, with the same temporal window.

o0[xK = wuK] →
∨

s∈{iH ,wlH ,rlH }

(∃o[xH = s].during(o,o0) ∨ ∃o[xH = s].during(o0,o)∨

∃o[xH = s].overlap(o0,o) ∨ ∃o[xH = s].overlap(o,o0)
)
.

Notice that the multi-timeline of Fig. 2 satisfies all the above rules.

Domains and plans. A TP domain D = (S V , R) is specified by a finite set S V of state variables and a finite set R of
synchronization rules modeling their admissible behaviors. A plan of D is a multi-timeline of S V satisfying all the rules in
R . The TP problem consists of checking, given a domain D, whether there is a plan of D.
5

We also consider the discrete-time versions of the previous problems, where the durations of the tokens in a plan are
restricted to be natural numbers.

2.2. The TP problem with future semantics

As already mentioned, the TP problem is undecidable in the general setting. The first negative result presented in the
paper is that the problem remain undecidable under a stronger notion of satisfaction of trigger rules, called satisfaction
under the future semantics. The future semantics requires that all the non-trigger selected tokens do not start strictly before
the start-time of the trigger token.

Definition 3. A multi-timeline � of S V satisfies a trigger rule R = o0[x0 = v0] → E1 ∨E2 ∨ . . .∨Ek under the future semantics
if � satisfies the trigger rule obtained from R by replacing each existential statement Ei = ∃o1[x1 = v1] · · · ∃on[xn = vn].C
with ∃o1[x1 = v1] · · · ∃on[xn = vn].C ∧ ∧n

i=1 s(oi) − s(oo) ∈ [0, +∞). A future plan of D is a multi-timeline of S V satisfying
all the rules in R under the future semantics. The future TP problem consists of checking, given a domain D, whether there
is a future plan of D.

Notice that the multi-timeline of Fig. 2 is a future plan for the domain described in Example 2. The following result
negatively answers a question left open in [18].

Theorem 1. Future TP problem with one state variable is undecidable even if the intervals are in Intv(0,∞) .2

Theorem 1 is proved by a polynomial-time reduction from the halting problem for Minsky 2-counter machines [30]. For the
sake of completeness, we recall the definition of halting problem for Minsky 2-counter machines (the notion will be useful
in the proof of Theorem 2 as well).

A nondeterministic Minsky 2-counter machine is a tuple M = (Q , qinit, qhalt, �), where Q is a finite set of (control)
locations, qinit ∈ Q is the initial location, qhalt ∈ Q is the halting location, and � ⊆ Q × L × Q is a transition relation over
the instruction set L = {inc, dec, zero_test} × {1, 2}. For a transition δ = (q, op, q′) ∈ �, we define from(δ) := q, op(δ) := op,
and to(δ) := q′ . Without loss of generality, we assume that:

• for each transition δ ∈ �, from(δ) �= qhalt and to(δ) �= qinit , and
• there is exactly one transition δ ∈ �, denoted δinit , such that from(δ) = qinit .

An M-configuration is a pair (q, ν) consisting of a location q ∈ Q and a counter valuation ν : {1, 2} → N . A compu-
tation of M is a non-empty finite sequence (q1, ν1), . . . , (qk, νk) of configurations such that for all 1 ≤ i < k, there is some
instruction opi = (tagi, ci) ∈ L so that (qi, opi, qi+1) ∈ � and: (i) νi+1(c) = νi(c) if c �= ci ; (ii) νi+1(ci) = νi(ci) + 1 if tagi = inc;
(iii) νi+1(ci) = νi(ci) − 1 and νi(ci) > 0 if tagi = dec; and (iv) νi+1(ci) = νi(ci) = 0 if tagi = zero_test. The halting problem
consist of deciding whether, for a machine M , there is a computation starting at the initial configuration (qinit, νinit), where
νinit(1) = νinit(2) = 0, and leading to some halting configuration (qhalt, ν) (it was proved to be undecidable in [30]).

Proposition 1. Given a Minsky 2-counter M, one can construct (in polynomial time) a TP instance (domain) P = ({xM}, R M), where
the intervals in P are in Intv(0,∞) such that M halts if and only if there exists a future plan for P .

The proof of above proposition is given in [1], and it is reported in Appendix A for the sake of self containment.

2.3. The TP problem with minimal semantics

In this subsection, we define the variant of the semantics for trigger rules newly proposed and investigated in this
paper. In the standard semantics of trigger rules, if there are many occurrences of non-trigger tokens carrying the same
specified value, nothing forces the choice of a specific occurrence for satisfying the required constraints. With reference
to Example 2, consider the trigger rule o0[xK = rlK] → ∃o[xK = ru_K].s(o) − e(o0) ∈ [0, ∞) requiring that each read lock
request of transaction K is ultimately satisfied. The timeline πK for xK depicted in Fig. 2 fulfils the trigger rule both
with the �-assignment λ�(o0) = (πK , 2), λ�(o) = (πK , 3) and the assignment λ′

�(o0) = (πK , 2), λ′
�(o) = (πK , 11), namely

the witness of the satisfaction of first read lock request is either the first read lock or the last read lock. Actually, the
more natural choice would be the following �-assignments providing the closest ruK token to the rlK trigger occurrence:
λ�(o0) = (πK , 2) and λ�(o) = (πK , 3); λ�(o0) = (πK , 8) and λ�(o) = (πK , 11); λ�(o0) = (πK , 10) and λ�(o) = (πK , 11).

Following this idea, the minimal semantics is obtained from the standard semantics by additionally requiring that the
given �-assignment λ� selects for each (existential) quantifier o[x = v] a token for variable x with value v whose start
point has a minimal time distance from the start point of the trigger.

2 Intv(0,∞) denotes the set of intervals I ∈ Intv such that either I is unbounded or I is left-closed with left endpoint 0.
6

Actually, the constraint of minimality can be used to express two alternative semantics: the weak minimal semantics
which distinguishes minimality in the past (w.r.t. the trigger token) from the minimality in the future, and the strong
minimal semantics which considers minimality over all the start times (both in the past and in the future) of the tokens for
a variable x and x-value v .

Definition 4 (Weak and strong minimal semantics of trigger rules). Let o0 ∈ �. A �-assignment λ� for a multi-timeline � of S V
is weakly minimal w.r.t. o0 if for each o ∈ � with λ�(o) = (π, i), the following holds:

• minimality in the past: if s(π, i) ≤ s(λ�(o0)), then there is no position 	 along the timeline π such that value(π(i)) =
value(π()) and s(π, i) < s(π,) ≤ s(λ�(o0));

• minimality in the future: if s(π, i) ≥ s(λ�(o0)), then there is no position 	 along the timeline π such that value(π(i)) =
value(π()) and s(π, i) > s(π,) ≥ s(λ�(o0)).

A �-assignment λ� for � is strongly minimal w.r.t. o0 if for each o ∈ � with λ�(o) = (π, i), there is no position 	 along the
timeline π such that value(π(i)) = value(π()) and |s(π,) − s(λ�(o0))| < |s(π, i) − s(λ�(o0))|.

The weak minimal (resp., strong minimal) semantics of the trigger rules is obtained from the standard one by imposing
that the considered �-assignment λ� is weakly minimal (resp., strongly minimal) w.r.t. the trigger token o0.

Note that we consider start points of tokens for expressing minimality. Equivalent semantics can be obtained by con-
sidering end points of tokens instead. A weak (resp., strong) minimal plan of D is a multi-timeline of S V satisfying all the
rules in R under the weak (resp., strong) minimal semantics of trigger rules. The weak (resp. strong) minimal TP problem is
checking given a domain D, whether there is a weak (resp. strong) minimal plan of D. Obviously, any weak minimal or
strong minimal plan is also a plan and any strong minimal plan is also a weak minimal plan. Hence, the strong minimal
semantics is a refinement of the weak minimal one, which is in turn a refinement of the standard semantics.

Example 4. With reference to Example 3, one can easily check that any plan for the particular domain is a weak minimal
plan. For instance, consider the synchronization rule R = o0[xK = ruK] → ∃o[xA = r_lA].during(o, o0) and an assignment
satisfying R in the standard semantics binding o and o0 to tokens πA(i) and πxK (j), respectively, for some 1 ≤ i ≤ |πA |
and 1 ≤ j ≤ |πxK |. Since token πA(i) covers token πxK (j), there cannot be another token πA(l), with 1 ≤ l < i, such
that s(πA(i)) < s(πA(l)) ≤ s(πxK (j)), implying that the same assignment satisfies R also in the weak minimal seman-
tics. Similar arguments can be used for all the other rules. Conversely, a plan is not necessarily a strongly minimal one.
As an example, consider the timeline πxA = (unA, 1), (r_lA, 7), (unA, 1), (r_lA, 7) for the state variable xA and the timeline
πxK = (ik, 1), (rlK , 5), (ulk, 2). The given multi-timeline satisfies the synchronization rule R both in the standard and in the
weak minimal semantics binding the symbol o to πxA (2). In the strong minimal semantics, the synchronization rule is not
satisfied since the symbol o can only be bound to πxA (4) (|s(πxA (4)) − s(πxK (3))| < |s(πxA (2)) − s(πxK (3))|).

The idea underlying the introduction of the weak and strong minimal semantics of the trigger rules is inspired by
research in formal verification and synthesis where in the last two decades many papers have focused on quantitative
aspects, in particular boundedness requirements. We observe that the trigger rules represent a first-order formalism for
expressing quantitative temporal liveness requirements such as the (future) non-punctual bounded-time request-response
condition: “every request p is followed by a response q within k time units”. It is well-known that quantitative verification
problems which take into account unrestricted quantitative liveness properties are undecidable in the dense-time setting.
For example, for the class of Timed Automata (TA) [25], the verification problem (model checking) against the fragment
of MTL [27] with past expressing punctual bounded-time response properties is in general undecidable, and with a non-
primitive recursive complexity if the past modalities are disallowed [26]. Therefore, in the literature, some subclasses of
TA and fragments of timed temporal logics have been introduced to recover decidability and tractability, which are still
interesting in practice since they can express non-punctual bounded-time response properties. In particular, the idea behind
the minimal semantics of trigger rules is exploited in the class of Event-Clock Automata (ECA) [28], a well-known robust
subclass of TA, and in the fragment of MTL represented by Event-Clock Temporal Logic (EC_TL) [31]. These frameworks
allow to specify bounds on the time distance between the “trigger” event (the event occurring at the current time) and a
“response” event in the future (resp., in the past), where the latter is uniquely determined by requiring that its distance
from the trigger is minimal among all events in the future (resp., in the past) associated with a given observable atomic
proposition. Note that differently from the format of trigger rules which is based on existential and universal quantification,
ECA and EC_TL have explicit mechanisms to refer to the past and to the future. In particular, ECA distinguish between
past clock and future clocks, while the logic EC_TL has past and future temporal modalities. In the setting of trigger rules,
the most natural notion of minimality in the choice of the existential tokens leads to the strong minimal semantics. On
the other hand, the weak minimal semantics seems more interesting from a practical point of view since allows to keep
separated the choices made in the past from those made in the future (w.r.t. the starting time of the trigger token). As we
will see in the next sections, the weak minimal semantics is also drastically preferable from a complexity-theoretic point
of view. As clearly illustrated in the following example, there is a subtlety in the strong minimal semantics which is the
7

Fig. 3. Multi-timelines for Example 5.

basis of an high expressive power. While in the weak minimal semantics, the “minimal” token is uniquely determined, in
the strong semantics there may be two minimal tokens: one in the past and one in the future. In this way, it is possible
to enforce that two adjacent temporal intervals have the same duration, which is a key ingredient for encoding counting
operations also in the discrete-time setting.

We provide the following example to stress the difference between the weak minimal and strong minimal semantics
enlightening the expressive power of the strong minimal one.

Example 5. Let us consider two state variables: x1 = ({A, B}, T1, D1), with T1(A) = {B}, T1(B) = {A}, and D1(A) = D1(B) =
(0, ∞); x2 = ({C}, T2, D2), with T2(C) = {C} and D2(C) = (0, ∞). Before defining the synchronization rules, we introduce
some shorthand (conjunctions of atoms) to express interval relations between tokens associated with token names o and o:

• start_with(o, o) := s(o) − s(o) ∈ [0, 0] ∧ e(o) − e(o) ∈ (0, ∞) requires that the token referenced by o is an initial subin-
terval of the token referenced by o;

• symmetrically, end_by(o, o) := e(o) − e(o) ∈ [0, 0] ∧ s(o) − s(o) ∈ (0, ∞) requires that the token referenced by o is a
final subinterval of the token referenced by o.

We require that: (i) timelines for x1 start with A-valued tokens; (ii) each A-valued (resp, B-valued) token is an initial
subinterval (resp, final subinterval) of a C-valued token; (iii) each B-valued token is preceded and followed by a C-valued
token.

• � → ∃o[x1 = A]. s(o) ∈ [0, 0];
• o0[x1 = A] → ∃o[x2 = C].start_with(o0, o);
• o0[x1 = B] → ∃o[x2 = C].end_by(o0, o);
• o0[x1 = B] → ∃o[x2 = C].s(o0) − s(o) ∈ (0, ∞);
• o0[x1 = B] → ∃o[x2 = C].s(o) − s(o0) ∈ (0, ∞).

Fig. 3 shows two examples of multi-timelines for the considered domain. Both of them are plans in the weak minimal
semantics, whereas only the second multi-timeline is a plan for the strong minimal one. As a matter of fact, a plan in the
strong minimal semantics satisfies the quite expressive property that every pair of tokens (A, dA), (B, dB) of the timeline
for x1 included in the same token (C, dC) of the timeline for x2 must fulfill dA = dB and then dC = 2dA = 2dB . This implies
that the strong minimal semantics allows one to enforce very expressive constraints on the duration of tokens (they will be
exploited in the following to prove the undecidability of the TP problem under the strong minimal semantics).

Assumption 1 (Strict time monotonicity). In the following, for simplifying the technical presentation of some results, without
loss of generality, we assume that given a state variable x = (V x, Tx, Dx), the duration of a token for x is never zero, i.e., for
each v ∈ V x , 0 /∈ Dx(v).

3. Undecidability of the strong minimal TP problem

In this section, we prove the undecidability of the strong minimal TP problem by a polynomial-time reduction from
the halting problem for Minsky 2-counter machines [30]. The key feature in the reduction is the ability of expressing for a
given value v , a temporal equidistance requirement w.r.t. the start point of the trigger token for the start points of the last
token before the trigger with value v and the first token after the trigger with value v (the same feature exemplified in
Example 5). It is meaningful to observe that the reduction does not exploit the power of dense-time domain. Thus, the
undecidability of the strong minimal TP can be stated also in a discrete time domain. Such a result is surprising since the
TP problem in the standard semantics with discrete time domain is decidable.
8

Theorem 2. The strong minimal TP problem is undecidable even in the discrete-time setting.

Proof. The proof is by a polynomial-time reduction from the halting problem for Minsky 2-counter machines [30]. For a Minsky
2-counter machines M = (Q , qinit, qhalt, �) we construct a TP instance DM = (S V M , R M) such that M halts if and only if there
exists a strong minimal discrete-time plan for DM .

We exploit a state variable xM ∈ S V M for encoding the evolution of the machine M and additional state variables for
checking that the values of counters in the timeline for xM are correctly updated. The domain V M of the state variable xM is
V M := V�×{1L, 1R , 2L, 2R , [L,]L, [R ,]R} where V� is the set of pairs (δ′⊥, δ), where δ′⊥ ∈ � ∪{⊥}, δ ∈ �, and to(δ′⊥) = from(δ)

if δ′⊥ �= ⊥, and δ = δinit otherwise. Intuitively, in the pair (δ′⊥, δ), δ is the transition currently taken by M from the current
non-halting configuration C , while δ′⊥ is ⊥ if C is the initial configuration, and δ′ is the transition taken by M in the
previous computational step, otherwise.

A configuration C = (q, ν) of M is encoded by the timelines πC (configuration codes) of length 9 for the state variable xM

depicted in the figure above, where v ∈ V� (called V�-value of πC) is of the form (δ′⊥, δ) such that from(δ) = q. Note that
the configuration code πC consists of two parts.

(v,1L) (v, [L)

ν(1) + 1

(v,2L)

1

(v,]L)

ν(2) + 1

(v, [R)

1

(v,2R)

1

(v,]R)

ν(2) + 1

(v,1R)

1

(vnew,1L)

ν(1) + 1

Left Part Right Part

In the left part (resp., right part), the encoding of counter 1 (resp., 2) precedes the encoding of counter 2 (resp., 1). The value
ν(1) of counter 1 is encoded by the duration, which is ν(1) +1, of the counter token with value marked by 1L in the left part,
and the counter token with value marked by 1R in the right part, and similarly for counter 2. The four tokens with values
marked by [L ,]L , [R , and]R , respectively, are called tagged tokens and their duration is always 1: they are used to check
by trigger rules (under the strong minimal semantics) that increment and decrement M-instructions are correctly encoded.
Moreover, we require that the configuration code πC satisfies the following additional requirement (V�-requirement), with
v = (δ′⊥, δ) and δ = (q, op, q′):

• vnew = v if to(δ) = qhalt , and vnew is of the form (δ, δ′′) otherwise (consecution);
• if δ = δinit then the counter tokens have duration 1;
• if op = (dec, c) (resp., op = (zero_test, c)), then the durations of the counter tokens with values (v, cL) and (v, cR) are

greater than 1 (resp., are equal to 1).

A pseudo-configuration code is defined as a configuration code but allowing that the counter tokens (i.e., the tokens with
values in V� × {1L, 1R , 2L, 2R}) have arbitrary duration provided that the restriction that the V�-requirement is fulfilled.
In particular, in a pseudo-configuration code, the requirement that for each counter c ∈ {1, 2}, the duration of the counter
token marked by cL coincides with the duration of the counter token marked by cR is relaxed.

A pseudo-computation code πM is a sequence of the form πM = π0 · · ·πn such that

(i) πi · πi+1(0) and πn are pseudo-configuration codes for all 0 ≤ i < n;
(ii) if n > 0 (resp., n = 0), the V�-value of π0 · π1(0) (resp., π0) is (⊥, δinit) (initialization);

(iii) the V�-value of πn is of the form (δ′⊥, δ) such that to(δ) = qhalt (halting).

By construction, we can easily define the transition function T M and the constraint function of xM in such a way that
(i) the timelines for xM whose first token has value vinit = ((⊥, δinit), 1L) correspond to the prefixes of pseudo-computation
codes, and (ii) vinit /∈ T M(v) for all v ∈ V M . Hence, for capturing the timelines of xM representing all and only the pseudo-
computation codes it suffices to exploit a trigger-less rule Rinit,halt requiring that a timeline of xM visits a token with value
((⊥, δinit), 1L) (initialization) and a token with value (δ′⊥, δ) such that to(δ) = qhalt (halting).

We now consider the crucial part of the reduction which has to guarantee that along a pseudo-computation code (i.e.,
a timeline of variable xM satisfying the trigger-less rule Rinit,halt) the counters are correctly encoded (i.e., the durations of
the left and right tokens for each counter in a pseudo-configuration code coincide) and are updated accordingly to the M-
instructions. For each instruction op ∈ {inc, dec, zero_test} × {1, 2} of the machine M , let V op be the subset of V� consisting
of the pairs (δ′⊥, δ) such that δ′⊥ �= ⊥ and op(δ′⊥) = op. We exploit an additional state variable x= and, for each instruction op
of M , the additional state variable xop . Each of such variables x has domain V check := {check1, check2, trigger, ⊥} and captures
the timelines πx such that the duration of each token is at least 1 and the untimed projection (first component of each
token) of πx is an arbitrary non-empty word over V check. Variable x= is used in conjunction with trigger rules for enforcing
that along a pseudo-computation code πM the durations of the left and right tokens for counter 1 (resp., 2) coincide (left-
right requirement), while for each instruction op, variable xop is used in conjunction with trigger rules for ensuring that
the durations of the counter tokens in the non-initial pseudo-configuration codes πC of πM whose V� values are in V op
9

are updated consistently with the instruction op (op-requirement). For this, we first require that the timelines associated to
distinct state variables are synchronized, i.e., they have the same length and for each position i, the start-times of the ith
tokens of the different timelines coincide. Since the duration of a token is not zero, the synchronization requirement can be
easily expressed by simple trigger rules (under the strong minimal semantics). Then, for all variables x ∈ {x=} ∪ ⋃

op{xop},
values vcheck ∈ V check , and values v ∈ V M , we have the two trigger rules

o[x = vcheck] →
∨

u∈V M

∃o′[xM = u]. s(o′) − s(o) ∈ [0,0]

o[xM = v] →
∨

u∈V check

∃o′[x = u]. s(o′) − s(o) ∈ [0,0]

Next, we define trigger rules capturing under the strong minimal semantics, the left-right requirement and the op-
requirement for each M-instruction op.

Trigger rules for the left-right requirement. The encoding ensures that the left-right requirement is fulfilled along a pseudo-
computation code πM if and only if for each token tk[R marked by [R , the following holds: for the last token marked by 1L

(resp., 2L) preceding token tk[R and the first token marked by 1L (resp.,]R) following token tk[R , their start points have the
same time distance from the start point of tk[R (see the figure in the following). For this, we first require by trigger rules
that for the timeline π= for x= (synchronized with πM), a token has value trigger (resp., has value check1, resp., has value
check2) iff the associated token along πM has a value in V� × {[R} (resp., in V� × {1L}, resp., in V� × {2L,]R}). The trigger
rules ensuring the previous requirement are similar to the ones exploited for the synchronization requirement. Finally, we
require that for each trigger-token tktrigger along the timeline π= for x= , and for each 	 = 1, 2, the start points of the last
check	-token of π= preceding token tktrigger and the first check	-token following token tktrigger have the same time distance
from the start point of tktrigger (check requirement for variable x=). By the strong minimal semantics, the check requirement
for variable x= can be expressed by the following two trigger rules which ensure that for the check	-tokens (= 1, 2) of the
timeline for x= whose start points have the smallest time distance from the start point of the trigger, there is one preceding
the trigger and one following the trigger (recall that under the strong minimal semantics, each non-trigger selected token
needs to have the smallest time distance from the trigger token over the tokens belonging to the same variable and having
the same value):

o[x= = trigger] → ∃o1[x= = check1]∃o2[x= = check2].
∧

	=1,2

s(o) − s(o) ∈ [0,∞)

o[x= = trigger] → ∃o1[x= = check1]∃o2[x= = check2].
∧

	=1,2

s(o) − s(o) ∈ [0,∞)

(v,1L) (v, [L)

ν(1) + 1

(v,2L)

1

(v,]L)

ν(2) + 1

(v, [R)

1

(v,2R)

1

(v,]R)

ν(2) + 1

(v,1R)

1

(vnew,1L)

ν(1) + 1

(check1) check2 T rigger check2 check1

πM

π=

Trigger rules for increment, zero-test, and decrement instructions.
Let op ∈ {inc, zero_test, dec} × {1, 2} and c be the counter associated with op. Given a pseudo-computation code πM and

a non-initial pseudo-configuration code πC of πM with V�-value in V op , let tk1 and tk2 be the tokens for counter 1 and 2,
respectively, in the left part of πC , and tk′

1 and tk′
2 be the tokens for counter 1 and 2, respectively, in the right part of the

pseudo-configuration code πC p preceding πC along πM (see the following figure). We need to ensure that the durations of
tokens tk3−c and tk′

3−c coincide, and

• case op = (inc, c): the duration of tkc is the duration of tk′
c plus one;

• case op = (dec, c): the duration of tkc is the duration of tk′
c minus one;

• case op = (zero_test, c): the durations of tokens tkc and tk′
c coincide.

Here, we focus on the case where op = (dec, c) for some c ∈ {1, 2} (the cases of zero-test and increment instructions
being similar). In particular, in the figure we report the timeline for op = (dec, 1). Our encoding ensures that the previous
requirement is fulfilled iff for each token tk1L of πM with value in V op × {1L}, the following holds, where tagc = 1R if c = 1,
and tagc =]R otherwise: for the last token marked by 2R (resp., tagc) preceding token tk1L and the first token marked by
[R (resp., 2L) following token tk1L , their start points have the same time distance from the start point of tk1L . The previous
requirement can be enforced as done for the case of the left-right requirement.
10

(v,1L) (v, [L)

ν(1) + 1

(v,2L)

1

(v,]L)

ν(2) + 1

(v, [R)

1

(v ′, [R) (v ′,2R)

1

(v,]R)

ν ′(2) + 1

(v ′,1R)

1 ν ′(1) + 1

Left Part of πCRight Part of πC p

check1 check2 T rigger check2 check1

πM

π(inc,1)

�
4. Some novel extensions of Event-Clock Automata (ECA)

As we shall prove in Section 5, the TP problem under the weak minimal semantics is PSPACE-complete. Such a complexity
result is proved by a non-trivial exponential-time reduction to the non-emptiness of TA. To handle the trigger rules under
the weak minimal semantics, we shall exploit, as an intermediate step in the reduction, a strictly more expressive extension
of ECA (Event Clock Automata) [28], called ECA+ , which is introduced and studied in this paper. This novel extension of
ECA is obtained by allowing a larger class of atomic event-clock constraints, namely, diagonal constraints between clocks
of the same polarity (past or future) and sum constraints between clocks of opposite polarity. We show that, similarly to
ECA, ECA+ are closed under language Boolean operations and can be translated in exponential time into equivalent TA
with an exponential number of control states, but a linear number of clocks. This result will be exploited in Section 5 for
handling the trigger rules of the given TP domain under the weak minimal semantics in order to obtain an exponential-time
reduction of the weak minimal TP problem to nonemptiness of TA. We believe that such an extension, which is motivated
by technical reasons, is interesting per se.

In order to understand in depth this new class of automata, we show that if we relax the requirements in the diagonal
and sum constraints, the resulting class of automata, called ECA++ , turns out to be very expressive, and its nonemptiness
problem becomes undecidable.

The rest of the section is organized as follows. In Subsection 4.1, we briefly recall the class of Timed Automata [25]. Next,
in Subsection 4.2, we introduce and address expressiveness issues and closure properties for ECA+ and ECA++ . Then, in
Subsection 4.3, we define a mapping of ECA+ into equivalent TA. Finally, in Subsection 4.4, we show undecidability of the
nonemptiness problem for ECA++ .

4.1. Timed Automata

In this section, we recall the class of Timed Automata (TA) [25] over (finite) timed words.
Let � be a finite alphabet. A timed word w over � is a finite word w = (a0, τ0) · · · (an, τn) over � ×R+ (intuitively, for

each i, τi is the time at which ai occurs) such that τi ≤ τi+1 for all 0 ≤ i < n (monotonicity). The timed word w is also
denoted by (σ , τ), where σ is the finite untimed word a0 · · ·an and τ is the sequence of timestamps τ0 · · ·τn . A timed
language over � is a set of timed words over �.

Definition 5 (Timed Automata). A TA over � is a tuple A = (�, Q , Q 0, C, �, F), where Q is a finite set of (control) states,
Q 0 ⊆ Q is the set of initial states, C is a finite set of clocks, F ⊆ Q is the set of accepting states, and � is the finite set of
transitions (q, a, θ, Res, q′) such that q, q′ ∈ Q , a ∈ �, Res ⊆ C is a clock reset set, and θ is a clock constraint over C , that is a
conjunction of atomic formulas of the form c ∼ n (simple constraints) with c ∈ C , ∼∈ {<, ≤, ≥, >}, and n ∈N .

We denote by KA the maximal constant used in the clock constraints of A.

Intuitively, in a TA A, while transitions are instantaneous, time can elapse in a control state. The clocks progress at
the same speed and can be reset independently of each other when a transition is executed, in such a way that each
clock keeps track of the time elapsed since the last reset. Moreover, clock constraints are used as guards of transitions to
restrict the behavior of the automaton. Formally, a configuration of A is a pair (q, val), where q ∈ Q and val : C →R+ is a
clock valuation for C assigning to each clock a non-negative real number. For t ∈R+ and a reset set Res ⊆ C , the valuations
(val+t) and val[Res] are defined as: for all c ∈ C , (val+t)(c) = val(c) +t , and val[Res](c) = 0 if c ∈ Res and val[Res](c) = val(c)
otherwise. For a clock constraint θ , val satisfies θ , written val |= θ , if for each conjunct c ∼ n of θ , val(c) ∼ n.

A run r of A on a timed word w =(a0, τ0) · · · (an, τn) over � is a sequence of configurations r = (q0, val0) · · · (qn+1, valn+1)

starting at an initial configuration (q0, val0), with q0 ∈ Q 0 and val0(c) =0 for all c∈C , and such that for all 0 ≤ i ≤ n (we
let τ−1 = 0): (qi, ai, θ, Res, qi+1) ∈ � for some constraint θ and reset set Res, (vali + τi − τi−1) |= θ and vali+1 = (vali + τi −
τi−1)[Res]. The run r is accepting if qn+1 ∈ F . The timed language LT (A) of A is the set of timed words w over � such that
there is an accepting run of A over w .

4.2. ECA+ and ECA++

In this section, we introduce an extension, denoted by ECA+ , of Event Clock Automata (ECA) [28], the latter being a
well-known determinizable subclass of TA where the explicit reset of clocks is disallowed. In ECA, clocks have a predefined
association with the input alphabet symbols and their values refer to the time distances from previous and next occurrences
11

of input symbols. ECA+ extend ECA by allowing a larger class of atomic event-clock constraints, namely diagonal constraints
(alias difference constraints) between clocks of the same polarity (i.e., between past clocks or between future clocks) and
sum constraints between clocks of opposite polarity (i.e. between a past clock and a future clock). Additionally, we consider the
extension of ECA+ , denoted by ECA++ , where the polarity requirements in the diagonal and sum constraints are relaxed.

Here, we adopt a propositional-based approach where the input alphabet is given by 2P for a given set of atomic propo-
sitions. The set CP of event clocks associated with P is given by CP := ⋃

p∈P {←−c p, −→cp}. Thus, for each proposition p ∈ P ,
there are two event clocks: the event-recording or past clock ←−c p which records the time elapsed since the last occurrence of
p in the input word (if any), and the event-predicting or future clock −→c p which provides the time required to the next occur-
rence of p (if any). A special value ⊥ is exploited to denote the absence of a past (resp., future) occurrence of proposition p.
Formally, the values of the event clocks at a position i of a timed word w can be deterministically determined as follows.

Definition 6 (Deterministic clock valuations). An event-clock valuation (over CP) is a mapping val : CP �→R+ ∪ {⊥}, assigning
to each event clock a value in R+ ∪ {⊥} (⊥ is the undefined value). For a timed word w = (σ , τ) over 2P and a position
0 ≤ i < |w|, the event-clock valuation valw

i , specifying the values of the event clocks at position i along w , is defined as
follows for each p ∈ P :

valw
i (

←−c p) =
⎧⎨
⎩

τi − τ	 if there exists the unique 0 ≤ 	 < i : p ∈ σ() and
∀k : 	 < k < i ⇒ p /∈ σ(k)

⊥ otherwise

valw
i (

−→c p) =
⎧⎨
⎩

τ	 − τi if there exists the unique i < 	 < |σ | : p ∈ σ() and
∀k : i < k < 	 ⇒ p /∈ σ(k)

⊥ otherwise

Definition 7 (ECA+ and ECA++). An ECA+ over 2P is a tuple A = (2P , Q , Q 0, CP , �, F), where Q is a finite set of states,
Q 0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states, and � is a finite set of transitions (q, a, θ, q′), where
q, q′ ∈ Q , a ∈ 2P , and θ is an ECA+ event-clock constraint that is a conjunction of atomic formulas of the following forms,
where p, p′ ∈P , ∼∈ {<, ≤, ≥, >}, and n⊥ ∈N ∪ {⊥}:

• ←−c p ∼ n⊥ or −→c p ∼ n⊥ (simple constraints);
• ←−c p − ←−c p′ ∼ n⊥ or −→c p − −→c p′ ∼ n⊥ (diagonal constraints between event clocks of the same polarity);
• ←−c p + −→c p′ ∼ n⊥ (sum constraints between event clocks of opposite polarity).

We denote by KA the maximal constant used in the event-clock constraints of A.
An ECA [28] is an ECA+ which does not use diagonal and sum constraints. We also consider the extension of ECA+ ,

denoted by ECA++ , where the transition guards also exploit as conjuncts diagonal (resp., sum) constraints over event clocks
of opposite polarity (resp., of the same polarity).

Let us fix an event-clock valuation val. We extend in the natural way the valuation val to differences (resp., sums) of
event clocks: for all c, c′ ∈ CP , val(c − c′) = val(c) − val(c′) and val(c + c′) = val(c) + val(c′) where each sum or difference
involving ⊥ evaluates to ⊥. Given an event-clock constraint θ , val satisfies θ , written val |= θ , if for each conjunct t ∼ n⊥ of
θ , either (i) val(t) �= ⊥, n⊥ �= ⊥, and val(t) ∼ n⊥ , or (ii) val(t) = ⊥, n⊥ = ⊥, and ∼∈ {≤, ≥}.

A run π of an ECA+ (resp., ECA++) A over a timed word w = (σ , τ) is a sequence of states π = q0, . . . , q|w| such that
q0 ∈ Q 0 and for all 0 ≤ i < |w|, (qi, σ(i), θ, qi+1) ∈ � for some constraint θ such that valw

i |= θ . The run π is accepting if
q|w| ∈ F . The timed language LT (A) of A is the set of timed words w over 2P such that there is an accepting run of A on
w .

We observe that the standard class of ECA allows to express atomic constraints on the time distance between two
events where one of them occurs at the current time. In this way, it is possible to specify standard bounded-time response
requirements such as “every request p is followed by a response q within k time units”. The novel class of ECA+ extends
ECA by the additional ability to temporally compare two events where none of them occurs at the current time. This allows,
for instance, to express a context-based version of bounded-time response properties. In order to illustrate this, we consider
a simple example. Assume that a client can send two kinds of requests to the server: default and critical ones. While there
is no bound on the time for processing a default request, we require that every critical request is processed within a given
amount of time, say 1 time unit. This scenario is modeled by the ECA+ in Fig. 4, where proposition reqD (reqC) models the
sending of a default (resp., critical) request to the server, exec represents the starting of request processing by the server,
and proposition send represents the termination of server processing and the sending of a response to the client.

We now formally show that ECA+ are more expressive than ECA, i.e. the class of ECA+ timed languages includes strictly
the class of ECA timed languages. Let us consider the ECA+ Ap , depicted below, whose set P of atomic propositions
consists of a unique proposition p.
12

q0

q1
{reqC},

−→csend −−→cexec ≤ 1

q′
1

{reqD}

q2
{exec}

{send}

q′
2

{exec}

{send}

Fig. 4. Example of an ECA+ specifying a context-based bounded-time response requirement.

q0 q1
{p}

q2
{p}, ←−cp + −→cp = 1

q3
{p}

q0 q1
{req}

q2
{exec1}

q3
{exec2}, −→csend − ←−cexec1 = 0

{send}

Fig. 5. Example of an ECA++ .

The automata Ap accepts timed words w of length 3 of the form ({p}, τ0), ({p}, τ1), ({p}, τ2) such that the time difference
between the first and last symbol is 1, i.e. τ2 − τ0 = 1. We show that there is no ECA accepting LT (Ap). Indeed, let w1

and w2 be the timed words over 2P (with P = {p}) of length 3 defined as follows:

• w1 = ({p}, 0), ({p}, 0.1), ({p}, 0.9);
• w2 = ({p}, 0), ({p}, 0.1), ({p}, 1.0).

For each 0 ≤ i ≤ 2, let us denote by val1i and val2i the event-clock valuations over CP associated with w1 and w2, respec-
tively, at position i. By construction, the following easily follows for all positions 0 ≤ i ≤ 2 and event-clocks z ∈ CP : either (i)
val1i (z) = val2i (z), or (ii) 0 < val1i (z) < 1 and 0 < val2i (z) < 1. Hence, simple atomic event-clock constraints cannot distinguish
the valuations val1i and val2i . It follows that for each ECA A over 2P , w1 ∈ LT (A) iff w2 ∈ LT (A). On the other hand, by
definition of the language LT (Ap), w2 ∈LT (Ap) and w1 /∈LT (Ap). Hence, LT (Ap) is not definable by ECA and we obtain
the following result.

Theorem 3. For a proposition p, there is a timed language over 2{p} which is definable by ECA+ but is not definable by ECA. Hence,
ECA+ are strictly more expressive than ECA.

For completeness, we also investigate the class of ECA++ , the extension of ECA+ where the polarity requirements in the
diagonal and sum constraints are relaxed. ECA++ extend ECA+ by adding a very powerful layer of modeling facilities. In
particular, arbitrary sum constraints allow to compare the durations of two temporal intervals where one of them ends at
the current time and the other one starts at the current time. Moreover, arbitrary diagonal constraints can enforce a bound
on the sum of durations of two temporal intervals both starting (resp., ending) at the current time. As a simple example,
depicted in Fig. 5, we consider a variant of the ECA+ illustrated in Fig. 4, where the server processing of a client request
is subdivided in two phases of equal duration. Note that in Fig. 5 the starting of the first phase (resp., second phase) is
modeled by proposition exec1 (resp., exec2).

Closure properties. Similarly to the case of ECA [28], the class of timed languages accepted by ECA+ (resp., ECA++) is closed
under Boolean operations.

Theorem 4 (Closure properties). Given two ECA+ (resp., ECA++) A and A′ over 2P with n and n′ states, respectively, one can
construct ECA+ (resp., ECA++) A∪ , A∩ , and Ac such that:
13

• A∪ (resp., A∩) accepts LT (A) ∪ LT (A′) (resp., LT (A) ∩ LT (A′)) and has n + n′ (resp., n · n′) states and greatest constant
max(KA, KA′);

• Ac accepts the complement of LT (A) and has 2O (n) states and greatest constant KA.

In the remaining part of the subsection we give the proof of Theorem 4. Actually, the results for union and intersection
are straightforward and omitted, and we focus on the closure under complementation which is crucially based on the fact
that event-clock values are purely determined by the input timed word. We prove the complementation result for the class
of ECA++ (the result for ECA+ being similar). We define an homomorphism from ECA++ to standard Nondeterministic
Finite Automata (NFA) over finite words and vice versa. Note that an NFA is defined as an ECA++ but we omit the set of
event clocks, and the set of clock constraints occurring in the transition function.

Let us fix an ECA++ A = (2P , Q , Q 0, CP , �, F) over 2P and let Const = {n0, . . . , nk} be the set of constants used in the
event-clock constraints of A ordered for increasing values, i.e. such that 0 ≤ n0 < n1 . . . < nk . The finite set IntvA of intervals
over R ∪ {⊥} is defined as follows:

IntvA := {[⊥,⊥], (−∞,0), [0,0], (0,n0)} ∪
i=k−1⋃

i=0

{[ni,ni], (ni,ni+1)} ∪ {[nk,nk], (nk,∞)}

Note that we also consider the interval (−∞, 0) consisting of the negative real numbers. The set Terms of ECA++ terms
over P is the set of expressions of the form c, or c − c′ , or c + c′ , where c, c′ ∈ CP (i.e., the set of left-hand side expressions
in the atomic event-clock constraints of ECA++ over 2P). For a term t and an interval I ∈ IntvA , we denote by t ∈ I , the
event-clock constraint θ(t, I) defined as follows:

• if I = [⊥, ⊥], then θ(t, I) := t ≤ ⊥ ∧ t ≥ ⊥;
• if I = (−∞, 0), then θ(t, I) := t < 0;
• if I = (n, n′) (resp., I = [n, n], resp., I = (n, ∞)) where n, n′ ∈N , then θ(t, I) := t > n ∧t < n′ (resp., θ(t, I) := t ≥ n ∧t ≤ n,

resp., θ(t, I) := t > n).

A region g of A is a mapping g : Terms �→ IntvA assigning to each term in Terms an interval in IntvA such that for each
t ∈ Terms, if g(t) = (−∞, 0), then t = c − c′ for some clocks c and c′ and g(c′ − c) �= (−∞, 0). The mapping g induces the
ECA++ event-clock constraint

∧
t∈Terms t ∈ g(t). We denote by [g] the (possibly empty) set of event-clock valuations over

CP satisfying the event-clock constraint associated with g, and by Reg the set of regions of A. For an ECA++ event-clock
constraint θ over CP , let [θ] be the set of event-clock valuations over CP satisfying θ .

Remark 1. By construction, the following properties hold.

• The set Reg of regions represents a partition of the set of event-clock valuations over CP :
(i) for all event-clock valuations val over CP , there is a region g ∈ Reg such that val ∈ [g],
(ii) for all regions g, g′ ∈ Reg, g �= g′ ⇒ [g] ∩ [g′] = ∅.

• for each event-clock constraint θ of A and region g ∈ Reg, either [g] ⊆ [θ] or [g] ∩ [θ] = ∅.

We associate with the alphabet 2P and the set of regions Reg the alphabet
 = 2P × Reg, called interval alphabet.
Elements of
 are pairs of the form (a, g), where a ∈ 2P and g is a region of A which is meant to represent the associated
event-clock constraint

∧
t∈Terms t ∈ g(t). A word λ = (a0, g0) . . . (an−1, gn−1) over
 induces in a natural way a set of timed

words over 2P , denoted t w(λ), defined as follows: w = (σ , τ) ∈ tw(λ) iff σ = a0 . . .an−1 and for all 0 ≤ i ≤ n −1, valw
i ∈ [gi].

We extend the mapping t w to languages L over
 in the obvious way: tw(L) := ⋃
λ∈L tw(λ). By means of the mapping tw,

words over
 define a partition of the set of timed words over 2P .

Lemma 1. The following two statements hold:

1. for each timed word w over 2P , there is a word λ over
 such that w ∈ tw(λ);
2. for all words λ and λ′ over
, if λ �= λ′ , then tw(λ) ∩ tw(λ′) = ∅.

Proof. As for Statement 1, let w = (σ0, τ0) . . . (σn−1, τn−1) be a timed word over 2P . By Remark 1, for all 0 ≤ i ≤ n −1, there
is a region gi ∈ Reg such that valw

i ∈ [gi]. Let λ = (σ0, g0) . . . (σn−1, gn−1). We have that w ∈ tw(λ), and the result follows.
As for Statement 2, let λ and λ′ be two distinct words over
. Let us assume that tw(λ) ∩ tw(λ′) �= ∅ and derive a

contradiction. Hence, by construction, |λ| = |λ′| = n for some n, λ = (a0, g0) . . . (an−1, gn−1), λ′ = (a0, g′
0) . . . (an−1, g′

n−1), and
there is a timed word w over � of the form w = (a0, τ0) . . . (an−1, τn−1) such that valw

i ∈ [gi] ∩[g′
i] for all i ≥ 0. Since λ �= λ′ ,

there exists 0 ≤ i ≤ n − 1 such that gi �= g′
i . By Remark 1, [gi] ∩ [g′

i] = ∅ which is a contradiction since valw
i ∈ [gi] ∩ [g′

i], and
the result follows. �
14

The following two propositions establish an untimed homomorphism from ECA++ to NFA, and a timed homomorphism
from NFA to ECA++ , respectively.

Proposition 2 (Untimed homomorphism). Let A = (2P , Q , Q 0, CP , �, F) be an ECA++ , and
 be the interval alphabet induced by
A. Then, one can construct an NFA Untimed(A) over
 of the form (
, Q , Q 0, �′, F) such that tw(L(Untimed(A))) = LT (A).

Proof. The transition relation �′ of Untimed(A) consists of the transitions (q, (a, g), q′) such that there is some event-clock
constraint θ of A so that [g] ⊆ [θ] and (q, a, θ, q′) ∈ �. By Remark 1 and Lemma 1(1), we easily derive the correctness of
the construction. �
Proposition 3 (Timed homomorphism). Let A = (
, Q , Q 0, �, F) be an NFA over an interval alphabet associated with 2P . Then, one
can construct an ECA++ Timed(A) over 2P of the form A = (2P , Q , Q 0, CP , �′, F) such that LT (Timed(A)) = tw(L(A)).

Proof. The transition relation �′ of Timed(A) consists of the transitions (q, a, θ, q′) such that there is (q, (a, g), q′) ∈ � so
that θ = ∧

t∈Terms t ∈ g(t). By Remark 1 and Lemma 1(1), we easily derive the correctness of the construction. �
By Lemma 1, Proposition 2, Proposition 3, and the known closure properties of NFA, we have the following result.

Theorem 5 (Closure under complementation of ECA++). Given an ECA++ A over 2P with n states, one can construct in singly
exponential time an ECA++ A over 2P accepting the complement of LT (A) having 2O (n) states and greatest constant KA.

Proof. Let A be an ECA++ over 2P with n states, and
 be the interval alphabet induced by A. By Proposition 2, we can
construct an NFA Untimed(A) over
 with n states such that tw(L(Untimed(A))) =LT (A). By classical results, starting from
the NFA Untimed(A), one can construct in singly exponential time an NFA Untimed(A) over
 accepting
∗ \L(Untimed(A))

with 2O (n) states. Applying Proposition 3 to the NFA Untimed(A), one can construct in linear time an ECA++ A over 2P

with 2O (n) states such that LT (A) = tw(
∗ \ L(Untimed(A))). Since LT (A) = tw(L(Untimed(A))), by Lemma 1, A accepts
all and only the timed words over 2P which are not in LT (A), and the result follows. �
4.3. From ECA+ to Timed Automata

It is known that ECA can be translated in singly exponential time into equivalent TA [28]. In this section, we generalize
this result to the class of ECA+ .

Theorem 6 (From ECA+ to TA). Given an ECA+ A over 2P , one can construct in exponential time a TA A′ over 2P such that
LT (A′) = LT (A) and KA′ = KA . Moreover, A′ has n · 2O (p) states and O (p) clocks, where n is the number of A-states and p is the
number of event-clock atomic constraints used by A.

Proof. We sketch the main ideas underlying the translation providing full details in Appendix B. Let A = (2P , Q , Q 0, CP ,

�, F) be an ECA+ over 2P . The TA A′ accepting LT (A) is essentially obtained from A by replacing each atomic event-
clock constraint of A with a set of standard clocks together with associated reset operations and clock constraints. To
remove simple event-clock constraints of A, we can proceed as in [28]. Therefore, we focus on the removal of diagonal
constraints (over clocks of the same polarity) and sum constraints (over clocks of opposite polarity).

Removal of diagonal predicting constraints. Let us consider a diagonal predicting clock constraint η : −→c p − −→c p′ ∼ n⊥ of A with
n⊥ ∈ N ∪ {⊥}. We consider the case n⊥ �= ⊥ (the case n⊥ = ⊥ being simpler). For handling the constraint η, the TA A′
exploits the fresh standard clock cη and in case n⊥ = 0 and ∼∈ {≥, <}, the additional fresh standard clock ĉη . The first
(resp., second) clock is reset only if proposition p′ (resp., p) occurs in the current input symbol. Assume that the prediction
η is done by A at position i of the input word for the first time. Then, the simulating TA A′ carries the obligation η in its
control state in order to check that there are next positions where p and p′ occur and τp − τp′ ∼ n⊥ holds, where τp (resp.,
τp′) is the timestamp associated with the first next position ip > i (resp., ip′ > i) where p (resp., p′) occurs. Note that all
the predictions η done by A before positions ip and ip′ correspond to the same obligation. First, assume that the first next
position ip′ > i where p′ occurs strictly precedes position ip . In this case, on reading position ip′ , A′ resets the clock cη and
replaces the old obligation η with the updated obligation (η, p′) in order to check that the constraint cη ∼ n⊥ holds when
the next p occurs (i.e., at position ip). If a new prediction η is done at a position jnew ≥ ip′ strictly preceding ip , the fresh
obligation η is carried in the control state together with the obligation (η, p′). We distinguish two cases:

• p′ occurs in some position strictly following jnew and strictly preceding ip . Let j′ be the smallest of such positions.
On reading position j′ , A′ replaces the old obligations η and (η, p′) with (η, p′) and resets the clock cη iff η is a
lower bound constraint, i.e., ∼∈ {>, ≥}. This is safe since if η is a lower bound, then the fulfillment of prediction η at
jnew guarantees the fulfillment of prediction η at position i. Vice versa, if η is an upper bound, then the fulfillment
15

of prediction η at i guarantees the fulfillment of prediction η′ at position jnew . Thus, when η is a lower bound, new
obligations (η, p′) rewrite the old ones, while when η is an upper bound, new obligations (η, p′) are ignored.

• there is no position strictly following jnew and strictly preceding ip , where p′ occurs. In this case, when ip is read, the
old obligation η is replaced by the obligation (η, p) unless p′ occurs at position ip (in the latter case, A′ simply checks
that 0 ∼ n⊥).

In both cases on reading position ip , the constraint cη ∼ n⊥ is checked and the obligation (η, p′) is discarded. The case
where ip′ = ip is trivial (on reading position i, A′ checks that 0 ∼ n⊥ holds). Finally, assume that ip strictly precedes ip′ . The
cases where either c �= 0 or ∼∈ {≤, >}, since in these cases if η is a lower bound (resp., upper bound), then the prediction
η done at position i is not satisfied (resp., is satisfied). Thus, we focus on the case where c = 0 and ∼∈ {≥, <}. If ∼ is
≥ (resp., ∼ is <), then on reading position ip , the clock ĉη is reset and the old obligation η is replaced by the updated
obligation (η, p) in order to check that the constraint ĉη = 0 (resp., ĉη > 0) holds when the next p′ occurs (i.e., at position
ip′). Moreover, if ∼ is ≥, then new obligations (η, p) occurring before position ip′ are ignored, i.e., the clock ĉη is not reset
at such positions. On the other hand, if ∼ is <, then the new obligations (η, p) occurring before position ip′ rewrite the old
ones. i.e. clock ĉη is reset at such positions.

Finally, in order to ensure that raised obligations about η are eventually checked, the accepting states of A′ do not
contain such obligations.

Removal of diagonal recording constraints. Let us consider a diagonal recording clock constraint η : ←−c p − ←−c p′ ∼ n⊥ of A where
n⊥ ∈ N ∪ {⊥}. For each proposition p′′ whose associated event-recording clock ←−c p′′ occurs in some constraint of A, the
TA A′ exploits a standard clock cp′′ which is reset whenever p′′ occurs in the current input symbol. Moreover, A′ keeps
tracks in the control state of the set of propositions occurred in the prefix w of the input read so far together with the past
information concerning the indication whether the following requirement holds or not (such an indication is represented
by the presence or not in the control state of the constraint η): the prefix w contains occurrences of both propositions p
and p′ and in case n⊥ �= ⊥, τp′ − τp ∼ n⊥ holds, where τp and τp′ are the timestamps associated with the last occurrences
of p and p′ in the prefix w , respectively. In order to check these conditions when n⊥ �= ⊥, A′ exploits the clock constraint
cp ∼ n⊥ whenever p′ occurs in the current input symbol a, p /∈ a, and p previously occurred, and the clock constraint cp′ = 0
(resp., cp′ > 0) whenever p occurs in the current input symbol a, p′ /∈ a, p′ previously occurred, c = 0, and ∼ is ≥ (resp.,
∼ is <). Thus, when the constraint η is exploited by A in the current transition, the simulating TA A′ simply checks that
the past indication η is present (resp., is not present) in the current control state if n⊥ �= ⊥ (resp., n⊥ = ⊥). If the check is
negative, the input is rejected.

Removal of sum constraints. Now, let us consider a sum constraint η : ←−c p + −→c p′ ∼ n⊥ of A where n⊥ ∈N ∪ {⊥}. We consider
the case n⊥ �= ⊥ (the other case being simpler). In this case, the TA A′ exploits two fresh standard clocks, namely cη and
ĉη , which are reset only if the proposition p (associated with the event-recording clock of η) occurs in the current input
symbol. In particular, A operates in two modes which alternate each other: the η-mode and the η̂-mode. Initially A′ is
in the η-mode. When there is no obligation about η, the clocks cη and ĉη are reset whenever proposition p occurs in the
current input position. When instead there is an obligation about η, in the η-mode (resp., η̂-mode), the clock cη (resp.,
ĉη) is reset whenever proposition p occurs, while the clock ĉη (resp., cη) is never reset. Moreover, we have two types of
obligations mutually exclusive: η and η̂. The obligation η (resp., η̂) is raised when the ECA A exploits the constraint η
and the TA A′ is in the η-mode (resp., η̂-mode) in order to check that the constraint cη ∼ n⊥ (resp., ĉη ∼ n⊥) holds at the
first next position where the proposition p′ occurs. More precisely, we first consider the case where η is an upper bound
constraint, i.e. ∼∈ {<, ≤}. Assume that at the current input position i, A′ is in the η-mode, there are no obligations about
the constraint η in the current control state of A′ , and A exploits in the current transition the event-clock constraint η. If p
did not occur in a previous input position, the TA A′ rejects the input. Otherwise, A′ carries the obligation η in its control
state in order to check that the constraint cη ∼ n⊥ holds at the first position jcheck > i where the proposition p′ occurs (if
any). If a proposition p occurs at a position j ≥ i of the input strictly preceding jcheck , the TA proceeds as follows:

• A switches to the η̂-phase (if j is the first position following i and preceding jcheck where p occurs) and the clock
ĉη is reset at position j in order to handle the obligations raised at positions h of the input following or coinciding
with jcheck . When position jcheck is read, the constraint cη ∼ n⊥ is checked and the obligation η is discarded unless
the constraint η is used in the current transition of A. In the latter case, since the η̂-mode is active, A replaces the
obligation η with the new obligation η̂.

• The clock cη is not reset at position j. Being η an upper bound constraint, if η is used by A at a position j′ > j strictly
preceding jcheck , then the choice of not resetting cη is safe: the fulfillment of the upper bound constraint η at the
previous position i guarantees the fulfillment of the constraint at a position j′ such that j < j′ < jcheck .

The case where η is a lower bound constraint (i.e. ∼∈ {>, ≥}) is similar, but this time new obligations rewrite the old
ones. In particular, whenever η is used by A and A′ is in the η-phase (resp., η̂-phase) and p′ does not hold at the current
input position, the old obligation (if any) is replaced by the new obligation η (resp., η̂) in order to check that the constraint
cη ∼ n⊥ (resp., ĉη ∼ n⊥) holds at the first next position where the proposition p′ occurs.
16

For ensuring that raised obligations about η are eventually checked, the accepting states of A′ do not contain such
obligations. The above described construction is formally reported in Appendix B. �
4.4. Undecidability of nonemptiness of ECA++

Since the nonemptiness problem for TA is decidable, as a corollary of Theorem 6 we have that the nonemptiness problem
for ECA+ is decidable as well. If we consider ECA++ we have a completely different picture since the counterpart of
Theorem 6 cannot be stated for this class of automata. In fact, we show that the nonemptiness problem for ECA++ is
undecidable using a reduction from the halting problem for Minsky 2-counter machines [30] similar to the one provided
for the strong minimal TP problem.

Theorem 7. The nonemptiness problem of ECA++ is undecidable even for the subclass of ECA++ which use only simple atomic event-
clock constraints and diagonal constraints over event clocks of opposite polarity of the form ←−c p − −→c p′ = 0.

Proof. The proof is by a polynomial-time reduction from the halting problem for Minsky 2-counter machines [30]. We fix
such a machine M = (Q , qinit, qhalt, �) and we adopt for the machine M the same notational conventions as in the proof of
Theorem 2. Let P be the set of atomic propositions given by Q ∪ {1L, 1R , 2L, 2R , [L,]L, [R ,]R , end}. We construct an ECA++
AM over P such that LT (AM) �= ∅ iff M halts.

First, we define a suitable encoding of the computations of M which is similar to the one exploited in the proof of
Theorem 2. A configuration C = (q, ν) of M is encoded by the timed word wC over 2P of length 9 (uniquely determined
modulo the initial timestamp) illustrated in the following figure.

τ0

{q,1L}

τ1

{q, [L}

ν(1) τ2

{q,2L}

1 τ3

{q,]L}

ν(2) τ4

{q, [R }

1 τ5

{q,2R }

1 τ6

{q,]R }

ν(2) τ7

{q,1R }

1 τ8

{q, end}

ν(1)

Left Part Right Part

Note that the configuration code wC is subdivided in two parts. In the left part (resp., right part), the encoding of counter
1 (resp., 2) precedes the encoding of counter 2 (resp., 1). The value ν(1) of counter 1 is encoded by the time distance to
the next point, which is ν(1), of the counter point marked by 1L in the left part, and the counter point marked by 1R in
the right part, and similarly for counter 2. The four points marked by [L ,]L , [R , and]R , respectively, are called tagged points
and their time distance to the next point is always 1 (tag requirement). Intuitively, they are used to check by event clock
constraints that increment and decrement M-instructions are correctly encoded.

A computation π = C1, . . . , Ck of M is then encoded by a timed word wπ of the form wπ = w1 · . . . · wk such that (i)
wi is a code of configuration Ci for all 1 ≤ i ≤ k, and (ii) the last timespamp of w j coincides with the first timestamp of
w j+1 for all 1 ≤ j < k. Note that wπ is uniquely determined modulo the initial timestamp.

We now illustrate the construction of the ECA++ AM over 2P which accepts all and only the timed words over 2P

which encode the computations of M starting at the initial configuration and leading to a halting configuration (hence,
LT (AM) �= ∅ iff M halts). The control structure and the acceptance condition of AM capture the timed words w of the form
w = w1 . . . wk such that for each 1 ≤ i ≤ k, (i) the untimed part of wi coincides with the untimed part of some configuration
code, i.e., it is of the form

{q,1L}, {q, [L}, {q,2L}, {q,]L}, {q, [R}, {q,2R}, {q,]R}, {q,1R}, {q, end}
for some q ∈ Q , (ii) the state associated with w1 is qinit , and (iii) the state associated with wk is qhalt . We say that each
subword wi is a pseudo-code. Moreover, in order to ensure that each pseudo-code is indeed a code of some M-configuration
and w1 · . . . · wk is faithful to the evolution of M , AM exploits event-clock constraints as follows.

AM ensures timestamp consistency of the tagged points of a pseudo-code wi (tag requirement): i.e., the time distance from a
point marked by a proposition in {[L,]L, [R ,]R} to the next point is 1. To that purpose, when the [L-point (resp.,]L -point)
of the left part of wi is read, AM exploits in the current transition the predicting event-clock constraint −→c2L = 1 (resp.,−→c[R = 1). Moreover, when the [R -point (resp.,]R -point) of the right part of wi is read, AM exploits in the current transition
the predicting event-clock constraint −→c2R = 1 (resp., −→c1R = 1).

AM ensures timestamp consistency of the left part and right part of a pseudo-code wi: i.e., the time distance of the counter 1L -
point (resp., 2L -point) to the next point coincides with the time distance of the counter 1R -point (resp., 2R -point) to the next
point. For capturing these requirements, when the [R -point of wi is read, AM exploits in the current transition, together
with the predicting event-clock constraint ensuring the tag requirement for [R , the event-clock constraint ←−c2L − −→c]R =
0 ∧ ←−c1L − −→cend = 0.
17

AM ensures that the timestamp of the last point of wi coincides with the timestamp of the first point of wi+1 if i < k. When an
end-point which is not associated with the halt state of M is read, AM exploits in the current transition the predicting
constraint −→c1L = 0.

AM keeps track whether the values of counters encoded by the current pseudo-code wi are 0 or not. When the first point (which
is a 1L -point) of a pseudo-code wi is read, AM guesses if the value of the first counter (resp., second counter) encoded by
wi is zero or not, and keeps tracks of the associated information in the control state until the first point of the next pseudo
code (if any) is read. In order to check that the guess is correct, when the counter 2R -point (resp., 1R -point) of the right
part of wi is read, AM exploits in the current transition the event-clock constraint −→c]R = 0 or −→c]R > 0 (resp., −→cend = 0
or −→cend > 0), depending on whether the value of the second counter (resp. first counter) is guessed to have a zero (resp.,
non-zero) value. In particular, AM ensures that the first pseudo-code w1 encodes the initial configuration of M .

AM ensures that the pseudo-code wi+1 is a code of some configuration of M which is a successor of the configuration encoded by wi .
When the first point of wi+1 is read, AM guesses an instruction op ∈ L of M (recall that L = {inc, dec, zero_test} × {1, 2})
such that for each 	 = 1, 2, if the value of counter 	 in wi is 0 (resp., is not 0), then op �= (dec,) (resp., op �= (zero_test,)).
Moreover, AM checks that (qi, op, qi+1) is a transition of M , where qi (resp., qi+1) is the state associated with wi (resp.,
wi+1). If the check is negative, the input is rejected. Otherwise, AM proceeds as follows. Here, we crucially exploit the
requirements on the tagged points, and the fact that the left part of wi+1 is preceded by the right part of wi (in particular,
the encoding of counter 1 in the left part of wi+1 is preceded by the encoding of counter 1 in the right part of wi). Note
that we can assume that wi is the code of some M-configuration, and we denote by n	 the value of counter 	 = 1, 2 in wi .

• op = (zero_test,) for some 	 = 1, 2: AM needs to ensure that the values of counter 1 (resp., 2) in wi and wi+1 coincide.
For this, AM exploits in the transition from the first point of wi+1 (i.e., the counter 1L -point of wi+1) the event-clock
constraint ←−c1R − −→c[L = 0 ∧ ←−c[R − −→c[R = 0.

• op = (inc,) for some 	 = 1, 2: AM needs to ensure that the values of counter 3 − 	 in wi and wi+1 coincide, and
the value of counter 	 in wi+1 is n	 + 1. If 	 = 1, then AM exploits in the transition from the first point of wi+1 (the
counter 1L -point of wi+1) the event-clock constraint ←−c]R − −→c[L = 0 ∧ ←−c[R − −→c]L = 0. The previous constraint (together
with the tag requirements) ensures that the value of counter 1 in wi+1 is n1 + 1, and the sum of the counter values in
wi+1 is n1 + n2 + 1. Similarly, if 	 = 2, then, AM exploits in the transition from the first point of wi+1 the event-clock
constraint ←−c1R − −→c[L = 0 ∧ ←−c[R − −→c]L = 0.

• op = (dec,) for some 	 = 1, 2: AM needs to ensure that the values of counter 3 − 	 in wi and wi+1 coincide, and
the value of counter 	 in wi+1 is n	 − 1. If 	 = 1, then AM exploits in the transition from the first point of wi+1 (the
counter 1L -point of wi+1) the event-clock constraint ←−c1R − −→c2L = 0 ∧ ←−c2R − −→c[R = 0. The previous constraint (together
with the tag requirements) ensures that the value of counter 1 in wi+1 is n1 − 1, and the sum of the counter values in
wi+1 is n1 + n2 − 1. Similarly, if 	 = 2, then, AM exploits in the transition from the first point of wi+1 the event-clock
constraint ←−c1R − −→c[L = 0 ∧ ←−c2R − −→c[R = 0.

Note that the ECA++ AM uses only simple atomic event-clock constraints and diagonal constraints over event clocks of
opposite polarity of the form ←−c p − −→c p′ = 0. �
5. Decidability of the weak minimal TP problem

In this section, by exploiting the results of Section 4, we show that the weak minimal TP problem is decidable and
PSPACE-complete. The upper bound is obtained by an exponential-time reduction to nonemptiness of Timed Automata
(TA) [25]. In order to handle the trigger rules under the weak minimal semantics, we exploit as an intermediate step the
class of ECA+ , introduced and investigated in Section 4.

In the following, we fix a TP domain D = (S V , R). We construct a TA accepting suitable encodings of the multi-timelines
of S V which satisfy the rules in R under the weak minimal semantics. For each x ∈ S V , let x = (V x, Tx, Dx). We first
define an encoding of the multi-timelines of S V by means of timed words over 2P for the set P of propositions given
by {init} ∪ ⋃

x∈S V Px where for each x ∈ S V , Px = {x} × V x × {s, e} × {0, 1}. We use the propositions in Px to encode the
tokens tk along a timeline for x: the start point and end point of tk are specified by propositions (x, v, s, b) and (x, v, e, b),
respectively, where b ∈ {0, 1} and v is the value of tk. The meaning of the bit b ∈ {0, 1} is explained below. The additional
proposition init ∈ P is used to mark the first point of a multi-timeline code in order to check point atoms of trigger rules
by ECA+ event-clock constraints. A code for a timeline for x is a timed word w over 2Px of the form

w = ({(x, v0, s,b0)}, τ0), ({(x, v0,e,b0)}, τ1), (x, v1, s,b1)}, τ1), ({(x, v1,e,b1)}, τ2), · · ·
· · · ({(x, vn, s,bn)}, τn), ({(x, vn,e,bn)}, τn+1)

such that for all 0 ≤ i ≤ n:

• vi+1 ∈ Tx(vi) if i < n;
• τ0 = 0 and τi+1 − τi ∈ Dx(vi);
18

• let 	i be the greatest index 0 ≤ j < i such that v j = vi if such an index exists, and let 	i := ⊥ otherwise. Then,
bi = (b	i + 1) mod 2 if 	i �= ⊥, and bi = 0 otherwise.

Intuitively, for each value v ∈ V x occurring along w , the associated bit acts as a modulo 2 counter which is incremented at
each visit of v along w . In the handling of the trigger rules under the weak minimal semantics, such a bit is used by ECA+
event-clock constraints to reference the end-event of a token whose start-event (x, v, s) is the first occurrence of (x, v, s, b)

for some b ∈ {0, 1} after the current input position. The timed word w encodes the timeline for x of length n + 1 given
by π = (v0, τ1 − τ0) . . . (vn, τn+1 − τn). Note that since the duration of a token is not zero, we have that τi+1 > τi for all
0 ≤ i ≤ n.

A code for a multi-timeline for S V is obtained by shuffling different timelines (one for each variable x ∈ S V), i.e., it is a
non-empty timed word w = (P0, τ0) · · · (Pn, τn) over 2P such that:

• for all x ∈ S V , the timed word obtained from (P0 ∩Px, τ0) · · · (Pn ∩Px, τn) by removing the pairs (∅, τi) is a code of a
timeline for x;

• init ∈ P0, init /∈ Pi for all 1 ≤ i ≤ n, and P0 ∩Px �= ∅ for all x ∈ S V (initialization).

Now, we show that the trigger rules in R under the weak minimal semantics can be handled by ECA+ over 2P . The start
and end points of the chosen non-trigger tokens are mapped to last and next occurrences of propositions in P w.r.t. the
current input position (trigger) of a multi-timeline encoding, while the atoms in the rules are mapped to ECA+ event-clock
constraints. Note that ECA+ cannot express trigger-less rules since the semantics of these rules does not constraint the
chosen punctual events to be closest as possible to a reference event. In the following, the maximal constant KD of D is the
greatest integer occurring in the atoms of R and in the constraint functions of the variables in S V .

Lemma 2. One can construct in exponential time an ECA+ A∀ over 2P such that for each multi-timeline � of S V and encoding w�

of �, w� is accepted by LT (A∀) iff � satisfies the trigger rules in R under the weak minimal semantics. Moreover, A∀ has a unique
state, O (Na) atomic event-clock constraints, and maximal constant O (KD), where Na is the overall number of atoms in the trigger
rules in R.

Proof. Let R be a trigger rule for S V with trigger o0[x0 = v0]. We show how to build an ECA+ AR over 2P satisfying
Lemma 2 with A∀ and R replaced with AR and {R}, respectively. Hence, by applying the closure of ECA+ under language
intersection (Theorem 4), the general result where R contains an arbitrary number of trigger rules follows.

Essentially, given the encoding w� of a multi-timeline � of S V , at each position i of w� where a trigger start-event
(x0, v0, s, b) of R occurs for some b ∈ {0, 1}, the ECA+ AR guesses an existential statement E of R and a weak minimal
assignment λ� of � w.r.t. o0 such that λ�(o0) = (�(x0), i) and λ� is consistent with the bindings in the quantifiers o[x = v]
of E (E-binding consistency), and checks by event-clock constraints that λ� satisfies the atoms in E .

Fix an existential statement E of R, and let O (E) be the set of token names (existentially) quantified by E . Let ref (o0) :=
(x0, v0) and for each o ∈ O (E), let ref (o) be the pair state variable/value referenced by o in the associated quantifier of
O (E). A weak minimal assignment w.r.t. o0 restricted to the set of token names in O (E) ∪ {o0} can be specified by a tuple
(P , C, F , g) (called symbolic assignment of E), where P , C , and F are sets in (O (E) ∪ {o0}) × {s, e}, g : O (E) ∪ {o0} �→ {0, 1}
assigns to each token name o in O (E) ∪ {o0} a bit in {0, 1}, and the following holds:

• The sets P , C , and F represent a partition of the set (O (E) ∪ {o0}) × {s, e}, i.e. P ∪ C ∪ F = (O (E) ∪ {o0}) × {s, e} and P ,
C , and F are pairwise disjunct;

• (o0, s) ∈ C ;
• for each o ∈ O (E) ∪ {o0}, if (o, e) ∈ P (resp., (o, e) ∈ C), then (o, s) ∈ P .

Given an input symbol a ∈ 2P , the symbolic assignment (P , C, F , g) of E is consistent with a if the following holds:

• for all (o, ev) ∈ C , (ref (o), ev, g(o)) ∈ a;
• for all o ∈ O (E), if (ref (o), ev, b) ∈ a for some b ∈ {0, 1} and ev ∈ {s, e}, then (o, ev) ∈ C and b = g(o).

Intuitively, given the encoding w� of a multi-timeline � of S V and a R-trigger position i of wπ (i.e., a position where
the trigger start-event (x0, v0, s, b) of R occurs for some b ∈ {0, 1}), a symbolic assignment (P , C, F , g) of E consistent
with the current input symbol w�(i) encodes a weak minimal assignment λ� of � w.r.t. o0 such that λ�(o0) = (�(x0), i)
and λ� is E-binding consistent. Since the duration of a token is never zero (strict time monotonicity), accordingly to the
weak minimal semantics, each start pair (o, s) in P (resp., in C , resp., in F) references the last previous occurrence (resp.,
current occurrence, resp., first next occurrence) of a start event of the form (ref (o), s, b) in w� w.r.t. position i, b = g(o)

(start weak minimal requirement), and the associated end pair (o, e) references the matching end event (ref (o), e, g(o)). Note
that we need to ensure that the start weak minimal requirement is fulfilled, the associated events exist and the start-event
(ref (o), s, g(o)) and the end-event (ref (o), e, g(o)) for a name o in O (E) ∪{o0} are associated to the same token. Additionally,
19

Table 2
Event-clock constraints for the difference atoms of E and the assignment (P , C, F , g) of E .

P C F ev(o2) − ev(o1) ∈ I

(oi , evi)i=1,2
←−c(ref (o1),ev1,g(o1)) − ←−c(ref (o2),ev2,g(o2)) ∈ I

(oi , evi)i=1,2
−→c(ref (o2),ev2,g(o2)) − −→c(ref (o1),ev1,g(o1)) ∈ I

(o1, ev1) (o2, ev2)
←−c(ref (o1),ev1,g(o1)) + −→c(ref (o2),ev2,g(o2)) ∈ I

(o2, ev2) (o1, ev1)
←−c(ref (o2),ev2,g(o2)) + −→c(ref (o1),ev1,g(o1)) ∈ I ∩ [0,0]

(o1, ev1) (o2, ev2)
←−c(ref (o1),ev1,g(o1)) ∈ I

(o2, ev2) (o1, ev1)
−→c(ref (o1),ev1,g(o1)) ∈ I ∩ [0,0]

(o2, ev2) (o1, ev1)
←−c(ref (o2),ev2,g(o2)) ∈ I ∩ [0,0]

(o1, ev1) (o2, ev2)
−→c(ref (o2),ev2,g(o2)) ∈ I

(oi , evi)i=1,2 true if 0 ∈ I , false otherwise

Table 3
Event-clock constraints for the point atoms of E and the assignment (P , C, F , g) of E .

P C F ev(o) ∈ I

(o, ev) ←−cinit − ←−c(ref (o),ev,g(o)) ∈ I
init /∈ a (o, ev) ←−cinit + −→c(ref (o),ev,g(o)) ∈ I
init ∈ a (o, ev) −→c(ref (o),ev,g(o)) ∈ I
(o, ev), init /∈ a ←−cinit ∈ I
(o, ev), init ∈ a true if 0 ∈ I , false otherwise

for encoding the weak minimal semantics, we also need to ensure that for each start pair (o, s) in P (resp., in F), if the
last previous occurrence (resp., first next occurrence) of the start event (ref (o), s, g(o)) in w� w.r.t. position i has a time
distance from the current position i greater than zero, then for each b ∈ {0, 1}, the first next occurrence (resp., last previous
occurrence) of a start event (if any) of the form (ref (o), s, b) in w� w.r.t. position i also has a time distance from i greater
than zero. For checking the previous requirements, we exploit the following ECA+ event-clock constraint over CP denoted
by θc(P , C, F , g).∧
(o,s)∈P

(←−c(ref (o),s,g(o)+1 mod 2) = ⊥ ∨ ←−c(ref (o),s,g(o)+1 mod 2) − ←−c(ref (o),s,g(o)) > 0
)∧

∧
(o,s)∈F

(−→c(ref (o),s,g(o)+1 mod 2) = ⊥ ∨ −→c(ref (o),s,g(o)+1 mod 2) − −→c(ref (o),s,g(o)) > 0
)∧

∧
{(o,s)∈P |(o,e)/∈P }

(←−c(ref (o),e,g(o)) = ⊥ ∨ ←−c(ref (o),e,g(o)) − ←−c(ref (o),s,g(o)) > 0
)∧

∧
{(o,e)∈F |(o,s)/∈F }

(−→c(ref (o),s,g(o)) = ⊥ ∨ −→c(ref (o),s,g(o)) − −→c(ref (o),e,g(o)) > 0
)∧

∧
(o,s)∈P

(←−c(ref (o),s,g(o)) = 0 ∨ [←−c(ref (o),s,g(o)) > 0 ∧
∧

b∈{0,1}
(
−→c(ref (o),s,b) = ⊥ ∨ −→c(ref (o),s,b) > 0)])∧

∧
(o,s)∈F

(−→c(ref (o),s,g(o)) = 0 ∨ [−→c(ref (o),s,g(o)) > 0 ∧
∧

b∈{0,1}
(
←−c(ref (o),s,b) = ⊥ ∨ ←−c(ref (o),s,b) > 0)])

Note that in the above constraint, we exploit Boolean disjunction. The latter can be removed by using nondeterminism
in the transition relation. We crucially observe that the module 2 counter used in the encoding of tokens and the above
event-clock constraint also ensure that each end pair (o, e) in P (resp., in F) references the last previous occurrence (resp.,
first next occurrence) of the end event (ref (o), e, g(o)) in w� w.r.t. position i.

We now associate to the symbolic assignment (P , C, F , g) an event-clock constraint over CP , denoted by θ(E, P , C, F , g),
obtained from the body of the existential statement E by replacing each difference atom (resp., point atom) with the
generalized atomic event-clock constraint indicated in Table 2 (resp., Table 3). Note that in the definition of such event-clock
constraints, we use the Boolean constants true and false. Moreover, note that in Tables 2–3, we exploit generalized ECA+
atomic event-clock constraints of the form t ∈ I for an interval I ∈ Intv which correspond to a conjunction t � 	 ∧ t ≺ u of
ECA+ atomic constraints, where �∈ {>, ≥} and ≺∈ {<, ≤}, 	 ∈N and u ∈N ∪ {∞} (if u = ∞, i.e. I is unbounded, then the
upper-bound conjunct is not exploited).

The ECA+ AR is then defined as follows. AR has a unique state q and for each input symbol a ∈ 2P , q
a,ϕ−→ q is a

transition of AR iff either (i) (ref (o0), s, b) /∈ a for all b ∈ {0, 1} and ϕ = true, or (ii) (ref (o0), s, b) ∈ a for some b ∈ {0, 1}
and there exists an existential statement E of R and a symbolic assignment (P , C, F , g) of E consistent with the input
symbol a such that ϕ = θc(P , C, F , g) ∧ θ(E, P , C, F , g). This concludes the proof of Lemma 2. �
20

For the trigger-less rules in R , the following result (Lemma 3) has been established in [19] for a slightly different
encoding of the multi-timelines. The result can be easily adapted to the encoding proposed here.

Lemma 3. One can construct in exponential time a TA A∃ over 2P accepting the codes of the multi-timelines of S V which satisfy the
trigger-less rules in R. Moreover, A∃ has 2O (Nq+∑

x∈S V |V x|) states, O (|S V | + Nq) clocks, and maximal constant O (KD), where Nq is
the overall number of quantifiers in the trigger-less rules of R.

We can now establish the main result of this section.

Theorem 8. Given a TP domain D = (S V , R), one can build in exponential time a TA AD with 2O (N+∑
x∈S V |V x|) states, O (N + |S V |)

clocks, and maximal constant O (KD), where N is the overall number of quantifiers and atoms in the rules of R, such that LT (AD) �= ∅
iff there is a weak minimal plan of D. Moreover, the weak minimal TP problem is PSPACE-complete.

Proof. By Theorem 6 and Lemmata 2–3, the first part of Theorem 8 concerning the construction of the TA AD for the TP
domain D, directly follows (recall that TA are effectively and polynomial-time closed under language intersection). For the
second part of Theorem 8, we recall that non-emptiness of a TA A can be solved by an NPSPACE search algorithm in the
region graph of A which uses space logarithmic in the number of states of A and polynomial in the number of clocks and
in the length of the encoding of the maximal constant of A [25]. Thus, since AD can be built on the fly, and the search in
the region graph of AD can be done without explicitly constructing AD , membership in PSPACE of the weak minimal TP
problem follows.

Finally, we show PSPACE-hardness of the weak minimal TP problem by a polynomial time reduction from a domino-
tiling problem for grids with rows of linear length [32]. Fix an instance I of such a problem which is a tuple I =
(C, �, n, δinit, δfinal), where C is a finite set of colors, � ⊆ C4 is a set of tuples (cdown, cleft, cup, cright) of four colors, called
domino-types, n > 0 is a natural number encoded in unary, and δinit, δfinal ∈ � are two distinguished domino-types (respec-
tively, the initial and final domino-types). A grid of I is a mapping f : [1,] × [1, n] �→ � for some 	 ∈ N \ {0}. Note that
each row of a grid consists of n cells and each cell contains a domino type. A tiling of I is a grid f : [1,] × [1, n] �→ �

satisfying the following additional requirements.

• two adjacent cells in a row have the same color on the shared edge, namely, for all (i, j) ∈ [1,] × [1, n − 1],
[f (i, j)]right = [f (i, j + 1)]left (row constraint);

• two adjacent cells in a column have the same color on the shared edge, namely, for all (i, j) ∈ [1, 	 − 1] × [1, n],
[f (i, j)]up = [f (i + 1, j)]down (column constraint);

• f (1, 1) = δinit (initialization) and f (, n) = δfinal (acceptance).

Without loss of generality, we can assume that if there is a tiling of I , then there is a tiling f : [1,] × [1, n] �→ � of I
satisfying the following additional requirements: the first cell of f is the unique containing δinit , and the last cell of f is the
unique containing δfinal .

It is well-known that checking the existence of a tiling of I is a PSPACE-complete problem [32]. We construct in poly-
nomial time a TP instance D = ({xI}, RI) such that there exists a weak minimal plan of D iff there exists a tiling of I .
Hence, the result follows.

First, we define a suitable encoding of the tilings of I by timelines of the state variable xI . The finite domain V of the
state variable xI is given by � × [1, n] × {0, 1}.

We encode the row of a tiling by concatenating the codes of the row’s cells starting from the first cell, and by marking
the encoding with a tag which is a bit in {0, 1}. Each cell is in turn encoded by a token of overall duration 1 which keeps
track of the associated content and position along the row. Formally, a row-code is a timeline π of xI of length n having
the form ((δ1, 1, b), d1) . . . ((δn, n, b), dn) such that the following holds:

• for all i ∈ [1, n − 1], [δi]right = [δi+1]left (row constraint);
• for all i ∈ [1, n], di = 1 (cell duration requirement).

We say that b ∈ {0, 1} is the tag of the row-code π . A sequence ν of row-codes is well-formed if for each non-last row-
code in ν with tag b, the next row-code in ν has tag 1 − b for all b ∈ {0, 1}. Tilings f are then encoded by timelines
corresponding to well-formed concatenations of the codes of the rows of f starting from the first row. The following claim
is straightforward.

Claim 1. One can construct a state variable xI = (V , T , D) such that the timelines of xI whose first token has value (δinit, 1, b) for
some b ∈ {0, 1} correspond to the prefixes of well-formed concatenations of row-codes. Moreover, (δinit, i, b) /∈ T (v) for all v ∈ V ,
i ∈ [1, n], and b ∈ {0, 1}, and T ((δfinal, n, b)) = ∅ for all b ∈ {0, 1}.

We now define the set RI of synchronization rules which under the weak minimal semantics of trigger rules captures
the timelines of xI encoding tilings of I . By Claim 1 and the assumption that the first cell (resp., last cell) of a tiling
21

is the unique containing the domino type δinit (resp., δfinal), in order to capture the well-formed concatenations of row-
codes satisfying the initialization and halting requirements, it suffices to ensure that a timeline of xI has a token with
value (δinit, 1, b) and a token with value (δfinal, n, b′) for some b, b′ ∈ {0, 1}. This can be expressed by the trigger-less rules
� → ∨

b∈{0,1} ∃o[xI = (δinit, 1, b)].� and � → ∨
b∈{0,1} ∃o[xI = (δfinal, n, b)].�.

Finally, in order to capture the column constraint, we exploit trigger rules under the weak minimal semantics. Note that
our encoding ensures that the difference s(tk′) − s(tk) of the start times of two tokens tk and tk′ encodings cells of the
same position and belonging to two consecutive row codes is always n. Thus, by Claim 1, the column constraint can be
enforced by requiring that for each token tk with value (δ, i, b) (encoding the ith cell of a row), either (i) tk is followed
by a token tk′ with value (δfinal, n, b) such that s(tk′) − s(tk) = n − i (i.e., tk belongs to the last row-code), or (ii) tk is
followed by a token tk′ with value (δ′, i, 1 − b) such that s(tk′) − s(tk) = n and δup = δ′

down (column constraint). Thus, for
each (δ, i, b) ∈ V \ {(δfinal, n, 0), (δfinal, n, 1)}, we have the following trigger rule, where V δ = {δ′ ∈ � | δup = δ′

down}:

o[xI = (δ, i,b)] → ∃o′[xI = (δfinal,n,b)]. s(o′) − s(o) ∈ [n − i,n − i] ∨∨
δ′∈V δ

∃o′[xI = (δ′, i,1 − b)]. s(o′) − s(o) ∈ [n,n]

Note that for the previous trigger rules, our encoding ensures that the weak minimal semantics coincides with the standard
one. This concludes the proof of Theorem 8. �
6. Conclusions

In this paper, we addressed the TP problem in the dense-time setting. First, we negatively answered the question of
decidability of the TP problem with future semantics, which was left open in [18]. Then, we introduced and investigated
two novel semantics in the dense-time domain (the weak and strong minimal semantics) aimed at overcoming the structural
restrictions on rule formats introduced in [18] to recover decidability. Surprisingly, we showed that, despite the apparently
small difference between the two semantics, the strong minimal one leads to an undecidable TP problem, while the weak
minimal one leads to a PSPACE-complete TP problem. In order to solve the weak minimal TP problem, we investigated two
novel and strictly more expressive extensions of ECA which are interesting per se in the field of timed automata. As for
future work, the most relevant issue we want to investigate is the expressiveness comparison between the TP framework
with standard semantics and the TP framework with (weak or strong) minimal semantics. We expect the two frameworks
to be incomparable from the expressiveness viewpoint. In fact, since the syntax of synchronization rules does not feature
negation, it is not clear how to force minimality in the standard semantics. Conversely, it is not clear how to mimics the
free token name assignments of the standard semantics in the framework enforcing the minimal semantics. As for more
technical issues, we will study the strong minimal TP problem when just one or two state variables are used, whose
decidability remains an open issue. Moreover, we aim at investigating the TP problem in the controllability setting, where
the values of some variables are not under the system control, but depend on the environment.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Undecidability of future TP problem

In this section we report the complete proof of Theorem 1. The result is stated by the following Proposition.

Proposition 1. Given a Minsky 2-counter machine M = (Q , qinit, qhalt, �), one can construct (in polynomial time) a TP instance
(domain) P = ({xM}, R M) where the intervals in P are in Intv(0,∞) such that M halts iff there exists a future plan for P .

Proof. First, we define a suitable encoding of a computation of M as the untimed part of a timeline (i.e., neglecting tokens’
durations and accounting only for their values) for xM . For this, we exploit the finite set of symbols V := V main ∪ V sec

corresponding to the finite domain of the state variable xM . The set of main values V main is the set of M-transitions, i.e.
V main = �. The set of secondary values V sec is defined as V sec := � × {1, 2} × {#, beg, end}, where #, beg, and end are three
special symbols used as markers. Intuitively, in the encoding of an M-computation a main value keeps track of the transition
used in the current step of the computation, while the set V sec is used for encoding counter values.

For c ∈ {1, 2}, a c-code for the main value δ ∈ � is a finite word wc over V sec of the form (δ, c, beg) · (δ, c, #)h · (δ, c, end)

for some h ≥ 0 such that h = 0 if op(δ) = (zero_test, c). The c-code wc encodes the value for counter c given by h (or
equivalently |wc | − 2). Note that only the occurrences of the symbols (δ, c, #) encode units in the value of counter c, while
the symbol (δ, c, beg) (resp., (δ, c, end)) is only used as left (resp., right) marker in the encoding.
22

Fig. A.6. The figure shows two adjacent configuration-codes, w (highlighted in cyan) and w ′ (in green), the former for δ = (q, (inc, 1), q′) ∈ � and the latter
for δ′ = (q′, . . .) ∈ �; w encodes the M-configuration (q, ν) where ν(1) = ν(2) = 1, and w ′ the M-configuration (q′, ν ′) where ν ′(1) = 2 and ν ′(1) = 1. The
“1-Time distance between consecutive main values requirement” (represented by black lines with arrows) forces a token with a main value to be followed,
after exactly one time instant, by another token with a main value. Since op(δ) = (inc, 1), the value of counter 2 does not change in this computation step,
and thus the values for counter 2 encoded by w and w ′ must be equal. To this aim the “equality requirement” (represented by blue lines with arrows)
sets a one-to-one correspondence between pairs of tokens associated with counter 2 in w and w ′ (more precisely, a token tk with value (δ, 2, _) in w
is followed by a token tk′ with value (δ′, 2, _) in w ′ such that s(tk′) − s(tk) = 1 and e(tk′) − e(tk) = 1). Finally, the “increment requirement” (red lines)
performs the increment of counter 1 by doing something analogous to the previous case, but with a difference: the token tk′ with value (δ′, 1, #) is in
w ′ in the place where the token tk with value (δ, 1, beg) was in w (i.e., s(tk′) − s(tk) = 1 and e(tk′) − e(tk) = 1). The token tk′′ with value (δ′, 1, beg) is
“anticipated”, in such a way that e(tk′′) − s(tk) = 1 (this is denoted by the dashed red line): the token with main value δ′ in w ′ has a shorter duration than
that with value δ in w , leaving space for tk′′ , so as to represent the unit added by δ to counter 1. Clearly density of the time domain plays a fundamental
role here. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

A configuration-code w for a main value δ ∈ � is a finite word over V of the form w = δ · w1 · w2 such that for each
counter c ∈ {1, 2}, wc is a c-code for the main value δ. The configuration-code w encodes the M-configuration (from(δ), ν),
where ν(c) = |wc| − 2 for all c ∈ {1, 2}. Note that if op(δ) = (zero_test, c), then ν(c) = 0.

A computation-code is a non-empty sequence of configuration-codes π = wδ1 · · · wδk , where for all 1 ≤ i ≤ k, wδi is a
configuration-code with main value δi , and whenever i < k, it holds that to(δi) = from(δi+1). Note that by our assumptions
to(δi) �= qhalt for all 1 ≤ i < k, and δ j �= δinit for all 1 < j ≤ k. The computation-code π is initial if the first configuration-code
wδ1 has the main value δinit and encodes the initial configuration, and it is halting if for the last configuration-code wδk in
π , it holds that to(δk) = qhalt . For all 1 ≤ i ≤ k, let (qi, νi) be the M-configuration encoded by the configuration-code wδi

and ci = c(δi). The computation-code π is well-formed if, additionally, for all 1 ≤ j < k, the following holds:

• ν j+1(c) = ν j(c) if either c �= c j or op(δ j) = (zero_test, c j) (equality requirement);
• ν j+1(c j) = ν j(c j) + 1 if op(δ j) = (inc, c j) (increment requirement);
• ν j+1(c j) = ν j(c j) − 1 if op(δ j) = (dec, c j) (decrement requirement).

Clearly, M halts iff there exists an initial and halting well-formed computation-code.

Definition of xM and R M . We now define a state variable xM and a set R M of synchronization rules for xM with inter-
vals in Intv(0,∞) such that the untimed part of every future plan of P = ({xM}, R M) is an initial and halting well-formed
computation-code. Thus, M halts if and only if there is a future plan of P .

Formally, variable xM is given by xM = (V = V main ∪ V sec, T , D), where for each v ∈ V , D(v) = (0, ∞). Thus, we require
that the duration of a token is always greater than zero (strict time monotonicity). The value transition function T of xM

ensures the following property.

Claim. The untimed parts of the timelines for xM whose first token has value δinit correspond to the prefixes of initial computation-
codes. Moreover, δinit /∈ T (v) for all v ∈ V .

By construction, it is a trivial task to define T so that the previous requirement is fulfilled.
Let V halt = {δ ∈ � | to(δ) = qhalt}. By Claim above and the assumption that from(δ) �= qhalt for each transition δ ∈ �, in

order to enforce the initialization and halting requirements, it suffices to ensure that a timeline has a token with value δinit
and a token with value in V halt . This is captured by the trigger-less rules � → ∃o[xM = δinit].� and � → ∨

v∈V halt
∃o[xM =

v].�.
Finally, the crucial well-formedness requirement is captured by the trigger rules in R M which express punctual time

constraints.3 We refer the reader to Fig. A.6, that gives an intuition on the properties enforced by the rules we are about
to define. In particular, we essentially take advantage of the dense temporal domain to allow for the encoding of arbitrarily
large values of counters in two time units.

Trigger rules for 1-Time distance between consecutive main values. We define non-simple trigger rules requiring that the overall
duration of the sequence of tokens corresponding to a configuration-code amounts exactly to two time units. By Claim
above, strict time monotonicity, and the halting requirement, it suffices to ensure that each token tk having a main value in
V main \ V halt is eventually followed by a token tk′ such that tk′ has a main value and s(tk′) − s(tk) = 1 (this denotes—with a

3 Such punctual constrains are expressed by pairs of conjoined atoms whose intervals are in Intv(0,∞) .
23

little abuse of notation—that the difference of start times is exactly 1). To this aim, for each v ∈ V main \ V halt , we write the
non-simple trigger rule with intervals in Intv(0,∞):

o[xM = v] →
∨

u∈V main

∃o′[xM = u]. s(o′) − s(o) ∈ [1,+∞) ∧ s(o′) − s(o) ∈ [0,1].

Trigger rules for the equality requirement. In order to ensure the equality requirement, we exploit the fact that the end time
of a token along a timeline corresponds to the start time of the next token (if any). Let V =

sec be the set of secondary states
(δ, c, t) ∈ V sec such that to(δ) �= qhalt , and either c �= c(δ) or op(δ) = (zero_test, c). Moreover, for a counter c ∈ {1, 2} and a tag
t ∈ {beg, #, end}, let V t

c ⊆ V sec be the set of secondary states given by � × {c} × {t}. We require the following:

(*) each token tk with a (V t
c ∩ V =

sec)-value is eventually followed by a token tk′ with a V t
c -value such that s(tk′) − s(tk) = 1

(i.e., the difference of start times is exactly 1). Moreover, if t �= end, then e(tk′) − e(tk) = 1 (i.e., the difference of end
times is exactly 1).

Condition (*) is captured by the following non-simple trigger rules with intervals in Intv(0,∞):

• for each v ∈ V t
c ∩ V =

sec and t �= end,

o[xM = v] → ∨
u∈V t

c
∃o′[xM = u]. s(o′) − s(o) ∈ [1,+∞) ∧ s(o′) − s(o) ∈ [0,1]∧

e(o′) − e(o) ∈ [1,+∞) ∧ e(o′) − e(o) ∈ [0,1];
• for each v ∈ V end

c ∩ V =
sec ,

o[xM = v] →
∨

u∈V end
c

∃o′[xM = u]. s(o′) − s(o) ∈ [1,+∞) ∧ s(o′) − s(o) ∈ [0,1].

We now show that Condition (*) together with strict time monotonicity and 1-Time distance between consecutive main
values ensure the equality requirement. Let π be a timeline of xM satisfying all the rules defined so far, wδ and wδ′ two
adjacent configuration-codes along π with wδ preceding wδ′ (note that to(δ) �= qhalt), and c ∈ {1, 2} a counter such that
either c �= c(δ) or op(δ) = (zero_test, c). Let tk0 · · · tk	+1 (resp., tk′

0 · · · tk′
	′+1) be the sequence of tokens associated with the

c-code of wδ (resp., wδ′). We need to show that 	 = 	′ . By construction tk0 and tk′
0 have value in V beg

c , tk	+1 and tk′
	′+1

have value in V end
c , and for all 1 ≤ i ≤ 	 (resp., 1 ≤ i′ ≤ 	′), tki has value in V #

c (resp., tk′
i′ has value in V #

c). Then strict time
monotonicity, 1-Time distance between consecutive main values, and Condition (*) guarantee the existence of an injective
mapping g : {tk0, . . . , tk	+1} → {tk′

0, . . . , tk′
	′+1} such that g(tk0) = tk′

0, g(tk	+1) = tk′
	′+1, and for all 0 ≤ i ≤ 	, if g(tki) = tk′

j

(note that j < 	′ + 1), then g(tki+1) = tk′
j+1 (we recall that the end time of a token is equal to the start time of the next

token along a timeline, if any). These properties ensure that g is surjective as well. Hence, g is a bijection and 	′ = 	.

Trigger rules for the increment requirement. Let V inc
sec be the set of secondary states (δ, c, t) ∈ V sec such that to(δ) �= qhalt and

op(δ) = (inc, c). By reasoning like in the case of the rules ensuring the equality requirement, in order to express the incre-
ment requirement, it suffices to enforce the following conditions for each counter c ∈ {1, 2}:

(i) each token tk with a (V beg
c ∩ V inc

sec)-value is eventually followed by a token tk′ with a V beg
c -value such that e(tk′) −s(tk) =

1 (i.e., the difference between the end time of token tk′ and the start time of token tk is exactly 1);
(ii) for each t ∈ {beg, #}, each token tk with a (V t

c ∩ V inc
sec)-value is eventually followed by a token tk′ with a V #

c -value such
that s(tk′) − s(tk) = 1 and e(tk′) − e(tk) = 1 (i.e., the difference of start times and end times is exactly 1). Observe that
the token with a (V beg

c ∩ V inc
sec)-value is associated with a token with V #

c -value anyway;
(iii) each token tk with a (V end

c ∩V inc
sec)-value is eventually followed by a token tk′ with a V end

c -value such that s(tk′) −s(tk) =
1 (i.e., the difference of start times is exactly 1);

Intuitively, if w and w ′ are two adjacent configuration-codes along a timeline of xM , with w preceding w ′ , (i) and (ii) force
a token tk′ with a V #

c -value in w ′ to “take the place” of the token tk with (V beg
c ∩ V inc

sec)-value in w (i.e., they have the same
start and end times). Moreover a token with V beg

c -value must immediately precede tk′ in w ′ .
These requirements can be expressed by non-simple trigger rules with intervals in Intv(0,∞) similar to the ones defined

for the equality requirement.

Trigger rules for the decrement requirement. For capturing the decrement requirement, it suffices to enforce the following
conditions for each counter c ∈ {1, 2}, where V dec

sec denotes the set of secondary states (δ, c, t) ∈ V sec such that to(δ) �= qhalt
and op(δ) = (dec, c):

(i) each token tk with a (V beg
c ∩ V dec

sec)-value is eventually followed by a token tk′ with a V beg
c -value such that s(tk′) −

e(tk) = 1 (i.e., the difference between the start time of token tk′ and the end time of token tk is exactly 1);
24

(ii) each token tk with a (V #
c ∩ V dec

sec)-value is eventually followed by a token tk′ with a V t
c -value where t ∈ {beg, #} such

that s(tk′) − s(tk) = 1 and e(tk′) − e(tk) = 1 (i.e., the difference of start times and end times is exactly 1);
(iii) each token tk with a (V end

c ∩ V dec
sec)-value is eventually followed by a token tk′ with a V end

c -value such that s(tk′) −
s(tk) = 1 (i.e., the difference of start times is exactly 1).

Analogously, (i) and (ii) produce an effect which is symmetric w.r.t. the case of increment.
Again, these requirements can be easily expressed by non-simple trigger rules with intervals in Intv(0,∞) as done before

for expressing the equality requirement.
By construction, the untimed part of a future plan of P = ({xM}, R M) is an initial and halting well-formed computation-

code. Vice versa, by exploiting denseness of the temporal domain, the existence of an initial and halting well-formed
computation-code implies the existence of a future plan of P . This concludes the proof of Proposition 1. �
Appendix B. From ECA+ to Timed Automata

Full details of the construction for Theorem 6

Theorem 6 (From ECA+ to TA). Given an ECA+ A over 2P , one can construct in exponential time a TA A′ over 2P such that
LT (A′) = LT (A) and KA′ = KA . Moreover, A′ has n · 2O (p) states and O (p) clocks, where n is the number of A-states and p is the
number of event-clock atomic constraints used by A.

Proof. Let A = (2P , Q , Q 0, CP , �, F) be an ECA+ over 2P . We now provide the formal definition of the TA A′ accepting
LT (A) starting with some additional notation.

A past event of A is

• either a diagonal constraint of A over event-recording clocks,
• or a proposition p ∈P s.t. the recording clock ←−c p occurs in some clock constraint of A,
• or the element mη or mη̂ for some sum constraint η of A which does not involve the special value ⊥.

Intuitively, a past event p ∈ P indicates that proposition p occurred in some previous input position, while a past event
η : ←−c p − ←−c p′ ∼ n⊥ indicates that the prefix w of the input read so far contains occurrences of both propositions p and p′
and in case n⊥ �= ⊥, τp′ − τp ∼ n⊥ holds, where τp and τp′ are the timestamps associated with the last occurrences of p
and p′ in the prefix w , respectively. Finally, a past event mη (resp., mη̂) for a sum constraint η denotes the η-mode (resp.,
η̂-mode) in the handling of constraint η. A past set of A is a set P of past events such that for each sum constraint η of A
which does not involve the special value ⊥, mη ∈ P iff mη̂ /∈ P . An obligation of A is

• either a simple predicting constraint −→c p ∼ n⊥ of A,
• or a sum clock constraint of A,
• or an element of the form η̂ for some sum constraint η of A which does not involve the special value ⊥,
• or an element of the form η (resp., (η, p), resp., (η, p′)), where η is a diagonal predicting constraint η : −→c p − −→c p′ ∼ n⊥

of A involving the predictor clocks −→c p and −→c p′ .

An obligation set of A is a set of obligations O such that: (i) for each diagonal predicting constraint η : −→c p − −→c p′ ∼ n⊥ of
A, it is not the case that both (η, p) and (η, p′) are in O , and (ii) for each sum constraint η of A which does not involve
the special value ⊥, it is not the case that both η and η̂ are in O .
Let Cst be the finite set consisting of the following standard clocks:

• the clock cp for each recording clock ←−c p which occurs in some atomic event-clock constraint of A that does not involve
the special value ⊥.

• the clock cη for each atomic constraint η of A which does not involve the spacial value ⊥ such that either η is a simple
predicting constraint, or a diagonal constraint over event-predicting clocks, or a sum constraint.

• the clock ĉη for each diagonal predicting constraint η : −→c p − −→c p′ ≥ 0 of A.
• the clock ĉη for each sum constraint η of A which does not involve the special value ⊥.

Finally, let � be the finite set consisting of the following simple atomic constraints over Cst :

• the constraint cp ∼ n⊥ for each simple recording constraint ←−c p ∼ n⊥ (resp., diagonal recording constraint ←−c p − ←−c p′ ∼
n⊥) of A with n⊥ �= ⊥;

• the constraint cp′ = 0 for each diagonal recording constraint ←−c p − ←−c p′ ≥ 0 of A;
• the constraint cη ∼ n⊥ for each sum constraint η : ←−c p + −→c p′ ∼ n⊥ (resp., simple predicting constraint η : −→c p ∼ n⊥ , resp.,

diagonal predicting constraint η : −→c p − −→c p′ ∼ n⊥) of A with n⊥ �= ⊥;
25

• the constraint ĉη = 0 for each diagonal predicting constraint η : −→c p − −→c p′ ≥ 0 of A;
• the constraint ĉη ∼ n⊥ for each sum constraint η : ←−c p + −→c p′ ∼ n⊥ of A with n⊥ �= ⊥.

The TA A′ is formally given by A′ = (2P , Q ′, Q ′
0, Cst , �′, F ′). The set Q ′ of states consists of the triples of the form

(q, P , O) such that q is a state of A, P is a past set of A, and O is an obligation set of A. The set Q ′
0 of initial states

consists of the states of the form (q0, P0, ∅) such that q0 ∈ Q 0 and P0 is the set of elements of the form mη (η-mode)
where η is a sum constraint of A which does not involve the value ⊥ (initially there are neither obligations nor past events
associated with propositions in P and diagonal recording constraints). The set F ′ of accepting states consists of the states
of the form (q, P , O) such that q ∈ F and O contains only obligations associated with atomic constraints involving the ⊥
value.

Finally, the transition relation �′ of the TA A′ is defined as follows. For each transition q a,θ−→ q′ of the ECA+ A, we

have in the TA A′ the transitions of the form (q, P , O) a,θ ′,Res−→ (q′, P ′, O ′), where the sets of past events P and P ′ , the sets
of obligations O and O ′ , the reset set Res, and the clock constraint θ ′ satisfy the following requirements:

• The clock constraint θ ′ has as conjuncts only simple atomic constraints in �.
• For each past event p in P , (i) p ∈ P ′ iff either p ∈ a or p ∈ P , and (ii) cp ∈ Res iff p ∈ a.
• For each simple recording clock constraint η : ←−c p ∼ n⊥ of A:

– if η is a conjunct of θ , then p ∈ P iff n⊥ �= ⊥;
– if n⊥ �= ⊥ and η is a conjunct of θ , then cp ∼ n⊥ is a conjunct of θ ′ .

• For each diagonal recording clock constraint η : ←−c p − ←−c p′ ∼ n⊥ of A:
– if η is a conjunct of θ , then η ∈ P iff n⊥ �= ⊥;
– if n⊥ = ⊥, then η ∈ P ′ iff either η ∈ P or p, p′ ∈ a ∪ P ;
– if n⊥ �= ⊥, then η ∈ P ′ iff

∗ either η ∈ P and p, p′ /∈ a,
∗ or p ∈ P \ a, p′ ∈ a, and cp ∼ n⊥ is a conjunct of θ ′ ,
∗ or p, p′ ∈ a and 0 ∼ n⊥ holds,
∗ or p′ ∈ P \a, p ∈ a, and either (i) ∼ is ≤, or (ii) ∼ is < and n⊥ �= 0, or (iii) ∼ is <, n⊥ = 0, and cp′ > 0 is a conjunct

of θ ′ , or (iv) ∼ is ≥, n⊥ = 0, and cp′ = 0 is a conjunct of θ ′ .
• For each simple predicting clock constraint η : −→c p ∼ n⊥ of A:

– η ∈ O ′ iff either η is a conjunct of θ , or η ∈ O and p /∈ a;
– if n⊥ �= ⊥, then cη ∈ Res iff η is a conjunct of θ and either η /∈ O or ∼∈ {>, ≥};
– if n⊥ �= ⊥, then cη ∼ n⊥ is a conjunct of θ ′ iff η ∈ O and p ∈ a;
– if n⊥ = ⊥, then either η /∈ O or p /∈ a.

• For each sum clock constraint η : ←−c p + −→c p′ ∼ ⊥:
– η ∈ O ′ iff p ∈ P and either η is a conjunct of θ , or η ∈ O and p′ /∈ a;
– either η /∈ O or p′ /∈ a.

• For each sum clock constraint η : ←−c p + −→c p′ ∼ n of A such that n �= ⊥:
– if η occurs in θ , then p ∈ P ;
– P ∩ {mη, mη̂} �= P ′ ∩ {mη, mη̂} iff p ∈ a, p′ /∈ a, and either (i) mη ∈ P and η ∈ O , or (ii) mη̂ ∈ P and η̂ ∈ O ;
– cη ∈ Res (resp., cη̂ ∈ Res) iff p ∈ a and either {η, η̂} ∩ O = ∅ or mη ∈ P ′ (resp., mη̂ ∈ P ′);
– cη ∼ n⊥ (resp., cη̂ ∼ n⊥) is a conjunct of θ ′ iff η ∈ O (resp., η̂ ∈ O) and p′ ∈ a;
– if ∼∈ {<, ≤} (upper bound), then η ∈ O ′ iff p ∈ P and either (i) η ∈ O and p′ /∈ a, or (ii) η is a conjunct of θ , mη ∈ P

(η-mode), and (p′ /∈ a implies that {η, η̂} ∩ O = ∅);
– if ∼∈ {<, ≤} (upper bound), η̂ ∈ O ′ iff p ∈ P and either (i) η̂ ∈ O and p′ /∈ a, or (ii) η is a conjunct of θ , mη̂ ∈ P

(η̂-mode), and (p′ /∈ a implies that {η, η̂} ∩ O = ∅);
– if ∼∈ {>, ≥} (lower bound), then η ∈ O ′ iff p ∈ P and either (i) η ∈ O , p′ /∈ a, and θ is not a conjunct of θ , or (ii) η is

a conjunct of θ and mη ∈ P ;
– if ∼∈ {>, ≥} (lower bound), then η̂ ∈ O ′ iff p ∈ P and either (i) η̂ ∈ O , p′ /∈ a, and θ is not a conjunct of θ , or (ii) η is

a conjunct of θ and mη̂ ∈ P .

• For each diagonal predicting clock constraint η : −→c p − −→c p′ ∼ n⊥ of A:
– η ∈ O ′ iff either η is a conjunct of θ , or η ∈ O and p, p′ /∈ a;
– (η, p) ∈ O ′ iff either (i) (η, p) ∈ O and p′ /∈ a, or (ii) η ∈ O , p ∈ a, and p′ /∈ a;
– (η, p′) ∈ O ′ iff either (i) (η, p′) ∈ O and p /∈ a, or (ii) η ∈ O , p′ ∈ a, and p /∈ a;
– if n⊥ �= ⊥, then cη ∈ Res iff p′ ∈ a, p /∈ a, η ∈ O , and either (η, p′) /∈ O or ∼∈ {>, ≥};
– if n⊥ = 0 and ∼ is ≥, then ĉη ∈ Res iff p ∈ a, p′ /∈ a, η ∈ O , and (η, p) /∈ O ;
– if n⊥ = 0 and ∼ is <, then ĉη ∈ Res iff p ∈ a, p′ /∈ a, and {η, (η, p)} ∩ O �= ∅;
– if n⊥ �= ⊥, η ∈ O , and {p, p′} ⊆ a then 0 ∼ n⊥ holds;
– if n⊥ �= ⊥, (η, p′) ∈ O and p ∈ a, then cη ∼ n⊥ is a conjunct of θ ′;
– if n⊥ �= ⊥, (η, p) ∈ O and p′ ∈ a, then either (i) ∼ is ≤, or (ii) ∼ is < and n⊥ �= 0, or (iii) ∼ is <, n⊥ = 0, and ĉη > 0

is a conjunct of θ ′ , or (iv) ∼ is ≥, n⊥ = 0, and ĉη = 0 is a conjunct of θ ′;
26

– if n⊥ = ⊥ and η ∈ O (resp., (η, p) ∈ O , resp., (η, p′) ∈ O), then {p, p′} � a (resp., p′ /∈ a, resp., p /∈ a).

This concludes the proof of Theorem 6. �
References

[1] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, Undecidability of future timeline-based planning over dense temporal domains?, in: G. Cordasco, L.
Gargano, A.A. Rescigno (Eds.), Proceedings of the 21st Italian Conference on Theoretical Computer Science, Ischia, Italy, September 14-16, 2020, in:
CEUR Workshop Proceedings, CEUR-WS.org, vol. 2756, 2020, pp. 155–166, http://ceur-ws .org /Vol -2756 /paper _15 .pdf.

[2] L. Bozzelli, A. Montanari, A. Peron, Taming the complexity of timeline-based planning over dense temporal domains, in: A. Chattopadhyay, P. Gastin
(Eds.), 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS, 2019, December 11-13, 2019,
Bombay, India, in: LIPIcs, vol. 150, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 34:1–34:14.

[3] M. Fox, D. Long, PDDL2.1: an extension to PDDL for expressing temporal planning domains, J. Artif. Intell. Res. 20 (2003) 61–124, https://doi .org /10 .
1613 /jair.1129.

[4] J. Rintanen, Complexity of concurrent temporal planning, in: Proc. of the 17th ICAPS, AAAI, 2007, pp. 280–287, http://www.aaai .org /Library /ICAPS /2007 /
icaps07 -036 .php.

[5] A. Cesta, A. Finzi, S. Fratini, A. Orlandini, E. Tronci, Flexible timeline-based plan verification, in: Proc. of the 32nd KI, in: LNCS, vol. 5803, Springer,
2009, pp. 49–56.

[6] A. Cesta, A. Finzi, S. Fratini, A. Orlandini, E. Tronci, Analyzing flexible timeline-based plans, in: Proc. of the 19th ECAI, in: Frontiers in Artificial
Intelligence and Applications, vol. 215, IOS Press, 2010, pp. 471–476.

[7] M. Cialdea Mayer, A. Orlandini, An executable semantics of flexible plans in terms of timed game automata, in: Proc. of the 22nd TIME, IEEE Computer
Society, 2015, pp. 160–169.

[8] M. Cialdea Mayer, A. Orlandini, A. Ubrico, A formal account of planning with flexible timelines, in: Proc. of the 21st TIME, IEEE Computer Society, 2014,
pp. 37–46.

[9] M. Cialdea Mayer, A. Orlandini, A. Umbrico, Planning and execution with flexible timelines: a formal account, Acta Inform. 53 (6–8) (2016) 649–680,
https://doi .org /10 .1007 /s00236 -015 -0252 -z.

[10] A. Cimatti, A. Micheli, M. Roveri, Timelines with temporal uncertainty, in: Proc. of the 27th AAAI, 2013, http://www.aaai .org /ocs /index .php /AAAI /
AAAI13 /paper /view /6319.

[11] R. Alur, T.A. Henzinger, A really temporal logic, J. ACM 41 (1) (1994) 181–204, https://doi .org /10 .1145 /174644 .174651.
[12] J. Barreiro, M. Boyce, M. Do, J. Frank, M. Iatauro, T. Kichkaylo, P. Morris, J. Ong, E. Remolina, T. Smith, D. Smith, EUROPA: a platform for AI planning,

scheduling, constraint programming, and optimization, in: Proc. of the 4th ICKEPS, 2012.
[13] A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, N. Policella, An innovative product for space mission planning: an a posteriori evaluation, in: Proc. of the

17th ICAPS, 2007, pp. 57–64, http://www.aaai .org /Library /ICAPS /2007 /icaps07 -008 .php.
[14] S. Chien, D. Tran, G. Rabideau, S. Schaffer, D. Mandl, S. Frye, Timeline-based space operations scheduling with external constraints, in: Proc. of the 20th

ICAPS, AAAI, 2010, pp. 34–41, http://www.aaai .org /ocs /index .php /ICAPS /ICAPS10 /paper /view /1432.
[15] J. Frank, A. Jónsson, Constraint-based attribute and interval planning, Constraints 8 (4) (2003) 339–364, https://doi .org /10 .1023 /A :1025842019552.
[16] A.K. Jónsson, P.H. Morris, N. Muscettola, K. Rajan, B.D. Smith, Planning in interplanetary space: theory and practice, in: Proc. of the 5th AIPS, AAAI,

2000, pp. 177–186, http://www.aaai .org /Library /AIPS /2000 /aips00 -019 .php.
[17] N. Muscettola, HSTS: integrating planning and scheduling, in: Intelligent Scheduling, Morgan Kaufmann, 1994, pp. 169–212.
[18] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, G.J. Woeginger, Timeline-based planning over dense temporal domains, Theor. Comput. Sci. 813 (2020)

305–326, https://doi .org /10 .1016 /j .tcs .2019 .12 .030.
[19] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, Complexity of timeline-based planning over dense temporal domains: exploring the middle ground, in:

Proc. of the 9th GandALF 2018, in: EPTCS, vol. 277, 2018, pp. 191–205.
[20] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, Decidability and complexity of timeline-based planning over dense temporal domains, in: Proc. of the

16th KR, AAAI Press, 2018, pp. 627–628, https://aaai .org /ocs /index .php /KR /KR18 /paper /view /17995.
[21] N. Gigante, A. Montanari, M. Cialdea Mayer, A. Orlandini, Timelines are expressive enough to capture action-based temporal planning, in: Proc. of the

23rd TIME, IEEE Computer Society, 2016, pp. 100–109.
[22] N. Gigante, A. Montanari, M. Cialdea Mayer, A. Orlandini, Complexity of timeline-based planning, in: Proc. of the 27th ICAPS, AAAI Press, 2017,

pp. 116–124, https://aaai .org /ocs /index .php /ICAPS /ICAPS17 /paper /view /15758.
[23] J. Ouaknine, J. Worrell, On metric temporal logic and faulty Turing machines, in: Proc. of the 9th FOSSACS, in: LNCS, vol. 3921, Springer, 2006,

pp. 217–230.
[24] L. Bozzelli, A. Molinari, A. Montanari, A. Peron, G.J. Woeginger, Timeline-based planning over dense temporal domains with trigger-less rules is NP-

complete, in: Proc. of the 19th ICTCS, in: CEUR Workshop Proceedings, vol. 2243, 2018, pp. 116–127, http://ceur-ws .org /Vol -2243 /paper11.pdf.
[25] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235, https://doi .org /10 .1016 /0304 -3975(94)90010 -8.
[26] J. Ouaknine, J. Worrell, On the decidability and complexity of metric temporal logic over finite words, Log. Methods Comput. Sci. 3 (1) (2007), https://

doi .org /10 .2168 /LMCS -3(1 :8)2007.
[27] R. Alur, T. Feder, T.A. Henzinger, The benefits of relaxing punctuality, J. ACM 43 (1) (1996) 116–146, https://doi .org /10 .1145 /227595 .227602.
[28] R. Alur, L. Fix, T.A. Henzinger, Event-clock automata: a determinizable class of timed automata, Theor. Comput. Sci. 211 (1–2) (1999) 253–273, https://

doi .org /10 .1016 /S0304 -3975(97)00173 -4.
[29] G. Geeraerts, J. Raskin, N. Sznajder, Event clock automata: from theory to practice, in: Proc. of the 9th FORMATS, in: LNCS, vol. 6919, Springer, 2011,

pp. 209–224.
[30] M.L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Inc., 1967.
[31] J. Raskin, P. Schobbens, The logic of event clocks - decidability, complexity and expressiveness, J. Autom. Lang. Comb. 4 (3) (1999) 247–286.
[32] D. Harel, Algorithmics: The Spirit of Computing, 2nd edition, Wesley, 1992.
27

http://ceur-ws.org/Vol-2756/paper_15.pdf
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib11F07E2407B015C79D41BE7273215559s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib11F07E2407B015C79D41BE7273215559s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib11F07E2407B015C79D41BE7273215559s1
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129
http://www.aaai.org/Library/ICAPS/2007/icaps07-036.php
http://www.aaai.org/Library/ICAPS/2007/icaps07-036.php
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib0215B94F2669ABF507476D599F726704s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib0215B94F2669ABF507476D599F726704s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibCCE9D117AC0E4AF2C4BC55299D4F33B2s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibCCE9D117AC0E4AF2C4BC55299D4F33B2s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibBB5524A3F6FB6EC67F5FFF3327D0AE89s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibBB5524A3F6FB6EC67F5FFF3327D0AE89s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib4DE6AF95403B98A804EC3EB72B4E96C5s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib4DE6AF95403B98A804EC3EB72B4E96C5s1
https://doi.org/10.1007/s00236-015-0252-z
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6319
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6319
https://doi.org/10.1145/174644.174651
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibB50A6EC8FDE65B5DF99EF3FE75654E82s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibB50A6EC8FDE65B5DF99EF3FE75654E82s1
http://www.aaai.org/Library/ICAPS/2007/icaps07-008.php
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1432
https://doi.org/10.1023/A:1025842019552
http://www.aaai.org/Library/AIPS/2000/aips00-019.php
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib875329319042B715ABEB977073885757s1
https://doi.org/10.1016/j.tcs.2019.12.030
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib4DD32C4D9CA926DF5F538F911966AD89s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib4DD32C4D9CA926DF5F538F911966AD89s1
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17995
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibC54D29AFCD1167ECF7AE2300E62D53E9s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibC54D29AFCD1167ECF7AE2300E62D53E9s1
https://aaai.org/ocs/index.php/ICAPS/ICAPS17/paper/view/15758
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibE3DCE39803CD5AA002F5C4F11DCBB61Es1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibE3DCE39803CD5AA002F5C4F11DCBB61Es1
http://ceur-ws.org/Vol-2243/paper11.pdf
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.2168/LMCS-3(1:8)2007
https://doi.org/10.2168/LMCS-3(1:8)2007
https://doi.org/10.1145/227595.227602
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibD6B684F3EC7D64E8B114CBC9BBF1B929s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibD6B684F3EC7D64E8B114CBC9BBF1B929s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibA638302E2930E9B44B168A2A06012BDBs1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bibD2AAF763032705C5D1ABC8CF83400834s1
http://refhub.elsevier.com/S0304-3975(21)00707-6/bib57BF9F11A44136367D1129A73136FFEAs1

	Complexity issues for timeline-based planning over dense time under future and minimal semantics
	1 Introduction
	2 The timeline-based planning problem
	2.1 The standard TP problem
	2.2 The TP problem with future semantics
	2.3 The TP problem with minimal semantics

	3 Undecidability of the strong minimal TP problem
	4 Some novel extensions of Event-Clock Automata (ECA)
	4.1 Timed Automata
	4.2 ECA+ and ECA++
	4.3 From ECA+ to Timed Automata
	4.4 Undecidability of nonemptiness of ECA++

	5 Decidability of the weak minimal TP problem
	6 Conclusions
	Declaration of competing interest
	Appendix A Undecidability of future TP problem
	Appendix B From ECA+ to Timed Automata
	References

